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ABSTRACT
The risk of missing data and subsequent incomplete data records at wind farms increases with the number of turbines and sen-
sors. We propose here an imputation method that blends data-driven concepts with expert knowledge, by using the geometry of 
the wind farm in order to provide better estimates when performing nearest neighbor imputation. Our method relies on learning 
Laplacian eigenmaps out of the graph of the wind farm through spectral graph theory. These learned representations can be 
based on the wind farm layout only or additionally account for information provided by collected data. The related weighted 
graph is allowed to change with time and can be tracked in an online fashion. Application to the Westermost Rough offshore 
wind farm shows significant improvement over approaches that do not account for the wind farm layout information.

1   |   Introduction

According to the International Energy Agency, overall wind 
power generation increased by a record 17% in 2021. Of the 
total 830 GW installed, 93% were still onshore systems, as on-
shore wind is a developed technology while offshore wind is 
still at the early stage of expansion. However, offshore reach 
is expected to increase in the coming years as more countries 
are developing or planning to develop their first offshore wind 
farms. From the world's first offshore wind farm, Vindeby in 
Denmark, which totalled 11 turbines in 1991, the size of off-
shore wind farms has increased up to more than a hundred 
wind turbines nowadays, for example, Hornsea 1 in the United 
Kingdom that totals 174 wind turbines. While data recorded 
by wind turbines are of great value for wind farm and system 

operators, they are subject to information loss from, for ex-
ample, power and communication failures, instrumentation 
issues, or human error. Missing data in wind farm time se-
ries can impact revenue [1], wind energy resource assessment 
[2], wind farm control [3], or the estimation of power curves 
[4]. In particular, they negatively impact forecasting models, 
which for short-term lead times (from a few minutes to a few 
hours ahead) are better be statistical models trained on histor-
ical data, or online learning methods that require the most re-
cently observed data [5]. Because of the increasing number of 
turbines in offshore wind farms, the issue of missing data gets 
even more critical. Let T be the total number of records over 
a wind farm, measured at successive time steps t = 1, … ,T 
(usually spaced at uniform intervals). Now, assume a data 
point is missing for a wind turbine at time t  with probability 
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0.01, independently from other wind turbines. With a number 
of wind turbines N = 11, this would result in about 90% of the 
T records being complete; that is, data points are available for 
all N  wind turbines. With N = 174 wind turbines, the propor-
tion of complete records drops to 17% and the workaround that 
consists of assuming data completeness and deleting records 
with missing entries is not sensible anymore [6].

Alternatives remain for dealing with increasing missing data. 
One is to develop methods where the assumption of data com-
pleteness is not needed anymore. In the context of time series, 
works exist that make assumptions about the missing data 
patterns [7], or need not even make any assumptions [8], and 
estimate AR models. Other works develop models that are ro-
bust to missing data [9]. Another alternative is to provide im-
putations for missing values, that is, to replace missing data 
points with plausible values. Classical statistical imputation 
methods use maximum likelihood estimators that correspond 
to a specific underlying model. A very popular approach for 
dealing with missing data in time series is the EM algorithm 
[10], which relies on two steps: At the E-step, missing values are 
filled in with their conditional expectation given the observed 
data and the current estimate of the model parameters; at the 
M-step, new estimates of the parameters are computed from 
the current version of the completed data. This procedure re-
quires assumptions on the distributions of both observed and 
missing data. A widely used [11], yet controversial [12], nomen-
clature for missing value mechanisms distinguishes between 
three cases: MCAR, MAR, and MNAR. In MCAR, the proba-
bility of a data point being missing is completely independent 
of any variables in the dataset, while in MAR, the probability 
of being missing depends only on observed values. These first 
two mechanisms are considered the simple ones, in the sense 
that they do not make it necessary to model the distribution 
of the missing values when maximizing the likelihood of the 
observations. The third mechanism is the harder yet prevalent 
one, as the probability of a point being missing is dependent on 
the value it would have taken. This leads to important biases in 
the remaining data whose distribution is not the true distribu-
tion anymore. Missing value imputation is appealing because it 
makes it possible to first get a completed dataset, and then apply 
any statistical learning algorithm that relies on the complete-
ness assumption. Yet, there is a wide range of situations where 
it might be more or less legitimate to use imputation. This has 
to do not only with the missing value mechanism, but also with 
the task to be performed on the completed dataset. For super-
vised learning tasks such as regression (e.g., for forecasting, 
eventually), theoretical and empirical results outline simple 
practical recommendations [13] when using imputation meth-
ods. In particular, the same imputation model should be used 
to train and test on data with missing values. Empirically, bet-
ter imputation methods seem to reduce the number of samples 
required to reach good prediction. When the supervised learn-
ing algorithm is of the regression kind, almost all imputations 
lead asymptotically to the optimal prediction with a powerful 
learner, no matter the missing value mechanism. This result 
gives theoretical grounding to all impute-then-regress proce-
dures. Yet, a good choice of imputation can reduce the com-
plexity of the regression function to be learned, and therefore, 
it is suggested that learning imputation and regression jointly 
is easier [14, 15].

