
1 of 13Wind Energy, 2024; 0:e2962
https://doi.org/10.1002/we.2962

Wind Energy

RESEARCH ARTICLE OPEN ACCESS

Data Are Missing Again—Reconstruction of Power
Generation Data Using k-Nearest Neighbors and Spectral
Graph Theory
Amandine Pierrot1   | Pierre Pinson2,3,4,5

1Department of Wind and Energy Systems, Technical University of Denmark, Kongens Lyngby, Denmark  |  2Dyson School of Design Engineering, Imperial
College London, London, UK  |  3Halfspace, Copenhagen, Denmark  |  4Department of Technology, Management and Economics, Technical University of
Denmark, Kongens Lyngby, Denmark  |  5CoRE, Aarhus University, Aarhus, Denmark

Correspondence: Pierre Pinson (p.pinson@imperial.ac.uk)

Received: 8 June 2023  |  Revised: 30 August 2024  |  Accepted: 31 October 2024

Funding: The research leading to this work was carried out as a part of the Smart4RES project (European Union's Horizon 2020, No. 864337).

Keywords: Laplacian eigenmaps | missing data | Nadaraya-Watson estimators | time series | wind power forecasting

ABSTRACT
The risk of missing data and subsequent incomplete data records at wind farms increases with the number of turbines and sen-
sors. We propose here an imputation method that blends data-driven concepts with expert knowledge, by using the geometry of
the wind farm in order to provide better estimates when performing nearest neighbor imputation. Our method relies on learning
Laplacian eigenmaps out of the graph of the wind farm through spectral graph theory. These learned representations can be
based on the wind farm layout only or additionally account for information provided by collected data. The related weighted
graph is allowed to change with time and can be tracked in an online fashion. Application to the Westermost Rough offshore
wind farm shows significant improvement over approaches that do not account for the wind farm layout information.

1   |   Introduction

According to the International Energy Agency, overall wind
power generation increased by a record 17% in 2021. Of the
total 830 GW installed, 93% were still onshore systems, as on-
shore wind is a developed technology while offshore wind is
still at the early stage of expansion. However, offshore reach
is expected to increase in the coming years as more countries
are developing or planning to develop their first offshore wind
farms. From the world's first offshore wind farm, Vindeby in
Denmark, which totalled 11 turbines in 1991, the size of off-
shore wind farms has increased up to more than a hundred
wind turbines nowadays, for example, Hornsea 1 in the United
Kingdom that totals 174 wind turbines. While data recorded
by wind turbines are of great value for wind farm and system

operators, they are subject to information loss from, for ex-
ample, power and communication failures, instrumentation
issues, or human error. Missing data in wind farm time se-
ries can impact revenue [1], wind energy resource assessment
[2], wind farm control [3], or the estimation of power curves
[4]. In particular, they negatively impact forecasting models,
which for short-term lead times (from a few minutes to a few
hours ahead) are better be statistical models trained on histor-
ical data, or online learning methods that require the most re-
cently observed data [5]. Because of the increasing number of
turbines in offshore wind farms, the issue of missing data gets
even more critical. Let T be the total number of records over
a wind farm, measured at successive time steps t = 1, … ,T
(usually spaced at uniform intervals). Now, assume a data
point is missing for a wind turbine at time t with probability

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

© 2024 The Author(s). Wind Energy published by John Wiley & Sons Ltd.

Abbreviations: AR, autoregressive; EM, expectation-maximization; MAR, missing at random; MCAR, missing completely at random; MNAR, missing not at random; NN, nearest neighbors;
OGD, online gradient descent; RMSE, root mean square error.

https://doi.org/10.1002/we.2962
https://doi.org/10.1002/we.2962
https://orcid.org/0000-0002-6208-4735
mailto:
mailto:p.pinson@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/

2 of 13 Wind Energy, 2024

0.01, independently from other wind turbines. With a number
of wind turbines N = 11, this would result in about 90% of the
T records being complete; that is, data points are available for
all N wind turbines. With N = 174 wind turbines, the propor-
tion of complete records drops to 17% and the workaround that
consists of assuming data completeness and deleting records
with missing entries is not sensible anymore [6].

Alternatives remain for dealing with increasing missing data.
One is to develop methods where the assumption of data com-
pleteness is not needed anymore. In the context of time series,
works exist that make assumptions about the missing data
patterns [7], or need not even make any assumptions [8], and
estimate AR models. Other works develop models that are ro-
bust to missing data [9]. Another alternative is to provide im-
putations for missing values, that is, to replace missing data
points with plausible values. Classical statistical imputation
methods use maximum likelihood estimators that correspond
to a specific underlying model. A very popular approach for
dealing with missing data in time series is the EM algorithm
[10], which relies on two steps: At the E-step, missing values are
filled in with their conditional expectation given the observed
data and the current estimate of the model parameters; at the
M-step, new estimates of the parameters are computed from
the current version of the completed data. This procedure re-
quires assumptions on the distributions of both observed and
missing data. A widely used [11], yet controversial [12], nomen-
clature for missing value mechanisms distinguishes between
three cases: MCAR, MAR, and MNAR. In MCAR, the proba-
bility of a data point being missing is completely independent
of any variables in the dataset, while in MAR, the probability
of being missing depends only on observed values. These first
two mechanisms are considered the simple ones, in the sense
that they do not make it necessary to model the distribution
of the missing values when maximizing the likelihood of the
observations. The third mechanism is the harder yet prevalent
one, as the probability of a point being missing is dependent on
the value it would have taken. This leads to important biases in
the remaining data whose distribution is not the true distribu-
tion anymore. Missing value imputation is appealing because it
makes it possible to first get a completed dataset, and then apply
any statistical learning algorithm that relies on the complete-
ness assumption. Yet, there is a wide range of situations where
it might be more or less legitimate to use imputation. This has
to do not only with the missing value mechanism, but also with
the task to be performed on the completed dataset. For super-
vised learning tasks such as regression (e.g., for forecasting,
eventually), theoretical and empirical results outline simple
practical recommendations [13] when using imputation meth-
ods. In particular, the same imputation model should be used
to train and test on data with missing values. Empirically, bet-
ter imputation methods seem to reduce the number of samples
required to reach good prediction. When the supervised learn-
ing algorithm is of the regression kind, almost all imputations
lead asymptotically to the optimal prediction with a powerful
learner, no matter the missing value mechanism. This result
gives theoretical grounding to all impute-then-regress proce-
dures. Yet, a good choice of imputation can reduce the com-
plexity of the regression function to be learned, and therefore,
it is suggested that learning imputation and regression jointly
is easier [14, 15].

