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Abstract

This paper studies how to aggregate agents with a focus on fairness, in particular
in dynamic and stochastic frameworks. We suggest to use both acceptability con-
straints to ensure that each agent benefits from the aggregation, and aggregation
operators that aim to distribute the costs and benefits fairly. Rather than using
financial mechanisms to adjust for fairness issues, we focus on various objectives
and constraints, within decision problems, that achieve fairness by design. We
start from a simple single-period deterministic model and then generalize it to a
dynamic and stochastic setting using e.g., stochastic dominance constraints.
We illustrate our approach in the context of prosumer aggregation, where some
prosumers may not be able to access the electricity market directly, although
it would be beneficial to them. Therefore, new companies offer to aggregate
them and promise to treat them fairly. This leads to a problem of fair resource
allocation.

Keywords: Aggregation, Fairness, Stochastic Optimization, Prosumers

1 Introduction

Many domains, such as telecommunication networks, healthcare, disaster manage-
ment, and energy-sharing systems, require fairness as a key criterion. Even if defining
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and enforcing fairness is difficult, mainly as it is subjective, mathematical mod-
els should not ignore this requirement. This paper investigates various methods to
incorporate fairness in a multi-agent problem.

We focus on electric energy management applications, where the aggregation of
prosumers is becoming more relevant due to their increasing number. Renewable
energy generation capacities are becoming more affordable and effective as renewable
energy investments are rising (19% in 2022, according to a report by International
Renewable Energy Agency (2023) on global trends in renewable energy). This enables
smaller prosumers (i.e., agents that can be both producers and consumers), such as
medium-sized industries, to invest in onsite energy generation and storage. However,
prosumers are usually too small to access the electricity market directly, so some
companies offer to aggregate them in electricity markets. For example, CPower is an
American company that aggregates a total of 2.000 MW of power . We refer to Car-
reiro et al. (2017) for an extensive review on aggregators and their role in electricity
markets.

Those aggregators can be external entities responsible for each prosumer energy
transfer. In this case, it is necessary to consider how the aggregation affects the
participants to ensure a fair allocation of benefits. This is highlighted in a report (EUR-
ELECTRIC, 2015) on designing fair and equitable market rules for demand response
aggregation, published by the association representing the common interests of the
European electricity industry, Euralectric. Indeed, in this case the aggregator needs
to guarantee that each prosumer benefits from staying in the aggregation, and is not
disfavored compared to others.

In the literature, one distinguishes between two main approaches in handling fair-
ness: solve the problem efficiently and then reallocate the benefits (Yang et al., 2021;
Wang et al., 2019; Yang et al., 2023); or change the objective function to get a fair
solution (Xinying Chen and Hooker, 2023). In the first approach, we model a multi-
agent problem with a utilitarian objective, i.e., we optimize the aggregated objectives
of agents. Then, the benefits are reallocated among agents according to some proto-
col. For example, Shapley values (Shapley, 1953) assess the marginal contribution of
each agent in the group and determine their fair share. The second approach priori-
tizes fair solutions through the modeling by changing the objective function. We refer
to Xinying Chen and Hooker (2023) for a comprehensive overview and guidelines on
selecting an appropriate objective function to reflect fairness. The two most studied
objective functions are the minimax objective (Rawls, 1971), which optimizes the least
well-off agent’s objective, and the proportional objective (Nash, 1950), derived from
Nash’s bargaining solution, which optimizes the logarithmic sum of agents’ objectives.
Note that these approaches require the well-being of different agents to be compared
through a single value.

However, these approaches present some limitations. On one side, the propor-
tional and minimax approaches focus merely on the objective function, not decisions.
However, in some applications, there is more than one valuable characteristic. For
example, in an energy contract, both the flexibility and the volume of energy traded
are essential features. On the other hand, post-allocation distributions of benefits are
not adapted to problems formulated over long periods, such as contracts in electricity
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markets. Indeed, those approaches require solving the whole problem before allocating
costs which means that each agent have to wait until the problem’s completion, which
could span several months or years, to receive their fair share. Furthermore, given the
inherent uncertainties linked to most problems, we also want our approach to hold in
a stochastic framework. Then, fairness criteria must be redefined considering utility
distributions and associated risks over time.

In this paper, we introduce various strategies for integrating fairness considerations
into optimization problems. Our primary focus is what we refer to as fairness-by-
design. Instead of relying on ex-post redistribution, as is usual in game theory (Shapley,
1953), we can establish a degree of fairness directly within the model. Our main contri-
bution is to provide a framework and tools to accommodate fairness into mathematical
models, particularly in prosumer aggregation. What sets our approach apart is extend-
ing this framework to dynamic and stochastic settings, allowing for risk-averse and
time-consistent guarantees.

More specifically, we present two key elements for achieving fair allocation in an
aggregation. First, we model fair cost allocation through an operator ordering the
costs of the different prosumers. For the choice of this operator, we present three tra-
ditional approaches (utilitarian, proportional and minimax ). Additionally, we propose
acceptability constraints that ensure each agent’s outcome improves in a predefined
sense within the aggregation. In their simplest form, these acceptability constraints
correspond to individual (or self) rationality in game theory, ensuring each agent ben-
efits from participating to the aggregation. We then extend the problem to a dynamic
framework in which decisions are made sequentially over time. In this context, the
agent’s costs are multidimensional, and the acceptability (or individual rationality)
constraints thus need to choose a (partial) order. We discuss a few relevant partial-
order choices. Similarly, in a stochastic framework, agents’ costs are random variables,
and we discuss relevant stochastic orders. Compared to Gutjahr et al. (2023), who
propose a risk-averse stochastic bargaining game, our approach handles uncertainties
through the objective function and also acceptability constraints. This enables us to
consider various aspects of the impact of uncertainties on the problem. As a result, our
proposed model is well-suited for addressing inherent uncertainties within multistage
stochastic programs, enhancing its practical applicability. Finally, we assess these dif-
ferent strategies on a toy model in which we aggregate four electricity consumers to
access the day-ahead market. We discuss the consequences of each modeling choice.

The remainder of the paper is organized as follows. In Section 2, we discuss the
definitions of fairness and its integration into optimization models. In Section 3, we
propose to model prosumers’ aggregation with acceptability constraints and a fair
objective function. We then illustrate the framework introduced on a toy model in
Section 4. Section 5 expands the notion of acceptability into the dynamic framework,
while Section 6 adapts acceptability and fairness to the stochastic framework.

Notations

To facilitate understanding, we go through some notations used in this paper. We
denote for any integer n, [n] := {1, . . . , n}. Accordingly, X[n] denote the collection
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{Xi}i∈[n]. Random variables are denoted in bold characters; their realization in normal
font. Finally, in this paper, the term operator always refers to a mathematical operator.

2 Fairness in the literature

In the Oxford Dictionary, fairness is defined as the quality of treating people equally
or in a way that is reasonable. The definition is simple but subjective. Is treating
people equally, regardless of any token of individuality, considered fair in society?
Furthermore, what does it mean to be reasonable? Whatever take we have on fairness
is necessarily subjective and context-dependent (see Konow (2003) for a philosophical
analysis of fairness). In this section, we give a general overview of how fairness is defined
and modeled across the scientific literature while linking it to our energy application.
Bear in mind that each approach on fairness adopts a specific definition of fairness,
which is not consensual.

2.1 Modeling and accommodating fairness

One of the main challenges facing fairness is the allocation of resources between agents.
This naturally falls into the scope of Game Theory, where each of the N individuals
(or players) is modeled with a utility function whose actual value depends on the
actions of all players. For a given set of actions, we obtain a utility vector, denoted
u := (u1, . . . , uN ), representing the utility of every agent ui. The utility vector is
then said to be fair if it satisfies a set of properties that could vary from one specific
definition of fairness to another. Among them, individual rationality, which ensures
that every individual is better off in the aggregation and therefore accepts to be a part
of it, is often required.

In a seminal contribution (Nash, 1950), John Nash introduced the bargaining prob-
lem in which two rational agents, allowed to bargain, try to maximize the sum of their
utilities. If agents are rational, individual rationality must be ensured. This is modeled
using a disagreement point which represents the outcome obtained by players if they
cannot reach an agreement. For agents to cooperate, they must agree on properties a
utility vector, u[N ], should satisfy to be admissible. Nash proposed four axioms to con-
stitute this agreement: Pareto optimality – we cannot improve the utility of one agent
without decreasing another’s utility; Symmetry – applying the same permutation to
two utility vectors does not change their order; Independence of irrelevant alternatives
– if a utility vector is the optimal utility vector within the feasible set, it remains so
if the set is reduced; Scale invariance – applying affine transformations to the utility
vector does not change the social ranking. Nash showed that, under some assumptions,
including convexity and compactness of the set of feasible utility vectors, there exists
a unique utility vector satisfying those axioms. This unique utility vector is regarded
in the literature as a viable option when seeking fairness. Further, it has been shown
that under convexity of the feasible set, it can be obtained by maximizing the product
of utilities (Nash (1953); Muthoo (1999)), and thus by maximizing a logarithmic sum
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of utilities:

max
u∈U

N∑
i=1

log(ui − di),

where u ∈ U is a feasible utility vectors among N players, and d the disagreement
point. This approach is referred to as proportional fairness. Some papers criticized the
Independence of irrelevant alternatives for having undesirable side effects. To overcome
those issues, Kalai and Smorodinsky (1975) proposed to replace it with a monotonicity
axiom, resulting in another unique utility vector and a slightly different vision of
fairness.

In contrast to bargaining games, cooperative games study games in which coalition
formation is allowed: see Osborne and Rubinstein (1994) for a complete introduction.
In this theory, it is assumed that players can achieve superior outcomes by cooper-
ating rather than working against each other. Players must establish their common
interest and then work together to achieve it, which requires information exchanges.
In transferable utility games, payoffs are given to the group which then divides among
players through a post-allocation scheme. In Shapley (1953), Shapley studied a class
of functions that evaluate the participation of players in a coalition. Considering a set
of axioms (i.e., symmetry, efficiency and law of aggregation1), Shapley showed that
there exists a unique value function satisfying those axioms. He derived an explicit
formula to compute the value of a player i in a cooperative game with a set N of
players:

ϕi(v) =
∑

S⊂N\{i}

(
|N | − 1

|S|

)−1 (
v(S ∪ {i})− v(S)

)
,

where v(S) gives the total expected sum of payoffs the coalition S can obtain. The
values obtained {ϕi(v)}i∈N are called Shapley values. They are considered a fair redis-
tribution of gains in the group. They are, however, hard to compute in practice (as
the size of the problem grows, those values are not computable).

