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Predict-and-Optimize Robust Unit Commitment
with Statistical Guarantees via Weight Combination

Rui Xie, Member, IEEE, Yue Chen, Member, IEEE, and Pierre Pinson, Fellow, IEEE

Abstract—The growing uncertainty from renewable power
and electricity demand brings significant challenges to unit
commitment (UC). While various advanced forecasting and
optimization methods have been developed to predict better and
address this uncertainty, most previous studies treat forecasting
and optimization as separate tasks. This separation can lead to
suboptimal results due to misalignment between the objectives of
the two tasks. To overcome this challenge, we propose a robust
UC framework that integrates the forecasting and optimization
processes while ensuring statistical guarantees. In the forecasting
stage, we combine multiple predictions derived from diverse data
sources and methodologies for an improved prediction, aiming
to optimize the UC performance. In the optimization stage,
the combined prediction is used to construct an uncertainty
set with statistical guarantees, based on which the robust UC
model is formulated. The optimal robust UC solution provides
feedback to refine the forecasting process, forming a closed loop.
To solve the proposed integrated forecasting-optimization frame-
work efficiently and effectively, we develop a neural network-
based surrogate model for acceleration and introduce a reshaping
method for the uncertainty set based on the optimization result to
reduce conservativeness. Case studies on modified IEEE 30-bus
and 118-bus systems demonstrate the advantages of the proposed
approach.

Index Terms—unit commitment, data-driven robust optimiza-
tion, statistical guarantee, predict-and-optimize, surrogate model

NOMENCLATURE

A. Abbreviation

C&CG Column-and-constraint generation.
DRO Distributionally robust optimization.
i.i.d. Independent and identically distributed.
MILP Mixed-integer linear programming.
RO Robust optimization.
SP Stochastic programming.
UC Unit commitment.

B. Indices and Sets

i ∈ I Set of buses.
m ∈M Set of prediction methods.
x ∈ X Feasible set of the pre-dispatch variable.
u ∈ U Uncertainty set.
y ∈ Y(x, u) Feasible set of the re-dispatch variable.
g ∈ G Set of generators.
t ∈ T Set of periods in unit commitment.
l ∈ L Set of transmission lines.
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C. Parameters

T The number of periods in a day.
ε, δ Probability tolerance parameters.
N,N ′ The number of data in the training/validation

dataset.
ûit Prediction of load i in period t.
o+g , o

−
g Startup/shutdown costs of generator g.

ρg Generation cost coefficient of generator g.
γ+
g , γ−

g Upward/downward reserve cost coefficient of
generator g.

Sl Capacity of line l.
πgl, πil Power transfer distribution factor from genera-

tor g/bus i to line l.
T+
g , T−

g Minimum up/down time of generator g.
R+

g , R
−
g Maximum upward/downward reserve of gener-

ator g.
P g, P g Minimum/maximum output of generator g.
K+

g ,K−
g Maximum upward/downward ramp of genera-

tor g in a period.
KU

g ,KD
g Maximum output increase/decrease when gen-

erator g startups/shutdowns in a period.
ρ+g , ρ

−
g Upward/downward output adjustment cost co-

efficient of generator g.
U,U Lower/upper bounds of uncertain load.
E,E Lower/upper bounds of load forecast error.

D. Variables

uit Uncertain load at bus i in period t.
w Weight vector of predictions.
θgt, θ

+
gt, θ

−
gt Indicator variable for the on/startup/shutdown

state of generator g in period t.
pgt Day-ahead scheduled output of generator g in

period t.
r+gt, r

−
gt Upward/downward reserve of generator g in

period t.
p+gt, p

−
gt Upward/downward output adjustment of gener-

ator g in period t.

I. INTRODUCTION

THE ongoing transition towards greener power systems
has significantly increased the deployment of renewable

power generators, leading to higher volatility in power sources.
This uncertainty, together with the randomness of electric
loads, presents great challenges for power system operations.
Unit commitment (UC) is one of such power system operation
problems that require particular attention.

If given the probability distribution of uncertainty, stochas-
tic programming (SP) can be applied to UC problems to
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determine the optimal strategy [1]. However, an accurate
probability distribution is difficult to obtain in reality and the
inaccuracy of the distribution may jeopardize the feasibility
and optimality of SP solutions. Robust optimization (RO)
handles this problem by focusing on the worst-case scenario in
a pre-defined uncertainty set. Fruitful research has been done
in this area: A multi-stage robust UC model was proposed
and solved by robust dual dynamic programming in [2].
Polyhedra were used to replace rectangular uncertainty sets to
model the uncertainty correlations in [3]. However, RO can be
overly conservative when the uncertainty set contains all the
possible uncertainty realizations, because extreme scenarios
rarely happen but can cause a steep cost increase. The method
in [4] estimated quantiles from historical data to establish
rectangular uncertainty sets, in which extreme scenarios were
excluded. In [5], uncertainty budgets were used to restrict
the uncertainty set. A decision-dependent uncertainty set was
constructed in [6] to consider the impact of pricing on demand.
However, estimated quantiles and uncertainty budgets may
also be inaccurate, and the resulting uncertainty set lacks
a statistical guarantee. This makes the obtained robust UC
strategy less reliable and trustworthy.

Distributionally robust optimization (DRO) is another way
to deal with uncertainty, which considers the worst-case prob-
ability distribution in a pre-defined ambiguity set. Two-stage
distributionally robust UC methods were developed in [7] and
[8] using Wasserstein metric ambiguity sets, while unimodality
skewness of wind power was utilized in [9]. The copula
theory was combined with DRO in [10] to better capture the
dependence between uncertainty. Although data-driven DRO
can have a statistical guarantee [7], the theoretical number of
required data depends on the dimension of uncertainty, usually
much larger than what is practically available. As a result, it
is hard to adjust the size of the ambiguity set to obtain a
satisfactory statistical guarantee.

Recently, a data-driven uncertainty set construction frame-
work was proposed in [11] with a dimension-free statistical
guarantee. Even for multidimensional uncertainty, it can pro-
vide a satisfactory statistical guarantee based on a moderate
amount of data, enabling the decision-maker to effectively
control the conservative degree and easily strike a balance
between optimality and robustness. This method was applied
to economic dispatch [12], scheduling of thermostatically con-
trolled loads [13], and UC [14]. However, the static RO models
in [12]–[14] cannot account for the re-dispatch stage, resulting
in overly conservative day-ahead strategies. Therefore, a two-
stage adjustable RO method with statistical guarantees is
needed for the robust UC problem.

