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Abstract. Despite widespread adoption of machine learning, many firms face the

common challenge of relevant datasets being distributed amongst market competitors

whom are reluctant to share information. Accordingly, recent works propose analytics

markets as a way to provide monetary incentives for collaboration, where agents share

features and are rewarded based on their contribution to improving the predictions of

others. These contributions are determined by their relative Shapley value, computed

by treating features as players and their interactions as a cooperative game. However,

this setup is known to incite agents to strategically replicate their data and act under

multiple false identities to increase their own revenue whilst diminishing that of others,

which limits the viability of these markets in practice. In this work, we develop an

analytics market robust to such strategic replication for supervised learning problems.

We adopt Pearl’s do-calculus from causal inference to refine the cooperative game by

differentiating between observational and interventional conditional probabilities. As

a result, we derive Shapley value-based rewards that deter replication by design.
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1. Introduction
Machine learning relies heavily on both the quality and quantity of input data, however, firms

often find it difficult, if not impossible, to acquire rich datasets themselves. This is often due to

privacy constraints. For instance, in the medical domain, data is highly sensitive and subject to

strict regulations (Rieke et al. 2020), yet hospitals could benefit from sharing patient information

to mitigate social biases in diagnostic support systems. Similar examples include rival distributors

sharing sales data to improve supply forecasts, or hotel operators using airline data to better anticipate

demand. One promising solution to this is federated learning, where multiple agents collaborative

by pooling their local resources for a central learning task without directly exchanging raw data

(Yang et al. 2019). However, this approach presupposes that agents are willing to share information

altruistically—an assumption that may not hold if these agents also compete in downstream markets

(Gal-Or 1985). To incentivize data sharing, one can instead frame data as a commodity within a

market-based framework (Bergemann and Bonatti 2019). This is by no means a new concept, as
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many platforms already exist to purchase of raw datasets directly from their owner via bilateral

transactions (Rasouli and Jordan 2021). That said, pricing these datasets is not easy as their value

ultimately depends on when, how, and by whom they are eventually used (Mussell 2014). Further,

since datasets often contain overlapping information, their value is inhernetly combinatorial, so

these seemingly straightforward transactions can easily become intractable to price.

Data can also be monetized via prediction markets—exchanges where participants buy and sell

securities whose payoffs depend on the outcome of future events (Wolfers and Zitzewitz 2004,

Storkey 2011). The prices of these securities reflect the collective belief about the probability of the

event occurring, effectively crowdsourcing diverse information from the market (Abernethy et al.

2015). These markets were some of the first to question the notion that raw data possesses a singular

intrinsic value, arguing instead that its usefulness depends on the specific task at hand. However,

a key limitation is that sellers must choose which tasks to predict without prior knowledge of how

relevant their data might be. To this end, recent works instead advocate for analytics markets—real-

time mechanisms that match datasets to machine learning tasks based on predictive performance,

which build on federated learning by retaining the possibility to distribute compute and preserve

privacy (Agarwal et al. 2019). In these markets, revenue is generated based on the value task owner’s

value for accuracy. Such markets have been proposed for both classification (Koutsopoulos et al.

2015) and regression (Pinson et al. 2022, Falconer et al. 2024) tasks.

In analytics markets, each feature is allocated a portion of the revenue by treating each as a player

in a cooperative game and using well-established solution concepts from game theory—specifically,

semivalues (Dubey et al. 1981)—a framework also used in machine learning for feature importance

(Ghorbani and Zou 2019). The key advantage of using semivalues is that they are characterized by a

set of axioms, namely symmetry, efficiency, null-player, and additivity, that lead to desirable market

properties by design (for precise definitions, see Chalkiadakis et al. 2011). A feature’s semivalue

represents its expected marginal contribution to predictive performance across all subsets of other

features. In many applications, the Shapley value (Shapley 1997) is favored as it is the unique

semivalue that satisfies all four axioms.

1.1. Challenges

For an arbitrary feature vector 𝒙 ∈ R𝑛, a revenue allocation function should ideally take the form

𝜙 : H ×R𝑛 ↦→ R𝑛, where H is the set of all possible scoring rules ℎ : R𝑛 ↦→ R. In other words, the

output of ℎ(𝒙) is directly decomposed into contributions (𝜙(ℎ, 𝒙)1, 𝜙(ℎ, 𝒙)2, . . . , 𝜙(ℎ, 𝒙)𝑛) for each

feature, such that ℎ need only be evaluated for the complete input vector 𝒙. However, to compute
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the Shapley values, the scoring rule needs to be evaluated for each subset of features. The problem
is, standard machine learning models are typically defined only for complete input vectors (to avoid
issues such as matrix dimension mismatches), so they do not naturally produce outputs for partial
inputs. To address this, one must define a so-called lift function 𝜁 : H ×R𝑛 × 2𝑛 ↦→R, also referred
to as a characteristic function, which extends ℎ to operate on subsets C ⊆ {1, . . . , 𝑛} of features
(Merrill et al. 2019). That is, the lift 𝜁 (ℎ, 𝒙,C) assigns a value for each C, thereby lifting ℎ from
R𝑛 to the R𝑛 × 2𝑛.

The computed Shapley values are therefore contingent upon the particular lift used to map the
dense and uncountable input space into the required discrete domain. As there are several ways
to formulate such a lift, it is not immediately clear which one to use (Sundararajan and Najmi
2020). If we refer to each subset C of features as a coalition, these lifts simulate the inclusion
or exclusion of features, differing in how they model the distributions of in-coalition features
conditioned on out-of-coalition features, most of which can be categorized as either observational or
interventional. From the lens of causal inference, an observational conditional probability describes
the relationship between two or more variables as they occur naturally, whereas an interventional
conditional probability is the result when one “intervenes” by fixing a particular variable’s value
(Pearl 2010).

