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ABSTRACT: The safe and efficient execution of offshore operations requires short-term (1–6 h ahead) high-quality prob-
abilistic forecasts of metocean variables. The development areas for offshore wind projects, potentially in high depths,
make it difficult to gather measurement data. This paper explores the use of deep learning for wind speed forecasting at an
unobserved offshore location. The proposed convolutional architecture jointly exploits coastal measurements and numeri-
cal weather predictions to emulate multivariate probabilistic short-term forecasts. We explore both Gaussian and non-
Gaussian neural representations using normalizing flows. We benchmark these approaches with respect to state-of-the-art
data-driven schemes, including analog methods and quantile forecasting. The performance of the models and resulting
forecast quality are analyzed in terms of probabilistic calibration, probabilistic and deterministic metrics, and as a
function of weather situations. We report numerical experiments for a real case study off the French Mediterranean
coast. Our results highlight the role of regional numerical weather prediction and coastal in situ measurement in the
performance of postprocessing. For single-valued forecasts, a 40% decrease in RMSE is observed compared to the
direct use of numerical weather predictions. Significant skill improvements are also obtained for the probabilistic fore-
casts, in terms of various scores, as well as an acceptable probabilistic calibration. The proposed architecture can pro-
cess a large amount of heterogeneous input data and offers a versatile probabilistic framework for multivariate
forecasting.
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1. Introduction

Weather forecasting in offshore environments is challeng-
ing due to the scarcity and sparsity of offshore observations,
in both space and time (Archer et al. 2014; James et al. 2018).
These limitations affect data assimilation systems, especially
initial state estimation, and validation processes. Moreover,
wind profiles are challenging (Tambke et al. 2005) and influ-
enced by various factors, such as air/sea exchanges (Optis et al.
2021), diurnal variations (Pichugina et al. 2017), and site-
dependent effects (Sward et al. 2023), which are difficult to
model accurately. Offshore weather forecasts are essential for
marine operations, especially at locations where in situ data
are scarce. These forecasts inform decision-making at sea for
weather-limited operations. Weather operability limits are
computed from simulation to avoid operation failure, and
weather windows with critical parameters under the operabil-
ity limits have to be forecast. Forecast errors imply risks of
operation failure, and forecast uncertainty ought to be con-
sidered for operation planning and execution. To deal with
uncertainty in the offshore wind energy industry, a factor
ranging from 0 to 1 (the alpha factor) is assigned to each
weather operability limit (Det Norske Veritas 2011). Accord-
ing to Gilbert et al. (2021), most existing methods rely on

deterministic forecasts and the use of the alpha factor to account
for weather forecast uncertainty. This may result in conservative
decision-making and suboptimal planning. As illustrated in
Gintautas and Sørensen (2017), probabilistic forecasts can
address these shortcomings. Under the assumption of reliable
weather forecast of the limiting parameters, the uncertainty
can directly be transferred to the probability of operation failure.
When doing so, one can obtain a large improvement in opera-
tional hours compared to the alpha-factor methodology. This
requires the reliable joint probabilistic forecasting of limiting
wind and wave parameters that impact vessel motions [e.g.,
significant wave height, 10-m wind speed, and wave peak
period (Leontaris et al. 2016)]. The decision-making using
probabilistic forecasts is then cost optimal compared to de-
terministic forecasts (Taylor and Jeon 2018; Catterson et al.
2016), motivating the development of probabilistic postpro-
cessing of deterministic forecasts.

State-of-the-art weather forecasting systems generally rely
on ensemble methods to assess and describe forecast un-
certainty (Slingo and Palmer 2011). They generate different
scenarios by varying both the initial state of the system and
model parameters to estimate the spread of the forecast state.
The very high computational cost associated with this forecast
process limits the number of members in the ensemble, typi-
cally up to a few tens of members. Such ensembles cannot
fully inform the forecasting uncertainties, especially for local
processes such as strong convective events in the southeastern
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French maritime facade (Gulf of Lion) which is the main
study area. The postprocessing of numerical weather predic-
tion (NWP) using statistical and machine learning methods
then appears appealing to better emulate these forecast un-
certainties (Vannitsem et al. 2021).

