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Abstract

We present an integrated framework for truckload procurement in container
logistics, bridging strategic and operational aspects that are often treated
independently in existing research. Drayage, the short-haul trucking of con-
tainers, plays a critical role in intermodal container logistics. Using dy-
namic programming, we identify optimal operational policies for allocating
drayage volumes among capacitated carriers under uncertain container flows
and spot rates. The computational complexity of optimization under uncer-
tainty is mitigated through sample average approximation. These optimal
policies serve as the basis for evaluating specific capacity arrangements. To
optimize capacity reservations with strategic and spot carriers, we employ
an e!cient quasi-Newton method. Numerical experiments demonstrate sig-
nificant cost-e!ciency improvements, including a 21.2% cost reduction in a
four-period scenario. Monte Carlo simulations further highlight the strong
generalization capabilities of the proposed joint optimization method across
out-of-sample scenarios. These findings underscore the importance of in-
tegrating strategic and operational decisions to enhance cost e!ciency in
truckload procurement under uncertainty.
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1. Introduction

We study the complexities of truckload (TL) procurement for the short-
haul transportation of laden containers, a critical process in managing the
first-mile movement of Full Container Load (FCL) and Less-than-Container

Load (LCL) shipments between ports, warehouses, or intermodal terminals.
This stage, often referred to as container drayage or simply drayage, plays a
pivotal role in bridging ocean freight with inland logistics [1]. Throughout
this work, we use the terms TL and drayage interchangeably, as TL, while
a broader category, refers exclusively to drayage in this context.

First mile delivery refers to the initial phase of the logistics chain, where
goods are collected from the shipper’s location and transported to a ware-
house, sorting facility, or terminal as the starting point for further distribu-
tion. It primarily concerns the movement of goods from the point of origin to
the beginning of the transportation network. FCL is a shipping mode where
a container is exclusively used for one customer’s cargo, filling the entire
container. In contrast, LCL is another shipping arrangement where cargo
from multiple customers is consolidated into a single container. Intermodal

container logistics refers to the integrated transportation of containers using
multiple modes of transportation, such as vessels, trucks, and trains, with-
out any handling of the freight itself when changing modes. Finally, drayage
involves the short-distance trucking of containerized freight into and out of
intermodal facilities, such as ports, rail terminals, and warehouses, facilitat-
ing the transition between transportation modes.

E!cient TL procurement for drayage is crucial for maintaining smooth
intermodal logistics operations, minimizing costs, and enhancing service lev-
els. As global trade grows in complexity and volume, optimizing these pro-
cesses has substantial implications for supply chain e!ciency and economic
performance [2]. However, much of the existing research focuses on strategic
carrier selection and auction mechanisms, often overlooking the critical role
of capacity planning [3].

In this study, we distinguish between carrier selection and capacity plan-
ning as two distinct yet complementary components of the procurement
process. Carrier selection entails identifying and contracting carriers based
on criteria such as cost, reliability, and service quality [4], establishing the
strategic foundation for aligning carriers with operational needs. In con-
trast, capacity planning focuses on determining the transportation capacity
to reserve with both strategic and spot carriers, ensuring adequate resources
are available to meet anticipated shipment volumes e!ciently.
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While carrier selection has received significant attention for fostering
long-term partnerships in TL transportation, capacity planning remains
underexplored. Neglecting this component can impede the integration of
strategic and operational considerations in TL procurement. E”ective pro-
curement should secure su!cient capacity with both strategic and spot car-
riers to meet operational needs [5]. This gap in the literature underscores
the need for integrated models that can enhance strategic decision-making
in TL procurement.

Our study integrates strategic capacity planning, which involves the
long-term reservation of carrier capacity to accommodate expected con-
tainer flows, with operational volume allocation, which entails the periodic
management of transportation volumes. Given a predefined capacity ar-
rangement, we aim to identify the optimal policy for periodically assigning
transportation volumes across capacitated carriers under uncertain flows of
laden containers within the drayage system. To achieve this, we combine
the well-established capacitated transportation problem [6, 7] with dynamic
programming. Additionally, we explore approximate methods to manage
computational complexity, emphasizing its strong dependence on uncertain
parameters.

To address the gap in literature, we propose a joint optimization model,
combining capacity planning with operational policies for volume alloca-
tion. We use the Markov Decision Process (MDP) framework to formulate
a dynamic program for the Multiperiod Stochastic Transportation Problem

(MSTP). This method can readily factor in multiple uncertainties, such as
the inflow and outflow of laden containers to and from our drayage system
and the spot market variability. Our approach is convenient for practitioners
who wish to experiment with empirical data, as the uncertain parameters
can be fine-tuned and validated to match real-world mechanisms.

Additionally, we adopt the option contract framework and the portfolio

contract concept introduced by [5] to enable flexible sourcing, extending the
capacity strategy to include the spot market. An option contract grants
the buyer the right, but not the obligation, to procure a specified amount
of capacity at a predetermined execution price in exchange for an upfront
reservation fee. A portfolio contract combines multiple option contracts,
providing flexibility to optimize operational e!ciency. Finally, we leverage
the theory therein to report the regularity conditions necessary to reduce the
capacity optimization at the outset of operations to a concave maximization
problem.

The remainder of this paper is structured as follows: Section 2 reviews
key contributions to truckload procurement and identifies existing gaps. Sec-
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tion 3 defines essential concepts and presents the mathematical formulation
of the optimization model. Section 4 introduces an MDP framework for
optimizing volume allocation under uncertainty, integrating strategic capac-
ity planning. Computational complexity and scalability are analyzed using
dynamic programming and approximation techniques. Section 5 presents
numerical experiments that demonstrate the model’s e”ectiveness, followed
by a discussion of the results, limitations, and future research directions.

2. Literature review

The procurement of TL transportation services has been extensively
studied from the perspectives of strategic carrier selection and operational
execution. This section reviews the state-of-the-art research, highlighting
key contributions and identifying gaps that this study seeks to address.

Strategic carrier selection in TL procurement involves making long-term
decisions about which carriers to contract and the terms of these contracts.
This topic has garnered significant attention, with numerous studies explor-
ing di”erent aspects of the process. Researchers have developed models to
determine the optimal set of carriers and allocate them to origin-destination

(OD) pairs, highlighting the importance of auction mechanisms in achiev-
ing cost e!ciency and maintaining service quality [8]. Further investigations
into the TL reverse auction process have provided insights into bid construc-
tion and the complexities of carrier selection, showing how bid strategies
influence procurement auction outcomes [2, 9]. Subsequent studies have em-
ployed multi-attribute value theory and auction theory to address scenarios
such as lane bundling and uncertain demand and capacity [10–17]. In this
context, a lane refers to a specific route connecting an OD. Additionally, con-
tributions to central auctioneer solutions and carrier assignment algorithms
have expanded the understanding of carrier selection [18–22]. Reviews of
strategic TL procurement literature have also highlighted simplifying as-
sumptions about demand and the limited focus on non-price factors, such
as environmental sustainability [23, 24].

Strategic management of carrier capacity is crucial for optimizing TL
transportation procurement, ensuring operational e!ciency and a compet-
itive advantage. The literature has explored the optimization of carrier
assignments while accounting for capacity constraints [8]. Algorithms have
been developed to manage carrier capacity under contractual agreements
in conditions of uncertain demand [12, 22]. Risk mitigation strategies that
align carrier capacity with fluctuating demand to maintain consistent ser-
vice levels have also been proposed [25]. Furthermore, pricing strategies
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that integrate carrier capacity into bid generation for lane bundles have
been examined [26].