In existing works on analytics markets (e.g., Agarwal et al. 2019, Pinson et al. 2022) the choice
of lift uses observational conditional probabilities. These works highlight that if an agent’s feature
is highly correlated with that of another agent, they are able to strategically submit many replicates
of their feature under different identities to increase their revenue and dimish that of others. This
can be done freely since, unlike material commodities, data can be replicated at no additional
cost. Whilst many attempts have been made to remedy this problem, doing so typically requires
a trade-off. For instance, Ohrimenko et al. (2019) propose a more elaborate mechanism design,
requiring each seller to also have their own machine learning task for which they want to procure
data, which has practical limitations. In Agarwal et al. (2019), a modification to the Shapley value is
proposed which penalizes similar features, thereby deterring replication. However, budget balance
is sacrificed to achieve this, meaning that that some of the market revenue, that perhaps should
have been portioned to other agents, remains unallocated. Their setup is also vulnerable to spiteful
agents—those who seek to minimize the revenue of others as well as maximize their own. A similar
shortcoming is observed in the proposal of Han et al. (2023), as both natural correlations and
deliberate replications are penalized. In this work, we show that the choice of lift is responsible for
these grossly undesirable allocations.
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1.2. Contributions

The key contributions of our work are as follows: (i) we propose a general analytics market design

for supervised learning problems that subsumes recent proposals in literature; (ii) we show that

there are many ways in which Shapley values can be used to allocate revenue and that the differences

between them can be explained from a causal perspective; (iii) by applying its recent links to feature

importance, we show that the replication incentives in existing works can be explained using Pearl

(2012)’s seminal work on causality; (iv) by replacing the conventional approach of conditioning

by observation with conditioning by intervention, we design a market that is robust to replication

whilst also accounting for spiteful agents, thereby taking a step toward the practical application

of these markets; and finally (v) we demonstrate our findings on a real-world case study—out of

many potential applications, we choose to study wind power forecasting due to data availability, the

known value of sharing distributed data, and the fact it is a sandbox that can be easily shared and

used by others.

The remainder of this paper is structured as follows: Section 2 presents our general market design

framework. In Section 3 we derive variants of the characteristic function and analyze each from

a causal perspective. In Section 4 we discuss the impact of each on the robustness of the market

to replication. Section 5 then illustrates our findings on a real-world case study. Finally, Section 6

gathers a set of conclusions and perspectives for future work.

2. Preliminaries

As many machine learning applications involve forecasting, we focus on regression analysis in

the context of analytics markets, yet our setup can be used for any supervised learning problem.

This builds upon prior work on data acquisition for machine learning tasks from both strategic

(Dekel et al. 2010) and privacy-conscious (Cummings et al. 2015) agents. We assume an owner

of a regression task has a valuation for a marginal improvement in predictive performance, which

sets the price for the distributed agents, whom in turn propose their own data as features and are

rewarded based on their marginal contributions to this improvement. We denote this valuation

𝜆 ∈ R≥0, the value of which we assume to be known and reported truthfully. We refer the reader to

Ravindranath et al. (2024) for a recent proposal of how 𝜆 may be elicited in practice.

2.1. Market Agents

Let A be the set of market agents, one of which 𝑐 ∈ A is a central agent seeking to improve their

predictions, whilst the remaining agents 𝑎 ∈ A−𝑐 are support agents, whom propose their own data
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as features, whereby A−𝑐 =A \ {𝑐}. Let {𝑦 (𝑡)} be the target signal recorded by the central agent,

with 𝑦 (𝑡) ∈ R a sample from the stochastic process {𝑌 (𝑡)} at time 𝑡. Assuming there are 𝑀 available

features in the market, we let 𝒙 (𝑡) = [𝑥 (𝑡)1 , . . . , 𝑥 (𝑡)𝑀 ]⊤ be the vector of values at time 𝑡, indexed by the

ordered set I = {1, . . . 𝑀}. If only a particular subset of features C ⊆ I is used, we add an index

for the set itself, such that the vector of values for features in C at time 𝑡 is denoted by 𝒙 (𝑡)C . Each

agent 𝑎 ∈ A owns a subset I𝑎 ⊆ I of indices. We write I−𝑐 as the set of indices for features owned

only by the support agents. For each subset of features C ⊆ I we write D (𝑡)
C = {𝒙 (𝑡)C , 𝑦

(𝑡)} to be the

input-output pair observed at time 𝑡.

2.2. Regression Framework

To model the target signal, 𝑌 (𝑡) , we use a parametric Bayesian regression framework, formulating

the likelihood as a deviation from a deterministic mapping under an independent Gaussian noise

process, the variance of which is treated as a hyperparameter. We use a linear interpolant parame-

terized by a vector of coefficients which represents the conditional expectation of the target signal,

such that the interpolant using all available features at time 𝑡 can be decomposed as:

𝑓 (𝒙 (𝑡) ,𝒘) = 𝑤0 +
∑︁
𝑖∈I𝑐

𝑤𝑖𝑥
(𝑡)
𝑖

Terms belonging
to the central agent.

+
∑︁
𝑎∈A−𝑐

∑︁
𝑗∈I𝑎

𝑤 𝑗𝑥
(𝑡)
𝑗

Terms belonging
to the support agents.

.

REMARK 1. We focus on parametric regression with functions that are linear in their coefficients

to guarantee certain market properties. One can of course obtain a rich class of models with linear

combinations of nonlinear basis functions or splines, however we adopt only a linear basis in this

work for ease of exposition. For an application of nonlinear basis functions to analytics markets,

the reader is referred to Falconer et al. (2024).

2.3. Market Clearing

As in Pinson et al. (2022), we adopt a two-stage (i.e., in-sample and out-of-sample) market. In the

first stage, parameters are inferred using observed input–output pairs. In the second stage, the trained

model is deployed to forecast on previously unseen data, thereby testing its ability to generalize

beyond the training set. Both stages require performance evaluation, as well as processes for payment

collection and revenue allocation. We relax their assumption that features are independent, yet still

remove redundant features owned by the support agents (i.e., those that are highly correlated with

the central agent’s features) via the detailed feature selection process.
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Parameter Inference We opt for a centered isotropic Gaussian prior, which is conjugate for our

likelihood, resulting in a tractable Gaussian posterior that summarizes the updated beliefs, which,

for a particular subset of features at time 𝑡 is given by

𝑝(𝒘C |D (𝑡)
C )

∝ 𝑝(D (𝑡)
C |𝒘C)𝑝(𝒘C |D (𝑡−1)

C ),

= 𝑝(D (𝑡)
C |𝒘C)

(
𝑝(𝒘C)

∏
𝑡′<𝑡

𝑝(D (𝑡′)
C |𝒘C)

)
,

where recall D (𝑡)
C is the input-output pair observed at time 𝑡. We note the use of Gaussians is only for

mathematical convenience, and our framework can be readily extended to more general hypotheses

(e.g., without conjugate priors). Our Bayesian approach also subsumes many frequentist methods,

making it easy to apply, for instance, ordinary least-squares or maximum likelihood estimation.