In addition, the quality of the uncertainty set relies heavily
on the precision of the uncertainty forecasts. The predic-
tions of different forecasting methods can be combined by
a weight parameter to achieve a better performance than the
individual methods [15]. Following this idea, an ensemble
deep learning method was proposed in [16] for probabilistic
wind power forecasting, where the weight parameter was
determined according to a quantile loss index. The extreme
prediction risk was modeled by the conditional value-at-risk
in [17] to optimize the ensemble weight of renewable energy

forecasts, and then the risk of renewable energy bidding
strategy was evaluated. To enhance the performance in a
changing environment, a deep deterministic policy gradient-
based method was proposed in [18] to adjust the combination
weight adaptively. The ensemble forecasting framework was
integrated with flexible error compensation in [19], and the
weight was optimized to minimize the worst-case forecast
error. The above studies chose the weights to optimize the
accuracy of the forecasts, without considering the impact of
the forecasts on the subsequent decision-making.

Conventionally, forecasting and optimization are performed
separately, with forecasting focused on maximizing predic-
tion accuracy and optimization aimed at minimizing costs.
However, since the objectives of these two processes are
distinct and may even conflict, conducting them separately can
lead to suboptimal outcomes. To overcome this shortcoming,
a “predict-and-optimize” framework was proposed in [20],
which integrates the forecasting and optimization processes
and aims at improving the performance of the final strategy.
The “predict-and-optimize” framework has been applied to
UC in [21] and [22]; however, uncertainty was not addressed,
making it lack robustness for the out-of-sample cases.

To bridge the aforementioned research gaps, this paper pro-
poses a novel UC framework that integrates the forecasting and
optimization processes while ensuring statistical guarantees.
The main contribution is two-fold:

1) An integrated forecasting and optimization framework
is proposed to predict in a way that optimizes the robust UC
performance. Specifically, predictions from various sources are
combined using weight parameters to generate an improved
forecast for robust UC; and in turn, the weights are optimized
based on the performance of the resulting UC strategy on
the validation dataset. To accelerate the weight optimization
process, a neural network is trained as a surrogate model and
equivalently transformed into mixed-integer linear constraints.
By solving a mixed-integer linear programming (MILP) prob-
lem, the optimal weights can then be obtained. Notably, this
integrated framework and solution methodology have not been
previously reported in the literature.

2) A data-driven two-stage robust UC model with statistical
guarantees is proposed. It employs the prediction and historical
data to construct an ellipsoidal uncertainty set, which is then
enhanced by reconstructing a polyhedral uncertainty set based
on the identified feasible solution and the UC parameters.
This method provides dimension-free statistical guarantees
to ensure robustness at a specified confidence level, which
extends the method in [11] for static RO to two-stage RO.

The rest of this paper is organized as follows: The inte-
grated forecasting and optimization framework is proposed in
Section II. A two-stage robust UC method with statistical guar-
antees is developed in Section III. case studies are presented
in Section IV and conclusions are drawn in Section V.

II. INTEGRATED FORECASTING AND OPTIMIZATION
FRAMEWORK

In this section, we first propose an integrated forecasting
and optimization framework for a two-stage decision-making
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problem under uncertainty. In fact, the proposed framework is
generally applicable and not restricted to UC. Then in Section
III, we introduce the detailed UC model and explain how it
fits within the proposed framework.

A. Forecasting

Consider the forecast task of a multivariate time series,
which is denoted by U = (u1,u2, . . . ,ut, . . . ). ut = (uit; i ∈
I) is the vector of uncertain variables in period t, and I is
the index set. The forecast output is the future values in the
horizon for prediction, denoted by Û1:T := (û1, û2, . . . , ûT ),
where we use the hat notation to indicate the prediction.

Multiple forecasting methods can be used simultaneously.
The prediction by the method m ∈ M is denoted by Û(m),
and M is the set of methods. The final prediction is a
convex combination of these predictions, that is, Û(w) =∑

m∈M w(m)Û(m), where w = (w(m);m ∈M) is the weight
vector. It satisfies w ∈ W := {w | w ≥ 0,

∑
m∈M w(m) = 1}.

The determination of w will be introduced in Section II-C.
Using the ground truth U, the forecast error is calculated as
E(w) = U − Û(w), which also depends on the weight w.
Forecasting methods are not the focus of this paper, and we
apply multiple forecasting methods in case studies based on
the related literature.

B. Two-Stage Optimization Under Uncertainty

The following is a two-stage optimization formulation under
uncertainty:

O := minx∈X ,η f(x) + η (1a)

s.t. Pr
[
miny∈Y(x,u) h(y) ≤ η

]
≥ 1− ε. (1b)

In (1), x collects the first-stage variables and X is its feasible
region. f(x) is the first-stage cost function. u represents the
uncertainty, y denotes the collection of second-stage variables,
Y(x, u) is the feasible region of y depending on x and u, and
h(y) is the second-stage cost function, which is minimized
after the realization of u is observed. Pr[·] denotes the prob-
ability. η is a second-stage cost value, and according to (1b),
the probability of the second-stage cost being no larger than η
is at least 1− ε, where ε is a specified probability threshold.
Therefore, η represents a (1− ε)-quantile of the second-stage
cost, and problem (1) minimizes the total cost.

Although problem (1) is a chance-constrained SP problem
that has been studied and applied extensively in the literature,
there is a key difficulty in its solution, i.e., the accurate
probability distribution of uncertainty u is usually unknown.
In the case considered, we need to extract the distribution
information from the historical data. On the one hand, the
number of historical data is limited and the error of the
empirical distribution is inevitable. On the other hand, we want
to ensure the robustness, or more specifically, guarantee the
chance constraint (1b). For the sake of robustness, instead of
directly using the empirical distribution in problem (1), we
construct an uncertainty set U subject to Pr[u ∈ U ] ≥ 1 − ε,
and consider the following two-stage RO problem:

OU := minx∈X
{
f(x) + maxu∈U miny∈Y(x,u) h(y)

}
. (2)

Different forecasting
methods

Weighted combination Data-driven robust
optimization

Strategy evaluation on
the validation dataset

Predictions

Combined prediction

Historical forecast error

Unit commitment
strategy

Weight optimization

Fig. 1. Integrated forecasting and optimization framework.