A large variety of models can be used for the probabilis-
tic postprocessing of deterministic forecasts (Bazionis and
Georgilakis 2021). We can distinguish models based on the
description of the probabilistic output. Nonparametric meth-
ods such as interval or quantile forecasting (Zou et al. 2022),
kernel density, and ensemble methods make fewer assump-
tions about the shape of the target distribution. For instance,
generalized additive model boosting for location, scale, and
shape (gamboostLSS) and gradient boosting machine (GBM)
can be used for the quantile forecasting of wave parameters
(Gilbert et al. 2021). Parametric approaches assume a certain
parametric distribution for the output (e.g., Gaussian, beta,
and lognormal) (Afrasiabi et al. 2021) which allows for ana-
lytical computations. Within parametric descriptions, the
Gaussian assumption might be simple but can characterize
satisfyingly the uncertainty of two-dimensional wind predic-
tion (Pinson 2012). One can estimate the parameters of
Gaussian distribution using analogs of the observed weather
situation (Lguensat et al. 2017; Platzer et al. 2021). Alterna-
tively, regression and deep learning models can emulate a
Gaussian covariance matrix from a deterministic forecast as
developed in Sacco et al. (2022) considering a diagonal co-
variance matrix.

Novel generative deep learning techniques offer innovative
methods for the approximation of complex posterior distribu-
tions. Variational recurrent autoencoders (VRAEs) can be
used to generate scenarios at a relatively low computational
cost (Zheng et al. 2022), but the output distribution can only be
accessed via sampling. VRAEs are compared in Dumas et al.
(2022) to generative adversarial networks (GANs) and normal-
izing flows for wind power forecasting. Normalizing flows are
deep learning models based on the composition of parameter-
ized bijective functions that transform a simple parametric dis-
tribution into an arbitrarily shaped distribution. It was proposed
for variational inference in Rezende and Mohamed (2015) and
generalized to density estimation in Dinh et al. (2017). Com-
pared to analog methods, it needs no parametric assumption for
the posterior distribution. In addition to sampling capabilities,
they allow for exact likelihood computation. These two features
are advantages compared to quantile forecasting. In contrast
with VRAE and GAN, they are relatively easy to implement
and train. In Rasul et al. (2021), conditional normalizing flows
are shown to be well suited for multivariate time-series forecast-
ing. A fair assessment of their advantages and disadvantages for
a real application in probabilistic forecasting is lacking from the
literature.

In light of the work cited above, this paper addresses the
postprocessing of numerical weather prediction and in situ
measurements using deep learning schemes to improve the
probabilistic forecasting of wind speed at sea. Numerical
weather prediction acts as a physical prior of the future state
of the weather system at the considered offshore location,
while recent neighboring measurements may better inform

the actual state of the system. In this study, a parametric
Gaussian model and a generative model using normalizing
flows are compared with baseline models (analogs, gradient
boosting machines, and numerical weather prediction) to ana-
lyze their performances in terms of probabilistic and deter-
ministic metrics. Models are also compared as a function of
the weather situation, to highlight the advantages and disad-
vantages of the method for marine operations. Eventually,
the importance of various input data is discussed, to give indi-
cations on the required input data for offshore wind speed
probabilistic forecasting.

The dataset used for the experiment is described in section 2.
The proposed approach and its mathematical formalism are
thoroughly presented in section 3, before the baseline meth-
ods and metrics used for comparison are detailed in section 4.
The obtained results are shared and analyzed with determin-
istic and probabilistic metrics and as a function of weather
situations in section 5. A discussion on the limitations of the
experiment is done in section 6 to provide recommendations
and perspectives for future work.

2. Dataset

a. Case-study area

To develop the methodology, we consider the MeteoNet
dataset (Larvor et al. 2020). It is an open-source dataset de-
veloped and shared by Météo France, the French national
weather service. It contains time series of weather ground sta-
tion (GS) data and numerical weather prediction model over
a 550 km 3 550 km region in southeast France. It spans be-
tween 2016 and 2018 with 65 days of missing data. Hourly
forecasts of weather variables (10-m wind speed, 2-m relative
humidity, 2-m air temperature, and pressure at sea level)
from the high-resolution model Applications de la Recherche
à l’Opérationnel à Mesoéchelle (AROME) are available.
AROME is the operational high-resolution model on France
operated by Météo France. It has a grid size of 1.3 km and
outputs hourly predictions. The ground station network cov-
ers 484 stations scattered over the southeast of France, as
shown in Fig. 1a, with 6-min measured time series of 10-m
wind speed, 2-m air temperature, station pressure, 2-m dew-
point temperature, 2-m relative humidity, and precipitation.