Performance Evaluation At time 𝑡 + 1, the predictive density is equal to the convolution of the

likelihood with the posterior at time 𝑡 such that

�̂� (𝑡+1)
C =

∫
Θ

𝑝(𝑦 (𝑡+1) |𝒙 (𝑡+1)
C ;𝒘)𝑝(𝒘C |D (𝑡)

C )𝑑𝒘,

where �̂� (𝑡+1) = 𝑝(𝑦 (𝑡+1) |𝒙 (𝑡+1)
C ) is the prediction for the features in C. We measure performance using

the negative log likelihood, ℎ(𝒙 (𝑡+1)
C ) = − log �̂� (𝑡+1)

C , which can be described as a negatively oriented

strictly proper scoring rule. Ergo, the following properties hold: (i) between any two models, the one

with a more accurate description of the data produces a lower score; and (ii) the score is uniquely

minimized when the predicted distribution matches the true distribution. We retain a recursive

estimate of its expected value as observations arrive for each subset of features, E[ℎ(𝒙C)] (𝑡) .

Payment Collection Market revenue is a function of the exogenous valuation, 𝜆 ≥ 0, and the

extent to which model-fitting is improved. This is measured using the current estimate of the

expected value of the scoring rule, such that the market revenue at time 𝑡 is given by

𝜋(𝑡) = 𝜆 (E[ℎ(𝒙I𝑐 )] (𝑡) −E[ℎ(𝒙I)] (𝑡))

which is the payment collected from the central agent.
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Revenue Allocation We use the Shapley value to reward each feature for their contribution to

the improved predictive performance.

DEFINITION 1 (CHARACTERISTIC FUNCTION). For a given scoring rule ℎ and feature vector

𝒙 (𝑡) , a characteristic function 𝜁 : R|I | ×P(I−𝑐) ↦→R assigns a real number 𝜁 (𝒙 (𝑡) ,C) to each subset

C ⊆ I−𝑐.
For brevity, we write 𝜁 (𝑡)C = 𝜁 (𝒙 (𝑡) ,C). Each subset C ⊆ I−𝑐 is a coalition in the cooperative game,

with I−𝑐 the so-called grand coalition. Let 𝑚 = |I−𝑐 | be the number of support agents, such that the

Shapely value for feature 𝑖 at time 𝑡 is

𝜙(𝑡)𝑖 =
1
𝑚

∑︁
C∈P(I−𝑐\{𝑖})

(
𝑚 − 1
|C|

)−1
𝛿(𝑡)𝑖 (C), (1)

where 𝛿(𝑡)
𝑖
(C) = 𝜁 (𝑡)I𝑐∪C − 𝜁 (𝑡)I𝑐∪C∪𝑖 is the marginal contribution of feature 𝑖 to coalition C.

We acknowledge that evaluating 𝜙(𝑡)
𝑖

is NP-hard in general (Deng and Papadimitriou 1994), with a

time complexity of O(2𝑚), hence in practice one must rely on approximation methods (Castro et al.

2009, Mitchell et al. 2022). An obvious method is to obtain a Monte-Carlo estimate by sampling

𝑑 < 𝑚 terms from the sum in (1) with probability 𝑝(C) = 1/
(𝑚−1
|C|

)
such that an approximate Shapley

value is given by

𝜙(𝑡)𝑖 =
1
𝑑

𝑑∑︁
𝑗=1
𝛿(𝑡)𝑗 (C𝑗 ),

which is an unbiased estimator that converges asymptotically at a rate of O(1/
√
𝑑), according to

the Central Limit Theorem. However, in this work we are solely focused on the functional form of

𝜁 , which is agnostic to the choice of sampling method, so exploring state-of-the-art approximations

is outwith the scope of this work so we revert to (1) to compute the Shapley values.

The reward for each support agent can then be written as

𝜋𝑎 =
∑︁
𝑖∈I𝑎

𝜆E[𝜙𝑖] (𝑡) , ∀𝑎 ∈ A−𝑐 .

DEFINITION 2 (MARKET PROPERTIES). With the proposed regression framework and Shap-

ley value-based revenue allocation, regression markets have the following properties:

1. Symmetry—Any two features with the same marginal contribution to all coalitions obtain

equal reward, that is, ∀C ∈ I−𝑐 \ {𝑖, 𝑗} : 𝜁 (𝑡)I𝑐∪C∪𝑖 ≡ 𝜁
(𝑡)
I𝑐∪C∪ 𝑗 ↦→ 𝜙(𝑡)

𝑖
≡ 𝜙(𝑡)

𝑗
,∀(𝑖, 𝑗) ∈ I−𝑐, 𝑖 ≠ 𝑗 ,∀𝑡.

2. Linearity—For any two features, their joint contribution to coalition is equal to the sum of

their marginal contributions, that is, 𝜁 (𝑡)I𝑐∪C∪𝑖 + 𝜁
(𝑡)
I𝑐∪C∪ 𝑗 = 𝜁

(𝑡)
I𝑐∪C∪𝑖, 𝑗 ,∀(𝑖, 𝑗) ∈ I−𝑐,∀𝑡.
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3. Budget balance—The payment of the central agent is equal to the sum of rewards received by

all the support agents, that is, 𝜋 =
∑
𝑎∈A−𝑐 𝜋𝑎.

4. Individual rationality—Support agents have a weak preference to participate in the market

rather than the outside option, that is, 𝜋𝑎 ≥ 0,∀𝑎 ∈ A−𝑐.

5. Zero-element—If a support agent provides no feature, or provide features with zero marginal

contribution to all coalitions, they earn no reward, that is, ∀C ∈ I−𝑐 : 𝜁 (𝑡)I𝑐∪C∪𝑖 ≡ 𝜁
(𝑡)
I𝑐∪C ,∀𝑖 ∈ I𝑎 ↦→

𝜋𝑎 = 0.

