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Abstract—Forecasting is pivotal in energy systems, by pro-
viding fundamentals for operation at different horizons and
resolutions. Though energy forecasting has been widely studied
for capturing temporal information, very few works concentrate
on the frequency information provided by forecasts. They are
consequently often limited to single-resolution applications (e.g.,
hourly). Here, we propose a unified energy forecasting framework
based on Laplace transform in the multi-resolution context.
The forecasts can be seamlessly produced at different desired
resolutions without re-training or post-processing. Case studies
on both energy demand and supply data show that the forecasts
from our proposed method can provide accurate information in
both time and frequency domains. Across the resolutions, the
forecasts also demonstrate high consistency. More importantly,
we explore the operational effects of our produced forecasts in
the day-ahead and intra-day energy scheduling. The relationship
between (i) errors in both time and frequency domains and
(ii) operational value of the forecasts is analysed. Significant
operational benefits are obtained.

Index Terms—Energy Forecasting, Machine Learning, Laplace
Transform, Multi-resolution System Operation

I. INTRODUCTION

Energy forecasting is crucial in all segments of the energy
industry. The primary goal of energy forecasting is to provide
accurate information about both demand [1] and supply [2]
in the future. These forecasts support decision-makers to act
optimally [3]. In general, energy forecasting is a time-series
prediction problem in which predictions of diverse temporal
horizons and resolutions are required for different applications.
Here, forecast horizon refers to how far into the future the
forecasts are for, while resolution is defined as the time interval
between two successive forecast points.

For instance, day-ahead energy demand and renewable
energy forecasts with hourly or 15-minute resolutions are used
by system operators to schedule energy generation in advance
[4]. Hours-ahead forecasts at minute resolution are needed for
(near) real-time energy balancing [5]. And, forecasts at second
resolution levels (nowcasts) can be used for immediate control
actions and grid stability analysis [6]. Therefore, energy fore-
casting at different horizons and resolutions is fundamental to
all aspects of the operation and a management of the entire
energy system. In this paper, we focus on short-term energy
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forecasting for electricity load and wind power generation,
where the horizon is less than one day and the resolution is
higher than one hour.

At one single resolution level, the energy forecasting prob-
lem has been widely studied in the context of both energy
demand [7] and supply [8]. Various approaches for either
single-step or multi-step forecasting situations can also be
easily found in existing literature reviews [9] and books [10].

Despite the prosperity of single-resolution energy forecast-
ing, most of the approaches merely focus on developing
a mapping function between relevant temporal features and
forecasting targets. However, such methods may be unsuitable
for multi-resolution energy forecasting. This is since the
frequency information, indicating how intense fluctuations are
at various frequencies, may vary depending upon the desired
forecasting resolution. Generally, the higher the resolution is,
the more detailed frequency information within the energy
data should be exhibited [11]. The learned forecasting model
for one single resolution can overfit or underfit at other
resolutions. Therefore, single model may fail to capture the
precise frequency information at multiple resolutions.

Even though multiple forecasting models are trained indi-
vidually for different resolutions [12], [13], there still exists
challenges in terms of consistency within the temporal hierar-
chy of the forecasts [14]. For instance, hourly wind power data
can temporally averaged by minute-resolution observations
every 60-minute period. From both theoretical and practical
points of view, if we forecast at both these resolutions, the
forecasts generated should also respect this temporal hierarchy.
Multiple models, however, by being naturally unaware of
this temporal hierarchy, produce forecasts that are likely to
be inconsistent. Therefore, for multi-resolution forecasting,
it’s no longer suitable to naively develop multiple models.
By changing forecast resolution depending upon user needs,
the forecasts need to seamlessly adapt, while also respecting
underlying temporal hierarchies.

Some previous works aimed at tackling the above issue.
For instance they focus on the post-hoc coordination of multi-
resolution forecasts [15], [16], the improved training process
of multiple models [17], [18], and continuous-time neural
networks for time series [19]–[21]. These approaches either try
to coordinate the multiple models after/during the training, or
purely focus on the dynamics of the time series. They still ne-
glect to reveal the relationship between forecasting resolutions
and frequency information. Therefore, from the perspective of
methodology, a unified energy forecasting model is needed
to seamlessly output the hierarchical forecasts at different
resolutions with the corresponding frequency information.

More importantly, energy forecasts with precise frequency
information are supposed to have prominent effects on the
following decision-making process [22], especially in situa-
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tions of high resolution. The connection between forecasts and
resulting operation results in the power system is gradually
receiving attention [23]–[25], but seldom do the existing
works explore the effects of errors in the frequency domain.
Consequently, from the perspective of empirical analysis, the
final operational effects of the forecasts in terms of both time
and frequency deserve to be unveiled.

To this end, this paper aims to fill the research gaps in
the context of multi-resolution energy forecasting. The main
contributions are threefold.

• We proposed an innovative and unified energy forecasting
framework, Hierarchical Neural Laplace (HNL) for multi-
resolution energy forecasting. Given the desired reso-
lutions, the corresponding forecasts can be seamlessly
generated without re-training or post-processing.

• In the framework, inverse Laplace transform is deeply
combined with Shannon sampling theorem. The former
one explicitly characterizes the hierarchical frequency
information of energy data, while the latter one guides
how to output forecasts at different resolutions.

• Empirically, we evaluated the forecasts on both statistical
accuracy and operational results of energy scheduling.
The superior performance of our proposed framework is
proved on both aspects. The relationship between tem-
poral errors, frequency magnitude errors, and operational
costs is revealed as well.

The rest of the paper is organized as follows. The basic
problem statement of multi-resolution forecasting is intro-
duced in Section II. Our framework HNL is presented in
Section III. Case studies and numerical analysis are shown in
Section IV. Finally, conclusions and future works are drawn
in Section V.

II. PROBLEM STATEMENT

Before introducing our proposed framework, we mathemat-
ically state the setting of multi-resolution forecasting in this
section. To keep our notation clear, vector variables are bold
in the rest of this paper.

Given the observed energy data x = [xt1 , · · · , xtn ] ∈ Rn

at the sampling resolution r = n/(tn − t1), along with the
external features e ∈ Rl (e.g. numerical weather predictions,
NWPs), we aim to produce forecasts in a forecasting horizon
at m ascending resolutions r1, · · · , rm.