The effectiveness of problem (2) is revealed in Lemma 1.
Lemma 1: Suppose (x∗, η∗) and x∗

U are optimal solutions
to problems (1) and (2) with optimal values O and OU ,
respectively. For any solution x ∈ X , let

Ox := f(x) + min

{
η

∣∣∣∣ Pr

[
min

y∈Y(x,u)
h(y) ≤ η

]
≥ 1− ε

}
.

Then O = Ox∗ ≤ Ox∗
U
≤ OU whenever U satisfies Pr[u ∈

U ≥ 1− ε. Moreover, O = OU∗ and Pr[u ∈ U∗] ≥ 1− ε for

U∗ :=
{
u
∣∣ miny∈Y(x∗,u) h(y) ≤ η∗

}
. (3)

Lemma 1 shows that given Pr[u ∈ U ] ≥ 1 − ε, the
RO problem (2) is a conservative approximation of problem
(1), and it becomes exact when U = U∗. Moreover, the
performance of the obtained solution x∗

U is represented by
Ox∗

U
, which is bounded from above by the optimal value OU

of problem (2). The proof of Lemma 1 is in Appendix A.
The choice of the uncertainty set U is the key to achieving

good performance in problem (2), for which we will leverage
the information we have: Given a fixed w, the uncertainty set
U(w) will be constructed using the prediction Û1:T (w) and
its accuracy estimation deduced from the historical data of
forecast error E

(1:N)
1:T (w) to approach Pr[u ∈ U(w)] ≥ 1− ε.

Subsequently, RO in (2) is solved to find the optimal first-stage
strategy x∗

U (w). The details of uncertainty set construction and
solution method are in Section III.

C. Performance Evaluation and Integrated Framework

The performance of the optimized strategy x∗
U (w) is eval-

uated on the validation dataset to adjust w in W . Suppose
the historical data of forecast error in the validation dataset is
E

(N+1:N+N ′)
1:T (w). The uncertainty realization data Ǔ(1:N ′) for

validation is constructed by Ǔ(n) = Û1:T (w) + E
(N+n)
1:T (w),

n = 1, 2, . . . , N ′. For each Ǔ(n), the total cost is

I(n)(w) := f(x∗
U (w)) + miny∈Y(x∗

U (w),Ǔ(n)) h(y).

Sort I(1:N
′)(w) so that they arrange from small to large. Then

the ⌈(1− ε)N ′⌉-th cost (⌈·⌉ means rounding up to an integer)
is the evaluated cost on the validation set, denoted by I(w).
The weight w is tuned inW to minimize the evaluated cost in
the integrated forecasting and optimization framework, which
is illustrated in Fig. 1. For day-ahead UC, the optimization
of w should be sufficiently efficient. Therefore, in the next
subsection, we develop a surrogate model to accelerate weight
optimization.
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Predictions

Weight

Multilayer perceptron
with ReLU activation

Cost

Principal
component

analysis

Fig. 2. The proposed surrogate model.

D. Surrogate Model to Speed up the Weight Optimization

We first establish the proposed surrogate model and then
introduce how to optimize the weight efficiently using the
surrogate model.

1) Multilayer Perceptron-Based Surrogate Model: Fig. 2
illustrates the proposed surrogate model, which adopts a
multilayer perceptron neural network to capture the mapping
from predictions and weight to performance, i.e., the cost of
robust UC. The predictions (Û(m);m ∈ M) have a high
dimension in the UC problem, so we first apply principal
component analysis (PCA) [23] for dimensionality reduction.
Then the result becomes part of the inputs of the neural
network. Because the weight w = (w(m);m ∈ M) satisfies∑

m∈M w(m) = 1, the first |M| − 1 weight components
are input into the neural network, where |M| denotes the
number of elements in M. The inputs from the predictions
and the weight are concatenated and scaled before being
processed by the neural network. The rectified linear unit
(ReLU) activation function is used in the neural network,
which returns v := max{0, s} for input scalar s. The neural
network output is the optimal cost of robust UC, which is also
scaled. Once trained, the proposed surrogate model can predict
the cost based on the prediction and weight data.

2) MILP-Based Weight Optimization: We model the pro-
posed surrogate model via mixed-integer linear constraints.
Linear constraints model PCA, scaling, and linear combi-
nation. The ReLU activation function v = max{0, s} is
equivalent to the following group of constraints [24]:

0 ≤ v ≤Mz, (4a)
s ≤ v ≤ s+M(1− z), (4b)

where z is an auxiliary binary variable and M is a large
positive constant. When z = 0, (4a) forces v = 0 and (4b)
implies v ≥ s; when z = 1, (4b) shows v = s and by
(4a) we have v ≥ 0. Therefore, the ReLU activation function
is equivalently modeled by the linear constraints in (4) with
binary variables. The surrogate model is then formulated as
mixed-integer linear constraints.

To efficiently optimize the weight, a MILP problem is
solved to minimize the output of the neural network, where the
day-ahead prediction data are used, the weight satisfies w ≥ 0
and

∑
m∈M w(m) = 1, and linear constraints with binary

variables capture the surrogate model. The optimal weight

value is used in the integrated forecasting and optimization
framework.

III. DATA-DRIVEN TWO-STAGE ROBUST UNIT
COMMITMENT WITH STATISTICAL GUARANTEES

In this section, we first establish the robust UC problem and
then construct the uncertainty set, which is later reconstructed
using the problem information. The solution algorithm is
introduced in the end.