In the context of offshore wind farms, we deal with multivariate 
time series, as we record N data points, one for each wind tur-
bine, at each time step t . This opens a new range of methods for 
missing data imputation, as one can exploit information from 
another (potentially correlated) sensor, in our case another wind 
turbine. Recently, several deep learning approaches have been 
proposed for multivariate time series imputation [16–18]. When 
interested in the average production of a wind farm, it is quite 
intuitive to work with the average of the individual production 
values that are available at time t . By doing so, one implicitly 
performs k-NN imputation. The k-nearest neighbors algorithm 
is a seminal nonparametric method in machine learning [19, 20]. 
In a nutshell, it uses the k closest points to a point of interest to 
make a decision about the latter. When using k-NN for imputa-
tion purposes, one considers the k nearest neighbors of a missing 
point to provide an estimate of its value [21]. The assumptions 
associated with this imputation method are very weak: We 
do not need assume any model generating the data, observed 
or missing, and only assume similar groups of observations. 
Moreover, the method applies for all missing data mechanisms. 
In Section 2, we make it explicit how to work with a quantity of 
interest averaged over nt available records comes down to per-
forming unweighted nt-NN imputation. We propose to improve 
it by moving from unweighted to weighted nt-NN imputation 
through Nadaraya-Watson estimators. Each neighbor will now 
enter the k-NN algorithm with a different weight, hopefully the 
closer the higher. A higher weight for a closer neighbor means 
we are able to measure how close with an appropriate distance. 
We show how to use graph spectral theory to compute Laplacian 
eigenmaps, that is, new representations of the wind farm as a 
graph that take into account local and global geometries. We 
consider the case where we only use the structure of the wind 
farm when learning its representation and the case where we 
also use values of the quantity we wish to perform imputation 
for. Regarding the latter, we focus on power generation, but 
other missing quantities could be considered, for example, wind 
speed. The method is illustrated on the Westermost Rough off-
shore wind farm and results for the imputation of power gen-
eration missing values are presented in Section  3. Finally, we 
provide some conclusions and perspectives in Section 4.

2   |   Imputation Using Nearest Neighbors and 
Graphs

In this section, we introduce the different estimators at hand to 
perform nt-NN imputation when interested in the power gen-
eration over a wind farm. They are summarized in Table  1. 
Weighted k-NN imputation is introduced in Section  2.1, and 
unweighted graphs are introduced in Section 2.2 and weighted 

TABLE 1    |    Estimators for the nt-NN imputation of power generation's 
missing values.

Estimator k-NN Graph

Naive Unweighted No

Location Weighted No

Unweighted-graph Weighted Yes, unweighted

Weighted-graph Weighted Yes, weighted
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graphs in Section 2.3. The naive and location-based methods are 
to be seen as standard ones, as opposed to the proposed graph-
based methods. The naive estimator is an unweighted k-NN 
benchmark, while the location estimator is a weighted k-NN 
benchmark.

2.1   |   Weighted Nearest Neighbor Imputation

Let Xt be an average quantity of interest over a wind farm at time 
t . We have 

where Xi
t  is the quantity of interest for the i - th wind turbine at 

time t  and N is the total number of wind turbines in the wind 
farm. When some of the Xi

t s are missing, assume that we work 
instead with the estimate 

where X (j)
t  is the quantity of interest for the (j)-th wind turbine 

record available at time t, nt being the number of available wind 
turbine records. Imputation using the k-NN method consists 
of filling in a missing value using the values from its k nearest 
neighbors. Unweighted k-NN assign the same weight to every 
neighbor, when weighted k-NN assign a higher weight to a 
closer neighbor. Let us replace each missing value X (l)

t  with its 
unweighted nt-NN estimate X̂

(l)

t =
1

nt

∑nt
j=1

X
(j)
t . We have 

Hence, to work with X̂ t from (2) is equivalent to filling in the 
missing values (X (l)

t )l=nt+1,…,N using unweighted nt-NN esti-
mates, that is, every neighbor X (j)

t  is assigned the same weight 
1∕nt. However, a quantity of interest at a wind turbine level is 
likely to be more similar to the same quantity from the actual 
neighbors of this wind turbine, that is, the wind turbines that 
are nearby in the wind farm. Staying in the k-NN framework, 
we can improve our estimates through the number of neighbors 
k, the weights assigned to neighbors, or both. Theoretical results 
about k-NN mostly concern the asymptotic mode, when nt tends 

to infinity, which cannot be assumed here as we are limited by 
the number of wind turbines in the wind farm. It is rather criti-
cal to choose k in a finite regime, and it is usually advised to per-
form cross-validation. This would be cumbersome in our setup 
as cross-validation would need to be run for each combination 
of available data points, for each missing data point, and would 
require enough complete data for each combination. Therefore, 
we propose to keep k = nt at each time t  and to rather improve 
the weights of the nt-NN imputation. Learning the distance met-
ric for k-NN has been extensively studied and it has been found 
that metric learning may significantly affect the performance 
of the method in many applications. We refer the interested 
reader to reviews of the metric learning literature [22] and the 
k-NN method literature [20]. Because we perform imputation at 
each time step t  considering values from similar sensors at the 
same time step t , the Euclidean distance seems a fair enough 
metric in our framework. Therefore, we focus instead on a com-
mon shortcoming in current nonparametric methods, which is 
to only consider the distances between the decision point and 
its neighbors and ignore the geometrical relation between those 
neighbors. Indeed, before we even get any records from its sen-
sors, a wind farm is a graph with its own geometry that provides 
a priori information not only on the distance between a wind 
turbine and its neighbors, but also between these neighbors.

Moving to weighted nt-NN imputation, we wish to provide each 
wind turbine (l) that misses a record with a better estimate, by 
weighting the available records (j) according to their proximity 
to the wind turbine, while acknowledging the whole structure 
of the wind farm. In order to do so, we need to be able to assign 
weights depending on the distance between the wind turbine (l) 
and the wind turbines (j). We choose to use Nadaraya-Watson 
estimators [23, 24], which assign weights that are proportional 
to some given similarity kernel K. More optimal methods could 
be used [25], which we will discuss later. Let K be a given non-
negative measurable function on ℝ (the kernel), h be a positive 
number (the bandwith) depending upon nt only and ‖z(j) − z(l) ‖ 
be the Euclidean distance between the representations of two 
wind turbines (j) and (l). In case (l) is missing and (j) is available 
at time t , the weight we give to X (j)

t  when computing a weighted 
estimate X̂

(l)

t =
∑nt

j=1
w(jl)X

(j)
t  of X (l)

t  is 

Let us sort the neighbors of a wind turbine (l) by increasing 
distance, ‖z(1) − z(l) ‖ ≤ ‖z(2) − z(l) ‖ ≤ … ≤ ‖z(nt ) − z(l) ‖. We 
choose an adaptive bandwith ht = ‖z(nt ) − z(l) ‖, so that the 
weights adjust depending on nt, that is, depending on the avail-
ability of other records at time t . Note that if all distances at play 
at time t  are very similar, the estimator will be very close to the 
unweighted one, which seems legit. Consider the so-called naive 
kernel K(u) = �{‖u‖≤1}. With such a choice for ht, to use a naive 
kernel is to use our former estimate 1

nt

∑nt
j=1

X
(j)
t . Therefore, from 

now on we will refer to this estimate as the Nadaraya-Watson 
estimator with a naive kernel, that is, the “naive” estimator. For 
a more general kernel, the weight w(jl)

t  depends on the distance 
‖z(j) − z(l) ‖ through the kernel shape. We will consider the