6. Truthfulness—Support agents maximize their reward by reporting their true data.

These desirable market properties stem from the axioms of the Shapley value, a detailed proof

of which is provided in Falconer et al. (2024). Recall that our scoring rule ℎ relates to the linear

interpolant 𝑓 : R|I | ↦→R and is therefore itself only defined on R|I |. To compute 𝜙(𝑡)
𝑖

, an evaluation

of ℎ for each coalition C ∈ P(I−𝑐) of features is needed, where |P(I−𝑐) | = 2𝑚. Accordingly, we

lift the scoring rule to a higher dimensional space with the characteristic function. For machine

learning problems, one could argue that the Shapley value is not well-defined in general, as there

exists many methods to formulate this lift (Sundararajan and Najmi 2020). In the following section,

we explore these methods and their differences from a causal perspective.

3. Characteristic Function

Methods to compute Shapley values for machine learning problems can broadly be categorized as

either observational or interventional, relating to the formulation of the characteristic function that

underpins the cooperative game. The former is typically found in work related to analytics markets

(e.g, Agarwal et al. 2019, Pinson et al. 2022) and the latter used for interoperability in machine

learning (Lundberg and Lee 2017). Recall that the purpose of the lift is to simulate the removal

of features to obtain partial evaluations of ℎ. These two formulations differ in how they model the

distribution of features, in particular, the distribution of features within a coalition C conditioned

on those not in C.

The observational lift uses the observational conditional expectation, the expectation of the

scoring rule at time 𝑡, where the integral is taken with respect to the out-of-coalition features given

the in-coalition features take on their observed values, such that

𝜁 (𝑡),obs
C =

∫
ℎ(𝒙 (𝑡)C , 𝒙

(𝑡)
C′ )𝑝(𝒙 (𝑡)C′ |𝒙 (𝑡)C )𝑑𝒙 (𝑡)C′ , (2)

where C′ =I \ C denotes the out-of-coalition features.
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The interventional lift uses the interventional conditional expectation, which is given by

𝜁 (𝑡),int
C =

∫
ℎ(𝒙 (𝑡)C , 𝒙

(𝑡)
C′ )𝑝(𝒙 (𝑡)C′ | do(𝒙 (𝑡)C ))𝑑𝒙 (𝑡)C′ , (3)

where do(·) is an operator from Pearl’s do-calculus (Pearl 2012) that represents an “intervention”

where the data generating process is manipulated by manually fixing the features in the coalition to

their observed values. The key difference between (2) and (3) is that in the former, conditioning on

the observed values of the features in the coalition can alter the distribution of the out-of-coalition

features if any latent dependencies exist, an effect which is ignored in the latter by fixing the

in-coalition features via the do-intervention. For further intuition we provide the following example.

Illustrative Example Consider the causal graph in Figure 1. In this setup, two variables, 𝑋 and

𝑌 , are connected by a single directed edge. If we observe some value 𝑋 = 𝑥, the observational

conditional distribution of 𝑌 describes: the distribution of 𝑌 given that 𝑋 is observed to take on the

value 𝑥, written as 𝑝(𝑦 |𝑥) = 𝑝(𝑥, 𝑦)/𝑝(𝑥). By contrast, the interventional conditional distribution

𝑝(𝑦 | do(𝑥)) describes instead: the distribution of 𝑌 given that we artificially set the value of 𝑋

to 𝑥, denoted 𝑝(𝑦 | do(𝑥)). Graphically, an intervention removes all edges going into the variable.

As there are no parents of 𝑋 , intervening on 𝑋 does not alter any other part of the system, so

𝑝(𝑦 | do(𝑥)) = 𝑝(𝑦 |𝑥). Yet, if we intervene on 𝑌 by setting 𝑌 = 𝑦, we remove all edges into 𝑌 , so

𝑝(𝑥 | do(𝑦)) = 𝑝(𝑥), hence 𝑥 simply governed by its marginal distribution.

Computation These two lifts also differ significantly in their computational expense (Lundberg

and Lee 2017). In particular, computing the observational conditional expectation of ℎ is generally

intractable, requiring complex and expensive approximations (Covert et al. 2021). By contrast,

intervening on features can be done via comparatively simple and efficient methods (Sundararajan

and Najmi 2020). Although there is ongoing debate regarding the most suitable way to evaluate the

conditional expectation (Chen et al. 2022), one common approach is to train a separate model for

each subset of features; if each model is optimal with respect to the scoring rule, then marginalizing

out features via their conditional distribution is effectively achieved.

In the context of linear regression over 𝜏 time steps, fitting a model for a coalition and evaluating

ℎ incur complexities of O(𝜏 |C|2 + |C|3) and O(𝜏 |C|), respectively, which are calculated for all 2𝑚

coalitions, scaling poorly to high dimensions. In contrast, the interventional lift can be computed

Figure 1 Causal graph indicating a direct effect between two random variables, 𝑋 and 𝑌 .

𝑋 𝑌



Authors’ names not included for peer review
10 Article submitted to INFORMS Journal on Data Science

much faster by simply imputing out-of-coalition features, requiring only a single model (i.e., the

grand coalition) with just the scoring rule evaluated for each coalition which is computed in linear

time. Note that, both lifts preserve the axioms of the original Shapley value, and subsequently the

desirable market properties.

Causal Perspectives When features are mutually independent, the two lifts coincide. To see

this, we can think of do(𝒙 (𝑡)C ) in (3) as breaking the dependence to 𝒙 (𝑡)C′ , without affecting the

distribution of 𝒙 (𝑡)C , thus we can re-write this operation as 𝑝(𝒙 (𝑡)C′ | do(𝒙 (𝑡)C )) = 𝑝(𝒙 (𝑡)C′ ) so the inter-

ventional expectation coincides with the marginal expectation (Janzing et al. 2020). If features are

independent, we can then calculate (3) from (2) by simply replacing 𝑝(𝒙 (𝑡)C′ |𝒙 (𝑡)C ) with the marginal

distribution, which would be equivalent in this case. With this in mind, we use the following theorem

to further analyze these lifts from a causal perspective.

THEOREM 1. Marginal contributions derived using the observational conditional expectation

as defined in (2) can be decomposed into both indirect and direct causal effects.

Proof First, if we let Θ be the set of all possible permutation of indices in I−𝑐, we can re-

formulate the Shapley value in (1) for feature 𝑖 at time 𝑡 as follows:

𝜙(𝑡)𝑖 =
1
𝑚!