A. Robust Unit Commitment Formulation

As introduced in Section II-B, the robust UC problem
has the compact form in (2). Now we specify the com-
ponents of this problem. The pre-dispatch variable x =
(θgt, θ

±
gt, pgt, r

±
gt; g ∈ G, t ∈ T ), where G and T are the index

sets of generators and periods, respectively. For generator g in
period t, θgt, θ+gt, and θ−gt are the binary variables for the on,
startup, and shutdown states; pgt is the day-ahead scheduled
power output; r+gt and r−gt are the upward and downward
reserve power, respectively. The pre-dispatch cost is given by

f(x) =
∑
t∈T

∑
g∈G

(
o+g θ

+
gt + o−g θ

−
gt + ρgpgt + γ+

g r+gt + γ−
g r−gt

)
,

(5)

where o±g , ρg , and γ±
g are cost coefficients. The pre-dispatch

feasible region is defined as follows:

X =
{
x = (θgt, θ

±
gt, pgt, r

±
gt; g ∈ G, t ∈ T )

∣∣∑
g∈G

pgt =
∑
i∈I

ûit,∀t ∈ T , (6a)

− Sl ≤
∑
g∈G

πglpgt −
∑
i∈I

πilûit ≤ Sl,∀l ∈ L,∀t ∈ T , (6b)

θgt, θ
+
gt, θ

−
gt ∈ {0, 1},∀g ∈ G,∀t ∈ T , (6c)

t+T+
g −1∑

τ=t

θgτ ≥ T+
g θ+gt, 1 ≤ t ≤ T − T+

g + 1,∀g ∈ G, (6d)

T∑
τ=t

(θgτ − θ+gt) ≥ 0, T − T+
g + 2 ≤ t ≤ T, ∀g ∈ G, (6e)

t+T−
g −1∑

τ=t

(1− θgτ ) ≥ T−
g θ−gt, 1 ≤ t ≤ T − T−

g + 1,∀g ∈ G,

(6f)
T∑

τ=t

(1− θgτ − θ−gt) ≥ 0, T − T−
g + 2 ≤ t ≤ T, ∀g ∈ G,

(6g)

θgt − θg(t−1) = θ+gt − θ−gt,∀g ∈ G,∀t ∈ T , (6h)

θ+gt + θ−gt ≤ 1,∀g ∈ G,∀t ∈ T , (6i)

0 ≤ r+gt ≤ R+
g θgt, 0 ≤ r−gt ≤ R−

g θgt,∀g ∈ G,∀t ∈ T , (6j)

P gθgt + r−gt ≤ pgt ≤ P gθgt − r+gt,∀g ∈ G,∀t ∈ T , (6k)

(pgt + r+gt)− (pg(t−1) − r−g(t−1)) ≤ K+
g θg(t−1)

+KU
g θ+gt,∀g ∈ G, 2 ≤ t ≤ T, (6l)

− (pgt − r−gt) + (pg(t−1) + r+g(t−1)) ≤ K−
g θgt
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+KD
g θ−gt,∀g ∈ G, 2 ≤ t ≤ T

}
. (6m)

The power balance of the transmission network is stipulated in
(6a), where ûit is the day-ahead prediction of the load power.
In (6b), L is the index set of transmission lines; Sl is the
power capacity of line l; πgl and πil are the power transfer
distribution factors. Thus, (6b) bounds the line flow in the DC
power flow model. Binary variables are set in (6c). Constraints
(6d)-(6g) are for the minimum up time T+

g and minimum down
time T−

g of generators [25]. The generator state change is
modeled in (6h) and the simultaneous startup and shutdown
of a generator is prohibited in (6i). Constraint (6j) contains
bounds R±

g for the upward and downward reserve power. The
minimum and maximum outputs of generators, i.e., P g and
P g for generator g, are stipulated in (6k). For generator g,
K+

g and K−
g are the maximum upward and downward ramp

values in a period; KU
g and KD

g are the maximum increase
and decrease of power if the generator startups or shutdowns
in a period. Thus, constraints (6l) and (6m) are the bounds for
the change in generator power over a period.

The construction of the uncertainty set U is deferred and will
be addressed in Sections III-B and III-C. In the re-dispatch
stage, the variable is y = (p±gt; g ∈ G, t ∈ T ), where p+gt
and p−gt are the upward and downward power adjustments
of generator g in period t, respectively. The re-dispatch cost
function is the total power adjustment cost, i.e.,

h(y) =
∑

t∈T

∑
g∈G

(
ρ+g p

+
gt + ρ−g p

−
gt

)
, (7)

where ρ+g and ρ−g are cost coefficients. The re-dispatch feasible
region Y(x, u) depends on the pre-dispatch decision x and the
realization u = (uit; i ∈ I, t ∈ T ) of uncertain load:

Y(x, u) =
{
y = (p±gt; g ∈ G, t ∈ T )

∣∣∑
g∈G

(pgt + p+gt − p−gt) =
∑

i∈I
uit,∀t ∈ T , (8a)

− Sl ≤
∑

g∈G
πgl(pgt + p+gt − p−gt)−

∑
i∈I

πiluit

≤ Sl,∀l ∈ L,∀t ∈ T , (8b)

0 ≤ p+gt ≤ r+gt, 0 ≤ p−gt ≤ r−gt,∀g ∈ G,∀t ∈ T
}
. (8c)

In (8), constraint (8a) is for the power balance of the network.
The transmission line flow constraints are in (8b). The power
adjustments of the generators are bounded by the reserve
power in (8c).

According to the formulations of f(x) and h(y) in (5) and
(7), the two functions are linear. Equation (8) shows that the
constraints that define Y(x, u) are linear in x and u. Therefore,
the compact form of the robust UC problem can be further
written as follows:

minx∈X
{
C⊤x+maxu∈U miny:Ay≥Bx+Du+E F⊤y

}
, (9)

where A, B, C, D, E, and F are coefficient matrices and
vectors.

B. Data-Driven Uncertainty Set and Statistical Guarantees

The possible realization values of the uncertain load u
constitute a set U0 as follows:

U0 =
{
u
∣∣ U ≤ u ≤ U,E ≤ u− û ≤ E

}
, (10)

where U and U are the lower and upper bounds for u; E and
E are the lower and upper bounds for the forecast error of u.
U0 contains all the possible values of u, so Pr[u ∈ U0] = 1.

According to the analysis in Section II-B, we need to con-
struct an uncertainty set U1 ⊂ U0 such that Pr[u ∈ U1] ≥ 1−ε,
where the materials we have include prediction û and historical
forecast error e1:N := (e1, e2, . . . , eN ) in the training dataset
(en is the column vector reshaping E

(n)
1:T (w)). We assume

that the daily load forecast errors are i.i.d. continuous random
variables. Our plan is first to construct a set E for the uncertain
forecast error e := u− û so that Pr[e ∈ E ] ≥ 1− ε, followed
by letting

U1 := {u ∈ U0 | u− û ∈ E}. (11)

Clearly, such U1 satisfies U1 ⊂ U0 and Pr[u ∈ U1] ≥ 1 − ε,
so the uncertainty set construction problem comes down to
finding a set E such that Pr[e ∈ E ] ≥ 1 − ε, based on the
historical data e1:N .