(1)Xt =
1

N

N∑

i=1

Xi
t ,

(2)X̂ t =
1

nt

nt∑

j=1

X
(j)
t ,

(3a)X̂ t =
1

N

(
X (1)
t + … + X

(nt )
t + X̂

(nt+1)

t + … + X̂
(N)

t

)
,

(3b)=
1

N

nt∑

j=1

X
(j)
t +

1

N

N∑

l=nt+1

X̂
(l)

t ,

(3c)=
1

N

nt∑

j=1

X
(j)
t +

1

N

N∑

l=nt+1

1

nt

nt∑

j=1

X
(j)
t ,

(3d)=
1

nt

nt∑

j=1

X
(j)
t .

(4)w(jl) =
K
�

‖ z(j) − z(l) ‖
h

�

∑nt
i=1

K
�

‖ z(i) − z(l) ‖
h

� .
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•	 Gaussian kernel K(u) = e−‖u‖
2,

•	 Epanechnikov kernel K(u) = (1 − ‖u‖2)�{‖u‖≤1},

•	 Triangular kernel K(u) = (1 − ‖u‖ )�{‖u‖≤1},

•	 Quartic kernel K(u) = (1−‖u‖2)2�{‖u‖≤1},

•	 Triweight kernel K(u) = (1−‖u‖2)3�{‖u‖≤1},

•	 Tricube kernel K(u) = (1−‖u‖3)3�{‖u‖≤1}.

Note that only the Gaussian kernel assigns a positive 
weight to the furthest neighbor (or neighbors) (nt) of 
(l). A straightforward weighted k-NN estimator is to con-
sider the geographical locations of the wind turbines and 
to base the Nadaraya-Watson estimators on the geograph-
ical distances between the wind turbines, that is, ‖z(j)−z(l)‖

=

√(
latitude(j)− latitude(l)

)2
+
(
longitude(j)− longitude(l)

)2
. We 

refer to this benchmark as the “location” estimator.

2.2   |   Wind Farms as Unweighted Graphs

2.2.1   |   Graphs

A graph G is defined by a set of nodes (or vertices) V = v1, … , vN 
and a set of edges E between nodes. It is said to be undirected 
if there is no direction implied by an edge. Often when a 
vertex vi represents a data point xi, two vertices vi and vj are 
connected if xi and xj are close. Let the wind farm be a graph 
G = (V ,E) where the set of nodes V  are the wind turbines, 
|V | = N , and the set of edges E connecting two nodes are to 
be decided upon. We build our graph out of the layout of the 
wind farm, without considering any data points xi. We start 
with an unweighted graph, that is, the edges of the graph are 
unweighted. Let A = (aij)i,j=1,…,N be the adjacency matrix of the 
graph G. Unweighted edges (or simple-minded weights) means 
that aij = 1 if vertices vi and vj are connected by an edge, aij = 0 
otherwise. Hence, all edges are assumed to have the same 
strength. Note that the diagonal of A is equal to zero, that is, 
aii = 0 ∀ i = 1, … ,N , as we do not consider self-connections. 
Through the adjacency matrix A, each wind turbine is repre-
sented by the vector of size N  of its connections to the other 
wind turbines in the wind farm. Out of this representation, 
we wish to learn a low-dimensional embedding for each wind 
turbine that preserves the structure of the wind farm.

2.2.2   |   Laplacian Eigenmaps

We are interested in spectral-graph embeddings, and in partic-
ular in Laplacian eigenmaps, which optimally preserve local 
neighborhood information and produce coordinate maps that 
are smooth functions over the original graph [26]. By trying to 
preserve local information in the embedding, the algorithm im-
plicitly emphasizes the natural clusters in the data and closely 
relates to spectral clustering [27]. We hope for the Laplacian 
eigenmaps to provide a smooth clustering of the wind turbines 
over the wind farm. Let D be the diagonal matrix associated 
with the graph G whose entries are the degree of each node, 
that is, dii =

∑
jaji. The matrix L = D −A is called the Laplacian 

matrix of the graph and one gets eigenmaps by computing eigen-
values and eigenvectors for the generalized eigenvalue problem 

Let f0, … , fN−1 be the solutions of Equation (5), ordered accord-
ing to their eigenvalues: 

We leave out the constant eigenvector f0 corresponding to eigen-
value 0 and use the next r eigenvectors for embedding each wind 
turbine vi in a r-dimensional Euclidean space: 

The embedding zi is a new representation of the wind turbine 
vi. Distances ‖zi − zj ‖ for every pair of wind turbines (vi, vj) can 
now be computed once and for all, but the number of compo-
nents we keep in zi needs to be decided upon. For each missing 
data point, the kernel function will then adjust the weights at 
each time t  depending on the set of nt data points that are avail-
able from other wind turbines.