In the context of offshore wind farms, we deal with multivariate
time series, as we record N data points, one for each wind tur-
bine, at each time step t . This opens a new range of methods for
missing data imputation, as one can exploit information from
another (potentially correlated) sensor, in our case another wind
turbine. Recently, several deep learning approaches have been
proposed for multivariate time series imputation [16–18]. When
interested in the average production of a wind farm, it is quite
intuitive to work with the average of the individual production
values that are available at time t . By doing so, one implicitly
performs k-NN imputation. The k-nearest neighbors algorithm
is a seminal nonparametric method in machine learning [19, 20].
In a nutshell, it uses the k closest points to a point of interest to
make a decision about the latter. When using k-NN for imputa-
tion purposes, one considers the k nearest neighbors of a missing
point to provide an estimate of its value [21]. The assumptions
associated with this imputation method are very weak: We
do not need assume any model generating the data, observed
or missing, and only assume similar groups of observations.
Moreover, the method applies for all missing data mechanisms.
In Section 2, we make it explicit how to work with a quantity of
interest averaged over nt available records comes down to per-
forming unweighted nt-NN imputation. We propose to improve
it by moving from unweighted to weighted nt-NN imputation
through Nadaraya-Watson estimators. Each neighbor will now
enter the k-NN algorithm with a different weight, hopefully the
closer the higher. A higher weight for a closer neighbor means
we are able to measure how close with an appropriate distance.
We show how to use graph spectral theory to compute Laplacian
eigenmaps, that is, new representations of the wind farm as a
graph that take into account local and global geometries. We
consider the case where we only use the structure of the wind
farm when learning its representation and the case where we
also use values of the quantity we wish to perform imputation
for. Regarding the latter, we focus on power generation, but
other missing quantities could be considered, for example, wind
speed. The method is illustrated on the Westermost Rough off-
shore wind farm and results for the imputation of power gen-
eration missing values are presented in Section 3. Finally, we
provide some conclusions and perspectives in Section 4.

2   |   Imputation Using Nearest Neighbors and
Graphs

In this section, we introduce the different estimators at hand to
perform nt-NN imputation when interested in the power gen-
eration over a wind farm. They are summarized in Table 1.
Weighted k-NN imputation is introduced in Section 2.1, and
unweighted graphs are introduced in Section 2.2 and weighted

TABLE 1    |    Estimators for the nt-NN imputation of power generation's
missing values.

Estimator k-NN Graph

Naive Unweighted No

Location Weighted No

Unweighted-graph Weighted Yes, unweighted

Weighted-graph Weighted Yes, weighted

3 of 13

graphs in Section 2.3. The naive and location-based methods are
to be seen as standard ones, as opposed to the proposed graph-
based methods. The naive estimator is an unweighted k-NN
benchmark, while the location estimator is a weighted k-NN
benchmark.

2.1   |   Weighted Nearest Neighbor Imputation

Let Xt be an average quantity of interest over a wind farm at time
t . We have

where Xi
t is the quantity of interest for the i - th wind turbine at

time t and N is the total number of wind turbines in the wind
farm. When some of the Xi

t s are missing, assume that we work
instead with the estimate

where X (j)
t is the quantity of interest for the (j)-th wind turbine

record available at time t, nt being the number of available wind
turbine records. Imputation using the k-NN method consists
of filling in a missing value using the values from its k nearest
neighbors. Unweighted k-NN assign the same weight to every
neighbor, when weighted k-NN assign a higher weight to a
closer neighbor. Let us replace each missing value X (l)

t with its
unweighted nt-NN estimate X̂

(l)

t =
1

nt

∑nt
j=1

X
(j)
t . We have

Hence, to work with X̂ t from (2) is equivalent to filling in the
missing values (X (l)

t)l=nt+1,…,N using unweighted nt-NN esti-
mates, that is, every neighbor X (j)

t is assigned the same weight
1∕nt. However, a quantity of interest at a wind turbine level is
likely to be more similar to the same quantity from the actual
neighbors of this wind turbine, that is, the wind turbines that
are nearby in the wind farm. Staying in the k-NN framework,
we can improve our estimates through the number of neighbors
k, the weights assigned to neighbors, or both. Theoretical results
about k-NN mostly concern the asymptotic mode, when nt tends

to infinity, which cannot be assumed here as we are limited by
the number of wind turbines in the wind farm. It is rather criti-
cal to choose k in a finite regime, and it is usually advised to per-
form cross-validation. This would be cumbersome in our setup
as cross-validation would need to be run for each combination
of available data points, for each missing data point, and would
require enough complete data for each combination. Therefore,
we propose to keep k = nt at each time t and to rather improve
the weights of the nt-NN imputation. Learning the distance met-
ric for k-NN has been extensively studied and it has been found
that metric learning may significantly affect the performance
of the method in many applications. We refer the interested
reader to reviews of the metric learning literature [22] and the
k-NN method literature [20]. Because we perform imputation at
each time step t considering values from similar sensors at the
same time step t , the Euclidean distance seems a fair enough
metric in our framework. Therefore, we focus instead on a com-
mon shortcoming in current nonparametric methods, which is
to only consider the distances between the decision point and
its neighbors and ignore the geometrical relation between those
neighbors. Indeed, before we even get any records from its sen-
sors, a wind farm is a graph with its own geometry that provides
a priori information not only on the distance between a wind
turbine and its neighbors, but also between these neighbors.

Moving to weighted nt-NN imputation, we wish to provide each
wind turbine (l) that misses a record with a better estimate, by
weighting the available records (j) according to their proximity
to the wind turbine, while acknowledging the whole structure
of the wind farm. In order to do so, we need to be able to assign
weights depending on the distance between the wind turbine (l)
and the wind turbines (j). We choose to use Nadaraya-Watson
estimators [23, 24], which assign weights that are proportional
to some given similarity kernel K. More optimal methods could
be used [25], which we will discuss later. Let K be a given non-
negative measurable function on ℝ (the kernel), h be a positive
number (the bandwith) depending upon nt only and ‖z(j) − z(l) ‖
be the Euclidean distance between the representations of two
wind turbines (j) and (l). In case (l) is missing and (j) is available
at time t , the weight we give to X (j)

t when computing a weighted
estimate X̂

(l)

t =
∑nt

j=1
w(jl)X

(j)
t of X (l)

t is

Let us sort the neighbors of a wind turbine (l) by increasing
distance, ‖z(1) − z(l) ‖ ≤ ‖z(2) − z(l) ‖ ≤ … ≤ ‖z(nt) − z(l) ‖. We
choose an adaptive bandwith ht = ‖z(nt) − z(l) ‖, so that the
weights adjust depending on nt, that is, depending on the avail-
ability of other records at time t . Note that if all distances at play
at time t are very similar, the estimator will be very close to the
unweighted one, which seems legit. Consider the so-called naive
kernel K(u) = �{‖u‖≤1}. With such a choice for ht, to use a naive
kernel is to use our former estimate 1

nt

∑nt
j=1

X
(j)
t . Therefore, from

now on we will refer to this estimate as the Nadaraya-Watson
estimator with a naive kernel, that is, the “naive” estimator. For
a more general kernel, the weight w(jl)

t depends on the distance
‖z(j) − z(l) ‖ through the kernel shape. We will consider the

(1)Xt =
1

N

N∑

i=1

Xi
t ,

(2)X̂ t =
1

nt

nt∑

j=1

X
(j)
t ,

(3a)X̂ t =
1

N

(
X (1)
t + … + X

(nt)
t + X̂

(nt+1)

t + … + X̂
(N)

t

)
,

(3b)=
1

N

nt∑

j=1

X
(j)
t +

1

N

N∑

l=nt+1

X̂
(l)

t ,

(3c)=
1

N

nt∑

j=1

X
(j)
t +

1

N

N∑

l=nt+1

1

nt

nt∑

j=1

X
(j)
t ,

(3d)=
1

nt

nt∑

j=1

X
(j)
t .

(4)w(jl) =
K
�

‖ z(j) − z(l) ‖
h

�

∑nt
i=1

K
�

‖ z(i) − z(l) ‖
h

� .