Operational execution focuses on managing transportation services, con-
sidering contract commitments, carrier capacity, and uncertainty in ship-
ment demands and market conditions. Research has emphasized the criti-
cal impact of market conditions and competitive contract prices on carrier
acceptance [27]. Studies have demonstrated the benefits of collaborative
strategies, such as reducing deadhead miles and enhancing negotiating power
[28, 29]. Trade-o”s between spot sourcing and strategic delays to maximize
revenues have also been explored, indicating that while relying on the spot
market can improve fill rates, it may compromise reliability and resource
utilization [30, 31]. The potential of option contracts to provide flexibil-
ity and reduce risks in TL transportation has been highlighted [32]. The
dynamic nature of TL operations, where partial demand information and
market conditions influence contract commitments and capacity availabil-
ity, underscores the importance of flexibility in decision-making [33]. De-
spite these advances, the influence of market uncertainty on procurement
strategies remains underexplored. While some recommendations advocate
for accommodating demand surges and cyclical market conditions, practical
models to address these factors are still lacking [3, 34].

Despite extensive research on strategic carrier selection and operational
execution, a significant gap remains in integrating these two phases [3]. Most
studies address them independently, leading to ine!ciencies and missed op-
timization opportunities. The need for integrated capacity planning is high-
lighted in studies such as [27, 35, 36], which examine market conditions and
contract price competitiveness. These works suggest that more dynamic and
adaptive models are necessary to bridge the gap between strategic planning
and operational execution. [37] introduced a multistage stochastic optimiza-
tion model for carrier evaluation under uncertain demand in middle-mile lo-
gistics, focusing on TL transportation between warehouses and distribution
centers. Our work extends this framework by incorporating uncertainties
in inflow, outflow, and spot rates, as well as a strategic capacity planning
optimization stage.

To sum up, the procurement of TL transportation services has been
analyzed through the lenses of strategic carrier selection and operational
execution. However, e”ectively integrating these critical phases remains a
challenge. The coupling of carrier selection and capacity planning adds fur-
ther complexity to this integration. Moreover, there is a notable absence
of holistic models capable of adapting to market conditions and the uncer-
tainties of supply and demand. To address this gap, this study proposes a
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framework for drayage procurement that incorporates operational impacts
into strategic decision-making under uncertainty in container flows and spot
market.

3. Problem description

We describe the transportation problem within the drayage process in
the context of intermodal container logistics. This section introduces the key
categories required for understanding this problem as a practitioner in the
container logistics industry. It also highlights the role of TL procurement in
the drayage process and underscores the importance of an e”ective capacity
strategy.

Intermodal container logistics is a complex process that involves ef-
ficiently moving containers using multiple transportation modes, such as
ships, trains, and trucks. This process encompasses the first mile, which in-
volves transporting containers to an intermodal terminal; FCL, where fully
loaded containers are booked by individual customers; and LCL, where ship-
ments from multiple customers are consolidated into a single container for
the primary transport leg. Drayage is critical for facilitating modality transi-
tions, employing short-distance trucking to transport containers from arrival
points to nearby destination hubs.

A system of drayage operations includes storage locations at entry points,
such as ports or rail yards, where containers arrive following an ocean or rail
leg. These containers are subsequently transported by trucks to neighboring
exit points, which may include other ports, rail yards, or intermediate hubs.
Figure 1 illustrates a typical drayage operation within container logistics.
Containers arrive at entry points from a combined ocean-rail leg and are
transported by truck to adjacent hubs to continue their journey. This system
is characterized by a continuous inflow and outflow of containers, which are
exogenous to the drayage system and beyond its direct control.

In this study, we examine a case where a shipping company outsources
its entire TL transportation business to external carriers. This is managed
through a procurement process that begins with the onboarding of strate-
gic carriers, referred to as carrier selection [3], and includes auctions where
carriers compete for bundles of lanes [10, 14, 26], also known as corridors in
intermodal container logistics. The outcome of carrier selection establishes
the foundation of the procurement strategy through long-term service agree-
ments with multiple carriers. During this process, carriers bid for specific
corridors, with winning bids specifying fixed trucking rates per kilometer.
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Figure 1: An example of intermodal container transportation involves containers being

transported by ocean and rail into a system of drayage operations. These containers arrive

at rail yards within the system’s scope, and from there, they are transported to nearby

hubs, where they continue their intermodal journey.

Capacity planning involves determining the trucking capacity to secure
with strategic carriers and setting bu”er sizes for the spot market, where
transportation services are procured to meet immediate needs in a competi-
tive environment. Bu”ers ensure adaptability to container flow volatility by
reserving capacity. To enable flexible sourcing, we incorporate option con-
tracts and the portfolio contract introduced by [5]. Option contracts involve
pre-paying a premium to reserve capacity, granting the right to procure up
to a specified amount at a fixed price. The portfolio contract builds on this
by integrating long-term, option, and spot market agreements, optimizing
procurement to balance cost and flexibility under uncertainty.

Overall, this study addresses periodic transportation decisions related
to the movement of container volumes from entry to exit points, the alloca-
tion of business among capacitated carriers through the portfolio contract,
and the capacity strategy that sets carrier capacity limits for the planning
horizon. To provide a clearer understanding of these elements, the next sec-
tion describes an elementary system of drayage operations and presents the
mathematical notation conventions used throughout this work.

3.1. Mathematical formulation and notation

Let I and J be the index sets for entry and exit points, respectively, and
let T represent the index set for the planning horizon, spanning from time
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point 1 until the stopping time ω < →. We define Qt = (Qi,t : i ↑ I) as the
inflow of containers entering our system at time t, and Dt = (Dj,t : j ↑ J ) as
the outflow of containers exiting. Transportation within our system occurs
through lanes denoted by L ↓ I↔J . The state vector St = (Si,t : i ↑ I, Sj,t :
j ↑ J ) represents the number of containers stored at each entry and exit
location in our system at time t. The decision vector Ǎt = (Ai,j,t : (i, j) ↑ L)
represents the total volume of containers transported through each lane (i, j)
at time t.

Figure 2 illustrates the notation using an elementary snippet of a drayage
system that comprises a single lane. At time t, the state of the system is
described by the number of containers stored at the entry and exit hubs,
(Si,t, Sj,t). There is an inflow of Qi,t containers and an outflow of Dj,t

containers. Additionally, we may intervene in the system by transporting
Ai,j,t containers from i to j.

Figure 2: An elementary drayage system with storage facilities at the entry and exit

points.

3.1.1. System dynamics

In a cycle of operations spanning a finite horizon indexed by t ↑ T , where
T = {1, 2, . . . , ω}, our system evolves according to the following sequential
logic. At each time stage t, the drayage system is at state St, quantities∑

i→I Qi,t of containers arrive to entry points, the decision-maker orders a
number of drayage moves At, and a volume of

∑
j→J Dj,t containers departs

from exit points. What lies latent in the realizations of the exogenous vari-
ables is the dynamics of the broader container flow in the company’s network
of intermodal container transportation.

We now introduce several concepts that will allow us to formalize the
representation of the uncertainty in our problem. Let (#,F , P ) be a prob-
ability space, where # is the sample space of all possible realizations of the
uncertainty, F is the ε-algebra containing all measurable subsets of #, and
P : F ↗ [0, 1] is a probability measure assigning a probability to each mea-
surable set. In this context, we may refer to a measurable set as an event.
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A random variable Z is a measurable function Z : # ↗ Z defined on our
probability space, where Z is the space of all possible outcomes of Z.