∑︁
𝜃∈Θ

𝛿(𝑡)𝑖 (𝜃),

where now 𝛿(𝑡)
𝑖
(𝜃) = 𝜁 (𝑡)I𝑐∪{ 𝑗 : 𝑗≺𝜃 𝑖} − 𝜁

(𝑡)
I𝑐∪{ 𝑗 : 𝑗⪯𝜃 𝑖}, with 𝑗 ≺𝜃 𝑖 meaning 𝑗 precedes 𝑖 in permutation 𝜃.

Then, using the formulation in (2), the marginal contribution of feature 𝑖 for a single permutation
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𝜃 ∈Θ derived using the observational lift can be written as

𝛿(𝑡),obs(𝜃) = 𝜁 (𝑡),obs

¯
C − 𝜁 (𝑡),obs

¯
C∪𝑖 ,

=

∫
ℎ(𝒙 (𝑡)

¯
C , 𝒙

(𝑡)
C̄∪𝑖)𝑝(𝒙 (𝑡)C̄∪𝑖 |𝒙 (𝑡)

¯
C )𝑑𝒙 (𝑡)C̄∪𝑖

−
∫

ℎ(𝒙 (𝑡)
¯
C∪𝑖, 𝒙

(𝑡)
C̄ )𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C∪𝑖)𝑑𝒙 (𝑡)C̄

Total effect

,

=

∫
ℎ(𝒙 (𝑡)

¯
C , 𝒙

(𝑡)
C̄∪𝑖)𝑝(𝒙 (𝑡)C̄∪𝑖 |𝒙 (𝑡)

¯
C )𝑑𝒙 (𝑡)C̄∪𝑖

−
∫

ℎ(𝒙 (𝑡)
¯
C∪𝑖, 𝒙

(𝑡)
C̄ )𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C )𝑑𝒙 (𝑡)C̄

Direct effect

+
∫

ℎ(𝒙 (𝑡)
¯
C∪𝑖, 𝒙

(𝑡)
C̄ )𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C )𝑑𝒙 (𝑡)C̄

−
∫

ℎ(𝒙 (𝑡)
¯
C∪𝑖, 𝒙

(𝑡)
C̄ )𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C∪𝑖)𝑑𝒙 (𝑡)C̄

Indirect effect

,

where
¯
C = { 𝑗 : 𝑗 ≺𝜃 𝑖} and C̄ = { 𝑗 : 𝑗 ≻𝜃 𝑖}. Thus, the marginal contribution captures two distinct

effects. The first is the direct effect on the expected score when feature 𝑖 is observed and added to

the coalition, keeping the distribution of the out-of-coalition features unchanged, in other words,

using 𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)
¯
C ) instead of 𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C∪𝑖). The other is the indirect effect on the expected score

when the distribution of the out-of-coalition features does change as a result of observing feature 𝑖,

that is, when 𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)
¯
C ) changes to 𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C∪𝑖). □

Following Theorem 1, we can see that by replacing conditioning by observation with the marginal

distribution as in (2), the indirect effect disappears entirely. Hence, the interventional lift disregards

causal effects between features, and subsequently any latent confounders or root causes with indirect

effects (Heskes et al. 2020). As a result, the interventional lift is more effective at crediting features

upon which the regression model has an explicit algebraic dependence. In contrast, the observational

lift attributes features in proportion to indirect effects (Frye et al. 2020), which some argue is

illogical as features not explicitly used by the model can receive non-zero allocation.

Whilst this dispute has been used to reject the general use of Shapley values for interoperability

in machine learning (Kumar et al. 2020) and argue that Lundberg and Lee (2017) were mistaken

to simply convey (3) as a cheap approximation of (2), the choice between observational and
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interventional lifts can be viewed as whether one intends to be true to the data or true to the model,

respectively, meaning the trade-offs of each approach can be seen as context-specific (Chen et al.

2020). We argue that the former is best suited for analytics markets.

Interpreting Rewards We can explore this last conjecture by considering how the rewards of the

support agents may differ depending on the choice of lift. We know that the predictive performance

of the regression model out-of-sample is contingent upon the availability of features that were used

during training, which, in practice, requires data of the support agents to be streamed continuously

in a timely fashion, particularly for an online setup. If a feature was missing, the efficacy of the

forecast may drop, the extent to which would relate not to any root causes or indirect effects

regarding the data generating process, but rather the magnitude of direct effects.

Specifically, larger rewards would be made to support agents with features to which the predictive

performance of the model is most sensitive, providing incentives to reduce data being unavailable,

somewhat resembling reserve payments in energy markets, where assets are remunerated for being

available in times of need. With the observational lift, it would instead be unclear as to whether

comparatively larger rewards in the regression market are consequential of features having a sizeable

impact on predictive performance, or merely a result of indirect effects through those that do. The

interventional lift therefore better aligns with desirable intentions of the market.

Limitations There is, of course, no free lunch, as if features are strongly correlated, conditioning

by intervention can lead to model evaluation on points outwith the true data manifold. This can

visualized with the simple illustration in Figure 2. Whilst intervening on independent features always

yields samples within the original manifold, if features are very correlated, there is a possibility of

extrapolating beyond the training distribution, where model behavior is unknown. In the remainder

of this section we consider what impact this may have on the market outcomes. Multicollinearity

inflates the variance of the coefficients, which can distort the estimated mean when the number of

in-sample observations is limited.

The posterior variance of the 𝑖-th coefficient can be written as 𝜎2(𝑤𝑖) = 𝜅𝑖/𝜉 |D𝑡 |, where 𝜉 is the

intrinsic noise precision of the target and 𝜅𝑖 is the variance inflation factor, given by

𝜅𝑖 = e⊤𝑖 (
∑︁
𝑡′≤𝑡

(𝒙 (𝑡))⊤ 𝒙 (𝑡))−1e𝑖, ∀𝑖 ∈ I,

where e𝑖 is the 𝑖-th basis vector. Whilst 𝜅𝑖 ≥ 1, it has no upper bound, meaning 𝜅𝑖 ↦→ ∞, ∀𝑖, with

increasing extent of collinearity.
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Figure 2 Interventions producing points outwith the data manifold.
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Note. Green and red lines are level sets within which 0.99 quantile of the training data when features are independent and correlated,

respectively. The blue lines represent the data extrapolated as a result of intervening on 𝑋1 and 𝑋2.