4 of 13 Wind Energy, 2024

•	 Gaussian kernel K(u) = e−‖u‖
2,

•	 Epanechnikov kernel K(u) = (1 − ‖u‖2)�{‖u‖≤1},

•	 Triangular kernel K(u) = (1 − ‖u‖)�{‖u‖≤1},

•	 Quartic kernel K(u) = (1−‖u‖2)2�{‖u‖≤1},

•	 Triweight kernel K(u) = (1−‖u‖2)3�{‖u‖≤1},

•	 Tricube kernel K(u) = (1−‖u‖3)3�{‖u‖≤1}.

Note that only the Gaussian kernel assigns a positive
weight to the furthest neighbor (or neighbors) (nt) of
(l). A straightforward weighted k-NN estimator is to con-
sider the geographical locations of the wind turbines and
to base the Nadaraya-Watson estimators on the geograph-
ical distances between the wind turbines, that is, ‖z(j)−z(l)‖

=

√(
latitude(j)− latitude(l)

)2
+
(
longitude(j)− longitude(l)

)2
. We

refer to this benchmark as the “location” estimator.

2.2   |   Wind Farms as Unweighted Graphs

2.2.1   |   Graphs

A graph G is defined by a set of nodes (or vertices) V = v1, … , vN
and a set of edges E between nodes. It is said to be undirected
if there is no direction implied by an edge. Often when a
vertex vi represents a data point xi, two vertices vi and vj are
connected if xi and xj are close. Let the wind farm be a graph
G = (V ,E) where the set of nodes V are the wind turbines,
|V | = N , and the set of edges E connecting two nodes are to
be decided upon. We build our graph out of the layout of the
wind farm, without considering any data points xi. We start
with an unweighted graph, that is, the edges of the graph are
unweighted. Let A = (aij)i,j=1,…,N be the adjacency matrix of the
graph G. Unweighted edges (or simple-minded weights) means
that aij = 1 if vertices vi and vj are connected by an edge, aij = 0
otherwise. Hence, all edges are assumed to have the same
strength. Note that the diagonal of A is equal to zero, that is,
aii = 0 ∀ i = 1, … ,N , as we do not consider self-connections.
Through the adjacency matrix A, each wind turbine is repre-
sented by the vector of size N of its connections to the other
wind turbines in the wind farm. Out of this representation,
we wish to learn a low-dimensional embedding for each wind
turbine that preserves the structure of the wind farm.

2.2.2   |   Laplacian Eigenmaps

We are interested in spectral-graph embeddings, and in partic-
ular in Laplacian eigenmaps, which optimally preserve local
neighborhood information and produce coordinate maps that
are smooth functions over the original graph [26]. By trying to
preserve local information in the embedding, the algorithm im-
plicitly emphasizes the natural clusters in the data and closely
relates to spectral clustering [27]. We hope for the Laplacian
eigenmaps to provide a smooth clustering of the wind turbines
over the wind farm. Let D be the diagonal matrix associated
with the graph G whose entries are the degree of each node,
that is, dii =

∑
jaji. The matrix L = D −A is called the Laplacian

matrix of the graph and one gets eigenmaps by computing eigen-
values and eigenvectors for the generalized eigenvalue problem

Let f0, … , fN−1 be the solutions of Equation (5), ordered accord-
ing to their eigenvalues:

We leave out the constant eigenvector f0 corresponding to eigen-
value 0 and use the next r eigenvectors for embedding each wind
turbine vi in a r-dimensional Euclidean space:

The embedding zi is a new representation of the wind turbine
vi. Distances ‖zi − zj ‖ for every pair of wind turbines (vi, vj) can
now be computed once and for all, but the number of compo-
nents we keep in zi needs to be decided upon. For each missing
data point, the kernel function will then adjust the weights at
each time t depending on the set of nt data points that are avail-
able from other wind turbines.

2.3   |   Wind Farms as Weighted Graphs

2.3.1   |   Weighting the Original Graph

The representations we get out of the unweighted graph embed the
structure of the wind farm only and can be used without having
any other data but the map of the wind farm. The unweighted
graph can be seen as a stationary a priori component of the rela-
tionship between the wind turbines, which comes from the loca-
tion of the wind turbines inside the wind farm. It may be completed
with an online component coming from the time series we are in-
terested in. We propose to keep the structure of the unweighted
graph G and to move from unweighted to weighted edges. Say we
are interested in Xi

t, the power generation of wind turbine vi at time
t normalized by the nominal capacity of the wind turbine. We have
Xi
t ∈ [0,1] for t = 1, … ,T , i = 1, … ,N. An edge between two

wind turbines is to be weighted according to how similar these
wind turbines are. Working with power generation, this translates
to the similarity between their productions at time t. Let xit, resp.,
x
j
t, be the observed power generation of wind turbine vi, resp., vj, at

time t. A simple and intuitive choice for the similarity between xit
and xjt is st(i, j) = 1 − |xit − x

j
t |, st(i, j) ∈ [0,1]. Note that if two wind

turbines that are not connected in graph G happen to have very
similar power generation values at time t, they remain uncon-
nected. By doing so, we enforce a stationary a priori on the rela-
tionship between the wind turbines out of the structure of the

(5)Lf = �Df.

(6a)Lf0 = �0Df0,

(6b)Lf1 = �1Df1,

(6c). . .

(6d)LfN−1 = �N−1DfN−1,

(6e)0 = �0 ≤ �1 ≤ … ≤ �N−1.

(7)zi = (f1(vi), … , fr(vi)).

5 of 13

wind farm, but not only: We also keep a sparse adjacency matrix,
which now depends on t. Indeed, we have At = (at,ij)i,j=1,…,N,

where at,ij = st(i, j) if vertices vi and vj are connected by an edge,

at,ij = 0 otherwise. This implies to solve the generalized eigenprob-
lem (5) at each time step t, which can be done rather easily when
dealing with sparse matrices At.

2.3.2   |   Online, Changing Graphs

Because of the way G's edges are now weighted, it can happen that
two wind turbines that are a priori connected get disconnected
because st(i, j) = 0 for some time t. In such a case, we can get a
graph that is not connected anymore; that is, we cannot travel
through the whole graph from any point in the graph. To com-
pute eigenmaps the generalized eigenproblem (5) must be solved
for a connected graph, which ensures rank(D) = N and there are
N eigenvalues, or �(L,D) may be finite, empty, or infinite [28].
Therefore, when a graph has several components, the algorithm
for computing eigenmaps consists of solving the generalized ei-
genproblem (5) for each connected component, which we will
do for components with at least three wind turbines. When a
wind turbine splits from the graph on its own, it is straightfor-
ward to derive its production value from its neighbors as typically
a wind turbine vi gets disconnected at time t because xit = 0 and
x
j
t = 1 for all its neighbors vj. When two wind turbines get dis-

connected together, the similarity between the two is usually
high enough to replace the record that is missing with the one
that is available. Since we are online and in high dimension, we

need to be able to automatically detect when the graph is not
connected anymore, and what are its connected components.
Let Lrw = D−1L = I −D−1A be the so-called normalized graph
Laplacian, which is the graph Laplacian we use to compute ei-
genmaps. We recall a basic yet very useful property of this graph
Laplacian [27], that makes it easy to derive the connected com-
ponents of G at time t if the multiplicity of the eigenvalue 0 of
Lrw,t becomes higher than 1. Let G be an undirected graph with
non-negative weights. The multiplicity d of the eigenvalue 0 of the
graph Laplacian Lrw equals the number of connected components
A1, … ,Ad in the graph and the eigenspace of 0 is spanned by the
indicator vectors �Ai of those components.