Building on this foundation, a stochastic process is a collection of random
variables indexed by time, denoted (Zt : t ↘ 0). To capture the progression
of information, we define a filtration as an increasing sequence of sub-ε-
algebras of F , indexed by time, denoted by (Ft : t ↘ 0). A stochastic process
(Zt : t ↘ 0) is adapted to a filtration (Ft : t ↘ 0) if Zt is Ft-measurable for
every t ↘ 0. This provides a minimal framework to represent and analyze
uncertainty in our problem.

In this work, we consider the discrete-time setting and define Zt : # ↗ Z
to represent the uncertainty at time t. For now, Zt = (Qt, Dt), where Qt

and Dt denote the random inflows and outflows, respectively; however, Zt

will later be extended to incorporate spot rates. To formalize the exogenous
state, we recursively define $t = ($t↑1, Zt) for all t ↘ 1, with $0 = ≃. Here,
$t captures the history of the uncertainty up to time t, and is a random
variable $t : # ↗ Zt, where the set Zt is defined as the t-fold Cartesian
product of Z:

Zt = Z ↔ Z ↔ · · ·↔ Z (t times),

with Z0 = {≃}. Thus, Zt represents the set of all possible histories up to
time t.

We fix a history ϑω ↑ Zω , and the state of our system evolves conditional
on this fixed realization. For brevity, we omit the conditioning on the fixed
history in our transition probability and let pt(st+1 | st, at)

.
= pt(st+1 |

st, at,ϑω ). After an action at ↑ A(st) is carried out in a given state st, the
system transitions to a new state according to the deterministic law:

pt(st+1 | st, at) = ϖ(st+1 ⇐ fS,t(st, at,ϑt)) (1)

Here, ϖ denotes Dirac’s delta, a generalized function that assigns nonzero
weight only when its argument is zero, formalizing the deterministic nature
of the transition [38]. The function fS,t : S ↔A↔ Zt ↗ S in the structural
equation St+1 = fS,t(St, At,$t), which determines the next state, encapsu-
lates the system dynamics by providing the mechanism through which the
system will respond over time. It is defined as follows:

fS,t(St, At,$t)
.
=

{(
Si,t ⇐

∑
j→J Ai,j,t +Qi,t : i ↑ I

)
,

(
Sj,t +

∑
i→I Ai,j,t ⇐Dj,t : j ↑ J

)

}
(2)

For a given instance ϑt ↑ Zt of the uncertainty, the transition to the next
state is deterministic. The only nuisance parameter in the transition mech-
anism is the density function of the exogenous state pt(ϑt) = Pt($t = ϑt).
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The complexity of the exogenous state variable combined with the lack of
su!cient data, poses a great challenge in validating any modeling choice
for this nuisance parameter. Nevertheless, we can still gain valuable insights
into drayage operations by simulating the nuisance parameter and analyzing
the evolution of our system.

3.1.2. Flexible sourcing tools

During the carrier selection process, a set of bids B is considered, each
associated with a subset of lanes L(b) ↓ L, a fixed transportation cost, and
potentially, a one-time reservation cost. The union of these subsets covers
all available lanes, i.e., L(B) =

⋃
b→B L(b) = L. Carriers with winning bids

are then designated as strategic carriers, denoted by CS . For each strategic
carrier, identified as k ↑ CS , B(k) ↓ B represents the set of bids that
have been successfully awarded to them. Furthermore, L(k) =

⋃
b→B(k) L(b)

defines the specific lanes that each carrier is responsible for managing. To
simplify the notation, we mildly abuse the term source to refer to the bid
and winner carrier pair (b, k), and use a single index k to identify a source.
This is necessary because a carrier may win the same lanes under di”erent
bids, each with distinct terms, and treating the (bid, carrier) pair as the
unit ensures we capture those di”erences while simplifying the notation.

A typical long-term service agreement involves a carrier’s commitment
to a fixed transportation cost for each lane within the bid, coupled with a ca-
pacity assurance. Such an agreement for a given source k can be represented

as the vector
(
(wk

t , x
k
t ) : t ↑ T

)
, where wk

t , defined as
(
wk
i,j,t : (i, j) ↑ L(k)

)
,

represents the execution cost at time t for each lane under the purview of
source k. The variable xkt , taking values in R+ = [0,→), denotes the capac-
ity reserved with source k at time t. The variation in transportation costs
among lanes is justifiable due to di”erences in distance coverage and the
involvement of distinct bids.

An option contract is a flexible sourcing tool used for managing uncer-
tainties in supply chain operations. For a given source, it is defined by the
vector

(
(vkt ( · ), wk

t , x
k
t ) : t ↑ T

)
, where vkt : R+ ↗ R+ is the premium cost

function for reserving a specified amount of capacity with the source k for
time period t. The variables wk

t and xkt represent the fixed execution cost
and the reserved capacity, respectively, at time t, similar to the terms found
in service agreements. Option contracts have been proposed to e”ectively
mitigate both price and demand risks in TL procurement and other areas
[5, 39–41]. Moreover, integrating spot sources into this strategy is a straight-
forward extension. Let CO denote the set of available spot carriers. A spot
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source k ↑ CO can be modeled as an option contract with no premium
cost, o”ering high capacity and random execution rates (W k

t : t ↑ T ), which
reflect the typical characteristics of spot market transactions.

3.2. Objective function

The primary objective is to determine optimal volume allocation policies
for a set of capacitated sources over the planning horizon. Let ϱ = (ϱt : t ↑
T ) denote a policy, where ϱt : S↔A ↗ [0, 1] defines a stochastic policy, and
ϱt : S ↔ A ↗ {0, 1} defines a deterministic policy for all t ↑ T . For every
t ↑ T , let Vt : S ↗ R represent the value function, which assigns a numerical
value to each system state at time t. The value function under a policy
ϱ ↑ %, where % is a set of policies, is denoted by V ε

t . For any s1 ↑ S, the
optimal policy ϱ↓(s1) = (ϱ1(s1),ϱt : t = 2, . . . , ω), with ϱ1(s1) : A ↗ {0, 1},
is a deterministic policy defined as the policy that maximizes the value of
the system’s initial state, given by:

ϱ↓(s1) = argmax
ε→!

V ε
1 (s1) (3)

This can be conditional of a specific scenario ϑω = (zt : t ↑ T ) or across all
scenarios by optimizing the expectation functional E”ωV

ε
1 (s1) instead. We

provide more details on this in the next section, where the value function for
the volume allocation problem in drayage is defined. We take into account
uncertainties in the inflow and outflow of containers, as well as the variable
costs associated with the spot market.

The value of an initial state s1 under the optimal policy ϱ↓ .
= ϱ↓(s1) is

defined as the maximum achievable value at that state:

V ↓
1 (s1) = V ε→

1 (s1) = max
ε→!

V ε
1 (s1) (4)

Ultimately, our goal is to determine the optimal capacities to reserve with
the strategic carriers, represented by the index set K of all carrier sources,
and to establish the appropriate size of the spot market bu”er, thereby
ensuring e”ective drayage operations from the outset. Carrier capacities,
denoted by x = (xkt : k ↑ K, t ↑ T ), are incorporated as constraints in the
value function computation. To reflect this dependency, we denote the value
function under a specific capacity arrangement x as V ↓

1 (s1;x).
For a fixed scenario ϑω ↑ Zω , the objective of the capacity optimization

problem is to maximize V ↓
1 (s1;x)⇐ v(x), where v(x) represents the reserva-

tion cost of the capacity arrangement x. In the following section, we develop
a framework grounded in MDP theory to address these challenges.
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4. Method

We propose an integrated optimization approach in which the first stage
aims to optimize the capacity arrangement between strategic and spot car-
riers, while the second stage focuses on optimizing the operational policy
for the drayage of container volumes from entry to exit points within our
system.