2.3   |   Wind Farms as Weighted Graphs

2.3.1   |   Weighting the Original Graph

The representations we get out of the unweighted graph embed the 
structure of the wind farm only and can be used without having 
any other data but the map of the wind farm. The unweighted 
graph can be seen as a stationary a priori component of the rela-
tionship between the wind turbines, which comes from the loca-
tion of the wind turbines inside the wind farm. It may be completed 
with an online component coming from the time series we are in-
terested in. We propose to keep the structure of the unweighted 
graph G and to move from unweighted to weighted edges. Say we 
are interested in Xi

t, the power generation of wind turbine vi at time 
t normalized by the nominal capacity of the wind turbine. We have 
Xi
t ∈ [0,1] for t = 1, … ,T , i = 1, … ,N. An edge between two 

wind turbines is to be weighted according to how similar these 
wind turbines are. Working with power generation, this translates 
to the similarity between their productions at time t. Let xit, resp., 
x
j
t, be the observed power generation of wind turbine vi, resp., vj, at 

time t. A simple and intuitive choice for the similarity between xit 
and xjt is st(i, j) = 1 − |xit − x

j
t |, st(i, j) ∈ [0,1]. Note that if two wind 

turbines that are not connected in graph G happen to have very 
similar power generation values at time t, they remain uncon-
nected. By doing so, we enforce a stationary a priori on the rela-
tionship between the wind turbines out of the structure of the 

(5)Lf = �Df.

(6a)Lf0 = �0Df0,

(6b)Lf1 = �1Df1,

(6c). . .

(6d)LfN−1 = �N−1DfN−1,

(6e)0 = �0 ≤ �1 ≤ … ≤ �N−1.

(7)zi = (f1(vi), … , fr(vi)).
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wind farm, but not only: We also keep a sparse adjacency matrix, 
which now depends on t. Indeed, we have At = (at,ij)i,j=1,…,N, 

where at,ij = st(i, j) if vertices vi and vj are connected by an edge, 

at,ij = 0 otherwise. This implies to solve the generalized eigenprob-
lem (5) at each time step t, which can be done rather easily when 
dealing with sparse matrices At.

2.3.2   |   Online, Changing Graphs

Because of the way G's edges are now weighted, it can happen that 
two wind turbines that are a priori connected get disconnected 
because st(i, j) = 0 for some time t. In such a case, we can get a 
graph that is not connected anymore; that is, we cannot travel 
through the whole graph from any point in the graph. To com-
pute eigenmaps the generalized eigenproblem (5) must be solved 
for a connected graph, which ensures rank(D) = N and there are 
N eigenvalues, or �(L,D) may be finite, empty, or infinite [28]. 
Therefore, when a graph has several components, the algorithm 
for computing eigenmaps consists of solving the generalized ei-
genproblem  (5) for each connected component, which we will 
do for components with at least three wind turbines. When a 
wind turbine splits from the graph on its own, it is straightfor-
ward to derive its production value from its neighbors as typically 
a wind turbine vi gets disconnected at time t because xit = 0 and 
x
j
t = 1 for all its neighbors vj. When two wind turbines get dis-

connected together, the similarity between the two is usually 
high enough to replace the record that is missing with the one 
that is available. Since we are online and in high dimension, we 

need to be able to automatically detect when the graph is not 
connected anymore, and what are its connected components. 
Let Lrw = D−1L = I −D−1A be the so-called normalized graph 
Laplacian, which is the graph Laplacian we use to compute ei-
genmaps. We recall a basic yet very useful property of this graph 
Laplacian [27], that makes it easy to derive the connected com-
ponents of G at time t if the multiplicity of the eigenvalue 0 of 
Lrw,t becomes higher than 1. Let G be an undirected graph with 
non-negative weights. The multiplicity d of the eigenvalue 0 of the 
graph Laplacian Lrw equals the number of connected components 
A1, … ,Ad in the graph and the eigenspace of 0 is spanned by the 
indicator vectors �Ai of those components.

So far we have assumed the similarities st(i, j) to be known. 
Because our application is the imputation of missing values, the 
true distances are actually known at time t among the wind tur-
bines for which data points are available, but they are not for the 

edges involving wind turbines for which the record is missing and 
we need to replace them with estimates. To avoid having to spec-
ify a model for the similarities between all individual time series, 
we place ourselves in the online learning framework. The goal in 
this learning paradigm is to guess a sequence of numbers as pre-
cisely as possible, when the data are chosen by an adversary rather 
than generated stochastically [29, 30]. In our framework this 
translates as the following repeated game: In each round 
t = 1, … ,T, for each similarity between two connected wind tur-
bines st(i, j), an adversary chooses a real number in [0,1] and keeps 
it secret; we try to guess the real number, choosing ŝt(i, j); the ad-
versary number is revealed and we pay the squared difference 
(st(i, j)− ŝt(i, j))

2. Online learning is appealing from both a theo-
retical and practical point of view because a lot of problems can be 
described as such a repeated game, which does not require strong 
assumptions to offer nice theoretical guarantees. One shall note 
that the last step of the repeated game when the adversary number 
is revealed does not happen if some of the data are missing. 
Therefore, in order to account for the possibility of missing data, 
the game is slightly modified and we pay (st(i, j)− ŝt(i, j))2 only if 
st(i, j) is revealed [8]. Using the notation �{st (i,j)} as the indicator of 
the event {st(i, j)is revealed}, we pay now (st(i, j)− ŝt(i, j))2�{st (i,j)}. 
In such a missing data, convex framework, an online strategy 
with good theoretical guarantees is the lazy version of OGD [31], 
which is applied to our problem in Algorithm 1, where Π[0,1] is the 
projection back to [0,1]. We also consider the best constant strat-
egy, i.e, the strategy that minimizes 

∑T
t=1 (st(i, j)− ŝt(i, j))

2
�{st (i,j)}

, 

which is just choosing ŝt(i, j) to be the average similarity ∑T
t=1 st(i, j)�{st (i,j)} ∕

∑T
t=1 �{st (i,j)}

 in each round t.