A different approach was introduced by John Rawl in Rawls (1971): assuming
that a group of individuals has no idea of their rank or situation in society, they will
agree on a social contract aiming at maximizing the well-being of the least well-off. If
the agents possess distinct characteristics, it might be difficult to compare them and
ensure equitable treatment among them. This approach to fairness is often referred to
as minimax fairness, as this amounts to optimizing the worst objective among agents.

The minimax approach, Shapley values, and Nash bargaining solutions remain
the primary methods for addressing fairness in the literature. A detailed review of
fairness modeling in optimization can be found in Xinying Chen and Hooker (2023),
which provides guidelines for selecting fairness definitions and modeling approaches.
The survey covers various fairness criteria and indicators but assumes that fairness
can always be represented through a social welfare function, which corresponds to

1i.e., when two independent games are combined, their values must be added player by player, see
(Shapley, 1953, axiom 3)
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utilities in game theory. This assumption implies that agent well-being is comparable
through a single value, which may not be suitable for dynamic or stochastic settings.
For fairness in resource allocation within communication networks, Ogryczak et al.
(2014) provides an overview of relevant methods. In the context of energy systems, we
refer to Soares et al. (2024) which presents both game theory and optimization-based
fairness approaches, including minimax fairness, egalitarian methods, Shapley values
and Nash bargaining.

When fairness is considered in the problem (through the objective or constraints),
it comes at a price: a fair solution might not be the most efficient one. Indeed, many
articles try to find a balance, or trade-off, between efficiency (have the best objective
possible) and fairness (have a fair solution). Bertsimas et al. (2011) established bounds
on the price of fairness for resource allocation problems with proportional fairness and
minimax approaches.

In this section, we referred to work that laid the foundations of fairness modeling
in mathematics. In the following section, we present some applications of aggregations
and the way fairness is considered or evaluated.

2.2 Applications of fairness in the literature

In this paper, we focus on a by-design approach, meaning that fairness is already
accommodated in an optimization model. Although fairness is commonly recognized
as crucial, in most articles, the approach adopted derives from act utilitarianism: one
should at every moment promote the greatest aggregate happiness, which consists in
maximizing social welfare regardless of individual costs. For example, in Xiao et al.
(2020), the authors studied an aggregator in charge of multiple agents within a power
system. They optimized the total revenue of the aggregation without considering the
impact on each agent individually. In Moret and Pinson (2019), a prosumers’ aggrega-
tor can focus on different indicators (import/export costs, exchange with the system
operator, peak-shaving services etc.) to optimize its trades with the energy market,
and the trades between prosumers. The indicator to focus on must be agreed on by
the prosumers. The authors gave a sensitivity analysis of the problem’s parameters to
determine what would increase the social acceptability of such an aggregation system.
However, the model is utilitarian as it does not consider the allocation of costs among
agents.

Other papers have proposed first optimizing the problem and then handling fairness
through benefit post-allocation schemes. One way to deal with post-allocation is to
model the aggregation as a coalitional game. This is the case of Freire et al. (2015),
where the authors studied a risk-averse renewable-energy multi-portfolio problem. In
order to get a fair and stable allocation of profits, they chose the Nucleolus approach,
which finds a vector utility that minimizes the incentive to leave the aggregation for
the worst coalition. In particular, this solution is in the core of the game, meaning
every player gains from staying in the grand coalition. Similarly, in Yang et al. (2021),
the authors studied a group of buildings with solar generation that mutually invest
in an ESS. The approach is to, first, optimize the problem formulated as a two-stage
stochastic coalition game. Then, a fair reallocation of costs is determined by computing
the nucleolus allocation, which minimizes the minimal dissatisfaction of agents.
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Some papers propose different methods to elaborate post-allocation schemes. For
example, in Yang et al. (2023), the authors studied the joint participation of wind
farms with shared energy storage. The solution is found by first solving a two-stage
stochastic program and then reallocating the lease cost among users in a proportional
scheme. They chose to make a wind farm pay depending on its increase of revenue
after using the energy storage leasing service. In Wang et al. (2019), the authors valued
cooperation in their model, which is another way to look at cost redistribution. They
considered an aggregator that participates in the capacity and energy market for a
number of energy users. In their model, the aggregator is not in charge of the users’
decisions but of the trades with the energy market, therefore he must incentivize users
to deviate from their optimal scheduling for minimizing total revenue. They proposed
to solve an asymmetric Nash bargaining problem to determine the payoffs each user
gets to deviate from their optimal scheduling. In another approach, the authors solved
a multi-portfolio problem with fairness considerations in Iancu and Trichakis (2014).
Instead of splitting the market impact costs in a pro-rata fashion, they introduced
charging variables that are optimized in the model. This approach amounts to having
transfer variables, which we avoid in this paper, as they may raise privacy and trust
concerns in practical application. Instead, we simplify the approach by designating the
aggregator as the sole entity with complete information on the problem, which pays
agents directly depending on their actions.

Typically, fairness is dealt with through the objective function or in a post-
allocation scheme. However, some researchers proposed constraints to ensure fairness.
For example in Argyris et al. (2022), the authors constrained the allocation feasibility
set for a resource allocation problem. They introduced a welfare function dominance
constraint: the admissible set of social welfare functions must dominate a referenced
one. Then, with a utilitarian objective, a trade-off between fairness and efficiency is
obtained. An alternative approach, proposed in Oh (2022), is to bound a fairness indi-
cator. The authors studied the energy planning of multiple agents over a virtual energy
storage system (VESS), where energy dispatch is managed by an aggregator. They
introduced two fairness indicators depending on the energy allocation and added con-
straints bounding them in a utilitarian model. Then, they compared the results with a
minimax approach, where they optimized the minimal fairness indicator over agents.

In many cases, uncertainties are inherent to the problem. If multiple articles have
dealt with uncertainties, they rarely have a stochastic take on fairness. For example,
in both Yang et al. (2023) and Yang et al. (2021), the authors solved their problem
with a two-stage program and then redistributed the costs fairly after uncertainty
realization. Thus, there is no stochastic policy for fair redistribution. Other articles
accommodated risk-averse profiles to game theory approaches. In Gutjahr et al. (2023),
the authors studied a risk-averse extension of the Bargaining Problem. They adapted
Nash bargaining axioms to constrain the feasible utility vectors depending on the risk
profile of players.
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3 A shared-resource allocation problem in the
context of a prosumer aggregator

We present here a general framework where a so-called aggregator aggregates indepen-
dent agents’ needs (industrial prosumers, residential units, virtual power plants. . . )
and makes economic transactions for the collective. To make aggregation contracts
attractive to agents, we encounter two distinct challenges: first, each agent needs to
find the contract acceptable, ensuring that each agent derives substantial benefits from
the aggregation; second, the decisions made by the aggregator, leading to benefits or
losses for each agent, should be made fairly. Recall that, for practical reasons, we do
not allow money transfers between agents.

In the following, Section 3.1 formalize the setting, Section 3.2 explore various objec-
tive functions that model fair decisions, and finally Section 3.3 introduce acceptability
constraints.

3.1 Prosumers and market structure

We denote by xi ∈ X i the set of state and decision variables modeling an agent i.
The technical constraints proper to agent i are represented through feasible set X i,
while external constraints (for instance, market exchanges), common to all agents,
are represented with feasible set M. Finally, each prosumer wants to minimize a cost
function Li : X i → R, yielding the model (P i). We denote vi the optimal value of (P i).
Note that (P i) can model problems in various contexts. In Section 4, we present the
particular application of this framework to prosumers aggregation in energy markets.

We now consider an aggregator in charge of I agents, and denote x := (xi)i∈[I]. The
aggregator in problem (A), aggregates agents’ decisions into h(x1, . . . , xI) to satisfy
external constraints M (see (1c)). Typically, if xi are purchase variables, h is the sum
over agents i of xi. In addition, the physical constraint of each agent must be conserved
(see (1b)), while the external constraints bind all agents’ decisions. Finally, on the
one hand, constraint (1d) ensures that the cost of an agent i is within an acceptable
set Ai

α they have agreed on prior to optimization, where α ∈ [0, 1] sets the level of
acceptability. On the other hand, FI is the agent operator that computes the objective
of the aggregator considering the I objective functions of all agents. Depending on the
choices of the acceptability sets Ai

α and the agent operator FI , discussed, respectively,
in Section 3.2 and Section 3.3, we have obtained different approaches to the problem
of shared resource allocation.

(P i) Min
xi

Li(xi) (A) Min
x

FI((L
i(xi))i∈[I]) (1a)

s.t. xi ∈ X i s.t. xi ∈ X i ∀i ∈ [I] (1b)

xi ∈ M. h(x1, . . . , xI) ∈ M (1c)

Li(xi) ∈ Ai
α ∀i ∈ [I]. (1d)
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We assume that, for each agent i, the agent’s problem (P i) admits an optimal
solution. The disagreement point (Li(xi), . . . , Li(xi)) corresponds to each agent oper-
ating independently, where xi is the optimal solution of (P i). Then if problem
(A) has no solution, meaning that there is no aggregation satisfying constraint (1c)
or (1d), the agents operate independently. Note that, if xi ∈ M for all agents implies
h(x1, . . . , xI) ∈ M, and α = 1, then the disagreement point is admissible for (A).

3.2 Fair cost aggregation

First, we focus on the way the aggregator operates to allocate aggregation benefits
among participating prosumers. We later establish, in Section 3.3, the conditions under
which agents agree to participate using acceptability constraints.

The most natural and efficient method is the so-called utilitarian approach:

FU
I ((Li(xi))i∈[I]) =

∑
i∈[I]

Li(xi). (2a)

This approach aims to minimize total costs independently from the distribution of
costs among prosumers: fairness is set aside. Indeed, in case of heterogeneity of the
objective functions, it is possible that one of the objective function Li dominates the
others, i.e.,

Li(xi) ≥ Lk(xk), ∀xi ∈ X i, ∀xk ∈ X k,

in which case all efforts of the aggregation are focused on minimizing the domi-
nant objective function. A possibility that falls out of the scope of this paper (see
Section 2.1) is to solve (A) and then reallocate resources with a fair scheme or
put money transfers in place. We study alternative agent operators that ensure fair
allocation for various fairness definitions.

