Publication Types:

Strategic coalition for data pricing in IoT data markets

2023ArticleIn press/Available onlineJournal paper
S. R. Pandey, P. Pinson, P. Popovski
IEEE Internet of Things Journal, in press/available online
Publication year: 2023

This paper establishes a market for trading Internet of Things (IoT) data that is used to train machine learning models. The data, either raw or processed, is supplied to the market platform through a network, and the price of such data is controlled based on the value it brings to the machine learning model under the adversity of the correlation property of data. Eventually, a simplified distributed solution for a data trading mechanism is derived that improves the mutual benefit of devices and the market. Our key proposal is an efficient algorithm for data markets that jointly addresses the challenges of availability and heterogeneity in participation, as well as the transfer of trust and the economic value of data exchange in IoT networks. The proposed approach establishes the data market by reinforcing collaboration opportunities between devices with correlated data to limit information leakage. Therein, we develop a networkwide optimization problem that maximizes the social value of coalition among the IoT devices of similar data types; at the same time, it minimizes the cost due to network externalities, i.e., the impact of information leakage due to data correlation, as well as the opportunity costs. Finally, we reveal the structure of the formulated problem as a distributed coalition game and solve it following the simplified split-and-merge algorithm. Simulation results show the efficacy of our proposed mechanism design toward a trusted IoT data market, with up to 32.72% gain in the average payoff for each seller.

Fair and scalable electric vehicle charging under electrical grid constraints

2023ArticleIn press/Available onlineJournal paper
G. Tsaousoglou, J. S. Giraldo, P. Pinson, N. G. Paterakis
IEEE Transactions on Intelligent Transportation Systems, in press/available online
Publication year: 2023

The increasing penetration of electric vehicles brings a consequent increase in charging facilities in the low-voltage electricity network. Serving all charging requests on-demand can endanger the safety of the electrical power distribution network. This creates the issue of fairly allocating the charging energy among electric vehicles while maintaining the system within safe operational margins. However, calculating efficient charging schedules for the charging stations bears a high computational burden due to the non-convexities of charging stations’ models. In this paper, we consider a tri-level system with electric vehicles, charging stations, and a power distribution system operator. The objective of each station is formulated as a max-min fairness, mixed-integer linear optimisation problem, while the network constraints are modelled using a second-order conic formulation. In order to tackle the computational complexity of the problem, we decompose it and use a novel approximation method tailored to this problem. We compare the performance of the proposed method with that of the popular alternating direction method of multipliers. Our simulation results indicate that the proposed method achieves a near-optimal solution along with promising scalability properties.

Wind energy forecasting with missing values within a fully conditional specification framework

2022ArticleIn press/Available onlineJournal paper
H. Wen, P. Pinson, J. Gu, Z. Jin
International Journal of Forecasting, in press/available online
Publication year: 2022

Wind power forecasting is essential to power system operation and electricity markets. As abundant data became available thanks to the deployment of measurement infrastructures and the democratization of meteorological modeling, extensive data-driven approaches have been developed within both point and probabilistic forecasting frameworks. These models usually assume that the dataset at hand is complete and overlook missing value issues that often occur in practice. In contrast to that common approach, we rigorously consider here the wind power forecasting problem in the presence of missing values, by jointly accommodating imputation and forecasting tasks. Our approach allows inferring the joint distribution of input features and target variables at the model estimation stage based on incomplete observations only. We place emphasis on a fully conditional specification method owing to its desirable properties, e.g., being assumption-free when it comes to these joint distributions. Then, at the operational forecasting stage, with available features at hand, one can issue forecasts by implicitly imputing all missing entries. The approach is applicable to both point and probabilistic forecasting, while yielding competitive forecast quality within both simulation and real-world case studies. It confirms that by using a powerful universal imputation method based on fully conditional specification, the proposed universal imputation approach is superior to the common impute-then-predict approach, especially in the context of probabilistic forecasting.