By choosing the online learning framework, we do not only 
free ourselves from any model assumption, we also allow our 
weighted-graph estimator to be of use as soon as there are data 
points for some of the wind turbines. At the beginning of a wind 
farm's life, when not all wind turbines are on yet, the estimator 
can work with a graph G being restricted to the operational wind 
turbines. As soon as a wind turbine gets started, Algorithm 1 
can be run to estimate the similarities that might be missing 
between this wind turbine and its neighbors. The theory un-
derlying the lazy version of OGD ensures that we minimize our 
regrett(i, j), that is, the quantity that measures how much our 
algorithm regrets for not sticking to the optimal choice in hind-
sight after t  iterations [30, 31]: 

(8)t(i, j) =

t∑

k=1

(
ŝk(i, j)− sk(i, j)

)2
− min

s∈ [0,1]

t∑

k=1

(s− sk(i, j))
2.
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2.4   |   Computational Complexity of the Estimators

Let Tmv be the number of time steps t = 1, … ,T such that 
nt < N. The computational complexity of the estimators we 
have introduced is available in Table  2. It increases alongside 
the complexity of the method at hand. The naive estimator only 
requires to average over the available records at each time step 
t ∈ 1, … ,Tmv. Before computing a weighted average, the loca-
tion estimator requires to first compute, once and for all, the 
geographical distances between wind turbines. Similarly, the 
unweighted-graph estimator requires to first solve the general-
ized eigenvalue problem in Equation (5). The weighted-graph es-
timator is the most demanding in terms of time complexity since 

it requires to solve the generalized eigenvalue problem at each 
time step t ∈ 1, … ,Tmv before computing a weighted average. 
On the other hand, it is the only one that accounts for informa-
tion provided by collected power generation data.

3   |   Application and Case Study: Westermost Rough

We apply the method presented in Section  2 to a real use case, 
the Westermost Rough offshore wind farm. Westermost Rough is 
located near the Eastern coast of the United Kingdom and totals 
35 wind turbines that are placed according to a grid pattern. A 
representation of the wind farm through the position and name 

FIGURE 1    |    Position and name of the 35 wind turbines in Westermost Rough offshore wind farm (UK).

TABLE 2    |    Estimators for the nt-NN imputation of power generation's missing values, along with their computational complexity.

Estimator k-NN Graph Computational complexity

Naive Unweighted No O(TmvN)

Location Weighted No O(N2
+ TmvN)

Unweighted-graph Weighted Yes, unweighted O(N3
+ TmvN)

Weighted-graph Weighted Yes, weighted O(TmvN
3)
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of its wind turbines is available in Figure 1. The pattern is rather 
usual and the number of wind turbines high enough to support 
our method, but not too high for us to deliver a detailed and visual 
analysis. Through this example, we wish to deliver good practices 
and to emphasize challenges that generalize to bigger and/or more 
complicated wind farms. Along with the exact position of the wind 
turbines, we have data records over 2 years, from January 1, 2016 
to December 31, 2017, at a temporal resolution of every 10 min. 
We will focus on the graph representations in Section 3.1 and will 
apply the method to power generation imputation in Section 3.2.

3.1   |   The Westermost Rough Graph 
Representations

When constructing a graph, one's objective is to model the local 
neighborhood relationships and we choose to connect wind tur-
bines that are actual neighbors; that is, there is no other wind 
turbine nor empty space between them. The corresponding 
graph is presented in Figure  2. This is an important step for 
which there is no absolutely right choice and one should keep 
in mind that choosing an appropriate a priori graph matters to 
the results. For example, in the case of Westermost Rough, one 
could choose not to connect wind turbines that are neighbors 
through a diagonal. How did we choose this graph? When look-
ing at the exact locations, it turns out that the grid pattern is 
not exact and in reality two wind turbines on what looks like a 

diagonal might be closer than two wind turbines on an horizon-
tal line. Also, the direction of the wind might matter more than 
the real distances and, last but not least, the more neighbors for 
a wind turbine may be the better.

Now that we have decided upon our reference graph G = (V ,E), 
we start with an unweighted version of G, that is, the edges E 
have 0/1 weights only. We compute the corresponding Laplacian 
matrix L = D −A and solve the generalized eigenvalue problem 
in (5). We leave out the (first) constant eigenvector and get an 
embedding zi for every wind turbine vi. These embeddings are of 
maximal size 34, that is, N minus the first constant eigenvector 
f0. In Figure 3, we show the corresponding representations of the 
wind turbines according to eigenvectors f1 and f2 (left) and eigen-
vectors f2 and f3 (right). On these eigenmaps, the wind turbines 
are smoothly clustered together over the wind farm according 
to their position, where both the local neighborhoods and the 
whole structure of the wind farm are accounted for. These plots 
provide nice insight about the representations learned from 
running the eigenmap algorithm over the unweighted graph, 
and how they embed the local and global geometry of the wind 
farm's layout in a lower dimension.

We focus on imputing missing data for wind power generation. 
Hence, we can weight the edges E of G using the methodology and 
the similarity described in Section 2.3, where st(i, j) = 1 − |xit − x

j
t | 

is the similarity at time t between the power generations xit and xjt 

FIGURE 2    |    Graph of the Westermost Rough offshore wind farm with color code.
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of two connected wind turbines vi and vj. Working with weighted 
graphs whose weights vary over time, the eigenmap algorithm 
needs to be run, and we get different embeddings, at every time 
t. As mentioned in Section 2.3.2, the graph itself can change, if 
an edge's weight becomes 0 at time t. As for the representations 
learned by the eigenmap algorithm, the clusters are still depen-
dent upon the original graph G, that is, upon the geography of the 
wind farm, but the distances between the embeddings may now 
change depending on an edge's weight st(i, j).

3.2   |   Imputation of Power Generation Values

3.2.1   |   Evaluation Setup

In the methodology we propose, we do not estimate any param-
eters and try to minimize the number of decisions that need to 
be made. Nonetheless, when moving to imputation, we need to 
decide on a few user-specified parameters (or hyperparameters), 
which are:

•	 The number of dimensions r we keep for the embeddings zi 
we get out of the unweighted graph or the embeddings zit we 
get out of the weighted graphs,

•	 The kernel function that turns the distances between these 
embeddings into weights for the weighted k-NN imputation,

•	 The learning rate � in Algorithm 1 if we use weighted graphs 
and lazy OGD.