First, we consider the proportional approach based on Nash bargaining solutions
(see Section 2.1). For this approach, we consider the set of reachable (dis)utilities L ={
(L1(x1), . . . , LI(xI)) | xi ∈ X i, ∀i ∈ [I], h(x1, . . . , xI) ∈ M

}
, and set the optimal

values of (P i), vi 2, as the chosen disagreement point. Then, Nash (1950) introduces a
set of axioms that must respect a fair distribution of (dis)utilities and show that if L is
convex and compact3, there exists a unique (dis)utility vector satisfying those axioms.
Furthermore, it is proven that Nash’s distribution is obtained by maximizing the sum
of logarithmic utilities. For our problem, it corresponds to using the agent operator :

FP
I ((Li(xi))i∈[I]) := −

∑
i∈[I]

log(vi − Li(xi)). (2b)

Note that this approach tends to act in favor of smaller participants. Indeed, increasing
a slight cost improvement is preferred to increasing an already large cost improve-
ment. In the non-convex case, Nash’s solution does not necessarily exist. However,

2We implicitly assume here that either there is a unique solution or that we have defined a way to select
a solution among the set of optimal solutions.

3A sufficient condition for L to be convex is if X i is convex compact, M convex, h and Li linear.
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if the solution set is comprehensive4, Conley and Wilkie show in Conley and Wilkie
(1996) that, even in the non-convex case, the solution of the optimization problem
with objective (2b) satisfies weak-Pareto optimality, symmetry, scale invariance, conti-
nuity, and ethical monotonicity. This defines the Nash Extension solution. The setting
considered in this paper is not convex but can be made comprehensive by adding a
variable for additional losses.

Finally, Rawls’ theory of justice leads to the minimax approach favoring the least
well-off. Here, the operator we obtain is:

FM
I ((Li(xi))i∈[I]) := max

i∈[I]
Li(xi). (2c)

This method may not be adequate for heterogeneous agents for similar reasons to the
utilitarian approach, as it only focuses on minimizing the dominant objective function.
To address this issue, we quantify an agent’s well-being by looking at the proportional
savings made in the aggregation. Then, applying Rawls’ principle, we minimize the
maximum proportional costs over agents, and we obtain the following agent operator:

FSM
I ((Li(xi))i∈[I]) := max

i∈[I]

Li(xi)

vi
, (2d)

which we refer to as the Scaled Minimax approach. Note that in both the scaled
minimax approach (FSM

I ) and the proportional approach (FP
I ), there are multiple

solutions with different aggregated costs. We assume here that we have specified a
way to select a solution among them.

3.3 Acceptability constraints

Having defined several methodologies for equitable cost distribution, we must convince
agents to be part of the aggregation. We consider agents to be individually rational,
that is, a contract cannot be deemed acceptable if at least one agent is not better off
independently i.e., vi ≤ Li(xi), where Li(xi) is the cost of i in the aggregation. We
can go one step further and require that, to find the contract acceptable, they benefit
from it i.e., vi > Li(xi). We thus define the acceptability set Ai

α appearing in (1d) as
follows:

Ai
α :=

{
ui | ui ≤ α vi

}
, (3)

where α ∈ (0, 1] is given. Then, we say a solution is α−acceptable if contained in Ai
α.

Acceptability sets are independent from one agent to another. We then define global
acceptability as the Cartesian product of all acceptability sets Aα := Ai1

α × · · · × AiI
α .

Adding acceptability constraints to (A) restricts the set of feasible solutions, which
can lead to higher aggregate costs. We define the price of acceptability as

PoA :=
v⋆Aα

− v⋆∅
v⋆∅

, (4)

4see the definition provided by Conley and Wilkie (1996, pp. 3)
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where v⋆Aα
is the optimal value of (A) with acceptability constraints Aα, and v⋆ is the

optimal value of (A) without them.
Remark 1. In the scaled minimax model with agent operator FSM

I , the optimal solu-
tion is 1−acceptable. Indeed, if the agents do not take advantage of the aggregation,
then Li(xi) = vi and we get a feasible solution with respect to Aα of optimal value 1.
Further, we can see that finding the smallest α such that there exist an α-acceptable
solution, i.e.,

Min
α

α (5a)

s.t. xi ∈ X i ∀i ∈ [I] (5b)

h(x1, . . . , xI) ∈ M (5c)

Li(xi) ∈ Ai
α ∀i ∈ [I], (5d)

is equivalent to problem (A) with agent operator FSM
I with no acceptability con-

straints.
Remark 2. Our problem with the proportional operator FP

I necessarily yields a
strictly acceptable solution. Indeed, if for agent i, Li(xi) ≥ vi, then log(vi −Li(xi)) is
undefined.

Note that in this framework, each agent seeks to minimize individual costs, which
may not always align with the interests of other participants. By modifying the aggre-
gation objective (e.g., using scaled minimax or proportional operators,) or by relaxing
the acceptability requirements (increasing α), the framework provides a range of solu-
tions where agents may act against their individual objectives but ultimately benefit
from the group as a whole.

We later discuss how to extend the acceptability constraint to a dynamic (see
Section 5.2) and stochastic framework (see Section 6.3). Finally, combining different
objective functions with acceptability constraints, we illustrate their impact in the
following section.

4 Application to consumer aggregation on the
day-ahead and balancing market

In this section, we adapt and illustrate the framework presented in Section 3 to the
problem of prosumer aggregation in electricity markets. More specifically, the pro-
sumers have access to: the day-ahead market, where every day at 2 pm, prices, and
electrical energies are set for all across Europe for the twenty-four hours of the next
day; and the balancing market on which prosumers must buy or sell electricity at real-
time prices to ensure power system balance. A minimum trade of 11 MWh of energy
is required to participate in the day-ahead market.

We consider a toy model to illustrate the implications of each model proposed in
Section 3. Therefore, we consider a problem with four consumers (I = 4) in five stages
(T = 5). At each stage t, we must decide how much energy qDA

t,i (resp. qBt,i) to purchase

from the day-ahead (resp. balancing) market for consumer i. Thus, in (P i), we have
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t 1 2 3 4 5

pDA
t 2 16 1 10 1

pBt 6 25 5 15 5

qDA
t

11 11 11 11 11

A1 A2 A3 A4

q
i

0 5 0 2

qi 5 5 4 3

Qi 10 25 8 15

Table 1: Parameters values

xi := (qDA
[T ],i, q

B
[T ],i). Each consumer has bounds [q

i
; qi] on its electricity consumption,

and a total consumption Qi to meet at the end of the horizon, amounting to feasible
set X i. Note that the upper bounds on electricity consumption simplify physical con-
straints that would ensure a finite volume of traded electricity. We introduce binary
variables bDA

t , representing the decision to buy in advance, to model the minimum vol-
ume requirement for the day-ahead market, which composes the external constraints
M. The objective for consumer i is to minimize its electricity costs:

Li(xi) =

T∑
t=1

[ pDA
t qDA

t,i + pBt q
B
t,i ], (6a)

where pDA
t (resp. pBt ) is the price of electricity at t on the day-ahead (resp. balancing)

market. We obtain the simple prosumer (P i) and the aggregated model (A):

(P i) Min
xi

Li(xi) (A) Min
x

FI

(
(Li(xi))i∈[I]

)
(6b)

s.t. q
i
≤ qDA

t,i + qBt,i ≤ qi ∀t s.t. q
i
≤ qDA

t,i + qBt,i ≤ qi ∀t ∀i (6c)

T∑
t=1

(qDA
t,i + qBt,i) ≥ Qi

T∑
t=1

(qDA
t,i + qBt,i) ≥ Qi ∀i (6d)

qDA
t

bDA
t ≤ qDA

t,i ≤ M bDA
t ∀t qDA

t
bDA
t ≤

∑
i∈[I]

qDA
t,i ≤ M bDA

t ∀t (6e)

bDA
t ∈ {0, 1} ∀t, bDA

t ∈ {0, 1} ∀t, (6f)

where F is the chosen agent operator for the aggregation. We solve this small
problem with the utilitarian operator FU

I , with the scaled minimax operator FSM
I

and with the proportional operator FP
I . For all agent operator , we solve5 the problem

with and without acceptability constraints, with α = 1.
We refer to the model with agent operator f ∈ {U, SM,P} (for Utilitarian, Scaled

Minimax and Proportional) and acceptability constraints set a ∈ {∅, α} (for no accept-
ability constraints, or acceptability constraints given by Aα) as mf

a , and A = ∅
corresponds to a model without acceptability constraints. Finally, we compute Shap-
ley’s values (see Appendix A for more details), commonly recognized as a fair solution,
to compare them to the solutions we obtain with our models.

5To guarantee uniqueness of the solution, we select among the set of optimal solutions the one closest to
zero i.e., minimizing the sum of the squared variables.
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We show on a small artificial illustration how all these models can lead to different
solutions. Each model can be evaluated through two metrics: first, the efficiency of
the model i.e., the overall costs of the aggregation; second, the fairness of the model
i.e., how distributed are the costs over prosumers. For the prosumers’ parameters
and market prices, we use the data in Table 1. We observe the allocation of costs
over consumers in Figure 1, the resulting percentage of savings made by each con-
sumer in Table 2, and the detail of day-ahead and balancing purchases in Table 3.
In Appendix B, we test the framework on instances with a smaller gap between day-
ahead and balancing prices. The analysis yields similar conclusions, reinforcing the
stability of the results.

First, it is worth noting that none of the consumers can individually access the
day-ahead market as for any prosumer qi ≤ qDA

t
and thus constraint (6e) excludes

any purchase on the day-ahead market. In the utilitarian model mU
∅ ,the primary focus

is to minimize aggregated costs, making it optimal to always consistently access the
day-ahead market as a group. To achieve this, consumer A1 redistributes its energy
load across 4 time steps, incurring a higher individual cost (64% higher) than when
acting independently. Adding acceptability constraints with α = 1 to the model (mU

1 )
induces a loss in efficiency but now satisfies individual rationality: PoA = 0.04. We
observe that the aggregated costs of consumers slightly increase, but now the charge of
energy needed to access the day-ahead market is shared between A1 and A3, although
A3 does not gain anything from the the aggregation (0% of savings).