4.1. Optimal volume allocation policy

AnMDP is a mathematical framework used for modeling decision-making
scenarios where outcomes are influenced both by uncertainties and the ac-
tions of a decision-maker. The core components of the framework are: a state
space S, an action space A, a transition mechanism pt : S ↔A↔ S ↗ [0, 1],
a decision-making policy ϱt : S↔A ↗ [0, 1], and an immediate cost function
Ct : S ↔ A ↗ R+. The transition mechanism specifies the probabilities of
moving from one state to another given a particular action, the policy is a
probability distribution over the actions indicating how likely each action
is to be chosen in a given state, and the immediate cost function assigns a
cost to each action in each state. An MDP generates a temporally ordered
sequence of tuples {(St, At, St+1) : t ↑ T }, modeling situations where the
goal is to minimize cumulative costs over time.

The holding cost at an entry point i is computed using hi,t : R ↗ R+,
a convex and non-decreasing function of the state variable Si,t. At an exit
point j, the holding and backorder cost, denoted by hj,t : R ↗ R+, is
similarly a convex and non-decreasing function of Sj,t. [37] considered a
linear inventory cost function at entry points, defined as hi(Si,t) = CW iSi,t,
where CW i ↘ 0 is a constant unit holding cost coe!cient. For the inven-
tory and backorder costs at exit points, they used a time-homogeneous cost
function hj(Sj,t) = CDjS

+
j,t + CB jS

↑
j,t, where CDj > 0 and CB j > 0 are

constant unit inventory and backorder cost coe!cients, respectively, with
S+
j,t = max(Sj,t, 0) and S↑

j,t
.
= ⇐min(Sj,t, 0). Eventually, we define the total

holding cost component as:

h(St) =
∑

i→I
hi(Si,t) +

∑

j→J
hj(Sj,t) (5)

We now define the immediate cost function that combines the total holding
cost with the cost of executing a volume At of drayage moves to external
carriers under a portfolio contract. Let Ǎt denote the allocation vector
(Ak

i,j,t : (i, j) ↑ L(k), k ↑ K), which represents the moves across the lanes by
each carrier at time t. Here, K = {1, . . . , n} is the index set enumerating
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the elements of CS ⇒ CO , where CS is the set of strategic carriers and CO

is that of spot carriers. The symbol Sj indicates the maximum capacity for
containers at each exit hub j. The immediate cost function is defined as
follows:

Ct(St, At, Zt) = h(St) + min
Ǎt

∑

k→K

∑

(i,j)→L(k)

W k
i,j,tA

k
i,j,t (6)

subject to
∑

k→K

∑

(i,j)→L(k)

Ak
i,j,t = At (7)

∑

(i,j)→L(k)

Ak
i,j,t ⇑ xkt ⇓ k ↑ K (8)

∑

k→K

∑

j→J
Ak

i,j,t ⇑ Si,t +Qi,t ⇓ i ↑ I (9)

∑

k→K

∑

i→I
Ak

i,j,t ⇑ Sj ⇐ Sj,t ⇓ j ↑ J

(10)

Ak
i,j,t ↘ 0 ⇓ (i, j) ↑ L(k), k ↑ K

(11)

The objective of the immediate cost function is to minimize the total trans-
portation cost at time t by optimizing the allocation of volume across all
lanes served by each carrier k. The constraints ensure the following: Con-
straint (7) enforces that the total allocated volume matches the decision
variable At; Constraint (8) limits the total volume assigned to each carrier
to its strategic capacity; Constraint (9) guarantees that shipments from each
entry location i do not exceed the available stock plus the inflow volume at
time t; Constraint (10) restricts the volume received at each exit location j
to its remaining capacity; finally, Constraint (11) ensures non-negativity for
all allocation variables.

Fix an instance ϑω of the uncertainties that span the entire planning
horizon; this instance is typically referred to as a scenario, representing a
specific draw from the distribution of uncertain variables. We define the
value V ε

1 (S1) of the random initial state S1 under policy ϱ = (ϱt : t ↑ T ) as
the expected total negative cost of operations:

V ε
1 (S1) = ⇐Eε

[
ω∑

t=1

Ct(St, At)

∣∣∣∣S1

]
(12)

Note that we omit the scenario in the above notation, such that V ε
1 (S1) =

V ε
1 (S1,ϑω ) and Ct(St, At) = Ct(St, At, zt) for all t ↑ T . Moreover, Eε( · ) is
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an integration with respect to the probability measure:

ω∏

t=1

pt(st+1 | st, at)ϱt(at | st) (13)

To obtain the optimal value of a cycle of operations, denoted by V ↓
1 (S1), we

need to execute the optimal policy ϱ↓. To determine ϱ↓, we propose the use
of dynamic programming.

4.1.1. Dynamic programming

We identify the optimal deterministic policy ϱ↓ from a set of policies %,
using the backward induction method of dynamic programming:

Vω+1(sω+1) = ⇐ς↔sω+1 (14)

Vt(st) = max
at→A(st)

{
⇐Ct(st, at) + ESt+1Vt+1(st, at)

}
for t = ω, . . . , 1 (15)

We assume the terminal value has a linear form with slope ς ↘ 0 and
associate the expected next state value function ESt+1Vt+1 : S ↔ A ↗ R
with the mapping (st, at) ⇔↗


S Vt+1(st+1) pt(dst+1 | st, at) for all t ↑ T . We

note that the algorithm operates sequentially from time stage ω down to
1. At each stage, it explores all possible states st within the state space S.
For each state st, the algorithm computes the value of each action in the
feasible action set, A(st), and identifies the action a↓t that maximizes the
value. This optimal action is then recorded in the policy function ϱ↓, which
is set to 1 for the pair (st, a

↓
t ) that achieves the maximum value. At the end

of the algorithm, we have computed the optimal value V ↓
1 (s1) for any given

starting state s1.

4.1.2. Computational complexity analysis

The computational complexity of solving a ω -horizon MDP with finite
and discrete state and action spaces, where the cardinalities of these spaces
are |S| and |A| respectively, to optimality using the backward induction
algorithm is upper bounded by a finite multiple of ω |A||S|2, as noted by [42].
The derivation of this expression can be understood through the steps of the
backward induction algorithm: for each time period t, the algorithm iterates
through all states. For each state st, it then considers every possible action
from A(st), which is a subset of the action set A. Given ω time periods,
|S| possible states, and up to |A| possible actions per state, the algorithm
conducts ω |A||S| evaluations of immediate and future rewards, as reflected in
the summation inside the max( · ) operator in Equation (15). Additionally,
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the computation of the expected future value for a given state-action pair
involves summing over all possible next states st+1:

ESt+1Vt+1(st, at) =
∑

st+1→S
Vt+1(st+1) pt(st+1 | st, at) (16)

This sum involves |S| evaluations for each state-action pair, leading to the
squared term |S|2 in the complexity expression. Each state is evaluated
against every possible next state, thus justifying the quadratic dependence
on the number of states in the computational complexity.

In our problem, the transition to a new state is governed by the mecha-
nism of uncertain variables, as seen in Equation (1). We define the scenario
space as the sample space of the probability space that models these uncer-
tainties. Within this framework, uncertainties are termed exogenous state
variables. These variables are not influenced by the decision-maker’s actions
but vary randomly in accordance with laws dictated by external forces. Un-
derstanding the cardinality of the scenario space is essential for accurately
determining the computational complexity associated with our model.