Since e1:N are random variables, the set E constructed using
e1:N is also random, and so is the event Pr[e ∈ E ] ≥ 1 − ε.
Therefore, instead of directly attempting Pr[e ∈ E ] ≥ 1 − ε,
we consider the following statistical guarantee:

PN [Pr[e ∈ E ] ≥ 1− ε] ≥ 1− δ, (12)

where P is the underlying distribution of en, n = 1, 2, . . . , N ;
PN denotes the N times distribution product of P, which
models the uncertainty of historical data and E ; δ is a proba-
bility tolerance parameter. Thus, equation (12) means that the
probability of the random event Pr[e ∈ E ] ≥ 1− ε is at least
1− δ. The parameters ε and δ jointly control the conservative
degree of the robust UC problem.

To achieve the statistical guarantee (12), we adopt the
data-driven uncertainty set proposed in [11] to establish E ,
whose procedure and statistical guarantee are summarized in
Theorem 1. The idea is to pull two disjoint groups from the
dataset. The first group determines the shape of E , where
an ellipsoid is established based on the sample mean and
covariance to consider the correlation. The second group is
for the size of E , where the differences of the points from
the ellipsoid center are measured and sorted to provide a
threshold, and the independence of the two data groups forms
the foundation of the statistical guarantees.

Theorem 1 (Uncertainty set construction and statistical
guarantee): Select two disjoint groups from e1:N . Denote their
realizations by e

(1)
1:N1

and e
(2)
1:N2

, where N1 + N2 ≤ N and
N2 ≥ log1−ε δ. Let

µ :=
1

N1

N1∑
n=1

e(1)n , (13a)

Σ :=
1

N1 − 1

N1∑
n=1

(
e
(1)
1:N1
− µ11×N1

)(
e
(1)
1:N1
− µ11×N1

)⊤
.

(13b)
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Ellipsoid 1
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Fig. 3. The basic idea of uncertainty set reconstruction.

In other words, µ and Σ are the sample mean and the sample
covariance matrix in the first dataset e

(1)
1:N1

. Assume Σ is
invertible. Define function a(e) := (e− µ)⊤Σ−1(e− µ). Let

n∗
N := min

{
n ∈ N

∣∣∣∣ ∑n−1

m=0
Cm

N (1− ε)mεN−m ≥ 1− δ

}
,

(14)

where Cm
N denotes the binomial coefficient of N

choose m. Let α be the n∗
N2

-th smallest value in
a(e

(2)
1 ), a(e

(2)
2 ), . . . , a(e

(2)
N2

). Define the set E as

E :=
{
e
∣∣ (e− µ)⊤Σ−1(e− µ) ≤ α

}
. (15)

Then the statistical guarantee (12) holds. Moreover, if U = U1
defined in (11) is used in the robust UC problem (2) and
x0 := x∗

U1
is an optimal solution, then

PN [Pr[O ≤ Ox0
≤ OU1

] ≥ 1− ε] ≥ 1− δ. (16)

Theorem 1 gives a method to generate the uncertainty set
U1 and approximate problem (1) with confidence 1 − δ. The
proof of Theorem 1 can be found in Appendix B.

C. Uncertainty Set Reconstruction

The uncertainty set U1 obtained in Theorem 1 guarantees
robustness with confidence 1 − δ, but it can be conservative.
Our goal in this subsection is to mitigate the conservativeness
by reconstructing the uncertainty set. The construction of
U1 uses only the prediction and historical forecast error but
does not involve any information on the UC problem. In
the following, we integrate the problem information into the
reconstruction.

We illustrate the basic idea in Fig. 3. Ellipsoid 1 denotes
U1 constructed in Section III-B. The worst-case scenario in
ellipsoid 1 is marked as a blue star, which reaches the highest
cost in it. Consider the range where the cost is not higher than
the blue star, then we obtain polyhedron 1 in Fig. 3. This range
is a polyhedron because of the linear structure in problem
(9). Polyheron 1 contains ellipsoid 1 and the blue star is also
a worst-case scenario in polyheron 1. Moreover, polyhedron
1 may include more data points than ellipsoid 1 and thus
be conservative, which indicates that polyhedron 1 can be
shrunk into polyhedron 2 according to the desired probability
guarantee thresholds. Hopefully, the worst-case scenario in
polyhedron 2 has a smaller cost than the blue star, and the
conservativeness is mitigated.

Now we explain the reconstruction formally. Recall from
Lemma 1 that when (x∗, η∗) is optimal for the chance-
constrained problem (1), the uncertainty set U∗ defined in (3)

can equivalently transform problem (1) into (2). Ideally, U∗

is used as the uncertainty set to eliminate conservativeness.
However, it is impractical because (x∗, η∗) is unknown. To this
end, U∗ is approximated using the data we have. Suppose x0 is
a feasible solution, then we can estimate its performance Ox0

in a historical dataset and construct an uncertainty set using
(x, η) = (x0, Ox0

− f(x0)). This idea is refined to maintain
the statistical guarantees in Theorem 2.

Theorem 2 (Uncertainty set reconstruction): Suppose e
(3)
1:N3

is a subgroup of e1:N and N3 ≥ log1−ε δ. Assume that the
solution x0 is independent of e

(3)
1:N3

. Define function b(u) :=
miny∈Y(x0,u) h(y). Define n∗

N3
according to (14). Let β be the

n∗
N3

-th smallest value in b(û+e
(3)
1 ), b(û+e

(3)
2 ), . . . , b(û+e

(3)
N3

).
Define the uncertainty set

U2 :=
{
u ∈ U0

∣∣ miny∈Y(x0,u) h(y) ≤ β
}
. (17)

Let x1 := x∗
U2

be optimal in problem (2) with U = U2. Then
the following statistical guarantees hold:

PN [Pr[u ∈ U2] ≥ 1− ε] ≥ 1− δ, (18a)

PN [Pr[O ≤ Ox1
≤ OU2

≤ f(x0) + β] ≥ 1− ε] ≥ 1− δ.
(18b)

In Theorem 2, the shape of the new uncertainty set is formed
based on both the old solution and the UC problem, whereas
the size β is determined by the evaluations on an independent
dataset so that the statistical guarantees remain valid. The
conclusion indicates that the reconstruction of the uncertainty
set will lead to a new solution probably better than the old one,
represented by Ox1 ≤ f(x0)+β. The proof of Theorem 2 can
be found in Appendix C.