Here, we restrict that the largest resolution is less than
the original sampling resolution, i.e. rm ≤ r. Otherwise,
it’s a super-resolution forecasting task. We also focus on the
situations that the resolution ri,∀i = 1, ...,m is a factor of
r, i.e. (r mod ri) = 0. A ratio Ki = r/ri ∈ N+ can be
further defined to denote how many data points are needed at
the original resolution r to be temporally averaged to obtain
the result at the resolution ri.

The energy data at resolution r can also be viewed as the
discretely sampled points from a temporal function f(t), i.e.
xt = f(t) ∈ R. For each resolution ri, we can denote the
corresponding temporal averaged function as fi(t) as well.
Therefore, given a forecasting horizon at the length of L, the
forecasting targets at the resolution ri can be represented as

yi = [fi(tn + 1L/Ki), fi(tn + 2L/Ki), · · · , fi(tn + L)] ∈
RLKi .

For example, given the wind power data measured ev-
ery 15min in one hour, x = [x15, x30, x45, x60] =
[f(15), f(30), f(45), f(60)], r = 4/hr, we now consider how
to forecast for the next hour L = 1hr at resolutions r1 = 1/hr,
and r2 = 2/hr. Then, the forecasting targets are y1 =
[f1(60 + 60)] and y2 = [f2(60 + 30), f2(60 + 60)].

Finally, given the observed energy data x, along with the
external features e, the goal of our proposed framework is
to produce multi-resolution forecasts ŷ1, · · · , ŷm with one
unified model Fω:

ŷi = Fω (x, e; ri) , ∀i = 1, · · · ,m (1)

where ω is the set of trainable parameters in the whole model.

III. HIERARCHICAL NEURAL LAPLACE

A. Overall framework

With the clear aim of multi-resolution forecasting, we
briefly introduce the proposed flexible forecasting framework,
HNL, in this subsection. Unlike the traditional methods focus-
ing on the time domain, HNL tries to learning the frequency
information in the Laplace domain. Then, it utilizes the Inverse
Laplace Transform (ILT) to reconstruct the temporal com-
ponents with different frequency information. According to
the desired forecasting resolutions, final energy forecasts can
be formed seamlessly from the combination of the temporal
components. As shown in Fig. 1, this framework has three
core segments: an encoder, multiple Laplace decoders, and an
assembler.

Firstly, the encoder is responsible for transforming ob-
served energy data at some resolution and external features
(e.g. numerical weather predictions, NWPs) into the high-
dimensional representation, i.e., the hidden states. The encoder
is model-agnostic, and arbitrary neural networks can be used
as encoder, for example, Recurrent Neural Networks (RNN),
Convolutional Neural Networks (CNN), etc.

Then, the encoded hidden states will go through multiple
Laplace decoders and produce different temporal components.
In this process, there are two sub stages: 1) generating the
discrete Laplace function values on pre-determined consecu-
tive frequency bands, and 2) converting these Laplace function
values into the temporal components by Fourier-based discrete
ILT. The outputs of these decoders are temporal components
containing different frequency information, as for the blue
curves in Fig. 1.

Finally, given the desired forecasting resolutions, the as-
sembler will fetch groups of temporal components to form
the forecasts with precise frequency information. The Shannon
sampling theorem, a bridge between data resolution and fre-
quency information, will guide the assembler to decide which
groups of components need to be fetched.

In this way, HNL only needs to be trained once on the given
data, and flexibly generates the energy forecasts at different
resolutions that we are interested in. Details of the framework
will be introduced in the following three subsections.
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Fig. 1. The overview of the proposed Hierarchical Neural Laplace framework

B. Encoder

As described above, the encoder ϕωe
extracts the observed

energy sequence data x and the external features e into a
hidden state h:

h = ϕωe(x, e) ∈ Rd, (2)

where ωe represents the trainable parameters in the encoder;
d is a hyperparameter, representing the number of dimension
of hidden states.

In theory, the encoder can be arbitrary neural network, so
the design of encoder is not the core part of this framework. In
this paper, we use a GRU network and a multilayer perceptron
respectively to encode the observed energy sequence and the
external features. The hidden states from GRU and multilayer
perceptron are concatenated to form the final hidden states
shown in the Fig. 1.

C. Multiple Laplace Decoders

1) Laplace transform and ILT: Laplace decoders are the
core of our framework, relying on the Laplace transform
and ILT. Given a temporal function f(t) of energy data,
the corresponding Laplace function f̄(s) through Laplace
transform is defined as:

L {f(t)} = f̄(s) =

∫ ∞

0

e−stf(t)dt. (3)

Similarly, given a Laplace function f̄(s), the temporal function
can be inversely transformed as its definition shows:

L −1{f̄(s)} = f(t) =
1

2πi

∫ γ+i∞

γ−i∞
estf̄(s)ds. (4)

According to [26], Eq. (4) can be manipulated and dis-
cretized through the trapezoid rule:

f(t) =
eγt

π

∫ ∞

0

ℜ
(
f̄(s)eiωt

)
dω

≈ eγt

T

[
f̄(γ)

2
+

N∑

k=1

ℜ
{
f̄

(
γ +

ikπ

T

)
exp

(
ikπt

T

)}]
,

(5)

where T and γ are usually set as constants [27], and N
is the number of discrete integral terms, dominating the
discretization of ILT.

Further, we rewrite the Eq. (5) with the Eular formula, and
obtain the following form:

f(t) =
eγt

T

[
f̄(s0)

2

+

N∑

k=1

ℜ
{
f̄ (sk)

(
cos(

kπt

T
) + i sin(

kπt

T
)

)}] (6)

where for simplicity, we denote sk = γ+ ikπ
T ∈ C and f̄(s) =

[f̄(s0), f̄(s1), · · · , f̄(sN )] ∈ CN+1.
We observe that the inversely transformed f(t) explicitly

consists of cosine waves with exponential effects at different
frequencies:

fk
c =

kπ

T · 2π =
k

2T
. (7)

Consequently, if we are given the discrete Laplace func-
tion values f̄(s), the original f(t) can be reconstructed and
an energy forecast f(tn+1), for example, can be generated
accordingly with explicit frequency information.

