Seamless and multi-resolution energy forecasting
2025ArticleJournal paper
C. Wang, P. Pinson, Y. Wang
IEEE Transactions on Smart Grid 16(1), pp. 383-395
Publication year: 2025
Forecasting is pivotal in energy systems, by providing fundamentals for operation at different horizons and resolutions. Though energy forecasting has been widely studied for capturing temporal information, very few works concentrate on the frequency information provided by forecasts. They are consequently often limited to single-resolution applications (e.g., hourly). Here, we propose a unified energy forecasting framework based on Laplace transform in the multi-resolution context. The forecasts can be seamlessly produced at different desired resolutions without re-training or post-processing. Case studies on both energy demand and supply data show that the forecasts from our proposed method can provide accurate information in both time and frequency domains. Across the resolutions, the forecasts also demonstrate high consistency. More importantly, we explore the operational effects of our produced forecasts in the day-ahead and intra-day energy scheduling. The relationship between (i) errors in both time and frequency domains and (ii) operational value of the forecasts is analysed. Significant operational benefits are obtained.
Privacy-aware data acquisition under data similarity in regression markets
2025ArticleIn press/Available onlineJournal paper
S Pandey, P. Pinson, P. Popovski
IEEE Transactions on Neural Networks and Learning Systems
Publication year: 2025
Data markets facilitate decentralized data exchange for applications such as prediction, learning, or inference. The design of these markets is challenged by varying privacy preferences as well as data similarity among data owners. Related works have often overlooked how data similarity impacts pricing and data value through statistical information leakage. We demonstrate that data similarity and privacy preferences are integral to market design and propose a query-response protocol using local differential privacy for a two-party data acquisition mechanism. In our regression data market model, we analyze strategic interactions between privacy-aware owners and the learner as a Stackelberg game over the asked price and privacy factor. Finally, we numerically evaluate how data similarity affects market participation and traded data value.
How long is long enough? Finite-horizon approximation of energy storage scheduling problems
2025ArticleJournal paperPreprint
E. Prat, R. M. Lusby, J. M. Morales, S. Pineda, P. Pinson
preprint, under review
Publication year: 2025
Energy storage scheduling problems, where a storage is operated to maximize its profit in response to a price signal, are essentially infinite-horizon optimization problems as storage systems operate continuously, without a foreseen end to their operation. Such problems can be solved to optimality with a rolling-horizon approach, provided that the planning horizon over which the problem is solved is long enough. Such a horizon is termed a forecast horizon. However, the length of the planning horizon is usually chosen arbitrarily for such applications. We introduce an easy-to-check condition that confirms whether a planning horizon is a forecast horizon, and which can be used to derive a bound on suboptimality when it is not the case. By way of an example, we demonstrate that the existence of forecast horizons is not guaranteed for this problem. We also derive a lower bound on the length of the minimum forecast horizon. We show how the condition introduced can be used as part of an algorithm to determine the minimum forecast horizon of the problem, which ensures the determination of optimal solutions at the lowest computational and forecasting costs. Finally, we provide insights into the implications of different planning horizons for a range of storage system characteristics.
Do we actually understand the impact of renewables on electricity prices? A causal inference approach
2025ArticleJournal paperPreprint
D. Cacciarelli, P. Pinson, F. Panagiotopoulos, D. Dixon, L. Blaxland
preprint, under review
Publication year: 2025
The energy transition is profoundly reshaping electricity market dynamics. It makes it essential to understand how renewable energy generation actually impact electricity prices, among all other market drivers. These insights are critical to design policies and market interventions that ensure affordable, reliable, and sustainable energy systems. However, identifying causal effects from observational data is a major challenge, requiring innovative causal inference approaches that go beyond conventional regression analysis only. We build upon the state of the art by developing and applying a local partially linear double machine learning approach. Its application yields the first robust causal evidence on the distinct and non-linear effects of wind and solar power generation on UK wholesale electricity prices, revealing key insights that have eluded previous analyses. We find that, over 2018-2024, wind power generation has a U-shaped effect on prices: at low penetration levels, a 1 GWh increase in energy generation reduces prices by up to 7 GBP/MWh, but this effect gets close to none at mid-penetration levels (20–30%) before intensifying again. Solar power places substantial downward pressure on prices at very low penetration levels (up to 9 GBP/MWh per 1 GWh increase in energy generation), though its impact weakens quite rapidly. We also uncover a critical trend where the price-reducing effects of both wind and solar power have become more pronounced over time (from 2018 to 2024), highlighting their growing influence on electricity markets amid rising penetration. Our study provides both novel analysis approaches and actionable insights to guide policy makers in appraising the way renewables impact electricity markets.
Data are missing again -- Reconstruction of power generation data using k-Nearest Neighbors and spectral graph theory
2025ArticleJournal paper
A. Pierrot, P. Pinson
Wind Energy 28(1), art. no. 2962
Publication year: 2025
The risk of missing data and subsequent incomplete data records at wind farms increases with the number of turbines and sensors. We propose here an imputation method that blends data-driven concepts with expert knowledge, by using the geometry of the wind farm in order to provide better estimates when performing nearest-neighbour imputation. Our method relies on learning Laplacian eigenmaps out of the graph of the wind farm through spectral graph theory. These learned representations can be based on the wind farm layout only, or additionally account for information provided by collected data. The related weighted graph is allowed to change with time and can be tracked in an online fashion. Application to the Westermost Rough offshore wind farm shows significant improvement over approaches that do not account for the wind farm layout information.