So far we have assumed the similarities st(i, j) to be known.
Because our application is the imputation of missing values, the
true distances are actually known at time t among the wind tur-
bines for which data points are available, but they are not for the

edges involving wind turbines for which the record is missing and
we need to replace them with estimates. To avoid having to spec-
ify a model for the similarities between all individual time series,
we place ourselves in the online learning framework. The goal in
this learning paradigm is to guess a sequence of numbers as pre-
cisely as possible, when the data are chosen by an adversary rather
than generated stochastically [29, 30]. In our framework this
translates as the following repeated game: In each round
t = 1, … ,T, for each similarity between two connected wind tur-
bines st(i, j), an adversary chooses a real number in [0,1] and keeps
it secret; we try to guess the real number, choosing ŝt(i, j); the ad-
versary number is revealed and we pay the squared difference
(st(i, j)− ŝt(i, j))

2. Online learning is appealing from both a theo-
retical and practical point of view because a lot of problems can be
described as such a repeated game, which does not require strong
assumptions to offer nice theoretical guarantees. One shall note
that the last step of the repeated game when the adversary number
is revealed does not happen if some of the data are missing.
Therefore, in order to account for the possibility of missing data,
the game is slightly modified and we pay (st(i, j)− ŝt(i, j))2 only if
st(i, j) is revealed [8]. Using the notation �{st (i,j)} as the indicator of
the event {st(i, j)is revealed}, we pay now (st(i, j)− ŝt(i, j))2�{st (i,j)}.
In such a missing data, convex framework, an online strategy
with good theoretical guarantees is the lazy version of OGD [31],
which is applied to our problem in Algorithm 1, where Π[0,1] is the
projection back to [0,1]. We also consider the best constant strat-
egy, i.e, the strategy that minimizes

∑T
t=1 (st(i, j)− ŝt(i, j))

2
�{st (i,j)}

,

which is just choosing ŝt(i, j) to be the average similarity ∑T
t=1 st(i, j)�{st (i,j)} ∕

∑T
t=1 �{st (i,j)}

 in each round t.

By choosing the online learning framework, we do not only
free ourselves from any model assumption, we also allow our
weighted-graph estimator to be of use as soon as there are data
points for some of the wind turbines. At the beginning of a wind
farm's life, when not all wind turbines are on yet, the estimator
can work with a graph G being restricted to the operational wind
turbines. As soon as a wind turbine gets started, Algorithm 1
can be run to estimate the similarities that might be missing
between this wind turbine and its neighbors. The theory un-
derlying the lazy version of OGD ensures that we minimize our
regrett(i, j), that is, the quantity that measures how much our
algorithm regrets for not sticking to the optimal choice in hind-
sight after t iterations [30, 31]:

(8)t(i, j) =

t∑

k=1

(
ŝk(i, j)− sk(i, j)

)2
− min

s∈ [0,1]

t∑

k=1

(s− sk(i, j))
2.

6 of 13 Wind Energy, 2024

2.4   |   Computational Complexity of the Estimators

Let Tmv be the number of time steps t = 1, … ,T such that
nt < N. The computational complexity of the estimators we
have introduced is available in Table 2. It increases alongside
the complexity of the method at hand. The naive estimator only
requires to average over the available records at each time step
t ∈ 1, … ,Tmv. Before computing a weighted average, the loca-
tion estimator requires to first compute, once and for all, the
geographical distances between wind turbines. Similarly, the
unweighted-graph estimator requires to first solve the general-
ized eigenvalue problem in Equation (5). The weighted-graph es-
timator is the most demanding in terms of time complexity since

it requires to solve the generalized eigenvalue problem at each
time step t ∈ 1, … ,Tmv before computing a weighted average.
On the other hand, it is the only one that accounts for informa-
tion provided by collected power generation data.

3   |   Application and Case Study: Westermost Rough

We apply the method presented in Section 2 to a real use case,
the Westermost Rough offshore wind farm. Westermost Rough is
located near the Eastern coast of the United Kingdom and totals
35 wind turbines that are placed according to a grid pattern. A
representation of the wind farm through the position and name

FIGURE 1    |    Position and name of the 35 wind turbines in Westermost Rough offshore wind farm (UK).

TABLE 2    |    Estimators for the nt-NN imputation of power generation's missing values, along with their computational complexity.

Estimator k-NN Graph Computational complexity

Naive Unweighted No O(TmvN)

Location Weighted No O(N2
+ TmvN)

Unweighted-graph Weighted Yes, unweighted O(N3
+ TmvN)

Weighted-graph Weighted Yes, weighted O(TmvN
3)

7 of 13

of its wind turbines is available in Figure 1. The pattern is rather
usual and the number of wind turbines high enough to support
our method, but not too high for us to deliver a detailed and visual
analysis. Through this example, we wish to deliver good practices
and to emphasize challenges that generalize to bigger and/or more
complicated wind farms. Along with the exact position of the wind
turbines, we have data records over 2 years, from January 1, 2016
to December 31, 2017, at a temporal resolution of every 10 min.
We will focus on the graph representations in Section 3.1 and will
apply the method to power generation imputation in Section 3.2.

3.1   |   The Westermost Rough Graph
Representations

When constructing a graph, one's objective is to model the local
neighborhood relationships and we choose to connect wind tur-
bines that are actual neighbors; that is, there is no other wind
turbine nor empty space between them. The corresponding
graph is presented in Figure 2. This is an important step for
which there is no absolutely right choice and one should keep
in mind that choosing an appropriate a priori graph matters to
the results. For example, in the case of Westermost Rough, one
could choose not to connect wind turbines that are neighbors
through a diagonal. How did we choose this graph? When look-
ing at the exact locations, it turns out that the grid pattern is
not exact and in reality two wind turbines on what looks like a

diagonal might be closer than two wind turbines on an horizon-
tal line. Also, the direction of the wind might matter more than
the real distances and, last but not least, the more neighbors for
a wind turbine may be the better.

Now that we have decided upon our reference graph G = (V ,E),
we start with an unweighted version of G, that is, the edges E
have 0/1 weights only. We compute the corresponding Laplacian
matrix L = D −A and solve the generalized eigenvalue problem
in (5). We leave out the (first) constant eigenvector and get an
embedding zi for every wind turbine vi. These embeddings are of
maximal size 34, that is, N minus the first constant eigenvector
f0. In Figure 3, we show the corresponding representations of the
wind turbines according to eigenvectors f1 and f2 (left) and eigen-
vectors f2 and f3 (right). On these eigenmaps, the wind turbines
are smoothly clustered together over the wind farm according
to their position, where both the local neighborhoods and the
whole structure of the wind farm are accounted for. These plots
provide nice insight about the representations learned from
running the eigenmap algorithm over the unweighted graph,
and how they embed the local and global geometry of the wind
farm's layout in a lower dimension.

We focus on imputing missing data for wind power generation.
Hence, we can weight the edges E of G using the methodology and
the similarity described in Section 2.3, where st(i, j) = 1 − |xit − x

j
t |

is the similarity at time t between the power generations xit and xjt

FIGURE 2    |    Graph of the Westermost Rough offshore wind farm with color code.