From a variance decomposition perspective, the Shapley value of feature 𝑖 equals the variance

in the target signal that it explains, such that, E[𝜙𝑖] (𝑡) = (E[𝑤𝑖] (𝑡))2 𝑣𝑎𝑟 (𝑋 (𝑡)
𝑖
), approximating the

behaviour of the interventional Shapley value when features are correlated (Owen and Prieur 2017).

With a Gaussian posterior, the Shapley values follow a noncentral Chi-squared distribution with

one degree of freedom. We can write the probability density function for the distribution of the

Shapley value for feature 𝑖 in closed-form as

𝑝(𝜙(𝑡)𝑖 )

= 𝑣𝑎𝑟 (𝑋 (𝑡)
𝑖 )𝑣𝑎𝑟 (𝑡) (𝑤𝑖)

∞∑︁
𝑛=0

𝑒𝜂/2

𝑛!

(𝜂
2

)𝑛
𝜒2(1+ 2𝑛),

where 𝑣𝑎𝑟 (𝑡) (·) is the estimated variance at time 𝑡 and the noncentral Chi-squared distribution is

seen to simply be given by a Poisson-weighted mixture of central Chi-squared distributions, 𝜒2(·),

with noncentrality 𝜂 = (E[𝑤𝑖] (𝑡))2 /𝑣𝑎𝑟 (𝑡) (𝑤𝑖), for which the moment generating function is known
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in closed form. For feature 𝑖, the centered second moment is

𝑣𝑎𝑟 (𝑡) (𝜙𝑖) = 2𝑣𝑎𝑟 (𝑡) (𝑤𝑖)

×
(
2E[𝑤𝑖]2

𝑡 + 𝑣𝑎𝑟 (𝑡) (𝑤𝑖)
) (
𝑣𝑎𝑟 (𝑋 (𝑡)

𝑖 )
)2

so the variance of the allocation for any feature is a quadratic function of the variance of the
corresponding coefficient, thus the variance inflation induced by multicollinearity. That being said,
this is only a problem for small sample sizes and vanishes with increasing 𝑡, as 𝑣𝑎𝑟 (𝑡) (𝑤𝑖) ↦→ 0, ∀𝑖
(Qazaz et al. 1997). If only a limited number of observations are available, distorted revenues
could be remedied using zero-Shapley or absolute-Shapley proposed in Liu (2020), or restricting
evaluations to the data manifold (Taufiq et al. 2023). We leave an investigation into these remedies
in relation to analytics markets to future work.

4. Robustness To Replication
Although it is natural for datasets to contain some overlapping information, Agarwal et al. (2019)
show that in analytics markets such redundancy may also arise as a result of malicious behavior, in
the sense that it is done to increase one’s own reward at the expense of others’. This problem arises
from the fact that data can be replicated freely, which differentiates it from material commodities, a
trait which has motivated reassessments into fundamental mechanism design concepts for selling it
(Aiello et al. 2001). In this section, we show that the use of observational conditional expectations
in existing works explains the existence of replication incentives, the downsides of this, and how it
can be remedied with the interventional lift.

DEFINITION 3 (REPLICATE). A replicate feature 𝑖 is the original data obfuscated with noise,
𝑥 (𝑡)
𝑖

+ 𝜂(𝑡)
𝑖

, where 𝜂(𝑡)
𝑖

is drawn from a centered distribution with finite variance, conditionally
independent of the target given the feature.

Obfuscating a feature in this manner is equivalent to regularizing it’s coefficients during train-
ing (Bishop 1995), inducing an endogeneity bias that diminishes the feature’s contribution and,
consequently, the revenue generated by the support agent. This idea underpins the proof of the
truthfulness property described in Definition 2 as provided in Falconer et al. (2024). However, this
property does not account for the fact that agents could, in theory, submit multiple replicates along
with their original feature, each under a false identity. Whilst this would not impact predictive per-
formance, it allows agents to increase their own revenue and diminish that of others whilst providing
no additional improvements if the observational lift is used to calculate the Shapley values.
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Figure 3 Direct effects (solid) and indirect effects (dashed) induced by replicating 𝑋 (𝑡 )
2 .

𝑌𝑡

𝑋 (𝑡)
2𝑋 (𝑡)

1 𝑋 (𝑡),1
2 𝑋 (𝑡),𝐾

2· · ·
𝑤2𝑤1

Note. The 𝑘-th replicate of 𝑋 (𝑡 )
2 is denoted by 𝑋 (𝑡 ) ,𝑘

2 .

To illustrate this, consider the causal graph in Figure 3 and let 𝑥 (𝑡),𝑘𝑖 = 𝑥 (𝑡)𝑖 + 𝜂(𝑡),𝑘𝑖 denote the 𝑘-th

replicate of feature 𝑖. Suppose that 𝑥 (𝑡)1 and 𝑥 (𝑡)2 are identical features, such that 𝑤1 = 𝑤2, and that

each is owned by a unique support agent, 𝑎1 and 𝑎2, respectively. With Theorem 1, the reward to

each support agent without any replication will be 𝜋(𝑡)/2, where recall 𝜋(𝑡) is the market revenue.

Now suppose that 𝑎2 replicates their feature 𝐾 times and for simplicity assume 𝑣𝑎𝑟 (𝜂(𝑡),𝑘𝑖 ) = 0 for

every 𝑘 . Using the same logic, the reward of 𝑎1 is

𝜋(𝑡)𝑎1 =
𝜋(𝑡)

2+𝐾 ,

and for agent 𝑎2 the reward will be

𝜋(𝑡)𝑎2 =

1+𝐾∑︁
𝑘=1

𝜋(𝑡)

2+𝐾 =
𝜋(𝑡) (1+𝐾)

2+𝐾 ,

hence a malicious agent can replicate their data many times so as to maximize their overall revenue,

and diminish that of others, since 𝜋(𝑡)𝑎1 → 0 as 𝐾→∞.

If support agent 𝑎 ∈ A−𝑐 replicates a feature 𝐾 times, let the original feature vector augmented

to include all of the additional replicates be 𝒙 (𝑡),+ ∈ R|I |×𝐾 , with an analogous index set, I+.

DEFINITION 4 (WEAKLY REPLICATION-ROBUST). An analytics market is weakly robust to

replication if 𝜋(𝑡),+𝑎 ≤ 𝜋𝑎, ∀𝑎 ∈ A−𝑐, where 𝜋(𝑡),+𝑎 is the reward derived using 𝒙 (𝑡),+ instead.