Recall that we have 2 years of data records over the Westermost 
Rough wind farm, 2016 and 2017. We split this dataset into 
two sets: a validation set, the first year of data, 2016, for decid-
ing upon the hyperparameters; a test set, the second year, 2017, 
for evaluating our method compared to the naive Nadaraya-
Watson estimator that is our current reference and to the location 
Nadaraya-Watson estimator that is a standard weighted k-NN es-
timator. We evaluate the different estimators through the RMSE 

which we will compute for each wind turbine vi, where Ti is the 
number of records for which xit is available. We compute the 
RMSE in Equation (9) for two different setups:

•	 A setup we call “incomplete,” where we compute (9) for all 
data records that include xit, no matter what other data re-
cords are available at time t ;

•	 A setup we call “complete,” where we compute (9) on com-
plete data records only, that is, such that we have xt for all N 
wind turbines.

The validation set consists of 52,669 records, 23,499 records being 
complete records. The test set consists of 52,549 records, 29,560 
records being complete records. The incomplete setup enables 
us to evaluate the quality of the estimates for each wind turbine, 
taking into account the reality of the availability of other records, 
while the complete setup measures an ideal quality of the esti-
mate, in the sense that we assume all the other records to be avail-
able. Note that to simulate our own missing values is not really an 
option on this dataset, as we only have nearly half of the records 
that are complete records, and they are unlikely to be successive 
records, breaking down the dynamics of the time series.

3.2.2   |   Hyperparameter Selection

The estimators we are evaluating are as follows:

•	 The naive estimator: Nadaraya-Watson estimator with a 
naive kernel, which comes down to equal weights for all 
available data records;

•	 The location estimator: Nadaraya-Watson estimator that as-
signs weights depending on the geographical distances be-
tween the wind turbines;

•	 The unweighted-graph estimator: Nadaraya-Watson estima-
tor that assigns weights depending on the distances between 
embeddings obtained from an unweighted graph G;

•	 The weighted-graph estimator: Nadaraya-Watson estimator 
that assigns weights depending on the distances between 
embeddings obtained from online weighted graphs Gt.

(9)

√√√√√ 1

Ti

Ti∑

t=1

(
xit −

nt∑

j=1

w
(ji)
t x

(j)
t

)2

,

FIGURE 3    |    Representation of the wind turbines according to dimensions 1 and 2 (left) and dimensions 2 and 3 (right).
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On the validation set, the location estimator gives the best 
results when using a triweight kernel. The improvements 
achieved on the RMSE compared to using a naive kernel are 
listed in Table 3, as averages over the wind farm, along with 
the standard deviation depending on the wind turbine. The 
unweighted-graph estimator is always better using a dimen-
sion r = 2 for the embeddings. While in the complete setup to 
use a triweight kernel gives the best results, there is less dif-
ference between using a triweight and a quartic kernel in the 
incomplete setup. The improvements achieved on the RMSE 
depending on the dimension r and the kernel are listed in 
Table 4. The improvements depending on the dimension are 
averaged over the wind turbines and the different kernels, 
while the improvement depending on the kernel are shown 
for r = 2.

For the weighted-graph estimator, we need to use estimated 
similarities on the edges between the wind turbine we are test-
ing and its neighbors in the complete setup, and on all edges 
involving missing data records in the incomplete setup. We can 
choose what estimated similarity to use without running the 
eigenmap algorithm by looking at the loss we pay on the vali-
dation set: 

In the online learning paradigm, the loss in (10) is a reference 
when computed for the best constant strategy 

The difference between the loss of any other strategy and the 
loss of the best constant strategy is known as the regret (of not 
sticking to the best choice in hindsight, as introduced in 
Section  2) and is what theoretical results for online learning 
mostly focus on, that is, ensuring the regret is (nicely) bounded 
when using a specific strategy. When computing the regret of 
lazy OGD on the validation set for different values of the learn-
ing rate �, it is clear that lazy OGD provides far better results 
than the best constant strategy. This is a confirmation that the 
similarities between wind power time series are nonstationary. 
An optimal learning rate can be computed from theoretical re-
sults on lazy OGD. Let D be the diameter of the support  of the 
loss function lt we pay in each round t, B an upper bound to the 
norm of the gradients of lt and T the number of rounds. The re-
gret of lazy OGD is best bounded by taking � = D

�
B
√
T
�−1

 [31]. 

We have  = [0,1], D =
√
maxst ,̂st∈(st(i, j) − ŝt(i, j)) = 1 and 

B = 2 as 

(10)
Tval∑

t=1

lt(i, j) =

Tval∑

t=1

(st(i, j)− ŝt(i, j))
2
�{st (i,j)}

.

(11)ŝ(i, j)=

Tval∑

t=1

st(i, j)�{st (i,j)}

/ Tval∑

t=1

�
{st (i,j)}

.

(12)‖ ∇ lt(i, j)‖ = ‖ − 2(st(i, j) − ŝt(i, j))�{st (i,j)} ‖ ≤ 2.

TABLE 3    |    Average improvement by kernel on the validation set for the location estimator.

Setup Gaussian Epanech Triangular Quartic Triweight Tricube

Incomplete 1.81% (0.95) 2.58% (1.42) 3.45% (1.96) 3.83% (2.27) 4.52% (2.87) 3.66% (2.20)

Complete 2.10% (1.08) 3.00% (1.58) 4.07% (2.20) 4.55% (2.51) 5.44% (3.13) 4.34% (2.41)

TABLE 4    |    Average improvement by dimension and by kernel on the validation set for the unweighted-graph estimator.

Setup r = 1 r = 2 r = 3 r = 4 r = 5

Incomplete 2.40% (3.31) 4.21% (3.18) 3.60% (2.92) 3.61% (3.08) 3.03% (2.82)

Complete 2.73% (3.95) 5.17% (3.52) 4.55% (3.27) 4.51% (3.36) 3.83% (3.17)

Setup Gaussian Epanech Triangular Quartic Triweight Tricube

Incomplete 2.53% (1.30) 3.99% (2.42) 4.52% (2.96) 4.75% (3.51) 4.79% (4.10) 4.70% (3.55)

Complete 3.04% (1.51) 4.85% (2.67) 5.52% (3.25) 5.84% (3.85) 5.95% (4.45) 5.81% (3.89)

TABLE 5    |    Average improvement by dimension and by kernel on the validation set for the weighted-graph estimator.