D. Solution Algorithm

U0 defined in (10) is polyhedral. According to (11) and (15),

U1 = {u ∈ U0 | (u− û− µ)⊤Σ−1(u− û− µ) ≤ α},

is the intersection of an ellipsoid and a polyhedron. Using the
compact form of the robust UC problem in (9), U2 in (17) can
be further written as follows:

U2 = {u ∈ U0 | ∃y ∈ Y(x0, u), s.t. h(y) ≤ β}
= {u ∈ U0 | ∃y, s.t. Ay ≥ Bx0 +Du+ E,F⊤y ≤ β},

which shows that U2 is polyhedral. Therefore, the two un-
certainty sets are polyhedral or ellipsoidal. Problem (9) with
these uncertainty sets can be effectively solved by the column-
and-constraint generation (C&CG) algorithm [26], which is
omitted here for the sake of conciseness.

The solution procedure for the robust UC problem con-
sidering uncertainty set reconstruction is summarized in Al-
gorithm 1. The historical dataset is divided into two groups.
The first group forms the first ellipsoidal uncertainty set and
leads to a solution x0. Then the reconstruction procedure in
Theorem 2 is performed to obtain an improved uncertainty set,
resulting in the final solution x1. Since the two datasets are
independent, the statistical guarantees in (18) are maintained.
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Algorithm 1: Solution of robust unit commitment
Input: Parameters of (9); ε; δ; U0; û; e1:N ; N2

Output: UC strategy x1

1 N1 ← N −N2

2 Divide e1:N into e
(1)
1:N1

and e
(2)
1:N2

3 Calculate µ and Σ according to (13)
4 α← max{(e(1)n −µ)⊤Σ−1(e

(1)
n −µ) | n = 1, 2, . . . , N1}

5 U ′
1 ← {u ∈ U0 | (u− û− µ)⊤Σ−1(u− û− µ) ≤ α}

6 Solve problem (9) with U = U ′
1 using the C&CG

algorithm and obtain the optimal solution x0

7 bn ← min
y:Ay≥Bx0+D(û+e

(2)
n )+E

F⊤y, for
n = 1, 2, . . . , N2

8 Arrange bn, n = 1, 2, . . . , N2 from small to large and
get b′n, n = 1, 2, . . . , N2

9 n∗ ← min{n|
∑n−1

m=0 C
m
N2

(1− ε)mεN2−m ≥ 1− δ}
10 β ← b′n∗

11 U2 ← {u ∈ U0|∃y, s.t. Ay ≥ Bx0+Du+E,F⊤y ≤ β}
12 Solve problem (9) with U = U2 using the C&CG

algorithm and return the optimal solution x1

IV. CASE STUDIES

This section examines the proposed robust UC method using
modified IEEE 30-bus and 118-bus systems. All experiments
are carried out on a laptop with an Intel i7-12700H processor
and 16 GB RAM. The neural network is established and
trained by PyTorch 2.1.2. The MILP problems in the C&CG
algorithm are solved by Gurobi 11.0.2. In the following, we
first introduce the prediction data. The performance of the
proposed method is then investigated in the modified IEEE
30-bus system, where different methods are compared and
sensitivity analysis is performed. Finally, the modified IEEE
118-bus system is used to demonstrate the scalability of the
proposed method.

A. Prediction Data

The hourly load data in one and a half years are extracted
from the dataset in [27], based on real data in Ireland [28].
The hourly wind power data are generated according to his-
torical weather data [29]. The load and wind data are aligned
according to the date information. The dataset is divided into
samples for training, validation, and testing.

We predict uncertainty using the following forecasting
methods:

• M1: Forecast nodal power using local data and bidirec-
tional long short-term memory (BiLSTM) neural network
[30].

• M2: Apply federated learning between nodes and forecast
using the adapted global BiLSTM model [31].

• M3: Forecast nodal power using BiLSTM networks and
nodal power subprofiles [15].

• C1: Combine the predictions of M1, M2, and M3 by a
weight w to minimize the mean square error (MSE) on
the validation dataset.

• C2: Combine the predictions of M1, M2, and M3 by a
weight w according to the method proposed in Section II.

TABLE I
AVERAGE FORECAST ERRORS OF DIFFERENT METHODS

Method RMSE MAE

M1 84.39 54.64
M2 80.93 52.37
M3 80.44 55.23
C1 76.14 51.26

C2 (30-bus) 76.95 52.29
C2 (118-bus) 78.72 53.80

The loss function used in the training is MSE. We adopt root
mean square error (RMSE) and mean absolute error (MAE)
to measure the test forecast errors.

The average forecast errors under different methods are
shown in TABLE I. By combining three forecasting methods
and optimizing the weight to minimize the MSE, C1 has the
lowest forecast errors, whose RMSE is 11.1%, 7.3%, and 6.8%
lower than M1, M2, and M3, respectively. It verifies that the
combination of predictions is effective in improving forecast
accuracy by leveraging the potential of different data sources
and forecasting methods. The forecast errors of C2 are larger
than those of C1 because instead of minimizing the MSE, the
weight in C2 is chosen to minimize the UC cost.

B. Modified IEEE 30-Bus System
Based on the prediction data mentioned above, the inte-

grated framework in Fig. 1 and the proposed data-driven
RO method in Algorithm 1 are used for the robust UC
problem. In the modified IEEE 30-bus system, there are six
controllable generators and four wind farms, where P g =

(100, 40, 0, 0, 0, 0) MW, P g = (360, 140, 100, 100, 100, 100)
MW, and T+

g = T−
g = 6 h. Other parameters are in [32].

1) Benchmark: In the benchmark case, the probability
tolerance parameters are set as ε = δ = 5%. We divide
the training dataset into two subsets with N1 and N2 data,
respectively. According to Theorem 1 and Theorem 2, N2

should be at least 59. We set N1 = 212 and N2 = 124.
Based on the performance on the validation dataset, we use

the first three components of PCA in the surrogate model for
weight optimization. The multilayer perceptron neural network
has two hidden layers, and each layer has 16 units. The neural
network is trained using the Adam algorithm and the learning
rate is 0.001. To help prevent overfitting, we adopt the L2
regularization technique. After about 1000 epochs, the neural
network is trained.