2) Two-stage decoding: Therefore, the general idea of
Laplace decoders is first outputting the Laplace function values
f̃(s) of the energy sequence on the forecasting horizon, and
then reconstructing a temporal function f̂(t) for forecasting.
Here, we use f̃ and f̂ to distinguish from the real f̄ and f on
the forecasting horizon.

In the first stage, we construct p neural networks
gω1 , · · · , gωp to separately learn the Laplace functions on p
consecutive frequency bands:





f̃(s1) = gω1
(s1,h), s1 = [s0, s1, · · · , sN1

]

f̃(s2) = gω2
(s2,h), s2 = [sN1+1, · · · , sN2

],
...

f̃(sp) = gωp
(sp,h), sp = [sNp−1+1, · · · , sN ],

(8)

where ω1, · · · ,ωp are trainable parameters in these neural
networks; N1 ≤ · · · ≤ Np−1(≤ N) are p − 1 split points
set manually.
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Fig. 2. The details of multiple Laplace decoders

All the neural networks share the extracted information of
hidden states h and differ in the corresponding frequency
bands. Since si, f̃(si) ∈ CNi−Ni−1+1 are complex vectors,
we first split the values of the real and the imaginary parts,
and then concatenate them together as inputs (and outputs) for
decoders.

In other words, the input and output space of gωi
are respec-

tively R2(Ni−Ni−1+1)+l and R2(Ni−Ni−1+1). The architecture
of these decoders are conventional multi-layer perceptrons.

In the second stage, the learned Laplace function values
f̃(s1), · · · , f̃(sp) are fed into discrete ILT to reconstruct the
temporal function. Further, the reconstructed f̂(t) can be
presented by the combination of several temporal components:

f̂(t) =
eγt

T

[
f̃(s0)

2
+

N1∑

k=1

Sk(t)

︸ ︷︷ ︸
TC1

+

N2∑

k=N1+1

Sk(t)

︸ ︷︷ ︸
TC2

+ · · ·

+

Np∑

k=Np−1+1

Sk(t)

︸ ︷︷ ︸
TCp

] (9)

where we denote Sk(t) = ℜ
{
f̃ (sk)

(
exp

(
ikπt
T

))}
for sim-

plicity and TCi represents the ith temporal component. The
whole tow-stage decoding of these multiple Laplace decoders
is demonstrated by Fig. 2.

D. Assembler

After rebuilding a temporal function f̂(t) with explicit fre-
quency information for the forecasting horizon, the assembler
aims to collect the components and generate the forecasts at
the desired resolutions r1, · · · , rm.

According to Nyquist–Shannon sampling theorem [28], for
a given sampling resolution r, the maximum informative
frequency that can be expressed in the original energy data
is no more than 1/2r, i.e., fmax

c ≤ 1/2 · r. Note that in
Eq. (7), the maximum informative frequency in the energy
sequence data is fmax

c = N/2T . Therefore, if we reconstruct
the temporal function through (5) without information loss,
then the discretization parameter N can be set as:

fmax
c =

N

2T
≤ 1

2
· r ⇒ N ≤ T · r. (10)

It tells us that by setting N = Tr, we can include all the
necessary information at the resolution r. Also, if we need to
forecast at a lower resolution, for instance ri,∀i = 1, · · · ,m,
with precise frequency information, then we can just set N to
Tri.

Therefore, before collecting the components, we can first
set the number p and positions Ni of the split points on the
frequency band according to the desired resolutions:

{
p = m,

Ni = Tri,∀i = 1, · · · ,m.
(11)

Then, for the resolution ri, TC1, · · · , TCi are the temporal
components with necessary frequency information. In as-
sembler, a corresponding temporal function f̂i(t) is formed
accordingly:

f̂i(t) =
eγt

T

[
TC1 + TC2 + · · ·+ TCi

]
. (12)

The energy forecasts at the resolution ri can be inferred by
time steps as we introduction in Section II:

ŷi = [f̂i(tn + 1L/Ki), · · · , f̂i(tn + L)]. (13)
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Algorithm 1 Training and inference of HNL
Require: training dataset Dtrain, epochs E, resolutions

r1, · · · , rm, ILT parameters γ, T,N
1: // training process
2: set splitting points N1, · · · , Np−1 through Eq. (11)
3: initialize encoder ϕωe

and decoders gω1
, · · · , gωp

4: prepare s = [γ + ikπ
T for k = 0 to N ]

5: split s = s1, · · · , sp according to N1, · · · , Np−1.
6: for i = 1 to E do
7: for batch data (x, e,y1, · · · ,ym) in Dtrain do
8: h← ϕωe(x, e)
9: loss← 0

10: for j = 1 to m do
11: f̃(sj) = gωj

(sj,h)

12: reconstruct to f̂j(t) through Eq. (12)
13: make forecasts ŷj through Eq. (13)
14: loss← loss+ ∥ŷj − yj∥22
15: end for
16: loss← loss/m
17: calculate gradients and update encoder and decoders.
18: end for
19: end for
20:
21: // inference process
22: sample x, e from Dtest

23: h← ϕωe
(x, e)

24: for j = 1 to m do
25: f̃(sj) = gωj

(sj,h)

26: reconstruct to f̂j(t) through Eq. (12)
27: make forecasts ŷi through Eq. (13)
28: end for

E. Loss function

Since we have produced the energy forecasts for resolutions
r1, · · · , rm, we define the loss function used for training as
follows:

L(y, ŷ;ω) =
1

|Dtrain|

|Dtrain|∑

i=1

1

m

m∑

j=1

∥yi − ŷi∥22, (14)

where Dtrain is the training dataset, and ω is the collec-
tion of trainable parameters in the whole framework, i.e.
ω = {ωe,ω1, · · · ,ωm}. Thus, the loss function we used for
training is the averaged loss across m resolutions, and any
gradient-based optimizer can be applied. The complete training
and inference process can be referred to Algorithm. 1.