Table 2: Percentage of savings vi−Li(xi)
vi made by Ai in the model mf

a depend-
ing on agent operator f ∈ {U, SM,P} and acceptability set a ∈ {∅, 1} and
PoA of the corresponding model.

Utilitarian FU
I Minimax FSM

I Proportional FP
I

A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA

∅ -64 46 72 46 0 60 30 30 30 0 74 21 80 21 0

A1 48 37 0 37 0.04 60 30 30 30 0 74 21 80 21 0

Shapley 114 20 111 28 0

Conversely, the proportional solution (from model mP
∅ ) adopts a more bargaining-

oriented approach, resulting in collaboration only during time slots (t ∈ {1, 3, 5}) with
lower prices. Indeed, as A1 and A3 are not forced to consume energy at all times
(q

1
= q

3
= 0), they can shift their consumption to time slots with lower prices.

On the contrary, A2 and A4 must always consume energy (q
2
= 5, q

4
= 2), and

the two of them together cannot access the day-ahead market either. Thus, in mP
∅ ,

the solution is for A1 and A3 to consume only in time steps {1, 3, 5}, which leaves
A2 and A4 to operate independently at t = 2, t = 4, resulting in limited savings
(21%) compared to the scaled minimax approach (mSM

∅ ). As noticed in Remark 2,
the solution is necessarily 1-acceptable. Therefore, the solution is the same in mP

∅ and

13



(P i) mU
∅ mU

1 mSM
∅ mSM

1 mP
∅ mP

1

0

200

400

538

333 346
360 360 373 373

T
ot
a
l
C
os
ts

($
)

A1 A2 A3 A4

Fig. 1: We observe the result of the static Problem (6f) with parameters given in
Table 1. The bars correspond to the outcome of different models, the number above
being the total cost. The first bar is the non-aggregated model: we solve each (P i)
independently. Then, there are three groups of two bars, each group corresponding to
a choice of agent operator (FU

I ,FSM
, FP

I ). Then, we present the model’s results for
each objective function, first without and then with acceptability constraints A1. Each
bar is decomposed in 4 blocks corresponding to the cost incurred by each consumer i.
At the top of each bar, we can read the sum of aggregated costs in the corresponding
model.

mP
1 . Moreover, the proportional solution yields the worst aggregated costs i.e., the

less efficient solution.
With the scaled minimax approach, the model mSM

∅ yields a trade-off between
efficiency and fairness compared to mU

1 : we observe that A1 and A3 decide to stop
consuming at expensive time steps, thus achieving greater savings. The model also
encourages more cooperation than the proportional model mP

∅ , as we can observe
in Table 3. As a result, in this model, all consumers achieve similar proportional
savings, amounting to approximately 30% compared to operating independently, at
the exception of A1 that can save up to 60%. This means that any solution where A1

shifts its consumption to other time slots to help others access the day-ahead market,
would increase its costs too much, and A3 would save less than 30%: this cannot be an
optimal solution of mSM

∅ . However, the aggregated cost of the aggregation is higher
than with mU

∅ and mU
1 . Again, adding acceptability constraints does not change the

solution, as the scaled minimax problem is innately 1-acceptable (see Remark 1).
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A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 5 0 3 0 3 0

2 3 0 5 0 0 0 3 0

3 2 0 5 0 1 0 3 0

4 3 0 5 0 0 0 3 0

5 2 0 5 0 4 0 3 0

(a) mU
∅ mU

1

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 5 0 3 0 3 0

1.01 0 5 0 1.93 0 3 0

3.93 0 5 0 0 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 3 0 3 0

(b) mU
1

A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 5 0 3 0 3 0

2 0 0 0 5 0 0 0 3

3 4.44 0 5 0 1.56 0 3 0

4 1.13 0 5 0 1.87 0 3 0

5 4.44 0 5 0 1.56 0 3 0

(c) mSM
∅ mU

1

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 5 0 3 0 3 0

0 0 0 5 0 0 0 3

4.44 0 5 0 1.56 0 3 0

1.13 0 5 0 1.87 0 3 0

4.44 0 5 0 1.56 0 3 0

(d) mSM
1

A1 A2 A3 A4

t DA B DA B DA B DA B

1 3 0 5 0 0 0 3 0

2 0 0 0 5 0 0 0 3

3 3.5 0 5 0 4 0 3 0

4 0 0 0 5 0 0 0 3

5 3.5 0 5 0 4 0 3 0

(e) mP
∅ mU

1

A1 A2 A3 A4

DA B DA B DA B DA B

3 0 5 0 0 0 3 0

0 0 0 5 0 0 0 3

3.5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

3.5 0 5 0 4 0 3 0

(f) mP
1

Table 3: Quantity of energy purchased on the day-ahead and balancing markets per
stage for all consumers depending on different models: in bold italic, we highlight
purchases on the (more expensive) balancing market and stages where no purchases
are made on the day-ahead market.

Lastly, we observe in Table 2 the allocation of savings with a post-allocation rule
based on Shapley’s values. This approach leverages the efficiency of mU

∅ but then re-
allocates costs to obtain a fair and acceptable solution. In this application, A1 and A3

save respectively 114% and 111% of their costs compared to operating independently,
which amounts to them being paid by the aggregation to participate. Even though
this allows A2 and A4 to gain from the aggregation, this questions the acceptability of
this solution as some would earn money while others have residual costs. Furthermore,
due to the extensive computational requirements, the post-allocation rule becomes
impractical when dealing with large problems involving many prosumers and time
steps. Additionally, adapting it to dynamic and stochastic contexts is unclear, so we
do not consider it further.

We test the model with different values of α that represent the targeted gap between
a prosumer’s cost in the aggregation and its individual optimal cost. Figure 2 presents
the proportional savings of prosumers when solving mf

α for f ∈ {U, SM,P} and α ∈
{0.6, 0.7, 0.8, 0.9, 1.0}. Bear in mind that solving mSM

∅ is equivalent to maximizing
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α (see Remark 1). Hence, if α⋆ is the optimal solution of Problem (5), enforcing
acceptability constraints with α ≥ α⋆ results in the same solution, while solving mSM

α

with α < α⋆ leads to the disagreement point. In our study case, α⋆ = 0.696.

Fig. 2: Proportional savings vi−Li(xi)
vi of prosumers depending on the chosen fairness

operator and the acceptability coefficient α. In red above the figure is the cost of the
aggregation in the corresponding model.

In the utilitarian case (f = U), increasing α relaxes the model, leading to a reduc-
tion in aggregation costs between mU

0.7 and mU
0.8. In some cases, while the aggregation

cost remains unchanged, varying α affects the cost allocation of prosumers. For exam-
ple, with α = 0.8, A1 and A3 save respectively 32% and 20%, whereas with α = 0.9
they save 34% and 17.5%. Finally, with the proportional operator, we observe a switch
in the aggregation cost between mP

0.7 and mP
0.8 leading to a change in cost allocation.

Unlike the utilitarian operator, cost distribution among prosumers remains unchanged
for the same aggregation cost. Here, enforcing stronger acceptability results in more
evenly distributed proportional savings. Specifically, for α ≥ 0.8, savings range from
21.4% to 80%, whereas with α < 0.8, they range from 30.5% to 52.5%.

We test the utilitarian model mU
α with a finer discretization of α. As shown in

Figure 3, for α between 0.74 and 0.83, the aggregation cost remains unchanged, while
cost distribution shifts between A1 and A3. In this case, A1 and A3 have flexible energy
consumption, allowing the aggregation to rely on either for day-ahead market access.
A shift in cost distribution between them indicates a change in which consumer is
prioritized.
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Fig. 3: Proportional savings vi−Li(xi)
vi of prosumers in the model mU

α depending on
α. Above the figure, the aggregation cost for each model is shown in red, with ’−’
indicating no change.

5 Fairness across time

In most use cases, we can assume that the aggregation of agents is thought to stay
in place over long periods. One of the challenges of this long-term setting is incen-
tivizing agents not to leave the aggregation, which requires adjusting the acceptability
constraints of the static case.

5.1 Problem formulation

We consider a problem with T stages corresponding to consecutive times where deci-
sions are made. At each stage t ∈ [T ], agent i makes a decision xi

t ∈ X i
t , incurring a

cost Li
t(x

i
t). Those stage costs are aggregated through a time operator F i

T : RT → R.
Thus, the agent i’s problem reads:

(P i
T ) := Min

xi
t

F i
T

(
(Li

t(x
i
t))t∈[T ]

)
(7a)

s.t xi
t ∈ X i

t ∀t (7b)

xi
t ∈ Mt ∀t. (7c)

A typical example of time-aggregator F i
T is the discounted sum of stage costs

i.e., dropping the dependence in xi for clarity’s sake:

F i
T ((Lt)t∈[T ]) =

∑
t∈[T ]

rtLt,
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for r ∈ (0, 1]. Alternatively, F i
T can be defined as the maximum stage costs. This might

happen for electricity markets where a prosumer aims at peak shaving i.e., minimizing
peak electricity demand. Further, time-aggregation operators may vary among agents,
who may express different sensitivity to time i.e., the discounted rate r varies among
prosumers.

We now write the aggregation problem within this framework. Note that we can
cast the current multistage setting into the setting of Section 3, by decomposing each
agent into T independent stage-wise sub-agents: then we have I × T and we can use
the methodology of Section 3. Thus we need to define an operator FI×T that takes
{Li

t}t∈[T ],i∈[I] as input.
However, in most settings, it is reasonable to assume that an agent is time-

homogeneous, meaning that, in some sense, for all i ∈ [N ], the agents (i, t)t∈[T ] are
the same, and aggregates the stage costs across time. Consequently, the global aggre-
gation operator FI×T can be modeled as aggregating, over agents, their aggregated
stage-costs, i.e., FI×T = FI ⊙FT where the ⊙ notation stands for

FI ⊙FT

(
(Lt

i)i∈[I],t∈[T ]

)
= FI

(
F1

T

(
(L1

t )t∈[T ]

)
, . . . ,FI

T

(
(LI

t )t∈[T ]

))
. (8)

Finally, we obtain the following model for the aggregation of agents in a dynamic
framework:

(AT ) := Min
xi
t

FI ⊙FT

(
(Li

t)i∈[I],t∈[T ]

)
(9a)

s.t. xi
t ∈ X i

t ∀t (9b)

h(x1
t , . . . , x

I
t ) ∈ Mt ∀t (9c)

(Li
t)t∈[T ] ∈ Ai, (9d)

where we recall that we defined FT as the sum, and suggest to choose FI from the
fairness operators (FU

I ,FP
I ,FSM

I ) introduced in Section 3.2. Thus, we obtain a fair
objective function of the aggregated model (AT ). However, we have yet to adapt the
notion of acceptability from Section 3.3 to this long-term framework, which is our next
topic.