REMARK 2. Of course, a support agent may still choose to add noise to their feature for privacy

reasons, wherein the loss of revenue can be perceived as the cost of privacy. So by replication-

robust, we specifically refer to the malicious behavior of submitting multiple replicates of the same

feature.
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Definition 4 is the definition of replication-robustness presented in Agarwal et al. (2019), stating

that an agent who submits replicates of their feature in addition to the original should obtain weakly

less reward than before. To achieve this, the authors propose Robust-Shapley, defined as follows:

𝜙(𝑡),robust
𝑖 = 𝜙(𝑡)𝑖 exp ©«−𝛾

∑︁
𝑗∈I−𝑐

sim
(
𝑋 (𝑡)
𝑖 , 𝑋 (𝑡)

𝑗

)ª®¬ ,

where sim(·, ·) is some measure of similarity (e.g., cosine similarity). This method penalizes similar

features so as to remove the incentive for replication, thereby satisfying Definition 4. However,

the issue with this approach is that not only replicated features are penalized, but also those with

naturally occurring correlations between features. As a result, budget balance is lost, the extent to

which depends on the chosen similarly metric and the value of 𝛾. In addition, this leaves the market

susceptible to spiteful agents—those willing to sacrifice their reward in order to minimize that of

others. For this reason we refer to this definition as weakly robust.

A similar result is presented in Han et al. (2023) who consider the general set of semivalues, the

class of solution concepts to submodular games to which the Shapley value belongs (Dubey et al.

1981). The authors show that the way in which a semivalue weights coalition sizes has an affect on

the resultant properties, and that the Banzhaf value (Lehrer 1988) is in fact replication-robust by

design (i.e., with respect to Definition 4), along with many other semivalues, albeit still penalizing

naturally occurring correlations whilst being susceptible to spiteful agent.

DEFINITION 5 (STRICTLY REPLICATION-ROBUST). An analytics market is strictly robust to

replication if 𝜋(𝑡),+𝑎 ≡ 𝜋𝑎, ∀𝑎 ∈ A−𝑐.

PROPOSITION 1. With the proposed regression framework and Shapley value-based revenue

allocation, regression markets using the interventional lift are strictly replication-robust.

Proof With Definition 3, each replicate in 𝒙 (𝑡),+ only induces an indirect effect on the target.

However, from Theorem 1, we know that the interventional lift only captures direct effects. There-

fore, for each of the replicates, we write the marginal contribution for a single permutation 𝜃 ∈ Θ
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as

𝛿(𝑡),int
𝑖 (𝜃) = 𝜁 (𝑡),int

¯
C − 𝜁 (𝑡),int

¯
C∪𝑖 ,∫

ℎ(𝒙 (𝑡)
¯
C , 𝒙

(𝑡)
C̄∪𝑖)𝑝(𝒙 (𝑡)C̄∪𝑖 |𝒙 (𝑡)

¯
C )𝑑𝒙 (𝑡)C̄∪𝑖

−
∫

ℎ(𝒙 (𝑡)
¯
C∪𝑖, 𝒙

(𝑡)
C̄ )𝑝(𝒙 (𝑡)C̄ |𝒙 (𝑡)

¯
C )𝑑𝒙 (𝑡)C̄ ,

= 0, ∀𝑖 ∈ I+
−𝑐 \ I−𝑐,

and therefore 𝜙𝑖 ∝
∑
𝜃∈ΘΔ𝑖 (𝜃) = 0 for each of the replicates. For the original features, any direct

effects will remain unchanged, as visualized in Figure 3. This leads to

𝜋(𝑡),+𝑎 =
∑︁
𝑖∈I𝑎

𝜆E[𝜙𝑖] (𝑡) +
∑︁

𝑖∈I+
𝑎 \I𝑎

𝜆E[𝜙𝑖] (𝑡)

=0

= 𝜋(𝑡)𝑎 , ∀𝑎 ∈ A−𝑐,

showing that by replacing the conventional observational lift with the interventional lift, Shapley

value-based allocation is robust to replication and spitefulness by design.

5. Experimental Analysis

We now validate our findings on a real-world case study.We use an open source dataset to facilitate

reproduction of our work, namely the Wind Integration National Dataset (WIND) Toolkit, detailed

in Draxl et al. (2015). Our setup is a stylised continuous electricity market where agents—in our

case, wind producers—need to notify the system operator of their expected electricity generation

in a forward stage, one hour ahead of delivery, for which they receive a fixed price per unit. In real-

time, they receive a penalty for deviations from the scheduled production, thus their downstream

revenue is an explicit function of forecast accuracy.

Data Description This dataset contains wind power measurements simulated for 9 wind farms

in South Carolina (USA), all located within 150 km of each other—see Table 1 for a characteristic

overview. Although this data is not exactly real, it effectively captures the spatio-temporal aspects of

wind power production, with the added benefit of remaining free from any spurious measurements,

as can often be the case with real-world datasets. Measurements are available for a period of 7
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Table 1 Agents and corresponding site characteristics considered in South Carolina (USA). 𝐶f denotes the

capacity factor and 𝑃 the nominal capacity. The identify number is that from the WIND Toolkit database.

Agent Id. 𝐶f (%) 𝑃 (MW)

𝑎1 4456 34.11 1.75

𝑎2 4754 35.75 2.96

𝑎3 4934 36.21 3.38

𝑎4 4090 26.60 16.11

𝑎5 4341 28.47 37.98

𝑎6 4715 27.37 30.06

𝑎7 5730 34.23 2.53

𝑎8 5733 34.41 2.60

𝑎9 5947 34.67 1.24

years, from 2007 to 2013, with an hourly granularity, which we normalize to take values in the
range of [0,1].

Each wind farm is considered a market agent. For simplicity, we let 𝑎1 be the central agent,
however in practice each could assume this role in parallel. We assume each agent to have only 1
feature, namely the 1-hour lag of their power measurements—for wind power forecasting, the lag
not only captures the temporal correlations of the production at a specific site, but also indirectly
encompasses the spatial dependencies amongst neighboring sites due to the natural progression of
wind. To illustrate this, we plot the location of each site in Figure 4. We see that the measurements
at sites directly neighbouring 𝑎1 have the largest dependency, which then decreases for the sites
further away.