The study focuses on the Gulf of Lion, which is situated in
the northeast Mediterranean Sea, between the cities of Tou-
lon and Perpignan in southeast France. It is considered one of
the main floating offshore wind development areas in France
(Marcille et al. 2023). The study area is characterized by a
strong dominance of offshore blowing winds in the northern
(Mistral) and western (Tramontane) Gulf of Lion. Those phe-
nomena are due to an orographic channeling in the Rhone
and Garona valleys with the pressure difference between the
northeast Atlantic (high pressures) and the northwest Medi-
terranean Sea (Gulf of Genoa, low pressure). When the high
pressures are rather localized over central Europe, the region
experiences strong southeast winds charged with humidity
that can cause heavy precipitation on the coastal areas. These
two phenomena are largely driving the wind patterns in the
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area and are sensitive to continental forcing and local orogra-
phy. They also apply a strong forcing on the hydrodynamics
of the region, with large upwelling and downwelling phenom-
ena (Schaeffer et al. 2011).

The target station is the Porquerolles Island weather station
encircled in Fig. 1a. It is the only offshore station available in
the dataset. It is located on Porquerolles Island’s semaphore,
at 135 m of elevation on the top of the island. The 14 closest
coastal weather stations in Fig. 1a are selected to serve as input.
The numerical weather prediction input is reduced to a subset
of 28 of latitude and longitude around the target station to re-
duce its dimensionality (see Fig. 1b). The correlation between
the measured parameters at the input ground stations and the
wind speed measured at the target station is shown in Fig. 2.

Wind speed at coastal ground stations is highly correlated with
the target station. Zonal wind speed at the target station is neg-
atively correlated with humidity at coastal stations, showing the
predominance of eastern wind during rain events. Temperature
is correlated with meridional wind, in link with thermal breezes.

b. Numerical weather prediction data

The numerical weather prediction input tensor at forecast
issue time t, XNWP

t is a four-dimensional tensor in latitude
(80 points), longitude (80 points), weather variables (five
variables), and lead times (six time steps). The input variables
available in the MeteoNet dataset are the two-dimensional
10-m wind speed (u, y), percentage of humidity, mean pressure
at sea level, and 2-m temperature. The time step of the model
data is 1 h, and the last forecast time step is tNWP 5 5 h ahead.
For each forecast issue time t, the AROME input has then
KNWP 5 6 lead times between t and t 1 tNWP. The variable
and lead time dimensions are merged into a 30-dimensional
axis, so the final tensor has dimensions (80, 80, 30). These data
correspond to the deterministic forecast of AROME, with no
information on the forecast uncertainty.

Correlation between AROME forecasts and wind speed at
the target station is shown in Fig. 3. Lower pressures on the
eastern part of the study area (Gulf of Genoa) are negatively
correlated with zonal wind speed at the target station, show-
ing the weather systems that channel Mistral northwestern
winds. Higher correlations are observed for the zonal wind
speed which is more representative of dominant wind systems.
Meridional wind speed is more uncertain and is correlated
with humidity and temperature.

c. In situ data

The input data from ground stations contain recent obser-
vations from the neighboring coastal stations. The ground
station input tensor for the forecast issue time t, XGS

t is a
three-dimensional tensor in stations (14 stations), weather
variables (maximum six variables, depending on the station),
and time steps (60 time steps). The input variables available at
each station are the two-dimensional 10-m wind speed (u, y),
humidity rate, temperature, pressure at sea level, and dewpoint.

FIG. 1. Subset of the MeteoNet dataset selected for methodology development. (a) Coastal stations around
Porquerolles target station are selected. (b) A geographical subset containing local information from NWP is selected
to reduce the dimensionality of the input.

FIG. 2. Correlation between measured variables at ground stations
and wind speed at the target station.
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It has a time step of 6 min, and the last tGS 5 6 h of observa-
tions is used as input. The ground station input is then a concat-
enation of time series of KGS 5 60 time steps. The station and
weather variable dimensions are merged so the final tensor has
dimensions (80, 60).

The output of the dataset is the measured wind speed at the
target station. At forecast issue time t, the target vector yt is a
tensor of zonal and meridional wind speeds at 10 m for different
lead times. It has a time step of 6 min and is to be predicted for
the next tpred 5 6 h. The target tensor consists in N 5 2 time
series of K5 60 lead times and has dimensions (2, 60).