5.2 Dynamic acceptability

In long-term problems, agents should not be tempted to leave the aggregation in
between stages for the aggregation to be acceptable. Therefore, we extend our notion
of acceptability constraint (3) to a dynamic framework. For simplicity, we set α = 1
from now on. First, denote vit := Li

t(x
i,⋆
t ), the optimal independent cost of an agent

i at stage t, where xi,⋆ is the optimal solution of Problem (7).
The acceptability constraint (3) consist in requiring, for each agent i, that its vector

of costs (Li
t)t∈[T ] is less than (vit)t∈[T ]. Unfortunately, there is no natural ordering

of RT , and each (partial) order will define a different extension of the acceptability
constraint (3). We present now some extensions of the acceptability constraint derived
from standard partial orders.
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Maybe the most intuitive choice is the component-wise order (induced by the
positive orthant), i.e., comparing coordinate by coordinate. This results in the stage-
wise acceptability constraint As, which enforces that each agent benefits from the
aggregation at each stage:

Ai
s =

{
(ui

t)t∈[T ] | ui
t ≤ vit, ∀t ∈ [T ]

}
. (10a)

As this approach might be too conservative for our model, i.e., constrain the
aggregation too much to take advantage of it, we consider two other ordering.

First, we can relax the stage-wise acceptability by considering that at each stage
t, each agent benefits from the aggregation if we consider its costs aggregated up to
time t. This result in progressive acceptability constraint Ai

p:

Ai
p =

{
(ui

t)t∈[T ] |
t∑

τ=1

ui
τ ≤

t∑
τ=1

viτ , ∀t ∈ [T ]
}
. (10b)

Second, we ensure that each agent, aggregating its cost over the whole horizon,
benefits from the aggregation (which amounts to the set in (3)) if we consider only the
aggregated costs at the end of the horizon. We thus define the average acceptability
constraint:

Ai
av =

{
(ui

t)t∈[T ] |
T∑

t=1

ui
t ≤

T∑
t=1

vit
}
. (10c)

Remark 3. We have that Ai
s ⊆ Ai

p ⊆ Ai
av. The acceptability constraint should be

chosen to strike a balance between aggregated cost efficiency (obtained with a less
constrained acceptability set), and incentive to stay in the aggregation (obtained with
a more constrained acceptability set).

5.3 Numerical illustration

We take the same example as in Section 4 and try out different combinations of
operator FI×T (FU ,FSM ,FP ) and acceptability setA (∅,Aav,Ap,As). We denotemf

a

the model with agent operator f ∈ {U, SM,P} and acceptability set a ∈ {∅, av, p, s}.
Figure 4 represent the distribution of prosumers’ costs for these different cases, while
Table 4 report their proportional savings. Finally, on Table 5, we report the day-
ahead and balancing purchases of the different models with progressive and stagewise
acceptability, while the results with no acceptability and average acceptability are
in Section 4 on Table 3. In this section, we do not compare the cost allocation to
Shapley values, as their computation in a dynamic setting is not straightforward. A
naive approach could be to compute Shapley values over subproblems on the horizon
[1, t] at each stage t. However, this method does not align with our approach, which
explicitly accounts for future stages.

We observe in Figure 4 that increasing acceptability constraints (from none to
average, progressive, and stage-wise) come at a price but give stronger guarantees to
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Fig. 4: Each bar corresponds to a different model. The first one is the independent
model: we solve each (P i

T ) independently. Then, there are three groups of four bars,
each group corresponding to a choice of agent operator (FU ,FSM ,FP ). Then, given an
operator, we have the model first without then with different acceptability constraints
(∅,Aav,Ap,As). Each bar is decomposed in 4 blocks corresponding to the share of
each consumer i. At the top of each bar, we can read the sum of aggregated costs in
the corresponding model.

Table 4: Percentage of savings vi−Li(xi)
vi achieved by Ai in the model mf

a depending on
agent operator f and acceptability set a and PoA of the corresponding model.

Utilitarian FU
I Minimax FSM

I Proportional FP
I

A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA

∅ -64 46 73 46 0 30 30 67 30 0 74 21 80 21 0
Aav 48 37 0 37 0.04 30 30 67 30 0 74 21 79 21 0
Ap 55 23 44 23 0.17 44 23 57 23 8.6 45 23 56 23 0.04
As 80 14 80 14 0.21 80 14 80 14 12 80 14 80 14 0.08

each user. In fact, we have seen that mU
∅ is the most efficient model but yields solu-

tions in contradiction to individual rationality. We can correct this defect by enforcing
average acceptability, but this is not enough to ensure everyone gains from the aggre-
gation, as A3 makes 0% of savings. With more constrained acceptability, Ap and As,
we enforce individual rationality over time or at all times. This leads to solutions where
the savings are shared among prosumers in fairer proportions- at the loss of efficiency.
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A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 0 5 0 0 0 3

2 0 0 0 5 0 0 0 3

3 5 0 5 0 4 0 3 0

4 1.4 0 5 0 1.6 0 3 0

5 3.6 0 5 0 2.4 0 3 0

(a) mU
Ap

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 0 5 0 0 0 3

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

(b) mU
As

mU
Ap

A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 0 5 0 0 0 3

2 0 0 0 5 0 0 0 3

3 5 0 5 0 4 0 3 0

4 2 0 5 0 1 0 3 0

5 3 0 5 0 3 0 3 0

(c) mSM
Ap

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 0 5 0 0 0 3

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

(d) mSM
As

mU
Ap

A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 0 5 0 0 0 3

2 0 0 0 5 0 0 0 3

3 3.8 0 5 0 3.45 0 3 0

4 1.94 0 5 0 1.06 0 3 0

5 4.25 0 5 0 3.5 0 3 0

(e) mP
Ap

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 0 5 0 0 0 3

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

(f) mP
As

mU
Ap

Table 5: Quantity of energy purchased on the day-ahead and balancing markets per
stage for all consumers depending on different models: in bold italic, we highlight
purchases on the (more expensive) balancing market and stages where no purchases
are made on the day-ahead market.

On the other hand, with an agent operator reflecting fairness (like scaled minimax
or proportional), we obtain solutions that already aim at a fairer distribution of sav-
ings. Consequently, if we can observe solutions changing with increasing acceptability
constraints, those changes are more apparent with a utilitarian operator. Indeed, in
the utilitarian model, A2 achieves savings ranging from 14% to 46% of his independent
cost. In contrast, under the scaled minimax approach, the savings range from 14% to
30%, and with the proportional approach, the savings fall between 14% and 21%.

Note that even though the acceptability constraints and the agent operator are
two distinct tools, they both drive the model to fairer solutions for all agents in the
aggregation.
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6 Accommodating fairness to uncertainties with
stochastic optimization

Problems with energy generation, especially from renewable sources, and prices on
energy markets are inherently uncertain as we have decisions to make over time, and
the future is uncertain. Then, in addition to acceptability and fairness, we must tackle
the challenge of handling uncertainties (while being fair about how we handle those).
We want to address this issue by extending the problem presented in Section 3 to a
stochastic framework. To that end, we introduce random variable ξ and probability
space (Ω,A,P), which gathers all sources of uncertainties in the problem. We assume
that Ω is finite, a common simplification in stochastic optimization to make problems
more tractable. If Ω is not finite, we rely on sample average approximation.

In the same way that we decomposed the problem in Section 5 with T time steps,
we can decompose the problem here with Ω scenarios. Thus, there are similarities
with the previous section. The main difference is that the set of time-step {1, . . . , T}
has a natural ordering, while the set of scenario Ω does not, which leads to discussing
different partial orders on RΩ than on RT .

6.1 Static stochastic problem formulation

The problem at hand is naturally formulated as a multistage stochastic problem. For
simplicity reasons, we first consider a 2−stage relaxation of the problem: in the first
stage, here-and-now decisions xi

0 must be made before knowing the noise’s realization;
in the second stage, once the noise’s realization is revealed, recourse actions xi

1(ξ) can
be decided. To alleviate notations, we write xi(ξ) := (xi

0,x
i
1(ξ)) and add the non-

anticipative constraints– that ensure first-stage decisions are taken with no knowledge
of the future– in feasibility set X i.

We first adapt the individual model (P i) to a stochastic framework:

(P i,ρ) := min
xi(ξ)

ρ
[
Li(xi(ξ), ξ)

]
(11a)

s.t. xi(ξ) ∈ X i a.s. (11b)

xi(ξ) ∈ M a.s., (11c)

where ρ is a (coherent) risk-measure i.e., a function which gives a deterministic
cost equivalent to a random cost, reflecting the risk of a decision for prosumer i, see
e.g., Artzner et al. (1999). The choice of ρ depends on the attitude of i towards risk. For
example, the risk measure associated with a risk-neutral approach is the mathematical
expectation Eξ. Alternatively, a highly risk-averse profile will opt for the worst-case
measure supξ. Another widely used risk measure is the Average Value at Risk (a.k.a
Conditional Value at Risk, or expected shortfall, see Rockafellar et al. (2000)), or a
convex combination of expectation and Average Value at Risk.