The exogenous state of the system is represented by the random variable
$t, which is defined on the filtered probability space (#,F , {Ft : t ↘ 0}, Pt).
If the exogenous state $t has a stationary distribution, the probability mea-
sure governing $t remains invariant under time shifts. Specifically, there
exists a finite &t such that for all t ↘ 1, the marginal distributions of $#t

and $t+#t are identical. Under stationarity, the time-dependent probability
measures Pt become equivalent across time shifts. However, the filtration
Ft, representing the evolution of information up to time t, may di”er over
time.

We assume that there exists a finite time window &t > 0 such that the
distribution of the exogenous state becomes stationary for all t ↘ &t. This
implies that the probability measures governing the exogenous state, Pt,
remain invariant for t ↘ &t. Consequently, the expected future value can
be expressed as:

ESt+1Vt+1(st, at) =
∑

st+1→S
Vt+1(st+1) p#t(st+1 | st, at)

=
∑

zt→Z

∑

st+1→S
Vt+1(st+1) ϖ(st+1 ⇐ fS,t(st, at, zt)) p#t(zt)

=
∑

zt→Z
Vt+1(fS,t(st, at, zt)) p#t(zt)

Deriving the expected future value requires evaluating the value function
across the support Z of the uncertainty. The computational complexity
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of identifying an optimal volume allocation policy for the drayage problem
described in this work is upper bounded by ω |A||S||Z|. In the remainder of
this section, we investigate the individual components of the expression in
greater detail.

Cardinality of the endogenous state space

Suppose Si,t ↑ {0, 1, . . . , Si} for all t ↑ T and i ↑ I, and Sj,t ↑
{⇐Sj , . . . , Sj} for all t ↑ T and j ↑ J . We can easily compute the car-
dinality of the state space S with the following formula:

|S| =
∏

i→I
(Si + 1)

∏

j→J
(Sj + Sj + 1) (17)

Assuming that Si = SI for all i ↑ I and (Sj , Sj) = (SJ , SJ ) for all j ↑ J ,

we obtain the simplified version |S| = (SI + 1)|I|(SJ + SJ + 1)|J |. This
indicates that for fixed values of SI , SJ , and SJ the cardinality of the state
space grows exponentially with the number of origin and destination points.
For example, if SI = SJ = 9, SJ = 10, and |I| = 4 and |J | = 2, we get
|S| = 4 · 106, whereas if, instead, |I| = 6 and |J | = 3, then |S| = 8 · 109.
Considering that the dynamic programming algorithm must loop through
all states at each time stage, it is evident that the optimization of operations
is computationally intensive even for small instances of the problem.

Cardinality of the scenario space support

The exogenous state vector $t remains impervious to the internal dy-
namics of our drayage system but serves as a stimulus, prompting the in-
tervention of an internal agency to control the behavior of the system. In
our problem, we define $t

.
= {$t↑1, (Qi,t : i ↑ I), (Dj,t : j ↑ J ), (W k

i,j,t :
(i, j) ↑ L(k), k ↑ CO)} as the exogenous state vector for t ↑ T and we let
$0

.
= ≃. Suppose that for each t ↑ T , W k

i,j,t takes a value from the set W
for all (i, j) ↑ L(k) and k ↑ CO . Furthermore, for all i ↑ I, Qi,t can take
any value in Qi and, similarly, Dj,t takes values in Dj for all j ↑ J . Hence,
at any time t ↑ T , the exogenous state variable can be any of the following
number of instances:

|Zt| =




∏

i→I
|Qi|

∏

j→J
|Dj |

∏

k→CO

|W||L(k)|



t

⇑
(
|Q||I||D||J ||W||CO ||I↗J |

)t

(18)
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To derive the above expression, we define Q .
=

⋃
i→I Qi, D .

=
⋃

j→J Dj ,
and observe that L(k) ↓ I ↔ J for all k ↑ CO . Overall, the scale of the
exogenous state space is determined by the product of the components on
the right hand side of (18). For instance, if |I| = |J | = |CO | = 2 and
|Q| = |D| = |W| = 10, we obtain a massive 1012t possible values of the
exogenous state vector at each t. Consequently, an exhaustive search over
the entire space may quickly become computationally infeasible.

Cardinality of the action space

At each time stage t ↑ T , the decision-maker intervenes by instructing
the transfer of a designated quantity At of containers from entry to exit
points via truck. This decision is made in consideration of both the endoge-
nously evolving state of the system and the uncertainty encapsulated in the
exogenous state. The objective is to select an action that optimizes the
immediate reward, characterized by minimizing holding and transportation
expenses, while simultaneously maximizing the expected value associated
with the subsequent state transition following the execution of the decision.
By introducing the portfolio contract described by [5], the assignment of
drayage moves among available carrier sources is internally executed within
the computation of immediate transportation costs at each t ↑ T , e”ectively
narrowing our action space from a massive set encompassing all potential
assignments between carriers to a finite set of discrete quantities, denoted
A.

4.1.3. Approximate dynamic programming

Let us define the Bellman operator under perfect information as the
function B(V ) : S ↗ R that, for some discount factor φ ↑ (0, 1], is associated
with the mapping:

st ⇔↗ max
at→A(st)



Z


⇐ Ct(st, at, zt) + φVt+1(fS,t(st, at, zt))


pt(dzt)


(19)

We denote this as B(Vt+1)(st). By perfect information, we refer to the case
where the decision-maker has access to the transition mechanism underly-
ing the evolution of the system. In our problem, this means knowledge of
the nuisance parameter of the transition mechanism, which is the density
function of the exogenous state vector.

Using the Bellman operator with φ = 1, we can rewrite Equation (15)
in the following compact form:

Vω↑t = Bt(Vω ) (20)
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Evaluating the integral in the Bellman operator is computationally intensive
because, in the absence of a closed-form expression, we must sum over all
possible realizations zt of Zt with respect to the known probability density
pt(zt). Equation 18 illustrates how rapidly exact computation can become
infeasible in the discrete case.

Suppose, we draw N examples ↼1, . . . ,↼N from # and let zt,ϑ
.
= Zt(↼ϑ)

for all t = 1, . . . , ω and ↽ = 1, . . . , N . We can approximate the integral in
the Bellman operator by:



Z


⇐ Ct(st, at, zt) + φVt+1(fS,t(st, at, zt))


pt(dzt)

↖
N∑

ϑ=1


⇐ Ct(st, at, zt,ϑ) + φVt+1(fS,t(st, at, zt,ϑ))

 pt(zt,ϑ)∑N
l=1 pt(zt,l)

(21)

Furthermore, we define the approximate Bellman operator BN (V ) : S ↗ R
under perfect information, for all t ↑ T , st ↑ S, and a given scenario ϑω as:

BN (Vt+1)(st)
.
=

max
a→At

{
N∑

ϑ=1


⇐ Ct(st, at, zt,ϑ) + φVt+1(fS,t(st, at, zt,ϑ))


pt(zt,ϑ)

}
(22)

Here, we let pt(zt,ϑ)
.
= pt(zt,ϑ)/

∑N
l=1 pt(zt,l) to ensure that the probability

weight for each sample is properly normalized. By using the approximate
method, we reduce the number of evaluations to ω |A||S|N , which can prove
highly beneficial when N ↙ |Z|.