8 of 13 Wind Energy, 2024

of two connected wind turbines vi and vj. Working with weighted
graphs whose weights vary over time, the eigenmap algorithm
needs to be run, and we get different embeddings, at every time
t. As mentioned in Section 2.3.2, the graph itself can change, if
an edge's weight becomes 0 at time t. As for the representations
learned by the eigenmap algorithm, the clusters are still depen-
dent upon the original graph G, that is, upon the geography of the
wind farm, but the distances between the embeddings may now
change depending on an edge's weight st(i, j).

3.2   |   Imputation of Power Generation Values

3.2.1   |   Evaluation Setup

In the methodology we propose, we do not estimate any param-
eters and try to minimize the number of decisions that need to
be made. Nonetheless, when moving to imputation, we need to
decide on a few user-specified parameters (or hyperparameters),
which are:

•	 The number of dimensions r we keep for the embeddings zi
we get out of the unweighted graph or the embeddings zit we
get out of the weighted graphs,

•	 The kernel function that turns the distances between these
embeddings into weights for the weighted k-NN imputation,

•	 The learning rate � in Algorithm 1 if we use weighted graphs
and lazy OGD.

Recall that we have 2 years of data records over the Westermost
Rough wind farm, 2016 and 2017. We split this dataset into
two sets: a validation set, the first year of data, 2016, for decid-
ing upon the hyperparameters; a test set, the second year, 2017,
for evaluating our method compared to the naive Nadaraya-
Watson estimator that is our current reference and to the location
Nadaraya-Watson estimator that is a standard weighted k-NN es-
timator. We evaluate the different estimators through the RMSE

which we will compute for each wind turbine vi, where Ti is the
number of records for which xit is available. We compute the
RMSE in Equation (9) for two different setups:

•	 A setup we call “incomplete,” where we compute (9) for all
data records that include xit, no matter what other data re-
cords are available at time t ;

•	 A setup we call “complete,” where we compute (9) on com-
plete data records only, that is, such that we have xt for all N
wind turbines.

The validation set consists of 52,669 records, 23,499 records being
complete records. The test set consists of 52,549 records, 29,560
records being complete records. The incomplete setup enables
us to evaluate the quality of the estimates for each wind turbine,
taking into account the reality of the availability of other records,
while the complete setup measures an ideal quality of the esti-
mate, in the sense that we assume all the other records to be avail-
able. Note that to simulate our own missing values is not really an
option on this dataset, as we only have nearly half of the records
that are complete records, and they are unlikely to be successive
records, breaking down the dynamics of the time series.

3.2.2   |   Hyperparameter Selection

The estimators we are evaluating are as follows:

•	 The naive estimator: Nadaraya-Watson estimator with a
naive kernel, which comes down to equal weights for all
available data records;

•	 The location estimator: Nadaraya-Watson estimator that as-
signs weights depending on the geographical distances be-
tween the wind turbines;

•	 The unweighted-graph estimator: Nadaraya-Watson estima-
tor that assigns weights depending on the distances between
embeddings obtained from an unweighted graph G;

•	 The weighted-graph estimator: Nadaraya-Watson estimator
that assigns weights depending on the distances between
embeddings obtained from online weighted graphs Gt.

(9)

√√√√√ 1

Ti

Ti∑

t=1

(
xit −

nt∑

j=1

w
(ji)
t x

(j)
t

)2

,

FIGURE 3    |    Representation of the wind turbines according to dimensions 1 and 2 (left) and dimensions 2 and 3 (right).

9 of 13

On the validation set, the location estimator gives the best
results when using a triweight kernel. The improvements
achieved on the RMSE compared to using a naive kernel are
listed in Table 3, as averages over the wind farm, along with
the standard deviation depending on the wind turbine. The
unweighted-graph estimator is always better using a dimen-
sion r = 2 for the embeddings. While in the complete setup to
use a triweight kernel gives the best results, there is less dif-
ference between using a triweight and a quartic kernel in the
incomplete setup. The improvements achieved on the RMSE
depending on the dimension r and the kernel are listed in
Table 4. The improvements depending on the dimension are
averaged over the wind turbines and the different kernels,
while the improvement depending on the kernel are shown
for r = 2.

For the weighted-graph estimator, we need to use estimated
similarities on the edges between the wind turbine we are test-
ing and its neighbors in the complete setup, and on all edges
involving missing data records in the incomplete setup. We can
choose what estimated similarity to use without running the
eigenmap algorithm by looking at the loss we pay on the vali-
dation set:

In the online learning paradigm, the loss in (10) is a reference
when computed for the best constant strategy

The difference between the loss of any other strategy and the
loss of the best constant strategy is known as the regret (of not
sticking to the best choice in hindsight, as introduced in
Section 2) and is what theoretical results for online learning
mostly focus on, that is, ensuring the regret is (nicely) bounded
when using a specific strategy. When computing the regret of
lazy OGD on the validation set for different values of the learn-
ing rate �, it is clear that lazy OGD provides far better results
than the best constant strategy. This is a confirmation that the
similarities between wind power time series are nonstationary.
An optimal learning rate can be computed from theoretical re-
sults on lazy OGD. Let D be the diameter of the support  of the
loss function lt we pay in each round t, B an upper bound to the
norm of the gradients of lt and T the number of rounds. The re-
gret of lazy OGD is best bounded by taking � = D

�
B
√
T
�−1

 [31].

We have  = [0,1], D =
√
maxst ,̂st∈(st(i, j) − ŝt(i, j)) = 1 and

B = 2 as

(10)
Tval∑

t=1

lt(i, j) =

Tval∑

t=1

(st(i, j)− ŝt(i, j))
2
�{st (i,j)}

.

(11)ŝ(i, j)=

Tval∑

t=1

st(i, j)�{st (i,j)}

/ Tval∑

t=1

�
{st (i,j)}

.

(12)‖ ∇ lt(i, j)‖ = ‖ − 2(st(i, j) − ŝt(i, j))�{st (i,j)} ‖ ≤ 2.

TABLE 3    |    Average improvement by kernel on the validation set for the location estimator.

Setup Gaussian Epanech Triangular Quartic Triweight Tricube

Incomplete 1.81% (0.95) 2.58% (1.42) 3.45% (1.96) 3.83% (2.27) 4.52% (2.87) 3.66% (2.20)

Complete 2.10% (1.08) 3.00% (1.58) 4.07% (2.20) 4.55% (2.51) 5.44% (3.13) 4.34% (2.41)

TABLE 4    |    Average improvement by dimension and by kernel on the validation set for the unweighted-graph estimator.

Setup r = 1 r = 2 r = 3 r = 4 r = 5

Incomplete 2.40% (3.31) 4.21% (3.18) 3.60% (2.92) 3.61% (3.08) 3.03% (2.82)

Complete 2.73% (3.95) 5.17% (3.52) 4.55% (3.27) 4.51% (3.36) 3.83% (3.17)

Setup Gaussian Epanech Triangular Quartic Triweight Tricube

Incomplete 2.53% (1.30) 3.99% (2.42) 4.52% (2.96) 4.75% (3.51) 4.79% (4.10) 4.70% (3.55)

Complete 3.04% (1.51) 4.85% (2.67) 5.52% (3.25) 5.84% (3.85) 5.95% (4.45) 5.81% (3.89)

TABLE 5    |    Average improvement by dimension and by kernel on the validation set for the weighted-graph estimator.