After training, one can generate multi-resolution forecasts
from r1 to rm accordingly. Besides, if the model user would
like to forecast at some resolution, r′ ≤ r, which is not
included in the set {ri,∀i = 1, · · · ,m}, we can also cal-
culate the necessary integral terms N ′ = T · r′. Then, the
Laplace function values will be truncated accordingly, and the
predicted temporal function at resolution r′ will be:

f̂ ′(t) =
eγt

T

[
f̃(s0)

2
+

N ′∑

k=1

Sk(t)

]
. (15)

Therefore, the forecast at resolution r′ which is not included
can also be produced without retraining.

In short, the important takeaways from our HNL framework
are:

1) We try to learn the patterns in the Laplace domain, a 2-
D complex plane, instead of the traditional time domain,
a 1-D real plane.

2) The main advantage of learning in the Laplace domain
is that the frequency information is explicitly character-
ized.

3) Combining Shannon sampling theorem, given desired
resolutions, we are able to choose the necessary fre-
quency in the Laplace domain, and rebuild it back to
the time domain to produce the final forecasts.

IV. CASE STUDIES

A. Data and benchmarks

We focus on multi-resolution forecasting case studies on
both Multifamily Residential Electricity Dataset (MFRED)
[29] and wind power data of one single site from NREL
[30], along with NWP data from ECMWF [31]. MFRED
records a whole year data (2019-01 to 2019-12) in the 5-
minute resolution. NREL includes 6 months data (2012-7 to
2012-12) in the same resolution. Temperature and wind speed
data are downloaded for consistent time periods mentioned
above.

For both load and wind power datasets, we split according to
the ratio of 8:1:1 to build training, validation and test datasets.
We produce forecasts at three commonly used resolutions,
namely 5-minute, 15-minute, and 60-minute, for the next 24
hours.

Prevailing ML-based energy forecasting models are set as
benchmarks, including Multi-Layer Perceptron (MLP), Long
Short-Term Memory (LSTM), Gradient Boosting Regression
Tree (GBTR), Temporal Fusion Transformer (TFT) [32],
DLinear [33] and NBEATSx [34].

We also include the original Neural Laplace (NL) [35] as
the benchmarks. It only has one Laplace decoder with a small
N in discrete ILT. It should be mentioned that the curse of
dimensionality may happen if we only use one decoder with
a large enough N to cover the whole frequency domain. The
ineffectiveness in such case can be found in the appendix. One
naive model, Persistence, is included as the baseline model.
The latest observed data is used as forecast, for all lead times.

Besides, two widely used coordination strategies for multi-
resolution forecasts [14], i.e., bottom-up-based strategy (BU)
and optimized-based strategy (OPT), are also applied to each
of the benchmark models. Therefore, for each resolution, we
have three types of benchmark forecasts:

• Raw forecasts from: MLP, LSTM, NL, and Persistence,
• BU-based coordinated forecasts from: MLP-BU, LSTM-

BU, and NL-BU,
• OPT-based coordinated forecasts from: MLP-OPT,

LSTM-OPT, and NL-OPT
The BU strategy means that we only forecast on the highest

resolution, and the forecasts at the lower resolutions are all
generated by downsampling. The OPT strategy makes full use
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TABLE I
IMPORTANT PARAMETERS

Method Structure Parameters Training Parameters

MLP
n fc layer=1,

hidden units=42

batch size=128,
optimizer=Adam,

learning rate=1e-3,
epochs=300,

early stop rounds=30

LSTM
n lstm layer=2,
n fc layer=1,

hidden units=42

NL
encoder: RNN, n layer=1,
hidden units=42, N=33

decoder: MLP, n fc layer=2,
hidden units=42

HNL
encoder: RNN, n layer=1,

hidden units=42
decoder: MLP * 3, n fc layer=2,

hidden units=42

of forecasts at all desired resolutions, solving a generalized
least squares problem with the forecasts at resolutions and
the temporal structure as inputs. We adopted the method of
structure scaling to determine the covariance matrix in the
generalized least squares problem. The theoretical details of
these two coordination approaches can be referred to [14].
The important parameters, including structure and training
parameters are list in Table. I.

The load1 and wind power2 datasets are both available
online. The NWP data is available from the ECMWF web-
site3 after registration as real-name users (for researchers
based in Europe, at least). The code and data for the ex-
periments are publicly available on https://github.com/hkuedl/
Multi-resolution-Energy-Forecasting.

B. Performance metrics

The performance metrics used for evaluating the energy
forecasts include RMSE in the time domain, RMSE in the
frequency domain, Total Consistency Error (TCE), and the
total operation costs in the energy scheduling.

In the test set Dtest, we denote the jth forecast at the
resolution ri on the following steps Ki are denoted as ŷi,j . The
corresponding real energy data at this resolution is denoted as
yi,j . Therefore, the average RMSE in the time domain for this
resolution ri over the whole test set can be calculated as:

RMSEi
time =

1

|Dtest|

|Dtest|∑

j=1

∥ŷi,j − yi,j∥2, (16)

where |Dtest| denotes the size of the test set.
For the RMSE in the frequency domain, we perform fast

Fourier transform [36] (FFT) on for each real energy curve
and corresponding forecast at the highest resolution (5-minute
in this paper). Then, we take the magnitude of the results of
FFT. The resulting frequency magnitudes of the jth real curve
and the forecast are denoted as zi,j and ẑi,j . In this way, we

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/X9MIDJ

2https://www.nrel.gov/grid/wind-toolkit.html
3https://www.ecmwf.int/en/forecasts/dataset/operational-archive

can compute the average RMSE in the frequency domain over
the whole test set:

RMSEfreq =
1

|Dtest|

|Dtest|∑

j=1

∥ẑi,j − zi,j∥2, (17)

The unit of both RMSEs in both time and frequency domain
is the same as the original energy data, i.e. kW in our case
studies.