Setup r = 1 r = 2 r = 3 r = 4 r = 5

Incomplete 4.95% (3.47) 7.09% (3.21) 6.80% (3.23) 7.40% (3.79) 6.85% (3.44)

Complete 5.63% (4.60) 8.15% (4.34) 7.66% (4.21) 8.13% (4.41) 7.45% (4.15)

Setup Gaussian Epanech Triangular Quartic Triweight Tricube

Incomplete 3.31% (1.00) 5.72% (2.08) 7.27% (2.61) 8.94% (3.45) 10.00% (4.26)  9.19% (3.67)

Complete 3.61% (1.39) 6.31% (2.71) 7.96% (3.25) 9.82% (4.06) 10.93% (4.98) 10.15% (4.34)
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Since we deal with missing data, we get � =
�
2
�∑Tval

t=1
�{st (i,j)}

�−1

 

[8]. The learning rate is usually set to decrease over time when 
one is interested in converging to an optimal solution. Since we 
want to track a time-varying quantity, a standard approach is to 
rather choose the learning rate to be constant. Therefore, we take 
� = 0.5. This is empirically verified on our validation set as better 
regrets are obtained for constant learning rates in [0. 3,0.5]. In 
the case where � = 0.5, lazy OGD comes down to what is known 
as persistence in time series forecasting without missing values, 
which is simply to use the last observed value. When using lazy 
OGD with � = 0.5, the best kernel is again the triweight kernel in 
the complete setup, but the best results are now obtained using 
a dimension r = 4 for the embeddings. In the incomplete setup, 
the best estimator is also the one that uses a triweight kernel 
and a dimension r = 4 for the embeddings. The improvements 
achieved on the RMSE depending on the dimension r and the 
kernel are listed in Table 5. The improvements depending on the 
dimension are averaged over the wind turbines and the different 

kernels, while the improvement depending on the kernel are 
shown for r = 4.

3.2.3   |   Results on the Test Set

Out of the results on the validation set, we compute the es-
timators over the test set using a triweight kernel. For the 
unweighted-graph estimator, we use embeddings of dimension 
2. For the weighted-graph estimator, we use embeddings of di-
mension 4 and lazy OGD with � = 0.5. The results on the test set 
in the complete, resp., incomplete, setup are given in Table  6, 
resp., in Table 7. They are averaged over the wind turbines. The 
improvement over the naive estimator is plotted by wind turbine 
in Figure 4, resp., in Figure 5, for each estimator. Accounting 
for the geographical distance between a wind turbine and its 
neighbors already improves the estimates for every wind turbine 
compared to a naive estimator that assigns the same weight to 
all neighbors. With additional information about the distances 

TABLE 6    |    Results on the test set in the complete setup.

Estimator Avg RMSE (sd) Avg impr./naive Best impr./naive (vi)
Worst impr./

naive (vi)

Naive 12.32% (2.86) — — —

Location 11.55% (3.02)  6.83% 17.69% (F06)  0.65% (C06)

Unweighted-graph 11.50% (3.06)  7.25% 21.36% (F06) −4.10% (C03)

Weighted-graph 11.11% (2.95) 10.34% 20.50% (C07) −2.11% (C03)

TABLE 7    |    Results on the test set in the incomplete setup.

Estimator Avg RMSE (sd) Avg impr./naive Best impr./naive (vi)
Worst impr./

naive (vi)

Naive 12.14% (2.35) — — —

Location 11.39% (2.44)  6.49% 14.45% (F06)  0.94% (C06)

Unweighted-graph 11.34% (2.47)  6.93% 17.31% (F06) −4.01% (C03)

Weighted-graph 10.92% (2.42) 10.35% 23.20% (D01) −2.59% (C03)

FIGURE 4    |    Improvements over the naive estimator by wind turbine in the complete setup.
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between the neighbors themselves, through the structure of the 
wind farm, the estimators perform better on average over the 
wind farm, but there is more variability depending on the wind 
turbine. In particular, the power generation of wind turbine C03 
is better approximated by a naive estimator.

The improvement we get from using the weighted-graph esti-
mator is significant overall, for both complete and incomplete 
setups, and more stable over wind turbines. The weighted-
graph estimator performs better imputation for wind turbines 
that are on the outer parts of the wind farm, up to more that 20% 
for some of them. As a reference, if we use the real similarities 
for the edges in the complete setup instead of the estimates from 
lazy OGD, the overall improvement over the naive estimator is 
11.21%, compared to 10.34% with the estimates. There is still 
room for improving the estimated similarities, for example by 
taking into account exogenous information such as the wind di-
rection or speed, but the lazy OGD already performs pretty well.

Finally, note that on the test set 43.76% of the records are not 
complete. Most of these incomplete records miss wind power 
generation data for one (69.57%), two (23.22%) or three wind tur-
bines (6.79%). The case when only one record is missing is well 
described by our complete setup, where we remove the record of 
only one wind turbine and look into how well the missing data 
point is imputed by the estimator, depending on which turbine 
it has been removed for.

3.3   |   Discussion

First, let us acknowledge that when working at an aggregated 
level, over large wind farms, if in most cases only one record 
is missing at time t  out of N, averaging over the remaining 
N − 1 records seems fair enough, at least for Westermost Rough. 
However, this might not be the case for wind farms with less 
conventional layouts. Accounting for the geographical distances 
when computing the weights of a weighted average can already 
lead to significant improvements. The additional information of 
the structure of the wind farm gave better estimators on aver-
age, but at the cost of more instability, by degrading the imputa-
tion for some wind turbines. In particular, this was the case for 
wind turbine C03, which does not benefit from employing more 

advanced estimators, although this degradation was limited by 
including information about the power generation through a 
weighted graph. Wind turbine C03 has a very central position, 
which supports the choice of an estimator with equal weights. It 
might also be that C03's closer neighbors show a rather different 
behavior and do not help much in estimating its power genera-
tion, for example, because of wave effects. An option may be to 
consider a different graph G, which would link C03 to another 
wake-affected turbine, such as C06. This is directly related to 
our comment in Section  3.1 about the importance of deciding 
on a graph. Note that we have restrained ourselves to the choice 
of a common kernel over the wind farm. If choosing a different 
dimension r for the embeddings would not make much sense, 
to choose a different kernel for different wind turbines seems 
rather appropriate depending on the position of the wind tur-
bine in the wind farm. However, moving into that direction, we 
would rather opt for replacing the Nadaraya-Watson estimators 
with an algorithm that can compute optimal weights efficiently 
and adaptively for each data point we wish to estimate, out of the 
distances between the wind turbines [25].