Now, we adapt the deterministic aggregation model (A). We face the same chal-
lenge as in Section 5. With multiple scenarios, we can consider that we have I × Ω
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prosumers and we need to choose an operator FI×Ω : RI×Ω → R, leading to:

(Aρ) := Min
x

FI×Ω

(
(Li(xi(ξ), ξ))i∈[I]

)
(12a)

s.t. xi(ξ) ∈ X i ∀i ∈ [I] a.s. (12b)

h(x1(ξ), . . . ,xI(ξ)) ∈ M a.s. (12c)

Li(xi(ξ), ξ) ∈ Ai ∀i ∈ [I] a.s.. (12d)

We assume the aggregator knows risk measures and prosumers’ objectives. As in
Section 5.1, there are multiple possible choices for such operators. We assume that this
operator FI×Ω results from the composition of two operators: an uncertainty-operator
F i

Ω dealing with the scenarios, which can differ from one prosumer to another; and
an agent operator FI , as defined in Section 3.2. However, contrary to Section 5, it
is not clear if we should aggregate first with respect to uncertainty (meaning that a
prosumer manages its own risk) or with respect to prosumers (meaning that the risks
are shared). We next discuss reasonable modeling choices of aggregation operators and
acceptability constraints.

6.2 Stochastic objective

For the sake of conciseness, we are going to consider two possible uncertainty aggre-
gators: a risk-neutral choice, where F i

Ω is the mathematical expectation Eξ, and a
worst-case operator where F i

Ω is the supremum over the possible realization supξ. For
the agent operator FI , which reflects the way to handle fairness, we consider either the
utilitarian FU

I or the scaled minimax FSM
I options (see Section 3.3 for definitions).

We suggest four different compositions of F i
Ω and FI to construct the aggregation

operator FI×Ω. Again, for simplicity of notations, we write Li instead of Li(xi(ξ), ξ).
First, we introduce the risk-neutral and utilitarian operator FUS

I×Ω, which aims at
minimizing the aggregated expected costs of prosumers:

FUS
I×Ω

(
(Li)i∈[I]

)
= FU

I ⊙ EΩ

(
(Li)i∈[I]

)
(13a)

=

I∑
i=1

∑
ξ∈Ω

πξ Li(xi(ξ), ξ). (13b)

Alternatively, considering a robust approach to uncertainties, we have the operator
FUR

I×Ω which minimizes the worst-case aggregated costs of prosumers:

FUR
I×Ω

(
(Li)i∈[I]

)
= sup

ξ∈Ω
⊙FU

I

(
(Li)i∈[I]

)
(14a)

= sup
ξ∈Ω

{ I∑
i=1

Li(xi(ξ), ξ)

}
. (14b)
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Remark 4. We claim that supξ∈Ω ⊙FU
I makes more sense than FU

I ⊙ supξ∈Ω as
the later aggregates each prosumer’s worst costs. Indeed, if the worst-case costs for
different prosumers occur in different scenarios, the aggregated costs calculated might
never happen or happen in a scenario ξ, not in Ω.

On the other hand, we have Eξ∈Ω ⊙ FU
I = FU

I ⊙ Eξ∈Ω, by associativity of sums.
Similarly, by associativity of supremum, we have supξ∈Ω ⊙FSM

I = FSM
I ⊙ supξ∈Ω.

As the first two operators do not model fairness considerations into the model, we
now look for a fair distribution by using FSM

I to aggregate prosumers’ costs. First,

let xi,⋆(ξ) be the6 optimal solution of (P i,ρ), and denote vi,ρξ := Li(xi,⋆(ξ), ξ), the

cost incurred by i when operating alone under uncertainty realization ξ. Finally, vi,ρ

is the random variable taking values vi,ρξ for the respective realization ξ.
Results given in Sections 4 and 5.3 suggest that the scaled minimax approach suits

our problem more than the proportional approach. Thus, in a stochastic framework,
we propose the operator FSMS

I×Ω :

FSMS
I×Ω

(
(Li)i∈[I]

)
= FSM

I ⊙ EΩ

(
(Li)i∈[I]

)
(15a)

= max
i∈[I]

{ E
[
vi,E]−∑

ξ∈Ω πξ Li(xi(ξ), ξ)

E
[
vi,E

] }
. (15b)

Finally, combining the robust and the scaled minimax approaches, we obtain the oper-
ator FSMR

I×Ω , which focuses on the prosumer having the worst worst-case proportional
costs:

FSMR
I×Ω

(
(Li)i∈[I]

)
= sup

ξ∈Ω
⊙FSM

I

(
(Li)i∈[I]

)
(16a)

= sup
ξ∈Ω

{
max
i∈[I]

{ vi,Eξ − Li(xi(ξ), ξ)

vi,Eξ

} }
. (16b)

Remark 5. Note that here, depending on the sense of the combination between
uncertainty-operator and agent-operator, we could have a model with different risk-
measure profiles for the prosumers.

We now turn to extending the acceptability constraint (3) to a stochastic setting.

6.3 Stochastic dominance constraints

As in Section 5.2, to induce acceptability, we require that, for each prosumer i, its
random cost Li(xi(ξ), ξ) is less than the random cost of the independent model vi,E .
Unfortunately, there is no natural ordering of random variable (or equivalently of
RΩ), and each (partial) order will define a different extension of the acceptability
constraint (3).

We now present four acceptability constraints, using various ordering on the space
of random variable, leveraging the stochastic dominance theory (see Dentcheva and

6We assume uniqueness of a way of selecting an optimal solution, as in Section 3)
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Ruszczynski (2003) for an introduction in the context of stochastic optimization). In
this section, we give the mathematical expression of acceptability constraints, but a
mixed integer formulation can be found in Appendix C.

In a very conservative perspective, we consider the almost-sure order, comparing
random variables scenario by scenario:

Ai,ρ
a.s :=

{
ui,ρ | ui,ρ

ξ ≤ vi,ρξ , ∀ξ
}
. (17a)

We can relax the almost-sure ordering by not requiring the benefit of aggregation
for all scenarios but distributionally. For example, if we have two scenarios ξ and ζ,
with the same probability, we consider that it is acceptable to lose on ξ if we do better
on ζ, that is such that ui,ρ

ξ ≤ vi,ρξ and ui,ρ
ζ ≥ vi,ρζ . To formalize this approach, we

turn to stochastic first-order dominance constraints (see Dentcheva and Ruszczynski
(2003)), and leverage 1st order acceptability:

Ai,ρ
(1) :=

{
ui,ρ | ui,ρ ⪯(1) vi,ρ

}
(17b)

:=
{
ui,ρ | P(ui,ρ > η) ≤ P(vi,ρ > η), ∀η ∈ R

}
:=

{
ui,ρ | E

[
g(ui,ρ)

]
≤ E

[
g(vi,ρ)

]
∀g : R → R, non-decreasing

}
.

One downside of this acceptability constraint is that the modeling entails numerous
binary variables, posing practical implementation challenges.

We can thus consider a relaxed, less risk-averse version of 1st order acceptability,
relying on stochastic second-order dominance constraints, also known as increasing
convex acceptability, which is equivalent to :

Ai,ρ
(ic) :=

{
ui,ρ | ui,ρ ⪯(ic) vi,ρ

}
(17c)

=
{
ui,ρ | E

[
(ui,ρ − η)+

]
≤ E

[
(vi,ρ − η)+

]
∀η ∈ R

}
=

{
ui,ρ | E

[
g(ui,ρ)

]
≤ E

[
g(vi,ρ)

]
, ∀g : R → R, convex, non-decreasing

}
.

Moreover, increasing convex acceptability is also easier to implement than 1st order
acceptability (see Appendix C).

Finally, the risk-neutral acceptability constraint compares two random variables
through their expectation:

Ai,ρ
E :=

{
ui,ρ | EP [u

i,ρ] ≤ EP [v
i,ρ]

}
. (17d)

We can use another convex risk measure instead of the expectation in (17d).

Remark 6. We have that Ai,ρ
a.s ⊆ Ai,ρ

(1) ⊆ Ai,ρ
(ic) ⊆ Ai,ρ

E . Therefore, in the same way

as in Remark 3, the acceptability constraint yields a balance between risk-neutral (A,ρ
E )

and a robust approach on risk (Ai,ρ
a.s), with intermediary visions on risk (Ai,ρ

(ic), A
i,ρ
(1))
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6.4 Numerical illustration

We consider the stochastic version of the example presented in Section 4, where bal-
ancing prices {pB

t }t∈[T ] are random variables with uniform, independent, distribution
over [0.35pDA

t , 5pDA
t ]. The problem can be formulated as a multistage program, where

day-ahead purchases are decided in the first stage, and then each stage corresponds
to a time slot where we can buy energy on the balancing market at a price pB

t .
We solve and discuss the sample average approximation of the two-stage approx-

imation of this problem. More precisely, we draw 50 prices scenario, and solve a
two-stage program where the first stage decisions are the day-ahead purchases, and
the second stage decisions are the balancing purchases from time slot 1 to T . We set
I = 4, T = 10, and we draw Ω = 50 scenarios of balancing prices. For the prosumers’
parameters and market prices, we use the data on Tables 1 and 6.

Table 6: Prices on the day-ahead market

t 1 2 3 4 5 6 7 8 9 10

pDA
t 3 3 7 4 2 10 7 4 7.5 8

qDA
t

12 12 12 12 12 12 12 12 12 12

We solve the problem with different combinations of aggregation operators and
acceptability sets and can compare the impact of each combination on the solution.
We denote mf

a the model with aggregation operator f ∈ {US, SMS,UR, SMR} and
acceptability set a ∈ {∅,E, (ic), (1), (a.s)}. We read prosumers’ expected percentage of
savings with risk-neutral and worst-case approaches on Table 7. For example, in model
mUS

(1) , we read that A1 (resp. A2, A3, A4) saves 36% (resp. 24%, 35%, 18%) of its costs.

The expected cost of the aggregation is 882$, thus asking for first-order acceptability
costs 198$. Moreover, we can observe the distribution of prosumers’ expected costs
with a risk-neutral (resp. worst-case) approach on Figure 5 (resp. Figure 6).

Our first comment is that the problems previously identified from a utilitarian
perspective with no acceptability constraints still exist in a stochastic framework.
Indeed, both with the risk-neutral utilitarian FUS

I×Ω and worst-case utilitarian FUR
I×Ω

operators, we observe on Table 7 that some prosumers can pay more in the aggregation
compared to being alone (A1 pays +30% in the stochastic approach, and +28% in the
robust approach). This highlights the necessity for either acceptability constraints or
an aggregation operator.