In terms of evaluating forecasting consistency, the TCE over
the whole test set is calculated as follows:

TCE =
1

|Dtest|

|Dtest|∑

j=1

m∑

a=1

m∑

b=a+1

∥ds(ŷb,j , ra)− ŷa,j∥22, (18)

where the function ds(·, ·) takes in a high-resolution forecast
at rb and downsamples them into a low-resolution one at
ra(≤ rb). Then, the Euclidean distance of the downsampled
forecasts and the original forecasts at the resolution ra will
be calculated. For each resolution pair (ra, rb), we calculate
and sum up to obtain the final TCE of the jth forecasts. The
average TCE over the whole test set is then calculated as
above.

As for energy scheduling, we consider an economic dispatch
problem in both day-ahead and intra-day fashion, including the
ramping constraints of generators, battery storage devices and
so on. The details of the optimization problems can be referred
to the appendix in [24].

C. Accurate forecasts at different resolutions

To comprehensively evaluate forecast performance, we run
each forecast model from scratch 20 times with different
random seeds. Then, RMSEs are calculated for each seed.
The comparison of average RMSEs with standard deviations
over all seeds is depicted in Table. II and Table. III. For each
column, if our proposed HNL beats the raw forecasts from
ALL benchmarks, the results will be bold. If our proposed
method even beats the both BU and OPT coordinated forecasts
from ALL benchmarks, the results will be added with ∗. The
results of GBRT, TFT, DLinear and NBEATSx are included
in the appendix.

For electricity load forecasting, the proposed HNL frame-
work outperforms the baseline model by 7.28%, 7.08%, and
3.4%, respectively, at 5-minute, 15-minute, and 60-minute.
The advantage of HNL is more significant with the forecasting
resolution increases. At the highest resolution, HNL beats all
the uncoordinated benchmarks, improving by at least 4.7%.
Even though BU and OPT strategies generally lower the
forecasting errors of benchmarks at all resolutions, HNL still
shows superiority over most of them and achieves competitive
performance with the best coordinated model (MLP-OPT).

For wind power forecasting, the performance differences are
even more remarkable. Outperforming the baseline Persistence
by at least 29%, the proposed HNL obtains the lowest fore-
casting error at all resolutions. It obtains the lowest forecasting
error over all benchmarks trained individually, improving by at
least 5.3% on average. Compared to coordinated benchmarks,
HNL still has at least a 3% accuracy improvement over the

https://github.com/hkuedl/Multi-resolution-Energy-Forecasting
https://github.com/hkuedl/Multi-resolution-Energy-Forecasting
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/X9MIDJ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/X9MIDJ
https://www.nrel.gov/grid/wind-toolkit.html
https://www.ecmwf.int/en/forecasts/dataset/operational-archive
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TABLE II
RMSE COMPARISON ON LOAD DATASET (×10−2 KW)

Method 5min 15min 60min

LSTM 3.751 ± 0.142 3.809 ± 0.192 3.746 ± 0.159
LSTM-BU 3.751 ± 0.142 3.708 ± 0.144 3.622 ± 0.146

LSTM-OPT 3.597 ± 0.099 3.552 ± 0.100 3.463 ± 0.102
MLP 3.591 ± 0.067 3.331 ± 0.114 3.130 ± 0.040

MLP-BU 3.591 ± 0.067 3.547 ± 0.069 3.462 ± 0.071
MLP-OPT 3.372 ± 0.060 3.325 ± 0.061 3.236 ± 0.062

NL 3.638 ± 0.129 3.579 ± 0.164 3.503 ± 0.150
NL-BU 3.638 ± 0.129 3.595 ± 0.131 3.501 ± 0.132

NL-OPT 3.531 ± 0.099 3.486 ± 0.100 3.390 ± 0.101
Persistence 3.697 ± 0.000 3.615 ± 0.000 3.479 ± 0.000

HNL 3.428 ± 0.082 3.359 ± 0.079 3.360 ± 0.068

TABLE III
RMSE COMPARISON ON WIND POWER DATASET (KW)

Method 5min 15min 60min

LSTM 5.189 ± 0.097 5.308 ± 0.196 5.403 ± 0.160
LSTM-BU 5.189 ± 0.097 5.177 ± 0.097 5.118 ± 0.098

LSTM-OPT 5.174 ± 0.086 5.162 ± 0.086 5.103 ± 0.087
MLP 5.149 ± 0.091 4.928 ± 0.119 4.680 ± 0.087

MLP-BU 5.149 ± 0.091 5.126 ± 0.090 5.063 ± 0.090
MLP-OPT 5.028 ± 0.075 5.004 ± 0.073 4.941 ± 0.074

NL 4.937 ± 0.380 4.972 ± 0.267 4.999 ± 0.349
NL-BU 4.937 ± 0.380 4.930 ± 0.381 4.869 ± 0.384

NL-OPT 4.813 ± 0.312 4.805 ± 0.312 4.743 ± 0.316
Persistence 6.596 ± 0.000 6.604 ± 0.000 6.640 ± 0.000

HNL 4.642 ± 0.252∗ 4.617 ± 0.248∗ 4.538 ± 0.251∗

best-performing one, showing the superiority on wind power
forecasting.

Thus, on both load and wind power forecasting, the com-
petitive performance of HNL is obvious in terms of forecast
quality in the time domain at all resolutions.

In addition to the performance in the time domain, we
also show that our proposed method can capture more precise
information in the frequency domain. Table. IV collects the
RMSEs on frequency magnitudes at the highest resolution.
BU-based forecasts are omitted because they are the same as
the raw forecasts at the highest resolution.

HNL attains the best performances in the frequency domain
for both datasets, owing to the hierarchical frequency learning.
With the limited capability of frequency learning, there is
at least 5% performance lag for NL-based methods. Despite
the close performance of MLP-OPT with HNL in the load
forecasting, MLP-based models fail to accurately portray the
actual frequency information of wind power. Similarly, mainly
focusing on the temporal dependence, LSTM-based models
cause around 15% more error in the frequency domain than
our proposed HNL. Therefore, besides the competitive fore-
casting performance in the time domain, our proposed method
can capture the information in the frequency domain more
accurately than the prevailing forecasting models.