4.2. Capacity optimization

Let X represent the set of feasible capacities that a shipper can plan, at
time t = 0, before the outset of operations. An element x of X is a vector
of capacity arrangements defined by:

x
.
=

(
xkt ↘ 0 : k ↑ K, t ↑ T

)
(23)

Here, xkt denotes the non-negative capacity with each carrier k ↑ K across
all time periods t ↑ T . We assume that X is convex. At time period t = 0,
there is a cost associated with reserving capacities x ↑ X , which can be
represented as a convex function v(x). According to [5], a common choice
is a cost function v that is linear in the capacities:

v(x)
.
=

ω∑

t=1

n∑

k=1

vkt x
k
t (24)
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It follows from Theorem 2 and Corollary 1 [5] that the problem of optimal
capacity planning, addressed at the beginning of the planning horizon, is a
concave optimization problem. Consequently, there exists a unique solution
for selecting the optimal capacities from an initial state s1 prior to the
commencement of operations, which can be formulated as follows:

max {V ↓
1 (s1, x)⇐ v(x) : x ↑ X} (25)

The vector of carrier capacities, denoted as x, comprises individual compo-
nents corresponding to carrier indices k = 1, . . . , n and time period indices
t = 1, . . . , ω . To enhance clarity, we can represent the capacity parameters
in a tabular format:

x11 x12 · · · x1ω
x21 x22 · · · x2ω
...

...
. . .

...
xn1 xn2 · · · xnω

Evidently, there are nω capacities that need to be optimized in the first
stage to address the strategic problem of optimal capacity reservation prior
to operations. Consequently, for large values of n and ω , the search for
optimal capacities x↓ may involve searching a highly-dimensional feasible set
X . This poses a significant challenge due to the computationally expensive
nature of V ↓

1 (S1, x).

5. Numerical experiments

To establish a case study for experimental analysis, several key parame-
ters must be defined. First, determine the number of storage facilities where
containers are held during entry or exit from the drayage system, which de-
fines the index sets I and J . Next, specify the total number of decision
periods, denoted by ω , to define the index set T for the planning horizon.
The set of strategic carriers and their bids are essential for calculating trans-
portation and capacity reservation costs. Each bid includes a subset of all
possible lanes L.

To conduct the experiment, the portfolio contract must be fully defined
by specifying the set of sources, K, which includes both strategic and spot
market sources. The reservation cost vkt for a unit of capacity xkt associated
with each source k ↑ K for each time period t ↑ T must be provided. A unit
of capacity and a unit of transportation are measured in Twenty-foot Equiv-
alent Units (TEUs). This capacity is reserved at the start of the planning
horizon, before operations begin. Additionally, the execution cost wk

i,j,t for
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transporting a TEU across each lane (i, j) under each source k at each time
t ↑ T must also be specified. In the case of a strategic source k ↑ CS , the

unit transportation costs
(
wk
i,j,t : (i, j) ↑ L(k)

)
are fixed and known from

the start. However, for spot sources CO , a distribution PW must be speci-

fied to generate unit transportation costs
(
wk
i,j,t : (i, j) ↑ L, k ↑ CO , t ↑ T

)
.

Finally, it is necessary to specify the holding costs associated with the
temporary storage of TEUs at the entry and exit locations, as well as the dis-
tribution of TEU inflows and outflows, denoted by PQ,D. This distribution
governs the flow of TEUs into and out of the drayage system throughout the
planning horizon, allowing us to simulate instances of {(Qt, Dt) : t ↑ T }. It
is important to highlight that we have implicitly assumed the independence
of random spot transportation costs from the random inflows and outflows.
This assumption is valid, provided we condition on auxiliary information
that eliminates any correlations between these variables.

5.1. Instance generation logic

The dynamic programming approach to the multistage container trans-
portation problem under uncertainty is computationally intensive, as de-
tailed in Section 4.1.2. This complexity is largely due to the expansive
nature of both the state and scenario spaces. Specifically, we demonstrated
that the state space increases exponentially with the number of entry and
exit locations and grows polynomially with the storage capacities at these
locations. Moreover, the scenario space’s size also expands exponentially
with the number of entry and exit locations and the number of spot sources,
while it grows polynomially with the range of possible arrival or departure
volumes and spot rates.

Collecting all the necessary data can be challenging, so we provide a
method for generating synthetic instances. We fix the index sets I and J ,
defining the set of possible lanes as L = I ↔ J . A predetermined number
of bids are generated by randomly selecting lanes from L and assigning a
winner for each bid from a fixed set of carrier indices. The carriers winning
these bids form the set of strategic sources. The number of spot sources
is also fixed. For each strategic source, the unit transportation cost vec-

tor across lanes within the source’s scope
(
wk
i,j : (i, j) ↑ L(k), k ↑ CS

)
is

sampled by independently drawing values from a common normal distri-
bution, truncated below by a minimum value. Unit transportation costs
are assumed to be homogeneous, independent across sources and lanes, and
constant over time. The same logic applies to the unit transportation costs

associated with spot sources
(
wk
i,j,t : (i, j) ↑ L, k ↑ CO , t ↑ T

)
, which are
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also assumed to be homogeneous, independent across sources, lanes, and
time periods. Finally, the capacities of strategic and spot sources are as-
signed fixed values, which may vary over time. However, it is intuitive that
spot sources typically have larger capacities relative to strategic sources.

5.2. Illustrative example

To demonstrate the solution to the drayage problem, we examine a 4-
period example (ω = 4) with a single entry and exit location. The example
involves one strategic and one spot source, both of which service the sole lane
between these locations. We denote the entry location index set as I = {1}
and the exit location index set as J = {|I| + 1} = {2}. Consequently, the
set of lanes is L = {(1, 2)}, representing the only lane from entry point 1 to
exit point 2. The strategic carrier set, CS = {1}, and the spot carrier set,
CO = {|CS | + 1} = {2}, each contain a single element. Therefore, the set
of all sources is K = {1, 2}, as there are exactly two sources in this example.

The execution cost for the strategic source is fixed at w1
1,2 = $14.7 per

TEU for each period t = 1, . . . , ω , while the spot source cost for each t follows
a distribution given by 0.4 ϖ(w2

1,2,t⇐ 7)+0.6 ϖ(w2
1,2,t⇐ 22), meaning the cost

is $7.0 per TEU with a probability of 0.4 and $22.0 with a probability of
0.6. For all t = 1, . . . , ω , the inflow of containers Q1,t follows a distribution
described by 0.4 ϖ(q1,t)+0.3 ϖ(q1,t⇐4)+0.3 ϖ(q1,t⇐8), while the outflow D2,t

is distributed as 0.25 ϖ(d2,t) + 0.25 ϖ(d2,t ⇐ 4) + 0.5 ϖ(d2,t ⇐ 8). The support
of W 2

1,2,t is W = {7, 22} for all t, and the supports of Q1,t and D2,t are
Q = D = {0, 4, 8} for all t. Consequently, the support of the exogenous
state variable Zt is |Z| = 18 for each period t, leading to |Z|ω = 104, 976
potential scenarios when ω = 4. This highlights the significant complexity
that arises as the planning horizon increases, even in small instances of the
problem.

5.2.1. Operational volume allocation policy optimization

To address the problem exhaustively, it is necessary to determine the
optimal policy for each of the 104,976 possible scenarios. For a particular
scenario ϑ4 = (z1, . . . , z4), this is achieved by iterating backward from t = 4
to t = 1 for all st ↑ S using the following procedure:

Vt(st) = max
at→A(st)

{⇐Ct(st, at, zt) + Vt+1(fS,t(st, at, zt))} (26)

where the terminal value is defined as V5(s5) = ⇐ς↔(s1,5, s
+
2,5, s

↑
2,5). Here

ς = (15, 12, 24) represents the holding cost in $/TEU, with CW 1 = 15,
CD2 = 12, CB2 = 24, and s+• = max(s•, 0) and s↑• = min(s•, 0). We set
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the storage limits as S1 = S2 = S2 = 10, resulting in a total of |S| =
11(10+ 10+1) = 231 states. Additionally, the maximum TEU volume that
can be moved within the drayage system is fixed to 10, which implies that
the action set A(st) is a subset of {0, 1, . . . , 10} for all st ↑ S and for each
t = 1, . . . , 4.