To deal with missing data, measured variables from the
ground stations exceeding 4% of missing data are removed. It
corresponds to 3 weather stations and 34 measured weather
variables in total. The resulting entries exceeding 4% of miss-
ing data are also removed (395 entries). Eventually, the re-
maining gaps in the data are forward filled.

d. Training, testing, and validation datasets

The dataset is split into three parts of training, validation,
and testing phases. These three datasets need to be indepen-
dent but representative of the same statistical distribution
(Goodfellow et al. 2016). For weather data, autocorrelation at
different time scales requires special care (Schultz et al. 2021).
To limit seasonal effects, 2 years of data (two-thirds of the da-
taset) are used for training. The remaining third is split for
validating and testing (half a year). Five days are removed in
between the splits to avoid short-term temporal correlation
between the datasets. To mitigate data representativity issues,
cross validation on the train–validation–test split is performed.
The train, validation, and test sets are shuffled into six differ-
ent splits as shown in Fig. 4. Results are then computed across
those six splits. After cleaning and splitting, the final dataset
contains 2372 entries in the training split, 779 in the validation
split, and 798 in the test split. All data sources are standardized
with regard to the training dataset to ensure that all features
have similar scales.

e. Baseline reduced dataset

The full dataset has a very high number of dimensions. To
implement statistical baselines that can only accommodate a
limited number of features, a baseline reduced dataset is
constructed.

The reduced dataset contains the following:

• The three first principal components obtained through princi-
pal component analysis of both the zonal and meridional wind
speeds of AROME inputs on the training dataset.

• The seven first principal components obtained through
principal component analysis of the measured wind speed
at the three closest ground stations for the last 6 h.

• The last wind measurements at the three closest ground
stations.

• The wind speed forecast from the AROME closest grid point.

A sample from the reduced dataset Xr
t is then a tensor of

15 features and 60 lead times. The main dataset has dimen-
sions (80, 80, 30) for AROME input and (46, 60) for ground
station input. The reduced dataset corresponds to 0.5% of the
total input data. Principal component analysis is used to ex-
tract the most relevant features.

The reduced dataset serves as input for the baseline
methods presented below. It then allows for fair comparison
between different approaches. The selected features of this
reduced dataset were optimized to optimize the validation
loss of the gradient boosting machine model in section 4c.

FIG. 3. Correlation between AROME forecasts used as input and wind speed at the target station. The correlation is computed for each
grid point. (top) The correlation with the target zonal wind speed (target u), and (bottom) the target meridional wind speed (target y).

FIG. 4. Train validation test splits used for cross validation.
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3. Proposed architecture

This section presents the proposed convolutional architec-
ture to emulate a probabilistic multivariate forecast from the
input data described in section 2. We first introduce the prob-
lem formulation in section 3a. The convolutional encoding of
numerical weather prediction and in situ data is described
in section 3b. We then detail the Gaussian (section 3c) and
normalizing flow (section 3d) output probabilistic descrip-
tions. Eventually, section 3e gives an overview of the final
architecture.

a. Short-term wind forecasting at an unobserved location

The goal of the forecast model is to make a wind speed pre-
diction at a target location using numerical weather prediction
and ground station measurements. For a forecast issue time
t 2 [1, T] and a forecast lead time k 2 [1, K], the model C pa-
rameterized by N outputs a vector û t1k|t from the input vector
Xt such that

û t1k|t(N) 5 CN(Xt): (1)

The output vector û t1k|t is a parameterization of a probability
density function f̂ t1k|t of a random variable St1k|t from which
we can draw samples st1k|t. The distribution f̂ t1k|t is transformed
into a target distribution ĝt1k|t through a transformation T .
Therefore, we map a sample st1k|t from the initial distribu-
tion into a sample zt1k|t of the target distribution:

zt1k|t 5 T (st1k|t), (2)

with zt1k|t as a sample from the random variable Zt1k|t with
probability density function ĝt1k. We explore an identity pa-
rameterization for transformation T as well as normalizing
flows to account for more complex target distributions. In all
that follows, the subscript k refers to t1 k|t.

b. Convolutional encoding of AROME and ground
station data

The proposed method uses a deep learning architecture to
accommodate the large amount of heterogeneous input data.
A convolutional neural network (CNN) is a type of deep neu-
ral network that uses convolutional layers and pooling layers
to efficiently reduce the dimension of input data. Convolu-
tional layers apply convolution filters to the input data, cap-
turing multiscale features. The convolution filter applies the
same weights to the whole input, so the number of model co-
efficients is reduced. Pooling layers reduce the dimension of
the data by applying subsampling functions to groups of
neighboring points (Goodfellow et al. 2016). CNNs are exten-
sively used in the forecasting literature when dealing with
large numerical model data in two dimensions (Obakrim et al.
2023) or three dimensions (Higashiyama et al. 2018). One-
dimensional CNN can also be used to deal with time-series
data (Zou et al. 2022).