TABLE IV
RMSE COMPARISON ON FREQUENCY DOMAIN (MAGNITUDE)

Method Load (×10−2) Wind power

LSTM 58.771 ± 3.180 88.487 ± 2.710
LSTM-OPT 56.694 ± 2.297 88.548 ± 2.412

MLP 55.202 ± 1.805 92.625 ± 2.526
MLP-OPT 51.102 ± 1.508 90.352 ± 2.025

NL 55.665 ± 2.403 82.677 ± 7.025
NL-OPT 54.430 ± 1.602 80.987 ± 5.703

HNL 50.003 ± 1.359∗ 76.477 ± 4.576∗

HNL NL MLP LSTM0

2

4

6

5min vs 15min 5min vs 60min 15min vs 60min

HNL MLP LSTM NL0

10

20

30

40

Fig. 3. TCE comparison. The TCEs are scaled based on the performance of
the HNL. Left: electricity load forecasts. Right: wind power forecasts

D. Consistent forecasts across resolutions

Beyond the accuracy at each resolution, we also evaluate the
consistency of the forecasts across these resolutions. Fig. 3
presents the comparison of our proposed HNL and uncoor-
dinated models in terms of consistency. The most obvious
inconsistency happens between the highest and the lowest
resolution, i.e., 5-minute and 60-minute. The proposed HNL
brings significant advantages in both electricity load and
wind power forecasting. In contrast, the raw forecasts from
the benchmarks without any coordination apparently cause
extremely high consistency errors.

Besides, the leading position of HNL in wind power fore-
casting is more striking than electricity load forecasting. Our
proposed HNL is at least 10 times better than the benchmarks
in the wind power forecasting case. Fig. 4 depicts an exam-
ple of multi-resolution forecasts comparison for wind power
generation.

From the perspective of accuracy, traditional deep learning-
based models, LSTM and MLP, fail to produce accurate fore-
casts in terms of both time and frequency domains. Especially
in high-resolution situations, forecasts from MLP-related mod-
els introduce redundant high-frequency information. Though
the forecasts from NL-related models track the trend of wind
power, they fail to represent the information across relevant
frequency ranges, owing to the limited frequency learning
capability. These phenomena reflect the conclusion that the
HNL method yield more accurate forecasts when assessed in
both time and frequency domains.

From the perspective of consistency, there appears abrupt
gaps during the transition of forecasting resolutions among
raw forecasts from benchmarks. For example, forecasts from
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Fig. 4. Multi-resolution forecasts comparison on wind power. One forecasting
day is separated into three even horizons for demonstration. Each row
represents the model type, and each column represents the coordination
strategy. The proposed HNL belongs to raw forecasting methods since it
doesn’t experience any coordination.

LSTM somehow become lower if the forecasting resolution is
switched from 15-minute to 60-minute. Both post-coordination
strategies (BU and OPT) eliminate these jumps in the raw
forecasts, enhancing the consistency of the benchmark ap-
proaches. In contrast, even without any coordination strategies,
the forecasts from HNL can still behave consistently across
resolutions. The transition from one resolution to another is
natural because of the framework design that generates energy
forecasts at different resolutions hierarchically. Therefore, be-
yond the high accuracy in both time and frequency domains,
forecasts from HNL are highly consistent across resolutions.

E. Supportive effects for decision making

The final goal of energy forecasting is to support decision-
making, for a range of operational problems. Besides the
accuracy and consistency of the forecasts, we also analyze the
operational benefits brought by the forecasts in the downstream
decision-making process.

Specifically, we start with the day-ahead energy scheduling
problem for a local region. It is a cost minimization problem
that takes the 24-hour load forecast as the demand to be met,
and outputs the optimal schedule of energy supply for each
time step for the next day. Though the scheduling horizon
is fixed to 24 hours, the scheduling resolution can vary,
depending on how detailed the schedules are expected. Con-
sequently, for different scheduling resolutions, the forecasts
with the corresponding resolutions are required. Since it is
impossible to forecast perfectly, additional real-time operations
like external energy purchases are needed to balance the real
energy demand and scheduled energy supply. This will cause
extra operation costs. Therefore, regarding the extra costs, we
evaluate the operational effects of the day-ahead forecasts at
each resolution.

Fig. 5(a)(b)(c) illustrate the comparison of operational costs
from all forecasting models at different resolutions. We ob-
serve that with the resolution becoming higher, the advantage
of our proposed HNL is more remarkable. Compared to the
baseline model, the percentage savings of the operational costs
are 14.8%, 19.9%, and 20.6% at the resolutions of 60-minute,
15-minute, and 5-minute, respectively. For the 60-minute
resolution, the prevailing machine-learning model MLP even
achieves lower operation costs. The possible reason is that
hourly day-ahead forecasts only require 24 prediction points.
The number of output dimensions is relatively small and
contains limited frequency information. Traditional machine
learning methods can perform well in such low-dimension
forecasting settings.

However, when it comes to the higher resolution cases, the
energy curves will reveal more detailed frequency information.
It may also affect the operation results probably because when
the scheduling resolution is higher, the ramping constraints of
generators are tighter and more strict. Then, if the forecasts in-
troduce redundant frequencies, more frequent battery charging
and discharging operations will happen to compensate.

We collected each day-ahead forecast from all the models
and computed the corresponding temporal RMSE, frequency
magnitude RMSE, and total operational cost. Fig. 5 (d) depicts
that forecasting errors in both time and frequency domains
generally follow a linear relationship. Lower errors jointly
in the time and frequency domains lead to lower additional
operation costs. The blue shaded part shows a large proportion
of special situations. The temporal errors of the forecasts are
at a similar level, but the frequency magnitude errors varies a
lot. In this vertical slice, we observe that with similar temporal
accuracy, generally, the lower the errors in the frequency
domain are, the lower the additional operational costs are
in the day-ahead scheduling. Therefore, while our proposed
HNL approach achieved similar temporal performance with
the state-of-the-art benchmarks, the performance advantage of
HNL in the frequency domain makes it substantially better in
supporting decision-making.

In addition to day-ahead scheduling, energy system opera-
tors launch intra-day scheduling on a regular basis (for exam-
ple, every 4 hours) to modify the day-ahead schedules. Distinct
from day-ahead scheduling, intra-day scheduling concentrates
on the operation decisions for a shorter horizon (usually 4
hours) and higher resolution (at least 15-minute). This is also a
cost minimization problem which requires the updated energy
forecasts at the according horizon and resolution.