To gain a deeper understanding of the characteristics of the value surface,
we first select a capacity arrangement and define a specific scenario. We then
solve this scenario to optimality and plot the value function at each time
step t = 1, . . . , 4. The chosen capacity arrangement and scenario details
are presented in Table 1. The initial state of the drayage system is set to
S0 = (0, 8), indicating that the stock level at the entry is 0, while there are
8 TEUs at the exit.

Table 1: Description of the reserved capacities and selected scenario.

t 1 2 3 4

Imposed
capacities

x1t 4 3 2 4 TEU
x2t 4 4 4 4 TEU

Uncertainty
realization

q1,t 8 8 0 0 TEU
d2,t 8 8 8 0 TEU
w2
1,2,t 7 22 7 22 $/TEU

Figure 3 presents the value function for each state of the system, reveal-
ing its quasi-concave shape. Specifically, the function exhibits concavity at
higher contour levels and convexity at lower ones. This pattern results from
the linear holding cost function, which is designed with a steeper slope for
negative exit states (backorders). At time points 1-3, the maximum value
occurs with an entry state of 0 and exit states of 6 at time point 1 and 8 at
time points 2 and 3. By time point 4, the maximum value is reached when
both entry and exit states are 0, indicating a shift from maintaining stock
at the exit location to no stock at either location.

We demonstrate the evolution of the system under the optimal policy
for the selected scenario, as shown in Table 1, in Figure 4. TThe sys-
tem’s optimal value for this scenario is attained at the initial state s↓1

.
=

argmax{V ↓
1 (s1, x) : s1 ↑ S} = (0, 8), ensuring that the system begins with

stock at the exit location. As time progresses, the optimal policy prioritizes
depleting stock at the entry by transferring TEUs to the exit location. By
the end of the planning horizon, the policy eliminates all remaining stock,
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Figure 3: The value function for the chosen scenario is evaluated at each period of the

planning horizon. The entry state ranges from 0 to 10, while the exit state varies between

→10 and 10, both defined as integer values. The color bar indicates the negative cumulative

cost from the given period up to t = 4.

aligning with the value function surfaces that show maximum value (or least
cost) when both entry and exit states are minimized.

5.2.2. Capacity strategy optimization

We conclude this example by discussing the joint optimization of capacity
{(x1t , x2t ) : t = 1, . . . , 4} and the total operational cost of the drayage system
under the uncertainty realization detailed in Table 1. The strategic source
has a fixed reservation cost-per-TEU of (v11, v

1
2, v

1
3, v

1
4) = ($8.52, $4.46, $4.25, $9.70),

with a uniform execution cost of w1
1,2 = $2.94/TEU for all time periods

t = 1, . . . , 4. No prior reservations are made for the spot carrier. The opti-
mization is carried out by solving Problem (25), assuming linear reservation
costs.

An iterative capacity search algorithm updates the capacity arrangement
at each step by solving the dynamic program (26). However, since the goal
is to determine the system’s optimal value at its initial state, a more com-
putationally e!cient approach is adopted. The problem is reformulated as
a multistage linear program, following [37]. This relaxation enables the use
of the L-BFGS-B algorithm via, for instance, the optim() function in R [43].
L-BFGS-B belongs to the class of quasi-Newton methods, a subset of nu-
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Figure 4: Evolution of the drayage system under the identified optimal volume allocation

policy. The left node shows the entry location, and the right node indicates the exit. The

top number on each node represents stock levels, while the left of the entry node shows

incoming container volume, and the right of the exit node shows outflow. The middle

number on the connecting arrow indicates the volume transported between the locations.

merical optimization algorithms that approximate second-order information
(the Hessian matrix) using only first-order gradient evaluations [44].

The objective value V ↓
1 (x) ⇐ v(x) is evaluated at both the initial ca-

pacity arrangement x0, shown in Table 1, and the optimized capacity x↓,
in Table 2, yielding values of $557.2 and $439.2, respectively. This re-
flects a 21.2% reduction in total costs under the optimized capacity ar-
rangement. Here, V ↓

1 (x) represents the optimal value for a given capacity
vector x at the initial state s1, maximizing the system’s value at t = 1, i.e.,
V ↓
1 (x) = max{V ↓

1 (s1, x) : s1 ↑ S}. While we have demonstrated that x↓

yields a higher value than x0, further investigation is necessary to conclu-
sively establish that x↓ represents the optimal capacity strategy.

In this example, a capacity arrangement consists of one strategic and
one spot source over four time periods. With each source’s capacity in
a given time period ranging from 0 to 10, the total number of possible
capacity vectors is (112)4 = 118 = 214, 358, 881. Computing the total cost
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Table 2: Optimal capacity arrangement for the selected scenario.

t 1 2 3 4 Unit

x1,↓t 0 8 0 0 TEU

x2,↓t 4 4 8 4 TEU

(capacity reservation and operations) for each vector requires optimizing
the value function, which is computationally expensive. To address this, we
perform a Monte Carlo simulation by uniformly sampling 1,000,000 capacity
vectors, calculating the total cost for each. Additionally, we evaluate another
important performance measure, namely, the cost-per-TEU. Table 3 shows
that the solution x↓ minimizes both the total cost and cost-per-TEU, with
the latter computed as 10.98 $/TEU.

Table 3: Summary statistics for Cost-per-TEU and Total Cost based on 1, 000, 000 Monte

Carlo simulations of the capacity vector.

Statistic Min 1st Qtl Median Mean 3rd Qtl Max

Cost-per-TEU 10.98 13.28 14.25 14.38 15.34 21.81
Total Cost 439.2 527.7 566.2 579.6 612.6 1,671.5

Figure 5 presents density plots of the simulated total costs and cost-per-
TEU, illustrating a unimodal, slightly right-skewed distribution.The mode is
located at considerably higher values than the minimum (leftmost) attained
by x↓. The optimal strategy, reflected in Table 2, involves concentrating
most capacity at the second and third time periods, primarily due to the
high inflows and outflows during these intervals, as well as the presence of
initial stock at the exit location. The absence of inflows or outflows in the fi-
nal period minimizes the need for capacity adjustments in the later stages of
the planning horizon. Furthermore, the strategy incorporates a bu”er in the
spot market, although capacity may occasionally remain unused. This un-
derutilization is not problematic, as no reservation costs are incurred when
planning capacity with spot carriers, thereby providing operational flexibil-
ity without additional financial burden.

5.2.3. Approximate capacity optimization across scenarios

Our analysis thus far has been confined to a specific scenario, allowing
us to gain insights into the operational volume allocation policy and the
capacity strategy under the given conditions. In this section, we broaden
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Figure 5: Density of Total Cost (left) and Cost-per-TEU (right) computed by optimizing

the value function over 1, 000, 000 random examples of the capacity arrangement.

our approach by computing the capacity strategy that maximizes the value
function across a subset of the scenario space. The optimal value of the
initial state of the system V ↓

1 (x), at some x ↑ X , is now estimated by V ↓
1,N (x)

using backward induction, expressed as Vω↑t = Bt
N (Vω ), for t = ω, . . . , 1,

where BN (V•) is the approximate Bellman operator with discount factor
φ = 1, applied to a sample of size N , drawn from the set of all possible
scenarios (on the order of 100,000).