If we choose a fair approach through the objective (operators FSMS
I×Ω and FSMR

I×Ω ),
we guarantee a higher percentage of savings to all prosumers than with the utilitarian
approach, regardless of the chosen acceptability set. For example, with no acceptability
constraints, all prosumers save at least 32% of their costs in a risk-neutral approach
and 12% in a robust approach, compared to respectively −30% and −28% with the
utilitarian approach. These guarantees come at the price of efficiency: for example,
the expected aggregated cost of the scaled minimax approach is 13% higher than with
the utilitarian approach in the risk-neutral case.

26



Table 7: Percentage of expected savings
E
[
vi,ρ−E

[
Li(xi(ξ)

]]
E
[
vi,ρ

] made by Ai,

expected aggregated costs E
[
FI(L

1(xi,⋆(ξ))i∈[I])
]
and PoA in the corre-

sponding model.

Utilitarian Stochastic FUS
I×Ω Scaled Minimax Stochastic FSMS

I×Ω

A1 A2 A3 A4 (A) PoA A1 A2 A3 A4 (A) PoA

∅ -30 53 2 53 684 0 32 36 32 32 770 0
AE

E 0 53 0 45 684 0 32 36 32 32 770 0
AE

(ic)
0 53 0 45 684 0 32 36 32 32 770 0

AE
(1)

36 24 35 18 882 0.29 23 21 29 19 917 0.19

AE
a.s 40 17 43 14 930 0.36 33 17 38 16 938 0.22

Utilitarian Robust FUR
I×Ω Scaled Minimax Robust FSMR

I×Ω

A1 A2 A3 A4 (A) PoA A1 A2 A3 A4 (A) PoA

∅ -28 53 4 52 686 0 41 12 41 102 974 0
Asup

E 0 53 0 45 686 0 41 12 41 102 974 0
Asup

(ic)
0 53 0 45 686 0 41 12 41 102 974 0

Asup
(1)

26 25 26 17 898 0.31 41 12 41 102 974 0

Asup
a.s 40 17 43 14 930 0.35 41 12 41 102 974 0

Conversely, when solving this problem with a utilitarian approach (operators FUS
I×Ω

and FUR
I×Ω), we can increase the guaranteed percentage of savings by constraining

more the acceptability. Indeed, with FUS
I×Ω, all prosumers save at least from 0% with

risk-neutral acceptability to 18% with first-order acceptability, and with FUR
I×Ω, it is

from 0% to 17%. Notably, first-order acceptably has a price: the aggregation costs
increase from 770$ with risk-neutral acceptability to 917$ with first-order acceptability.
However, increasing the acceptability to almost-sure does not improve this guarantee,
as the problem is now getting too constrained. In particular, with the robust scaled-
minimax operator FUR

I×Ω, the problem is so constrained from the beginning that the
choice of acceptability set is inconsequential: the distribution of costs is always the
same.

In this case study, models with increasing-convex acceptability yield the same solu-
tion then for the case with risk-neutral acceptability. This suggests that the additional
constraints imposed by increasing-convex acceptability do not eliminate the optimal
solution found under risk-neutral acceptability. However, in the general case, one could
expect to obtain different solutions, since increasing-convex acceptability defines a
more restrictive feasible set (see Remark 6).

All in all, we obtain various solutions with different balances between efficiency and
fairness and different risk visions. In this example, in the stochastic case, if we want to
give the same guarantees to every prosumer, the natural choice is operator FSMS

I×Ω . This

approach costs 13% more than inm
FUS

I×Ω

∅ , but guarantees at least 32% of savings to each
prosumer. However, with a risk-averse approach, the robust scaled-minimax operator
If prosumers are risk-averse, we could opt for a robust operator FSMR

I×Ω ; however this
approach might overly reduce the potential gains from aggregation. Alternatively, the
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Fig. 5: The bars correspond to the results of different models we solve with a stochas-
tic approach. The first one is the model without aggregation: we solve each (P i,E)
independently. The second bar corresponds to the problem solved with operator FUS

I×Ω

without acceptability constraints. Then, the four following bars correspond to the same
problem with increasingly strong acceptability (AE

E,AE
(ic),A

E
(1),A

E
a.s). The following

bar is for the problem solved with operator FSMS
I×Ω without acceptability constraints,

followed by four bars with different acceptability sets. Each bar is decomposed in 4
blocks corresponding to the expected share E[Li(xi(ξ), ξ)] of each consumer i. At the
top of each bar, we can read the sum of expected aggregated costs in the corresponding
model.

utilitarian oper ator (FUS
I×Ω) combined with first-order acceptability accounts for the

risks faced by consumers while being less restrictive than a robust approach. In this
case, it ensures at least 18% of savings to each prosumer and induces 29% of efficiency
loss.

Finally, we test the framework using different samples of scenarios drawn from the
same probability distribution (see Appendix D). The results remain consistent across
different scenario sets: while costs and proportional savings may fluctuate, the rela-
tive impact of the fairness operator and acceptability constraints remains unchanged.
Furthermore, increasing the variability of the scenarios drawn for these tests does not
significantly impact the empirical conclusions we have drawn previously.

Conclusion

In this paper, we provide a framework including dynamic and stochastic cases to
accommodate fairness in aggregation problems like prosumer aggregation, virtual
power plant, portfolio management in energy markets, ancillary service provision, etc.
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Fig. 6: This figure can be read like Figure 5, except that the two considered operators
are FUR

I×Ω and FSMR
I×Ω .

A salient point is to consider, on one hand, acceptability constraints that ensures that
each participant has interest in participating in the aggregation, and on the other
hand objective function (e.g., utilitarian, scaled minimax, and proportional) that fairly
share additional gains. Through the discussion in Section 2, we emphasized the impor-
tance of fairness and the need to carefully consider how to model it and be aware of
the different approaches available.

In our numerical example, we obtained a spectrum of options from various combi-
nations of acceptability sets and objective functions, ranging from the most efficient
models (with the lowest aggregated costs) to the fairest models (where agents’ gains are
more comparable). Too-restrictive acceptability sets or a bargaining approach (propor-
tional operator FP

I ) can significantly reduce efficiency, while an intermediate approach
leverages aggregation benefits without excessively favoring certain prosumers. Thus,
we recommend the scaled min-max agent aggregator with progressive acceptability
constraint in the dynamic case (resp. increasing convex acceptability in the stochastic
case), which balances efficiency and fairness well.

In future work, we plan to discuss the extension of the aggregation problem to a
multistage stochastic program, where we would have to combine the partial orders
presented in the dynamic framework in Section 5 and the stochastic orders of the
stochastic framework in Section 6. This will require a discussion of possible aggre-
gators FT×Ω×I over agents, time, and uncertainty simultaneously. Although we can
easily assume a factorization of the form FI ⊙ FT×Ω, it would not be realistic to
describe FT×Ω as the composition of a time aggregator and an uncertainty aggregator.
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Indeed, such a factorization would not guarantee time-consistency of the problem and
might not even preserve non-anticipativity. Acceptability constraints must be defined
using multivariate stochastic order (see Dentcheva and Ruszczyński (2009))whose
mathematical programming representations are more involved.

Further, all problems in Sections 4, 5.3 and 6.4 are solved using generic MILP
(Gurobi) or MINLP (Juniper.jl Kröger et al. (2018)) solvers, which perform well
for problems of reasonable size. However, as complexity increases—particularly in
dynamic and stochastic settings—scalability becomes a challenge. Since this paper
focuses on the methodological framework for fairness rather than numerical resolution,
we tested the framework on small instances that did not require specialized algorithms.
For larger or multistage stochastic problems, where the size grows exponentially,
decomposition methods should be considered to improve computation.

Finally, it would be interesting to investigate potential bounds on the price of
acceptability.
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A Computing Shapley’s values

In this appendix, we give more details on how to compute Shapley’s values for the
application in Section 4. First, we introduce the general formulas and definitions
required to compute Shapley’s values, then we apply them to our example.

A.1 Definitions and Formulas

Shapley’s values are commonly seen as a fair distribution of costs (or revenues) when
agents cooperate in a cooperative game. The Shapley Value returns each player’s
fair share of the total gains by averaging their contributions across all possible ways
they can join the coalition. Let N be the number of agents in the game. We denote
w : 2|N | → R, the worth function associating to a coalition S, the expected payoff
obtained by cooperation.

To compute Shapley’s values, first, we compute δi(S), the marginal contribution
of agent i to coalition S ⊂ N :

δi(S) = w(S ∪ {i})− w(S) (18a)

Then, the Shapley value of agent i, given a characteristic function w, is ϕi(w):

ϕi(w) =
1

n

∑
S⊂N\{i}

(
n− 1
|S|

)−1

δi(S) (18b)

A.2 Application to our example

We consider an example with 4 agents. For each coalition S ⊂ [4], we solve the
aggregated problem with utilitarian operator FU

S and acceptability constraints A1-
as in cooperation games we must satisfy individual rationality properties- and obtain
optimal solution cS Then, we introduce the characteristic function assessing the worth
of coalition S as:

w(S) =
∑
i∈S

vi − cS , (19a)

where vi is the optimal value of problem (P i). Thus w(S) designates the savings made
by coalition S when they cooperate. On Tables 8 and 9, we detail the intermediate
computations, and in Equations (19b) to (19e) we compute shapley’s values.

ϕ1(w) =
1

4

[(
3
1

)−1 (
δ1({2}) + δ1({3}) + δ1({4})

)
+

(
3
2

)−1 (
δ1({2, 3}) + δ1({2, 4}) + δ1({3, 4})

)
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{1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}∑
i∈S

vi 50 280 40 168 330 90 218 320 448 208 370 498 258 488 538

cS 50 280 40 168 330 90 218 320 448 208 244 365 162 392 333

w(S) 0 0 0 0 0 0 0 0 0 0 126 133 96 96 205

Table 8: Costs with and without cooperation and worth w of each coalition S.

{1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4}
δ1(S) - 0 0 0 - - - 126 133 96 - - - 109

δ2(S) 0 - 0 0 - 126 133 - - 96 - - 109 -

δ3(S) 0 0 - 0 126 - 96 - 96 - - 72 - -

δ4(S) 0 0 0 - 133 96 - 96 - - 79 - - -

Table 9: Marginal contributions of agent i to each coalition.