Here, to conduct a more realistic case study, we jointly
consider the day-ahead and intra-day scheduling, and denote
as integrated scheduling. Apparently, in this case, multi-
resolution energy forecasts cooperatively contribute to the final
operation decisions. To quantify the value of multi-resolution
forecasts in this context, we calculate the total operation costs,
including the day-ahead costs for energy arrangements, the
intra-day costs for adjustments, and the real-time costs for
energy balancing.

To fully illustrate the operational effects of both energy
demand and supply forecasts, we enumerate all the possible
pairs of forecasting approaches for electricity load and wind
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Fig. 5. Comparison of total operational costs in day-ahead scheduling. (a),(b) and (c) show the comparison based on 5-minute, 15-minute, and 60-minute
resolution forecasts, respectively. The operational costs in (a), (b), and (c) are scaled based on the performance of the Persistence model. (d) shows the
relationship among temporal error, frequency error, and operational costs at the highest resoltuion.

power generation, and calculate the resulting total operational
costs. Fig. 6 presents the results in integrated scheduling of
different model pairs. It is proved that our proposed HNL
brings significant supportive effects in this large-scale realistic
integrated scheduling case. Compared with the Persistence-
based methods, the saved costs are more than 25%. We also
observe that, in this case, the differences between each column
were remarkable, which means the wind forecasting meth-
ods dominate in the integrated scheduling. This is probably
because the penetration rate of the wind power is set as a
relatively high ratio (50%). The results with other wind power
penetration rates can be found in the appendix.

Therefore, with high accuracy in both the time and fre-
quency domain, our proposed energy forecasting framework,
HNL, can provide more supportive forecasts for day-ahead
scheduling. The relationship between temporal error, fre-
quency error, and operation costs is explored as well. The
striking advantage of HNL continues to be effective in the
integrated scheduling process.

V. DISCUSSION

In this section, we will discuss some key points based on
our methodology and the empirical case studies.

A. Learning in the Laplace domain

Frequency information of energy data is explicitly con-
densed in the Laplace domain. This is the reason why we
design our framework in this domain. Fourier transform (FT),
though also able to conduct time-frequency transform, is
actually a subset of Laplace transform. The result of FT
falls into the imaginary axis in the 2D complex frequency
plane. Beyond FT, the Laplace transform provides the damping
effects as well, which is helpful for modeling energy data
with complicated properties, like wind power data. Therefore,
learning in the Laplace domain provides more capability than
traditional FT.

Meanwhile, theoretically, the Laplace function values f̄(s)
may encounter singularities, which are related to the poles
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Fig. 6. Comparison of operational costs for integrated scheduling. Columns:
wind forecasting methods. Rows: electricity load forecasting methods. Entries:
additional costs compared to the best in percentage value. Zero means the most
economic situation.

in the Laplace domain. Such singularities are usually difficult
for neural networks to approximate. In this paper, we didn’t
actually run into the instability of training. This is possibly
because unlike theoretical signals like sine waves, realistic
energy data is not polarized so severely in the Laplace domain.
The magnitudes of Laplace function values in both low and
high-frequency components are informational. It makes the
singularities less significant than the situation of ideal signals.

If severe singularity problems appear in practice, we can
first utilize stereographic projection to transform complex
numbers in the Laplace domain to a Riemann sphere (Eq. (19))
to stabilize the training process [35], and then inversely trans-
form back to Laplace domain for ILT reconstruction (Eq. (20)):

(θ, ϕ) =

(
arctan

(ℑ(s)
ℜ(s)

)
, arcsin

( |s|2 − 1

|s|2 + 1

))
(19)

s = tan

(
ϕ

2
+

π

4

)
eiθ, (20)

where s ∈ C, (θ, ϕ) ∈ (−π, π)×(−π/2, π/2). In this way, the
singularities will be located at the north pole of this sphere,
and the theoretical problem of singularities can be alleviated.

B. Connection to differential equations

Laplace transform is often used to solve ordinary differential
equations. Consequently, learning the Laplace function values
also implies fitting differential equations with neural networks
in the Laplace domain [35].

Such idea of fitting differential equations presents advan-
tages on modelling energy data which may involve physical
processes. Some previous works on wind power/speed fore-
casting leveraged such related models for improving the fore-
casting accuracy [37], [38]. This may explain why our HNL
framework outperformed more significantly on the NREL
dataset in the case studies.

C. Comparison to super resolution

Though we focus on multi-resolution forecasting in this
paper, it relates to the topic of super resolution (SR) of energy
profiles, but some differences exist.

The aim of SR is to upsample the low-resolution data into
high-resolution data for the same time period with consistency.
In contrast, the aim of our paper is that given the energy data
at the fixed sampling resolution, we need to produce forecasts
at multiple resolutions that are less than the original sampling
resolution.

For example, given the electricity load data at a 5-minute
resolution for one day, SR tries to generate the data for the
same day at a 1-minute level, while our HNL framework tries
to generate 5-minute, 15-minute, and 60-minute level forecasts
for the next day.

Although the aims are a bit different, we think it’s possible
to empower SR by our HNL framework or vice versa. In recent
years, the research focus in SR shifted from training different
models separately for different target resolutions [39], [40] to
arbitrary SR with one model [41]. To support arbitrary SR
by our HNL framework, we can increase the discretization
parameter N in (10) to include higher-frequency components.
Under the guidance of different high-resolution data labels,
more detailed energy profiles can be reconstructed through
Laplace decoders.

On the other hand, if we are interested in forecasting beyond
the original sampling resolutions, we can also first utilize some
SR models to generate the high-resolution data, then apply
HNL to obtain the forecasts whose resolutions are even higher
than the original resolution.

VI. CONCLUSION AND FUTURE WORKS

In this paper, an innovative energy forecasting framework,
HNL, is proposed for multi-resolution forecasting, providing
unified modeling at different resolutions. Without the need
for multiple models, the proposed framework is designed
to characterize the hierarchical frequency information of the
energy data based on the Laplace transform. Forecasts at
desired resolutions can be flexibly produced by aggregating
corresponding temporal components based on the Shannon
sampling theorem.