Methodology We use the regression framework described in Section 2, with an Auto-Regressive

with eXogenous input model, such that each agent is assumed to own a single feature, namely a
1-hour lag of their power measurement. We are interested in assessing market outcomes rather
than competing with state-of-the-art forecasting methods, so we use a very short-term lead time
(i.e., 1-hour ahead), permitting fairly simple time-series analyses. We focus on assessing rewards
rather than competing with state-of-the-art forecasting methods, so we use a very short-term lead
time, permitting fairly simple time-series analyses. Nevertheless, our mechanism readily allows
more complex models for those aiming to capture specific intricacies of wind power production,
for instance the bounded extremities of the power curve (Pinson 2012).
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Figure 4 Geographic location of each wind farm.
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Note. The point sizes indicate the relative correlation between the measurements at each site and that of the central agent, 𝑎1.

We perform a pre-screening, such that given the redundancy between the lagged measurements

of 𝑎2 and 𝑎3 with that of 𝑎1, we remove them from the market in line with our assumptions.

At every time step, once a new observation of the target signal arrives, the previous time step’s

forecast is applied for out-of-sample market clearing. Simultaneously, the posterior is updated,

the in-sample market is cleared, and a forecast for the next time step is generated. We clear both

markets considering each agent is honest, that is, they each provide a single report of their true data.

Next, we re-clear the markets, but this time assuming agent 𝑎4 is malicious, replicating their data,

thereby submitting multiple separate features to the market to increase their revenue. This problem

size doesn’t require approximate Shapley values, but recall findings hold either way, and generalize

theoretically to arbitrary numbers of agents.

Results We set the central agent’s to valuation to 𝜆 = 0.5 USD per time step and per unit

improvement in ℎ, for both in-sample and out-of-sample market stages. However, we are primarily

interested in reward allocation rather than the magnitude—see Pinson et al. (2022) for a complete

analysis of the monetary incentive to each agent participating in the market. Overall the expected

in-sample and out-of-sample losses improved by 10.6% and 13.3% respectively with the help of

the support agents. This improvement is unaffected bu the number of replicates, since they provide

no additional information.

Setting𝐾 = 4, in Figure 5, we plot the expected allocation for each agent both with and without the

malicious behavior of agent 𝑎4, for each lift. When 𝑎4 is honest, we observe that the observational

lift spreads credit relatively evenly amongst features, suggesting that many of them have similar
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Figure 5 Revenue allocations for each support agent.
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(a) Observational: Revenue of 𝑎4 is increased

due to indirect effects induced by the replicates.
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(b) Interventional: Revenue of 𝑎4 remains the

same by accounting only for direct effects.

Note. Results for both (a) observational and (b) interventional lifts, when agent 𝑎4 is honest (//) and malicious (◦) by replicating

their feature. The blue and green bars correspond to in-sample and out-of-sample market stages, respectively. The revenue split

amongst replicates is depicted by the stacked bars highlighted in red.

Figure 6 Revenue allocation of agent 𝑎4 with increasing number of replicates
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indirect effects on the target. The interventional lift favours agents 𝑎7 and 𝑎8, which, as one would

expect, own the features with the most spatial correlation with the target. In this market, most of the

additional revenue of agent 𝑎8 appears to be lost from agent 𝑎9 compared with the observational

lift, suggesting that whilst these features are correlated, it is agent 𝑎8 with the greatest direct effect,

which is intuitive given their geographic location.
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When agent 𝑎4 replicates their data, with the observational lift, agents 𝑎5 to 𝑎8 earn less, whilst

agent 𝑎4 earns more. This shows that this lift indeed spreads rewards proportionally amongst indirect

effects, of which there are four more due to the replicates, and so the malicious agent out-earns the

others. Since the interventional lift only attributes direct effects, each replicate gets zero reward, so

the malicious agent is no better off than before. Rewards were consistent between in-sample and

out-of-sample, likely due to the large sample size and limited nonstationarities within the data.

To compare our work against current literature, in Figure 6 we plot the allocation of agent 𝑎4

with increasing number of replicates. Here, Robust-Shapley and Banzahf Value refer to both the

penalization approach of Agarwal et al. (2019) and the use of another semivalue in Han et al.

(2023), respectively. With the observational lift, the proportion of revenue obtained increases with

the number of replicates, as in the previous experiment. With Robust-Shapley, the allocation indeed

decreases with the number of replicates, demonstrating this approach is weakly replication-robust,

but is considerably less compared with the other approaches since natural similarities are also

penalized. The authors argue this is an incentive for provision of unique information, but this allows

agents to be spiteful. The Banzahf Value is strictly robust to replication for 𝐾 = 1, but only weakly

for 𝐾 ≥ 2. Lastly, unlike these methods, our proposed use of the interventional lift remains strictly

replication-robust throughout as expected, with agent 𝑎4 not able to benefit from replicating their

feature, without penalizing the other agents.

6. Conclusions

Many machine learning tasks could benefit from using the data owned by others, however convincing

firms to share information, even if privacy is assured, poses a considerable challenge. Rather

than relying on data altruism, analytics markets are recognized as a promising way of providing

incentives for data sharing, many of which use Shapley values to allocate revenue. Nevertheless,

there are a number of open challenges that remain before such mechanisms can be used in practice,

one of which is vulnerability to strategic replication, which we showed leads to undesirable reward

allocation and restricts the practical viability of these markets.

We introduced a general framework for analytics markets for supervised learning problems that

subsumes many of these existing proposals. We demonstrated that there are several different ways

to formulate a machine learning task as cooperative game and analysed their differences from

a causal perspectives. We showed that use of the observational lift to value a coalition is the

source of these replication incentives, which many works have tried to remedy through penalization
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methods, which facilitate only weak robustness. Our main contribution is an alternative algorithm

for allocating rewards that instead uses interventional conditional probabilities. Our proposal is

robust to replication without comprising market properties such as budget balance. This is a step

towards making Shapley value-based analytics markets feasible in practice.

From a causal perspective, the interventional lift has additional potential benefits, including

reward allocations that better represent the reliance of the model on each feature, providing an

incentive for timely and reliable data streams for useful features, that is, those with greater influence

on predictive performance. It is also favorable with respect to computational expenditure. That

said, when it comes to data valuation, the Shapley value is not without its limitations—it is not

generally well-defined in a machine learning context and requires strict assumptions, not to mention

its computational complexity. This should incite future work into alternative mechanism design

frameworks, for example those based on non-cooperative game theory instead.
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