For the offshore wind forecasting problem presented in this
work, a large amount of data are used as input. Numerical
weather prediction data are 80 3 80 images for each time step

and each variable. Meteorological variables exhibit features
at various scales that need to be extracted. A two-dimensional
CNN is used to encode the numerical weather prediction in-
put into an ensemble of latent time series containing useful in-
formation for forecasting. The convolutions are made through
space to capture the spatial features, while the weather varia-
bles and lead times are taken as channels.

Seemingly, a one-dimensional CNN is used to encode the
ground station time series onto a latent space. The convolu-
tion is performed on the time component, so that the tempo-
ral correlations of the time series can be captured. The 1D
convolutional layers are used, and the different weather varia-
bles and stations are taken as channels.

We apply the CNN to numerical weather prediction and
ground station time series to obtain 9 latent time series of
60 time steps. Two additional latent time series are added
containing the predicted wind speed at the closest AROME
grid point. The final dimension of the latent space is (11, 60).

c. Gaussian posterior assumption

The basic assumption for the proposed architecture de-
scribes the target as a two-dimensional Gaussian distribution.
For a Gaussian posterior assumption, the output vector ûk
contains the parameters:

ûk 5 [m̂u(k), m̂y (k), ŝ2
u(k), ŝ2

y (k), r̂u,y (k)], (3)

such that

Zk ; N (m̂k, Ŝk), (4)

with m̂k as the mean matrix and Ŝk as the covariance matrix,
constructed from the two predicted variances ŝ2

u(k), ŝ2
y (k)

and the Pearson coefficient r̂u,y (k):

Ŝk 5
ŝ2
u(k) r̂u,y (k)ŝu(k)ŝy (k)

r̂u,y (k)ŝu(k)ŝy (k) ŝ2
y (k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

m̂k 5
m̂u(k)
m̂y (k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (6)

A 2-layer multilayer perceptron (MLP) is used to output
Gaussian parameterization from the latent space. To ensure
the positive semidefiniteness of the predicted covariance ma-
trix, the variances should be positive su(k), sy(k). 0, and the
Pearson coefficient should satisfy21# ru,y(k)# 1. A final ac-
tivation function is applied to the output of the MLP to satisfy
these inequalities. The variances are obtained with the use of
an exponential activation function, and the Pearson coefficient
is obtained through a hyperbolic tangent activation function.
The mean values mu(k), my (k) 2 R need no final activation
function.

The loss function Lt(N) used for the optimization is the neg-
ative log likelihood (Goodfellow et al. 2016):

Lt(N) 5
1
K
∑
K

k51
2 log[ĝt1k|t(yt1k|N)], (7)
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with ĝt1k|t as the predicted probability density function of the
posterior assumption at lead time k. The negative log likeli-
hood is a proper scoring rule that has two main advantages. It
accounts for the reliability of the prediction defined through
the covariance matrix, and it strongly penalizes outliers due to
the log function.

Using a Gaussian distribution for the posterior assumption
provides an analytical expression for the likelihood which can
then be directly computed. For an observation yk and a pre-
dicted two-dimensional Gaussian distribution with parame-
ters Ŝk and m̂k, the likelihood is equal to (Goodfellow et al.
2016) the following equation:

ĝk(yk|m̂k, Ŝk) 5
1

(2p)|Ŝk|1/2

3 exp 2
1
2
(yk 2 m̂k)TŜ

21
k (yk 2 m̂k)

[ ]
: (8)

It is widely used for scoring forecasts versus observations un-
der uncertainty for data assimilation schemes (Ruiz et al.
2022) and as a parametric method for multivariate regression
(Muschinski et al. 2022).

d. Normalizing flows

A generative approach is proposed to account for non-
Gaussian distributions while keeping the computation of the
likelihood tractable and the sampling capabilities. Normalizing
flows are generative deep learning models that use a composition
of invertible functions to learn a “flow” from a simple base distri-
bution (here a multivariate Gaussian) to an arbitrarily shaped
distribution.