The test day for UC is from the test dataset. The MILP
problem for weight optimization is solved in 0.02 s and the
result is w = (0.28, 0.23, 0.49). The weight for M3 is the
highest, reflecting that the sub-profiles are valuable in power
forecasting and robust UC, which is consistent with the results
in TABLE I and [15]. With the optimized weight, the UC
results are obtained after 121 s, and the optimal value is
$89725. The power outputs of some controllable generators
are depicted in Fig. 4, including the pre-dispatch power, the
reserve region, and the re-dispatch result in the worst-case
scenario. The power in the re-dispatch stage is always within
the reserve region.
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Fig. 4. Power outputs of controllable generators.

TABLE II
SETTINGS OF UNIT COMMITMENT METHODS FOR COMPARISON

Method Statistical Integrated forecasting Uncertainty set
guarantee and optimization reconstruction

SP × × ×
RO1 × × ×
RO2 × × ×
P1 ✓ ✓ ×
P2 ✓ × ✓

Proposed ✓ ✓ ✓

TABLE III
UNIT COMMITMENT RESULTS OF DIFFERENT METHODS IN THE

MODIFIED IEEE 30-BUS SYSTEM

Method Objective ($) Feasible rate Total cost ($) Time (s)

SP 84832 88% 82985 218
RO1 106810 100% 92652 143
RO2 97350 97% 90468 94
P1 97848 98% 89149 124
P2 90122 98% 88318 147

Proposed 89725 98% 88243 121

2) Comparison: We use out-of-sample tests to examine the
performance of the proposed method under uncertainty. Mean-
while, we compare the proposed method with the following
alternative methods:

• SP: The traditional chance-constrained SP method using
the estimated distribution based on historical data.

• RO1: The traditional data-driven RO method with an
ellipsoidal uncertainty set that includes all data.

• RO2: The same method as RO1 except that the ellipsoidal
uncertainty set includes 1− ε proportion of the data.

• P1: The data-driven RO method using the ellipsoidal
uncertainty set with statistical guarantees.

• P2: The data-driven RO method using Algorithm 1, where
the weight w is optimized to minimize the MSE.

For clarity, the settings of these methods are compared in
TABLE II, with results listed in TABLE III. The feasible rate
is calculated using the 100 forecast error samples on the test
dataset. The total cost is the real value on the test day.

As TABLE III shows, SP has the lowest objective value
and test total cost. However, its test feasible rate is 88%,
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Fig. 5. Projections of uncertainty sets onto a two-dimensional plane in the
case of two random loads, where the projections of worst-case scenarios within
these uncertainty sets are marked by stars, with the costs ($) labeled.

much lower than the desired threshold 95%, which shows
that SP lacks robustness. The other five methods are RO-
based and their test feasible rates all meet the requirement.
However, RO1 is rather conservative and has the highest
objective value and test total cost. RO2 is a traditional data-
driven RO method with no statistical guarantees, which shows
its theoretical limitation. P1, P2, and the proposed method have
statistical guarantees, and the proposed method achieves the
lowest optimal objective and test total cost among them. Using
uncertainty set reconstruction, the objective decreases 8.30%.
The integrated forecasting and optimization framework also
contributes to improving the objective. The computation time
is acceptable for all the methods. Therefore, TABLE III veri-
fies that the proposed method is effective. It outperforms other
methods when considering both robustness and optimality.
Moreover, the proposed weight optimization and uncertainty
set reconstruction processes help improve the performance.

To visualize different uncertainty sets, we consider a special
case of two random loads. The uncertainty sets are projected
onto a two-dimensional plane. The projections of the uncer-
tainty sets are drawn in Fig. 5. To emphasize the impact of
uncertainty set construction and reconstruction, the weight w
is fixed to that of C1. The black polygon is the projection of U0
defined in (10). All other uncertainty sets are the intersections
of U0 and ellipsoids or polyhedrons. The projected uncertainty
set of RO1 is framed by an ellipse that includes all the
data points. RO2’s ellipse has the same shape and center
but only contains 95% data points. RO2 does not have a
statistical guarantee for its out-of-sample performance. P1 has
a larger uncertainty set than RO2 to maintain the statistical
guarantees, but P1 does not reconstruct the uncertainty set to
decrease the conservativeness. Proposed 1 and Proposed 2 are
the projections of the first and second uncertainty sets of the
proposed method (U ′

1 and U2 in Algorithm 1), respectively.
Proposed 1 is framed by an ellipse similar to that of P1.
After the reconstruction, Proposed 2 no longer includes the
right part of the ellipse, so it omits some bad scenarios in the
UC problem. Meanwhile, Proposed 2 includes other regions
with a relatively low cost, so the data points in it are still
enough for the statistical guarantees. In this way, the proposed
uncertainty set mitigates conservativeness while maintaining
statistical guarantees.

3) Sensitivity Analysis: We investigate the impacts of
weight w, the number of data points N2, and the probability
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Fig. 7. Proportion of points outside the proposed uncertainty set under
different settings.

tolerance parameters ε and δ for sensitivity analysis. The total
costs under different values of weight w are depicted in Fig. 6.
As Fig. 6 shows, there is a valley in the middle of the weight’s
feasible region, which means that the combination of the three
kinds of predictions has the best performance. The optimal
weight computed by the MILP problem of the surrogate model
lies in the center region of the valley and achieves a low total
cost, showing the effectiveness of the surrogate model.

To demonstrate the requirements of statistical guarantees,
we investigate the number and proportion of the N2 data
points outside the uncertainty set when N2, ε, and δ vary.
In the benchmark case, N2 = 124 and ε = δ = 5%. As N2

increases, the number of points outside steps up because it
must be an integer. The proportion of points outside becomes
closer to ε = 5% under a larger N2. This means that the
statistical guarantees are easier to retain in a larger dataset.
When ε increases under fixed N2 and δ, the proportion of
points outside the uncertainty set increases but never exceeds
ε, which indicates that more data points should be included in
the uncertainty set than the specified proportion to achieve
a statistical guarantee of out-of-sample performance. As δ
increases, the proportion of points outside increases.
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TABLE IV
UNIT COMMITMENT RESULTS OF DIFFERENT METHODS IN THE

MODIFIED IEEE 118-BUS SYSTEM

Method Objective ($) Feasible rate Total cost ($) Time (s)

SP 2061915 84% 2055123 1638
RO1 2096428 100% 2069461 256
RO2 2086813 100% 2064276 634
P1 2092717 100% 2068213 1304
P2 2066737 100% 2058488 1076

Proposed 2065591 100% 2056996 763

Fig. 8 shows the results of the optimal value and the test
feasible rate under different ε. As ε increases, the robust
degree weakens, and therefore the objective value and the test
feasible rate both decrease. When ε ∈ [0.05, 0.17], the test
feasible rate is larger than 1 − ε, reflecting the effectiveness
of the probability guarantee. Approximately speaking, the test
feasible rate decreases linearly as ε increases when ε ≥ 0.05.