Setup r = 1 r = 2 r = 3 r = 4 r = 5

Incomplete 4.95% (3.47) 7.09% (3.21) 6.80% (3.23) 7.40% (3.79) 6.85% (3.44)

Complete 5.63% (4.60) 8.15% (4.34) 7.66% (4.21) 8.13% (4.41) 7.45% (4.15)

Setup Gaussian Epanech Triangular Quartic Triweight Tricube

Incomplete 3.31% (1.00) 5.72% (2.08) 7.27% (2.61) 8.94% (3.45) 10.00% (4.26) 9.19% (3.67)

Complete 3.61% (1.39) 6.31% (2.71) 7.96% (3.25) 9.82% (4.06) 10.93% (4.98) 10.15% (4.34)

10 of 13 Wind Energy, 2024

Since we deal with missing data, we get � =
�
2
�∑Tval

t=1
�{st (i,j)}

�−1

[8]. The learning rate is usually set to decrease over time when
one is interested in converging to an optimal solution. Since we
want to track a time-varying quantity, a standard approach is to
rather choose the learning rate to be constant. Therefore, we take
� = 0.5. This is empirically verified on our validation set as better
regrets are obtained for constant learning rates in [0. 3,0.5]. In
the case where � = 0.5, lazy OGD comes down to what is known
as persistence in time series forecasting without missing values,
which is simply to use the last observed value. When using lazy
OGD with � = 0.5, the best kernel is again the triweight kernel in
the complete setup, but the best results are now obtained using
a dimension r = 4 for the embeddings. In the incomplete setup,
the best estimator is also the one that uses a triweight kernel
and a dimension r = 4 for the embeddings. The improvements
achieved on the RMSE depending on the dimension r and the
kernel are listed in Table 5. The improvements depending on the
dimension are averaged over the wind turbines and the different

kernels, while the improvement depending on the kernel are
shown for r = 4.

3.2.3   |   Results on the Test Set

Out of the results on the validation set, we compute the es-
timators over the test set using a triweight kernel. For the
unweighted-graph estimator, we use embeddings of dimension
2. For the weighted-graph estimator, we use embeddings of di-
mension 4 and lazy OGD with � = 0.5. The results on the test set
in the complete, resp., incomplete, setup are given in Table 6,
resp., in Table 7. They are averaged over the wind turbines. The
improvement over the naive estimator is plotted by wind turbine
in Figure 4, resp., in Figure 5, for each estimator. Accounting
for the geographical distance between a wind turbine and its
neighbors already improves the estimates for every wind turbine
compared to a naive estimator that assigns the same weight to
all neighbors. With additional information about the distances

TABLE 6    |    Results on the test set in the complete setup.

Estimator Avg RMSE (sd) Avg impr./naive Best impr./naive (vi)
Worst impr./

naive (vi)

Naive 12.32% (2.86) — — —

Location 11.55% (3.02) 6.83% 17.69% (F06) 0.65% (C06)

Unweighted-graph 11.50% (3.06) 7.25% 21.36% (F06) −4.10% (C03)

Weighted-graph 11.11% (2.95) 10.34% 20.50% (C07) −2.11% (C03)

TABLE 7    |    Results on the test set in the incomplete setup.

Estimator Avg RMSE (sd) Avg impr./naive Best impr./naive (vi)
Worst impr./

naive (vi)

Naive 12.14% (2.35) — — —

Location 11.39% (2.44) 6.49% 14.45% (F06) 0.94% (C06)

Unweighted-graph 11.34% (2.47) 6.93% 17.31% (F06) −4.01% (C03)

Weighted-graph 10.92% (2.42) 10.35% 23.20% (D01) −2.59% (C03)

FIGURE 4    |    Improvements over the naive estimator by wind turbine in the complete setup.

11 of 13

between the neighbors themselves, through the structure of the
wind farm, the estimators perform better on average over the
wind farm, but there is more variability depending on the wind
turbine. In particular, the power generation of wind turbine C03
is better approximated by a naive estimator.

The improvement we get from using the weighted-graph esti-
mator is significant overall, for both complete and incomplete
setups, and more stable over wind turbines. The weighted-
graph estimator performs better imputation for wind turbines
that are on the outer parts of the wind farm, up to more that 20%
for some of them. As a reference, if we use the real similarities
for the edges in the complete setup instead of the estimates from
lazy OGD, the overall improvement over the naive estimator is
11.21%, compared to 10.34% with the estimates. There is still
room for improving the estimated similarities, for example by
taking into account exogenous information such as the wind di-
rection or speed, but the lazy OGD already performs pretty well.

Finally, note that on the test set 43.76% of the records are not
complete. Most of these incomplete records miss wind power
generation data for one (69.57%), two (23.22%) or three wind tur-
bines (6.79%). The case when only one record is missing is well
described by our complete setup, where we remove the record of
only one wind turbine and look into how well the missing data
point is imputed by the estimator, depending on which turbine
it has been removed for.

3.3   |   Discussion

First, let us acknowledge that when working at an aggregated
level, over large wind farms, if in most cases only one record
is missing at time t out of N, averaging over the remaining
N − 1 records seems fair enough, at least for Westermost Rough.
However, this might not be the case for wind farms with less
conventional layouts. Accounting for the geographical distances
when computing the weights of a weighted average can already
lead to significant improvements. The additional information of
the structure of the wind farm gave better estimators on aver-
age, but at the cost of more instability, by degrading the imputa-
tion for some wind turbines. In particular, this was the case for
wind turbine C03, which does not benefit from employing more

advanced estimators, although this degradation was limited by
including information about the power generation through a
weighted graph. Wind turbine C03 has a very central position,
which supports the choice of an estimator with equal weights. It
might also be that C03's closer neighbors show a rather different
behavior and do not help much in estimating its power genera-
tion, for example, because of wave effects. An option may be to
consider a different graph G, which would link C03 to another
wake-affected turbine, such as C06. This is directly related to
our comment in Section 3.1 about the importance of deciding
on a graph. Note that we have restrained ourselves to the choice
of a common kernel over the wind farm. If choosing a different
dimension r for the embeddings would not make much sense,
to choose a different kernel for different wind turbines seems
rather appropriate depending on the position of the wind tur-
bine in the wind farm. However, moving into that direction, we
would rather opt for replacing the Nadaraya-Watson estimators
with an algorithm that can compute optimal weights efficiently
and adaptively for each data point we wish to estimate, out of the
distances between the wind turbines [25].

If one is interested in individual signals, the methodology we
propose can make much more difference, since for some wind
turbines the graph-based estimators improve the power genera-
tion estimates by more than 20%. We have focused here on what
is known as single imputation as we have tried to impute miss-
ing entries as accurately as possible, which gives us only one
completed dataset. Multiple imputation on the other hand con-
sists in predicting M different values for each missing data point
and provides M imputed datasets. Multiple imputation is usu-
ally preferred, for inference tasks in particular, as it ensures that
the variance is properly accounted for. We want to emphasize
that k-NN nicely enable to move to a probabilistic framework,
when one is interested in the distributions of the time series,
since a weight w(jl) can be seen as the probability of the missing
data point x(l) to take the value of the available data point x(j).
Let �x(j) (x) denote the Dirac delta mass located at x(j). Instead
of using a weighted average as a point estimate of x(l), we can
assume x(l) to be distributed according to the empirical measure

(13)�̂(x) =

n∑

j=1

w(jl)�x(j) (x),

FIGURE 5    |    Improvements over the naive estimator by wind turbine in the incomplete setup.