If one is interested in individual signals, the methodology we 
propose can make much more difference, since for some wind 
turbines the graph-based estimators improve the power genera-
tion estimates by more than 20%. We have focused here on what 
is known as single imputation as we have tried to impute miss-
ing entries as accurately as possible, which gives us only one 
completed dataset. Multiple imputation on the other hand con-
sists in predicting M different values for each missing data point 
and provides M imputed datasets. Multiple imputation is usu-
ally preferred, for inference tasks in particular, as it ensures that 
the variance is properly accounted for. We want to emphasize 
that k-NN nicely enable to move to a probabilistic framework, 
when one is interested in the distributions of the time series, 
since a weight w(jl) can be seen as the probability of the missing 
data point x(l) to take the value of the available data point x(j). 
Let �x(j) (x) denote the Dirac delta mass located at x(j). Instead 
of using a weighted average as a point estimate of x(l), we can 
assume x(l) to be distributed according to the empirical measure 

(13)�̂(x) =

n∑

j=1

w(jl)�x(j) (x),

FIGURE 5    |    Improvements over the naive estimator by wind turbine in the incomplete setup.
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and simply sample from (13), that is, select x(j) with probability 
w(jl).

The location and unweighted-graph estimators can be very 
useful early on in the life of a wind farm, as they do not re-
quire any data points. The weighted-graph estimator does use 
data points but can start as soon as there are data points for 
some wind turbines, as it does not require any model assump-
tion nor estimation. The a priori we base our method on, by 
building the graph upon the structure of the wind farm, can 
be seen both as a pro and a con of the method, since it en-
forces proximity between wind turbines depending on their 
position inside the wind farm. This can bring robustness if it 
is appropriate, or instability when it is not, as we have seen 
with wind turbine C03. We have already mentioned this could 
be mitigated by moving from Nadaraya-Watson estimators to 
optimal weights thanks to an efficient algorithm [25], or by 
choosing a different graph. When using data points, that is 
weighted graphs, an alternative would be to remove this as-
sumption and start from what is known as a complete graph, 
where all pairs of wind turbines are connected by an edge. 
Then, the complete graph would evolve online depending on 
the similarity on the edges as in Section 2.3.2. However, this 
would require to monitor N(N − 1)∕2 similarities and to per-
form eigendecomposition on matrices that are unlikely to be 
sparse anymore.

4   |   Conclusion and Future Directions

From the intuitive practice of averaging over a wind farm in 
order to deal with missing data points, we have focused on 
weighted k-NN imputation for wind power generation and dealt 
not only with distances between a wind turbine and its neigh-
bors but also with distances between the neighbors themselves 
by learning graph representations. Weighting the graph edges 
with the similarity at time t  between two data points from two 
time series and using spectral graph theory has enabled us to 
compute online representations that could adapt to changes in 
the relationship between a wind turbine and its neighbors, typ-
ically when a wind turbine is not producing. The methods we 
have introduced may be applied to perform imputation for other 
quantities of interest over the wind farm. However, not all quan-
tities would share the nice feature of normalized power genera-
tion, namely, to belong to the unit interval [0,1]. If not, one would 
need to rethink Algorithm 1, which estimates the missing simi-
larities when working with an online weighted-graph estimator.

When using Nadaraya-Watson estimators, we chose and ap-
plied the kernel that gave the best results on average over 
the wind farm, and over the data records. We believe our 
method could benefit from replacing these estimators with 
an algorithm that would rather compute optimal weights ef-
ficiently and adaptively for each data point when performing 
the weighted k-NN imputation. By each data point we mean 
by wind turbine, and at each time step t  in the case of on-
line weighted graphs. This may bring more robustness to the 
unweighted-graph imputation, since the method would adapt 
to any wind turbine without having to make any kernel as-
sumption. The same applies to weighted-graph imputation, 
although some of the uncertainty is already handled through 

the addition of data information. Of course, the price to pay 
would be more computational effort.

A better imputation of missing values makes it easier to learn 
better forecasters, but imputation methods often require as-
sumptions on distributions and some may be difficult to apply 
to any sort of predictor. Nearest-Neighbor imputation can be 
used with any predictor and do not ask for any other assumption 
than similar neighbors. In a highly nonstationary setup, such as 
offshore wind energy, the data point from the neighboring time 
series might just be one of the best estimates we can get for the 
data point we are missing.

Nomenclature
�	 learning rate of lazy OGD
�	 eigenvalue
A	 adjacency matrix
D	 degree matrix
f 	 eigenvector
L	 Laplacian matrix
zi	 embedding of wind turbine i
E	 set of edges
G	 graph
K	 kernel
lt(i, j)	 loss function we pay at time t  when guessing the simi-

larity between records of wind turbine i and wind tur-
bine j

N	 total number of wind turbines
nt	 number of records available at time t
r	 dimension of the embeddings
st(i, j)	 similarity between records of wind turbine i and wind 

turbine j at time t
T	 total number of records
t 	 time step
V 	 set of nodes (or vertices)
vi	 node i
w(ji)	 weight of the j-th available record when imputing 

the i-th missing record with k-NN
x(i)	 x (e.g., power generation) of the i-th wind turbine 

among a varying set
xi	 x of wind turbine i among the total set i = 1, … ,N

xit	 x of wind turbine i at time t
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