+

(
3
3

)−1

δ1({2, 3, 4})
]

ϕ1(w) =
1

4

[
1

3
× 0 +

1

3
(126 + 133 + 96) + 1× 109

]
= 56.8 (19b)

ϕ2(w) =
1

4

[
1

3
× 0 +

1

3
(126 + 133 + 96) + 1× 109

]
= 56.8 (19c)

ϕ3(w) =
1

4

[
1

3
× 0 +

1

3
(126 + 96 + 96) + 1× 72

]
= 44.5 (19d)

ϕ4(w) =
1

4

[
1

3
× 0 +

1

3
(133 + 96 + 96) + 1× 79

]
= 46.8 (19e)

As the values computed here represent the way to distribute savings, we must
subtract ϕi(w) from the cost of agent i to obtain its costs in the aggregation after fair
allocation through Shapley’s values in Table 10.

A1 A2 A3 A4

ϕi(w) 56.8 56.8 44.5 46.8

vi 50 280 40 168

Li(xi) -6.8 223.2 -4.5 121.2

100(vi−Li(xi))

vi 114 20 111 28

Table 10: Costs and proportional sav-
ings of the agents with Shapley’s post-
allocation scheme.

B Additional results for Section 4
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We report tests on various instances that show that our observations are not solely
problem-dependent. Specifically, we consider cases with different gaps between day-
ahead and balancing prices.

As a reference, we use the balancing prices in Table 11. We then evaluate the
models with day-ahead prices set as pDA

t = γpBt , where γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. A
lower γ increases the benefit of aggregation. The parameters for the minimum and
maximum energy consumption of prosumers are given in Table 1. Since we set T = 10,
the total demand is adjusted to Q = [20, 50, 16, 27].

Table 11: Balancing prices per stage

t 1 2 3 4 5 6 7 8 9 10

pBt 34 35 30 33 24 25 38 35 39 25

To compare the different instances, we consider three indicators. First, the
minimal proportional savings:

α⋆ := min
i∈[I]

{vi − Li(xi)

vi
}
,

representing the smallest proportional savings received by any agent. Then, the
dispersion of proportional savings, denoted δ:

δ := max
i∈[I]

{vi − Li(xi)

vi
}
− α⋆,

that measures the difference between the highest and lowest proportional savings.
Finally, global aggregation gains:

v+ :=
∑
i∈[I]

vi − v(mf
α),

quantifying the overall benefit of aggregation.
Figure 7 presents the different indicators for γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} across mod-

els mf
1 with f ∈ {U, SM,P} and α = 1. Several general observations hold across the

five instances.
First, as expected, the minimax operator consistently yields the highest minimal

proportional savings α⋆, regardless of the acceptability level. It also minimizes the dis-
persion of proportional savings δ. Second, for a given acceptability set, the utilitarian
operator achieves the highest overall gains. As γ decreases, the gap between day-ahead
and balancing prices widens, making access to the day-ahead market more advanta-
geous. Consequently, aggregation becomes more beneficial for each agent, leading to
higher global gains and α⋆. However, as γ increases from 0.5 to 0.8, the dispersion of
proportional savings grows under the utilitarian operator, while it decreases under the
proportional one.
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Fig. 7: Minimal proportional saving α⋆, dispersion of proportional savings δ and
global aggregation gains v+ obtained by solving mf

1 for f ∈ {U, SM,P} for instances
depending on the gap γ between day-ahead and balancing prices.

C Modeling of stochastic dominance constraints

We present here practical formulas to implement the stochastic orders dominance con-
straints introduced in Section 6.3. Those constraints establish a dominance between
vi,ρ, the random variable representing i independent costs, and ui,ρ, the random
variable representing i costs in the aggregation.

C.1 First-order dominance constraint model

The first-order dominance constraints (17b) model is based on Gollmer et al. (2008).
Lemma 1. In Problem (Aρ), acceptability constraints ui,ρ ⪯(1) vi,ρ can be modeled
with:

biξ,η ∈ {0, 1} ∀η ∈ [Ω], ∀ξ ∈ Ω (20a)

ui,ρ
ξ − vi,ρη ≤ M biξ,η ∀η ∈ [Ω], ∀ξ ∈ Ω (20b)

Ω∑
ξ=1

πξb
i
ξ,η ≤ aη ∀η ∈ [Ω]. (20c)

We denote aη := P(vi,ρ > vi,ρη ), which is a parameter for the aggregation problem.

Proof. As Ω is assumed to be finite, vi,ρ follows discrete distribution with realizations
vi,ρη for η ∈ Ω. Then,

ui,ρ ⪯(1) vi,ρ ⇐⇒ P(ui,ρ > η) ≤ P(vi,ρ > η) ∀η ∈ R
⇐⇒ P(ui,ρ > vi,ρη ) ≤ P(vi,ρ > vi,ρη ) ∀η ∈ Ω.
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Then, using P(X > x) = E[1X>x], and introducing binary variables biξ,η = 1ui,ρ
ξ >vi,ρ

η
,

we get:

(
P(ui,ρ > vi,ρη ) ≤ P(vi,ρ > vi,ρη ) ⇐⇒

Ω∑
ξ=1

πξb
i
ξ,η ≤ aη

)
∀η ∈ Ω.

To linearize the definition of biξ,η, we rely on big-M constraint:

biξ,η ∈ {0, 1} ∀η ∈ Ω,∀ξ ∈ Ω

ui,ρ
ξ − vi,ρη ≤ Mbiξ,η ∀η ∈ Ω,∀ξ ∈ Ω.

C.2 Increasing convex dominance constraint model

The increasing convex dominance constraints (17c), is based on Carrión et al. (2009).
Lemma 2. In problem (Aρ), the acceptability constraint ui,ρ ⪯(ic) vi,ρ can be modeled
with:

siξ,η ≥ 0 ∀η ∈ [Ω], ∀ξ ∈ Ω (21a)

siξ,η ≥ ui,ρ
ξ − vi,ρη ∀η ∈ [Ω], ∀ξ ∈ Ω (21b)

Ω∑
ξ=1

πξs
i
ξ,η ≤ aicη ∀η ∈ [Ω]. (21c)

We denote aicη := E[(vi,ρ − vi,ρη )+].

Proof. As in Appendix C.1, we know that vi,ρ follows a discrete distribution with
realizations vi,ρη ) for η ∈ Ω. Then,

ui,ρ ⪯(ic) vi,ρ ⇐⇒ E
[
(ui,ρ − η)+

]
≤ E

[
(vi,ρ − η)+

]
∀η ∈ R

⇐⇒ E
[
(ui,ρ − vi,ρη )+

]
≤ E

[
(vi,ρ − vi,ρη )+

]
∀η ∈ Ω.

We introduce positive variables siξ,η = (ui,ρ
ξ −vi,ρη )+, for η ∈ Ω. Thus, we can model

the increasing convex dominance constraints as: follows

(
E
[
(ui,ρ − vi,ρη )+

]
≤ E

[
(vi,ρ − vi,ρη )+

]
⇐⇒

Ω∑
ξ=1

πξs
i
ξ,η ≤ aicη

)
∀η ∈ [Ω].
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D Additional results for Section 6

We present additional tests for different instances of the problem described in
Section 6.4. We consider instances where balancing prices {pB

t } are random variables
with uniform, independent distribution over [0.3pDA

t , 3pDA
t ]. From this distribution, we

randomly generate 20 samples of 50 scenarios. Prosumers’ parameters and day-ahead
market prices are taken from Tables 1 and 6.

For each scenario sample, we solve mf
a with f ∈ {US, SMS} and a ∈

{∅,E, (ic), (1), (a.s)}. As in Appendix B, we report the minimum proportional sav-
ings α⋆, dispersion of proportional savings δ and global aggregation gains v+ for each
model. For each indicator, we compute the expectation, standard deviation, minimum,
and maximum values across the 20 instances and summarize the results in Tables 12
and 13.

α⋆ δ v+

average std min max average std min max average std min max

mUS
∅ -39.8 16 -75 -9.5 69 18.8 30.8 108.5 148.1 12.9 123.7 172.7

mUS
E 0 0 0 0 27 2.9 21.4 31.4 147.7 13.1 123.7 171.1

mUS
(ic)

0 0 0 0 27 2.9 21.4 31.4 147.7 13.1 123.7 171.1

mUS
(1)

6.8 3.4 0 11.6 10.8 5.3 0 17 80.5 41.5 0 135.7

mUS
(a.s)

0.7 2.2 0 8.3 1.5 4.5 0 15.3 8.4 26.3 0 97.4

Table 12: Average value, standard deviation, minimum and maximum val-
ues of the minimal proportional saving α⋆, the dispersion of proportional
savings δ and global aggregation gains v+ obtained by solving the models
with the risk-neutral utilitarian operator FUS

I×Ω over 20 different samplings
of scenarios.

α⋆ δ v+

average std min max average std min max average std min max

mSMS
∅ 16.8 1.2 13.8 18.7 0.6 0.9 0 4.2 134.7 13 107.2 159.6

mSMS
E 16.8 1.2 13.8 18.7 0.6 0.9 0 4.2 134.7 13 107.2 159.6

mSMS
(ic)

16.8 1.2 13.8 18.7 0.6 0.9 0 4.2 134.7 13 107.2 159.6

mSMS
(1)

7.2 4.3 0 13.6 8.2 5.4 0 14 72.6 41.5 0 119.2

mSMS
(a.s)

0.7 2.2 0 8.3 1.4 4.5 0 15.1 8.4 26.3 0 97.3

Table 13: Average value, standard deviation, minimum and maximum val-
ues of the minimal proportional saving α⋆, the dispersion of proportional
savings δ and global aggregation gains v+ obtained by solving the models
with the risk-neutral scaled-minimax operator FSMS

I×Ω over 20 different sam-
plings of scenarios.
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From these tables, we observe that although the values fluctuate between different
samples, the comparison between models remains consistent. Notably, under the risk-
neutral scaled-minimax operator FSMS

I×Ω , α⋆ and δ almost do not fluctuate. Moreover,
when comparing the utilitarian approach (FUS

I×Ω) with the minimax approach (FSMS
I×Ω ),

the latter consistently yields the highest α⋆ and minimal δ. Finally, increasing the
level of acceptability reduces the dispersion of proportional savings but also leads to
a decrease in global gains.
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