12 of 13 Wind Energy, 2024

and simply sample from (13), that is, select x(j) with probability
w(jl).

The location and unweighted-graph estimators can be very
useful early on in the life of a wind farm, as they do not re-
quire any data points. The weighted-graph estimator does use
data points but can start as soon as there are data points for
some wind turbines, as it does not require any model assump-
tion nor estimation. The a priori we base our method on, by
building the graph upon the structure of the wind farm, can
be seen both as a pro and a con of the method, since it en-
forces proximity between wind turbines depending on their
position inside the wind farm. This can bring robustness if it
is appropriate, or instability when it is not, as we have seen
with wind turbine C03. We have already mentioned this could
be mitigated by moving from Nadaraya-Watson estimators to
optimal weights thanks to an efficient algorithm [25], or by
choosing a different graph. When using data points, that is
weighted graphs, an alternative would be to remove this as-
sumption and start from what is known as a complete graph,
where all pairs of wind turbines are connected by an edge.
Then, the complete graph would evolve online depending on
the similarity on the edges as in Section 2.3.2. However, this
would require to monitor N(N − 1)∕2 similarities and to per-
form eigendecomposition on matrices that are unlikely to be
sparse anymore.

4   |   Conclusion and Future Directions

From the intuitive practice of averaging over a wind farm in
order to deal with missing data points, we have focused on
weighted k-NN imputation for wind power generation and dealt
not only with distances between a wind turbine and its neigh-
bors but also with distances between the neighbors themselves
by learning graph representations. Weighting the graph edges
with the similarity at time t between two data points from two
time series and using spectral graph theory has enabled us to
compute online representations that could adapt to changes in
the relationship between a wind turbine and its neighbors, typ-
ically when a wind turbine is not producing. The methods we
have introduced may be applied to perform imputation for other
quantities of interest over the wind farm. However, not all quan-
tities would share the nice feature of normalized power genera-
tion, namely, to belong to the unit interval [0,1]. If not, one would
need to rethink Algorithm 1, which estimates the missing simi-
larities when working with an online weighted-graph estimator.

When using Nadaraya-Watson estimators, we chose and ap-
plied the kernel that gave the best results on average over
the wind farm, and over the data records. We believe our
method could benefit from replacing these estimators with
an algorithm that would rather compute optimal weights ef-
ficiently and adaptively for each data point when performing
the weighted k-NN imputation. By each data point we mean
by wind turbine, and at each time step t in the case of on-
line weighted graphs. This may bring more robustness to the
unweighted-graph imputation, since the method would adapt
to any wind turbine without having to make any kernel as-
sumption. The same applies to weighted-graph imputation,
although some of the uncertainty is already handled through

the addition of data information. Of course, the price to pay
would be more computational effort.

A better imputation of missing values makes it easier to learn
better forecasters, but imputation methods often require as-
sumptions on distributions and some may be difficult to apply
to any sort of predictor. Nearest-Neighbor imputation can be
used with any predictor and do not ask for any other assumption
than similar neighbors. In a highly nonstationary setup, such as
offshore wind energy, the data point from the neighboring time
series might just be one of the best estimates we can get for the
data point we are missing.

Nomenclature
�	 learning rate of lazy OGD
�	 eigenvalue
A	 adjacency matrix
D	 degree matrix
f 	 eigenvector
L	 Laplacian matrix
zi	 embedding of wind turbine i
E	 set of edges
G	 graph
K	 kernel
lt(i, j)	 loss function we pay at time t when guessing the simi-

larity between records of wind turbine i and wind tur-
bine j

N	 total number of wind turbines
nt	 number of records available at time t
r	 dimension of the embeddings
st(i, j)	 similarity between records of wind turbine i and wind

turbine j at time t
T	 total number of records
t 	 time step
V 	 set of nodes (or vertices)
vi	 node i
w(ji)	 weight of the j-th available record when imputing

the i-th missing record with k-NN
x(i)	 x (e.g., power generation) of the i-th wind turbine

among a varying set
xi	 x of wind turbine i among the total set i = 1, … ,N

xit	 x of wind turbine i at time t

Acknowledgments

The authors gratefully acknowledge Ørsted for providing the data for
the Westermost Rough offshore wind farm. The research leading to
this work was carried out as a part of the Smart4RES project (European
Union's Horizon 2020, No. 864337). The sole responsibility of this publi-
cation lies with the authors. The European Union is not responsible for
any use that may be made of the information contained therein.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are available from
Ørsted. Restrictions apply to the availability of these data, which were
used under license for this study. Data are available from the authors
with the permission of Ørsted.

13 of 13

Peer Review

The peer review history for this article is available at https://​www.​webof​
scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1002/​we.​2962.

References

1. A. Coville, A. Siddiqui, and K.-O. Vogstad, “The Effect of Missing
Data on Wind Resource Estimation,” Energy 36, no. 7 (2011): 4505–
4517, https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0360​54421​
1002350.

2. J. Salmon and P. Taylor, “Errors and Uncertainties Associated With
Missing Wind Data and Short Records,” Wind Energy 17, no. 7 (2014):
1111–1118, https://​onlin​elibr​ary.​wiley.​com/​doi/​abs/​10.​1002/​we.​1613.

3. S. H. Hosseini, C. Y. Tang, and J. N. Jiang, “Calibration of a Wind
Farm Wind Speed Model With Incomplete Wind Data,” IEEE Transac-
tions on Sustainable Energy 5, no. 1 (2014): 343–350.

4. Y. Hu, Y. Qiao, J. Liu, and H. Zhu, “Adaptive Confidence Boundary
Modeling of Wind Turbine Power Curve Using Scada Data and Its Ap-
plication,” IEEE Transactions on Sustainable Energy 10, no. 3 (2019):
1330–1341.

5. R. Tawn, J. Browell, and I. Dinwoodie, “Missing Data in Wind Farm
Time Series: Properties and Effect on Forecasts,” Electric Power Systems
Research 189 (2020): 106640, https://​www.​scien​cedir​ect.​com/​scien​ce/​
artic​le/​pii/​S0378​77962​0304430.

6. Z. Zhu, T. Wang, and R. J. Samworth, “High-Dimensional Principal
Component Analysis With Heterogeneous Missingness,” Journal of
the Royal Statistical Society Series B: Statistical Methodology 84, no. 5
(2022): 2000–2031, https://​doi.​org/​10.​1111/​rssb.​12550​.

7. W. Dunsmuir and P. M. Robinson, “Estimation of Time Series Models
in the Presence of Missing Data,” Journal of the American Statistical
Association 76, no. 375 (1981): 560–568, http://​www.​jstor.​org/​stable/​
2287513.

8. O. Anava, E. Hazan, and A. Zeevi, “Online Time Series Prediction
With Missing Data,” in Proceedings of the 32nd International Conference
on Machine Learning, eds. F. Bach and D. Blei, Proceedings of Machine
Learning Research, Vol. 37 (Lille, France: PMLR, 2015), 2191–2199,
https://​proce​edings.​mlr.​press/​​v37/​anava​15.​html.