Case studies have demonstrated that the HNL framework
attains satisfactory accuracy improvement on the competitive
benchmarks and baseline model. Thanks to the hierarchical
framework design, more seamless forecasts across the res-
olutions can be generated than benchmarks. The focus on
frequency learning gives the HNL an additional advantage in
the accuracy in the frequency domain where the HNL can
capture more precise variation patterns of the energy data.

More importantly, in the follow-up day-ahead energy
scheduling, this advantage of HNL can lead to better schedules
with lower operation costs. The analysis of the relationship
between temporal error, frequency error, and operation costs
further implies that with similar temporal accuracy, forecasts
with more precise frequency information may lead to better
decisions. Consequently, it is suggested that accuracy in both
time and frequency domains matters in energy forecasting,
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especially for the downstream decision-making. Besides, in the
complicated integrated scheduling, multi-resolution forecasts
of electricity load and wind power from HNL resulted in a
salient reduction in terms of the total operation costs as well.

As for future works, we have two potential directions: 1)
extension to probabilistic forecasting considering the uncer-
tainty in the frequency domain, and 2) explore the extension
for arbitrary super resolution of load profile.

APPENDICES

A. Ineffectiveness of single Laplace decoder

We launched the experiment with one large Laplace de-
coder, i.e. Neural Laplace with a large enough frequency
parameter N , trying to learn the whole spectrum of the energy
data. However, the experiment turns out to be ineffective when
only using one large Laplace decoder. The forecasting result
can be observed in Fig. 7.
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Fig. 7. Ineffectiveness when only using one large Laplace decoder

Therefore, when launching the benchmarks, we set the
frequency parameter in the Neural Laplace as N = 33 which
is the same setting in the original code. In comparison, our
proposed HNL use multiple Laplace decoders to learn the
frequency information in the energy data.

B. Operation costs comparison under different penetrations

Fig. 8 shows the results under different penetration rate of
wind power in the large-scale integrated scheduling problem.

When the penetration rate is low (0.2), where load forecasts
dominate the decision making, the lowest operation costs are
achieved in the row (load forecasting methods) of HNL.

Similarly, when the penetration rate is high (0.8), where
wind power forecasts dominate, the lowest operation costs
happens in the column (wind power forecasting methods)
of HNL. It suggested that HNL shows dominant operational
effects in all situations considered.
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Fig. 8. Comparison of operational costs for integrated scheduling.

C. Comparison with SOTA methods

Table. V and Table. VI respectively records the forecasting
accuracy of GBRT, TFT, NBEATSx, and DLinear.

For load forecasting, HNL outperforms all benchmarks
trained individually except for 60-minute level. This is prob-
ably because hourly day-ahead forecasts only require 24
prediction points. The number of output dimensions is rela-
tively small and contains limited frequency information. SOTA
models can perform well in such low-dimension forecasting
settings.

However, at the highest resolution, only the NBEATSx with
OPT coordination strategy obtained the similar performance
with HNL.

For wind power forecasting, HNL leads all benchmarks
with all post coordination strategies, showing the significant
improvements.
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TABLE V
RMSE COMPARISON ON LOAD DATASET (×10−2 KW)

Method 5min 15min 60min

GBRT 3.443 ± 0.001 3.432 ± 0.003 3.656 ± 0.009
GBRT-BU 3.443 ± 0.001 3.374 ± 0.001 3.278 ± 0.001

GBRT-OPT 3.453 ± 0.001 3.384 ± 0.001 3.292 ± 0.001
TFT 3.924 ± 0.150 3.998 ± 0.190 3.807 ± 0.096

TFT-BU 3.924 ± 0.150 3.883 ± 0.152 3.789 ± 0.152
TFT-OPT 3.705 ± 0.096 3.662 ± 0.097 3.569 ± 0.097
NBEATSx 3.497 ± 0.058 3.467 ± 0.086 3.335 ± 0.093

NBEATSx-BU 3.497 ± 0.058 3.428 ± 0.062 3.327 ± 0.065
NBEATSx-OPT 3.426 ± 0.050 3.355 ± 0.054 3.255 ± 0.056

DLinear 3.554 ± 0.042 3.421 ± 0.032 3.307 ± 0.025
DLinear-BU 3.554 ± 0.042 3.441 ± 0.043 3.328 ± 0.046

DLinear-OPT 3.516 ± 0.035 3.402 ± 0.034 3.297 ± 0.035
Persistence 3.697 ± 0.000 3.615 ± 0.000 3.479 ± 0.000

HNL 3.428 ± 0.082 3.359 ± 0.079 3.360 ± 0.068

TABLE VI
RMSE COMPARISON ON WIND POWER DATASET (KW)

Method 5min 15min 60min

GBRT 4.795 ± 0.010 4.820 ± 0.031 4.774 ± 0.060
GBRT-BU 4.795 ± 0.010 4.767 ± 0.010 4.700 ± 0.010

GBRT-OPT 4.799 ± 0.011 4.771 ± 0.011 4.706 ± 0.012
TFT 5.730 ± 0.261 5.596 ± 0.215 4.921 ± 0.339

TFT-BU 5.730 ± 0.261 5.723 ± 0.262 5.665 ± 0.265
TFT-OPT 5.506 ± 0.187 5.498 ± 0.187 5.441 ± 0.189
NBEATSx 5.244 ± 0.165 5.189 ± 0.221 5.039 ± 0.215

NBEATSx-BU 5.244 ± 0.165 5.179 ± 0.167 5.101 ± 0.171
NBEATSx-OPT 5.115 ± 0.159 5.048 ± 0.159 4.974 ± 0.161

DLinear 5.179 ± 0.073 5.120 ± 0.069 5.040 ± 0.049
DLinear-BU 5.179 ± 0.073 5.151 ± 0.074 5.082 ± 0.075

DLinear-OPT 5.150 ± 0.069 5.122 ± 0.069 5.056 ± 0.070
Persistence 6.596 ± 0.000 6.604 ± 0.000 6.640 ± 0.000

HNL 4.642 ± 0.252∗ 4.617 ± 0.248∗ 4.538 ± 0.251∗
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