The impacts of the probability threshold δ are shown in
Fig. 9. As δ increases, the confidence in the chance constraint
Pr[u ∈ U ] ≥ 1 − ε decreases, so the results become less
conservative, leading to decreases in the objective value and
test feasible rate. When δ ≤ 0.13, the test feasible rate exceeds
1 − ε = 95%. However, when δ is too large, the desired
probability 1 − ε is no longer satisfied on the test dataset.
Therefore, we recommend a small value for parameter δ.

C. Modified IEEE 118-Bus System

We use a modified IEEE 118-bus system with 54 control-
lable generators and four wind farms to show the scalability.
The parameter settings are ε = δ = 5%, N1 = 212, and
N2 = 124. More details can be found in [32]. The UC results
under different methods are shown in TABLE IV. The method
relationships are similar to those in the modified IEEE 30-bus
system. In addition, the computation time increases but is still
acceptable for day-ahead UC. We also test the computation
efficiency under different numbers of random loads in the
modified IEEE 118-bus system, as shown in Table V. These
results verify the scalability of the proposed method.
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TABLE V
COMPUTATION EFFICIENCY IN THE MODIFIED IEEE 118-BUS SYSTEM

Number of random loads 25 21 17 13

Number of iterations 23 21 21 18
Computation time (s) 763 600 551 391

V. CONCLUSION

To enhance out-of-sample performance and ensure robust-
ness, this paper develops a new data-driven two-stage robust
UC method. The proposed integrated forecasting and optimiza-
tion framework combines different predictions using weights
optimized based on UC performance outcomes. A surrogate
model is established to accelerate the weight optimization
process. In the two-stage robust UC, the uncertainty set is
constructed from data to have statistical guarantees, and it is
then reconstructed using the information from the optimization
problem to reduce conservativeness. Comparative analysis on
modified IEEE 30-bus and 118-bus systems demonstrates that
the proposed method surpasses traditional SP and RO methods
in balancing robustness with out-of-sample performance. The
case studies also show that the computational complexity of
the proposed method is comparable to that of traditional RO
methods, making it scalable. Future work could explore multi-
stage robust UC with statistical guarantees.

APPENDIX A
PROOF OF LEMMA 1

1) Prove that O = Ox∗ ≤ Ox∗
U
≤ OU when Pr[u ∈ U ] ≥

1− ε:
Because (x∗, η∗) is optimal in (1), we have O = Ox∗ and

O = f(x∗) + min

{
η

∣∣∣∣ Pr

[
min

y∈Y(x∗,u)
h(y) ≤ η

]
≥ 1− ε

}
≤ f(x∗

U ) + min

{
η

∣∣∣∣ Pr

[
min

y∈Y(x∗
U ,u)

h(y) ≤ η

]
≥ 1− ε

}
= Ox∗

U
.

Let

η∗U = maxu∈U miny∈Y(x∗
U ,u) h(y).

Then

Pr
[
miny∈Y(x∗

U ,u) h(y) ≤ η∗U

]
≥ Pr[u ∈ U ] ≥ 1− ε.

Therefore,

Ox∗
U
= f(x∗

U ) + min

{
η

∣∣∣∣ Pr

[
min

y∈Y(x∗
U ,u)

h(y) ≤ η

]
≥ 1− ε

}
≤ f(x∗

U ) + η∗U = f(x∗
U ) + max

u∈U
min

y∈Y(x∗
U ,u)

h(y) = OU ,

where the last equation follows from the optimality of x∗
U in

(2). Hence, O = Ox∗ ≤ Ox∗
U
≤ OU .

2) Prove that Pr[u ∈ U∗] ≥ 1− ε and O = OU∗ :
By the feasibility of (x∗, η∗) in (1), we have

Pr[u ∈ U∗] = Pr
[
miny∈Y(x∗,u) h(y) ≤ η∗

]
≥ 1− ε,

and then O ≤ OU∗ by the previous conclusion. According to
the definition of U∗ in (3), miny∈Y(x∗,u) h(y) ≤ η∗ for any
u ∈ U∗. Therefore,

OU∗ = minx∈X
{
f(x) + maxu∈U∗ miny∈Y(x,u) h(y)

}
≤ f(x∗) + maxu∈U∗ miny∈Y(x∗,u) h(y)

≤ f(x∗) + η∗ = O.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

The function a(e) is a continuous random variable, where
e follows the distribution P. Therefore, the assumptions of
Theorem 1 in [11] are satisfied, and then its conclusion holds,
i.e., E satisfies the statistical guarantee (12).

Because u ∈ U0 must hold, we have u − û = e ∈ E ⇐⇒
u ∈ U1. Combine it with Lemma 1, then

Pr[e ∈ E ] ≥ 1− ε ⇐⇒ Pr[u ∈ U1] ≥ 1− ε

=⇒ O ≤ Ox0
≤ OU1

.

Hence, (16) follows from (12), which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

1) Prove (18a):
According to linear programming theory [33], the function

b(û+ e) in e is continuous on the closed set{
e
∣∣ miny∈Y(x0,û+e) h(y) < +∞

}
= {e | Y(x0, û+ e) ̸= ∅}
= {e | ∃y, s.t. Ay ≥ Bx0 +D(û+ e) + E} .

When β = +∞, U2 = U0 and (18a) holds. For the finite case,
Lemma 3 and Theorem 1 in [11] can be applied to b(û + e)
to obtain (18a).

2) Prove (18b):
Similar to the proof of Theorem 1, the statistical guarantee

(18a) implies

PN [Pr[O ≤ Ox1
≤ OU2

] ≥ 1− ε] ≥ 1− δ.

In addition,

OU2
= minx∈X

{
f(x) + maxu∈U2

miny∈Y(x,u) h(y)
}

≤ f(x0) + maxu∈U2
miny∈Y(x0,u) h(y) ≤ f(x0) + β,

where the last inequality follows from (17), so (18b) holds.
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