9. A. Stratigakos, P. Andrianesis, A. Michiorri, and G. Kariniotakis,
“Towards Resilient Energy Forecasting: A Robust Optimization Ap-
proach,” IEEE Transactions on Smart Grid 15 (2023): 874–885.

10. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
From Incomplete Data via the EM Algorithm,” Journal of the Royal Sta-
tistical Society. Series B (Methodological) 39, no. 1 (1977): 1–38, http://​
www.​jstor.​org/​stable/​2984875.

11. D. B. Rubin, “Inference and Missing Data,” Biometrika 63, no. 3
(1976): 581–592, http://​www.​jstor.​org/​stable/​2335739.

12. S. Seaman, J. Galati, D. Jackson, and J. Carlin, “What Is Meant by
“Missing at Random”?,” Statistical Science 28, no. 2 (2013): 257–268,
http://​www.​jstor.​org/​stable/​43288491.

13. J. Josse, N. Prost, E. Scornet, and G. Varoquaux, “On the Consis-
tency of Supervised Learning With Missing Values,” (2020).

14. M. Le Morvan, J. Josse, E. Scornet, and G. Varoquaux, “What's a
Good Imputation to Predict With Missing Values?,” Advances in Neu-
ral Information Processing Systems, eds. M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. S. Liang, and J. W. Vaughan, Vol. 34 (Curran Associates,
Inc., 2021), 11530–11540, https://​proce​edings.​neuri​ps.​cc/​paper_​files/​​
paper/​​2021/​file/​5fe8f​dc79c​e292c​39c5f​209d7​34b72​06-​Paper.​pdf.

15. H. Wen, P. Pinson, J. Gu, and Z. Jin, “Wind Energy Forecasting With
Missing Values Within a Fully Conditional Specification Framework,”
(2022), to be published in the International Journal of Forecasting.

16. A. Cini, I. Marisca, and C. Alippi, “Filling the Gaps: Multivariate
Time Series Imputation by Graph Neural Networks,” (2022), Published
as a conference paper at ICLR 2022.

17. Y. Luo, X. Cai, Y. Zhang, J. Xu, and Y. Xiaojie, “Multivariate Time
Series Imputation With Generative Adversarial Networks,” Advances
in Neural Information Processing Systems, eds. S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Vol. 31
(Curran Associates, Inc., 2018), https://​proce​edings.​neuri​ps.​cc/​
paper_​files/​​paper/​​2018/​file/​96b9b​ff013​acedf ​b1d14​0579e​2fbeb​63-​
Paper.​pdf.

18. W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional
Recurrent Imputation for Time Series,” Advances in Neural Informa-
tion Processing Systems, eds. S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, Vol. 31 (Curran Associates,
Inc., 2018), https://​proce​edings.​neuri​ps.​cc/​paper_​files/​​paper/​​2018/​file/​
734e6​bfcd3​58e25​ac1db​0a424​1b956​51-​Paper.​pdf.

19. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning (New York, NY: Springer, 2009).

20. G. Biau and L. Devroye, Lectures on the Nearest Neighbor Method
(Springer, 2015).

21. O. Troyanskaya, M. Cantor, G. Sherlock, et al., “Missing Value Esti-
mation Methods for DNA Microarrays,” Bioinformatics 17, no. 6 (2001):
520–525, https://​doi.​org/​10.​1093/​bioin​forma​tics/​17.6.​520.

22. B. Kulis, “Metric Learning: A Survey,” Foundations and Trends in
Machine Learning 5, no. 4 (2012): 287–364.

23. A. Nadaraya, “On Estimating Regression,” Theory of Probability and
Its Applications 9, no. 1 (1964): 141–142.

24. G. S. Watson, “Smooth Regression Analysis,” Sankhyā: The Indian
Journal of Statistics, Series A 26, no. 4 (1964): 359–372.

25. O. Anava and K. Levy, k∗-Nearest Neighbors: From Global to Local,
Advances in Neural Information Processing Systems, eds. D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Vol. 29 (Curran As-
sociates, Inc., 2016), https://​proce​edings.​neuri​ps.​cc/​paper_​files/​​paper/​​
2016/​file/​2c6ae​45a3e​88aee​548c0​714fa​d7f82​69-​Paper.​pdf.

26. M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensional-
ity Reduction and Data Representation,” Neural Computation 15, no. 6
(2003): 1373–1396, https://​doi.​org/​10.​1162/​08997​66033​21780317.

27. U. Von Luxburg, “A Tutorial on Spectral Clustering,” Statistics and
Computing 17, no. 4 (2007): 395–416, https://​doi.​org/​10.​1007/​s1122​
2-​007-​9033-​z.

28. G. H. Golub and C. F. V. Loan, Matrix Computations, 4th ed. (Johns
Hopkins University Press, 2013).

29. N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games
(Cambridge University Press, 2006).

30. F. Orabona, “A Modern Introduction to Online Learning,” (2022),
https://​arxiv.​org/​abs/​1912.​13213​.

31. E. Hazan, “Introduction to Online Convex Optimization,” (2021),
https://​arxiv.​org/​abs/​1909.​05207​.

https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/we.2962
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/we.2962
https://www.sciencedirect.com/science/article/pii/S0360544211002350
https://www.sciencedirect.com/science/article/pii/S0360544211002350
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.1613
https://www.sciencedirect.com/science/article/pii/S0378779620304430
https://www.sciencedirect.com/science/article/pii/S0378779620304430
https://doi.org/10.1111/rssb.12550
http://www.jstor.org/stable/2287513
http://www.jstor.org/stable/2287513
https://proceedings.mlr.press/v37/anava15.html
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2335739
http://www.jstor.org/stable/43288491
https://proceedings.neurips.cc/paper_files/paper/2021/file/5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5fe8fdc79ce292c39c5f209d734b7206-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://doi.org/10.1093/bioinformatics/17.6.520
https://proceedings.neurips.cc/paper_files/paper/2016/file/2c6ae45a3e88aee548c0714fad7f8269-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/2c6ae45a3e88aee548c0714fad7f8269-Paper.pdf
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://arxiv.org/abs/1912.13213
https://arxiv.org/abs/1909.05207

	Data Are Missing Again—Reconstruction of Power Generation Data Using -Nearest Neighbors and Spectral Graph Theory
	ABSTRACT
	1   |   Introduction
	2   |   Imputation Using Nearest Neighbors and Graphs
	2.1   |   Weighted Nearest Neighbor Imputation
	2.2   |   Wind Farms as Unweighted Graphs
	2.2.1   |   Graphs
	2.2.2   |   Laplacian Eigenmaps

	2.3   |   Wind Farms as Weighted Graphs
	2.3.1   |   Weighting the Original Graph
	2.3.2   |   Online, Changing Graphs

	2.4   |   Computational Complexity of the Estimators

	3   |   Application and Case Study: Westermost Rough
	3.1   |   The Westermost Rough Graph Representations
	3.2   |   Imputation of Power Generation Values
	3.2.1   |   Evaluation Setup
	3.2.2   |   Hyperparameter Selection
	3.2.3   |   Results on the Test Set

	3.3   |   Discussion

	4   |   Conclusion and Future Directions
	Nomenclature
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	Peer Review
	References