We sample N = 1, 000 scenarios from Z4, assuming both stagewise inde-
pendence and independence between inflow, outflow, and spot rates. Under
these assumptions, the probability of each scenario is determined by the
product of the probabilities of the individual time-point realizations, and
each time-point realization’s probability is the product of the probabilities
of its component factors. While this study does not focus on the e”ects
of correlations among uncertainties, incorporating such correlations would
primarily influence the calculation of scenario probabilities, which could, in
turn, a”ect the overall results.

For a given capacity strategy, represented by x ↑ X , we estimate the
optimal value V ↓

1 (x) using the expected value functional over a sample of
1,000 scenarios. We then search for the capacity vector x ↓

N that maximizes

the value function approximation V ↓
1,N (x). This is accomplished by applying

a linear relaxation of the problem and utilizing the L-BFGS-B algorithm to
find the solution. To evaluate the quality of the approximation x ↓

N , we define
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the regret for an individual scenario indexed by ↽ as the di”erence between
the optimal value and the value attained by the approximation. Specifically,
the regret is given by:

Regretϑ =

V ↓
1,ϑ(x

↓
ϑ )⇐ v(x↓ϑ )


⇐

V ↓
1,ϑ(x ↓

N )⇐ v(x ↓
N )


for ↽ = 1, . . . , N

Here, V ↓
1,ϑ(x

↓
ϑ ) represents the optimal value for the given scenario ↽ and its

corresponding optimal strategy x↓ϑ , while V ↓
1,ϑ(x ↓

N ) is the value attained by
the approximation x ↓

N in that same scenario. The term v(x) is a reference
value subtracted from both the optimal and approximate values to compute
the regret. Figure 6 illustrates the density of the regret computed over the
same sample of scenarios used to obtain the value function approximation,
as well as the density of the regret on scenarios outside of this sample. We
observe the highest mode of the regret density at a value around $30, with
a second, lower mode at $100. Notably, the scenarios corresponding to this
second mode involve high inflow and outflow volumes, as well as elevated
spot rates in most periods. In these cases, x ↓

N did not plan capacity with
strategic sources but instead relied on spot capacity, which was optimal in
expectation but not for these particular instances.

Figure 6: Regret density for the 1,000 scenarios used in optimizing the capacity strategy

(left) and for 1,000 alternative scenarios (right).

Lastly, we investigate the extent to which the performance of the capacity
vector x↓N in maximizing the starting value of the system generalizes to new
out-of-sample scenarios. To assess this, we compare the in-sample and out-
of-sample regret by plotting them against each other in Figure 7. The fact
that the values align closely with the diagonal suggests that the regret in the
new scenarios is very similar to that in the original sample, indicating strong
generalization performance. It is worth noting that this result is achieved
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despite using only 1,000 scenarios to approximate the value function, out of a
potential 100,000. This demonstrates that x↓N e”ectively generalizes beyond
the training sample, suggesting robustness in the optimization approach.

Figure 7: In-sample vs. out-of-sample regret plotted compared to the diagonal (dotted).

5.3. Scalability considerations

The computational complexity of the dynamic programming algorithm,
as discussed in Section 4.1, is upper bounded by ω |S||A||Z| in the exact
case, or by ω |S||A|N in the approximate case. Let c ↑ (0,→) denote a
constant such that the precise number of computations required by the al-
gorithm is given by cω |S||A||Z|. The constant c primarily depends on the
computational e”ort needed to determine the next state and immediate cost
for a given state-action pair. To improve e!ciency, all possible transitions
and immediate rewards—i.e., tuples of the form (next state, immediate cost,
present state, action)—can be precomputed and stored. This allows the dy-
namic programming algorithm to access transitions with minimal latency,
reducing c to the time required for hashing the correct transition. The set of
all such transitions fully defines the transition dynamics, commonly referred
to as the “model.”

E!cient model computation for the drayage problem is computationally
intensive due to the need to solve a linear program ω |S||A||W||Q| times
to calculate immediate costs across all time periods, states, actions, spot
rates, and inflow levels. As a result, even small instances require significant
computational resources to solve optimally using dynamic programming.
This challenge, known as the “curse of dimensionality,” is a fundamental
limitation of the MDP framework. We propose using multistage linear pro-
gramming relaxations when the goal is to determine the optimal value rather
than the optimal policy, which is particularly advantageous when optimiz-
ing capacity as part of a joint optimization problem. Finally, it is important
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to note that as the number of carriers/sources (n) and time periods (ω) in-
creases, the dimensionality of the capacity vector grows significantly, making
the search for an optimal capacity strategy increasingly challenging.

A straightforward strategy to reduce the dimensionality from nω to 3n in-
volves employing a quadratic parameterization for a sources’ capacity across
the operational horizon. Specifically, for all sources k = 1, . . . , n, we express
it as:

xkt = ⇀k
0 + ⇀k

1 t+ ⇀k
2 t

2 (27)

This approach evidently reduces the parameters to 3n; however, it comes
at the cost of foregoing the capability to capture more flexible temporal
relationships.

6. Discussion

This study introduced a joint optimization model integrating strategic
capacity planning with operational volume allocation in drayage procure-
ment. The primary objective was to bridge the gap between strategic plan-
ning and operational decision-making. Employing an MDP framework, we
developed a dynamic programming-based approach to determine the optimal
assignment of transportation volumes to carriers in a drayage environment
characterized by uncertain container flows and spot market rates. The dy-
namic programming solution was then used to evaluate di”erent capacity
arrangements in search of the optimal one using the L-BFGS-B algorithm.

While the computational experiments were conducted on a controlled
example, the methodology was designed to be applicable to practical prob-
lems. A key contribution of this research is the explicit di”erentiation be-
tween carrier selection and capacity planning, which facilitates the e”ec-
tive integration of strategic and operational decisions. The computational
complexity associated with this approach could be prohibitive, particularly
due to the exponential growth of the state and scenario spaces. However,
the adoption of approximate dynamic programming can significantly reduce
computational demands, demonstrating its potential for larger-scale practi-
cal implementations.

The experimental results provided insights into balancing strategic and
spot carriers to handle varying container flows e”ectively. The optimal ca-
pacity arrangement involved reserving resources across both carrier types.
To assess the broader applicability of the approach, we estimated the optimal
capacity plan using 1,000 sampled scenarios and evaluated its performance
against out-of-sample instances. The observed low regret in both in-sample
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and out-of-sample evaluations suggests that the proposed methodology gen-
eralizes well beyond the studied instance. Future research should further
validate these findings in settings with industry-scale data and operational
constraints.

Despite these contributions, the model has certain limitations. It as-
sumes that uncertainties are independent at each time point and treats in-
flows and outflows as separate variables, which may not fully capture the
interdependencies present in real-world scenarios. In practice, these vari-
ables may exhibit correlations, and future research should aim to extend
the model to account for these relationships. Additionally, further refine-
ment of the approximate dynamic programming approach could enhance the
accuracy of policy approximations in larger and more complex scenarios.

Future work could develop more scalable and e!cient approximation
algorithms beyond the sample average approximation, accompanied by a
more detailed modeling of the uncertain parameters. It could also explore
the integration of real-time data streams into the decision-making process,
enabling companies to continuously update their capacity plans and volume
allocation policies based on current market and operational information.
Additionally, incorporating machine learning techniques could enhance the
modeling of uncertainties, leading to more accurate and adaptive policies.

In conclusion, this study establishes a foundation for enhancing strategic
decisions in drayage procurement. By bridging the gap between strategy and
operations, the proposed approach paves the way for more flexible, cost-
e!cient, and resilient logistics systems capable of adapting to the dynamic
nature of global trade. As part of this e”ort, we are developing an Rcpp

package to facilitate the implementation of the proposed models. The source
code for the methods employed in this study is publicly available at https:
//github.com/georgios-vassos1/TLPR.
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