Given a base distribution h(0), and a series of invertible
functions T 0, :::, T M, the posterior likelihood can be computed
using a change in variables from the base to the target distribu-
tion. The likelihood of the obtained distribution h(M) can then
be obtained through a change in variable (Dinh et al. 2017):

log[h(M)(zM)] 5 log[h(0)(z0)] 2 ∑
M

m50
log det

∣∣∣∣∣h(m)

zm

∣∣∣∣∣
[ ]

: (9)

A sample from the base distribution is transformed into a
sample from the target distribution using the following com-
position of transforms:

zM 5 T08…8TM(z0): (10)

A bijective function needs to be selected to compose the
layers of the flow. In this work, a rational quadratic spline
function is used. As described in Durkan et al. (2019), it has
the advantage of being highly flexible while staying analyti-
cally invertible. Compared to more classical affine transfor-
mations, it can approximate complicated distributions with
fewer transforms. The parameters of the transforms are the
knot positions and the derivatives at each knot. These param-
eters are obtained through a 2-layer multilayer perceptron
from the vector ûk.

Normalizing flows are implemented as an add-on block
to the previously described architecture, so it transforms the
predicted Gaussian distribution f̂ k 5 h(0) into an arbitrarily

shaped distribution ĝk 5 h(M) using M 5 5 transforms. The
transform applied to the Gaussian distribution f̂ k described in
section 3c is then T 5 T08…8TM, and the set of parameters N
used for optimization contains the parameters of both the en-
coder and the normalizing flow block.

e. Final architecture

The final proposed architecture is shown in Fig. 5. It uses
two convolutional encoders for numerical weather prediction
data (three layers) and ground station data (two layers) to
project the large amount of input data onto a latent space of
dimension (13, 60). A multilayer perceptron of two fully con-
nected layers is added with ReLU activation to obtain a time
series of multivariate Gaussian distribution. Final care is given
to ensure positive semidefiniteness for the covariance matrix
with exponential and hyperbolic tangent activation functions
for the correlation matrix.

To avoid overfitting, dropout layers are added to each of
the two encoded blocks. The final model with Gaussian out-
puts has 2.6 million coefficients. Note that under the Gaussian
posterior assumption, the predicted distribution ĝk is equal to
the Gaussian distribution f̂ k.

The normalizing flow add-on block is trained together with
the main architecture, transforming the predicted Gaussian
multivariate distribution into an arbitrarily shaped distribu-
tion. The transformation is made for each time step and is
composed of 10 layers parameterized with 1 fully connected
layer of 128 hidden features. It adds 0.8 million parameters to
the initial model.

The proposed architecture is named thereafter ConvE-STF
for convolutional encoder for short-term forecasting. When
considering a normalizing flow transformation, it is named
ConvE-STF-NF.

All hyperparameters of the ConvE-STF and ConvE-STF-NF
models were obtained using Bayesian optimization presented in
section 4e to minimize validation loss.

4. Baselines and metrics

We describe below the state-of-the-art methods used as
baselines to benchmark the proposed schemes. Considered
performance metrics are detailed in section 4f.

a. Closest AROME grid point

The most straightforward baseline consists in considering
the output of the AROME numerical weather prediction
model at the closest grid point (ic, jc) from the target station.
A linear regression computed on the training split is applied
to the prediction:

CAROME(Xt) 5
XNWP

t,(ic ,jc) 2 b̂0

b̂1

, (11)

with b̂0 and b̂1 computed using ordinary least squares. The
term XNWP

t,(ic ,jc) is the numerical weather prediction wind speed at
the closest grid point from the target station. It is a determin-
istic output and is noted AROME in all that follows.
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b. Analog forecasting

Analog forecasting is a simple yet efficient statistical method
for the forecasting of dynamical systems with unknown dynam-
ics (Lguensat et al. 2017). From a catalog of past trajectories,
analog situations are looked for according to a certain distance
metric. The D nearest analogs of the current situation are se-
lected, and their trajectories are considered as possible future
scenarios. The analogs are weighted according to their distances
to the target situation, and then, mean and covariance matrices
are estimated from the ensemble of trajectories under the
Gaussian assumption.

In this work, the distance metric in the catalog is the
Minkowski norm on the variables of the reduced dataset.
The weighting of the trajectories and the estimation of the
Gaussian distribution are done under locally constant as-
sumption using D 5 12 analogs [see, e.g., Lguensat et al.
(2017) and Platzer et al. (2021)]. Hyperparameters of the
analog model were tuned with Bayesian optimization to
minimize the validation loss.

c. Gradient boosting machine

Gradient boosting machines are tree-based regression methods
that train an ensemble of weak-learner regression trees to per-
form a multiple nonlinear regression between output and input.
Such methods are implemented in Gilbert et al. (2021) to create

probabilistic significant wave height forecasts for offshore wind
turbine access forecasting.

The gradient boosting algorithm uses the steepest descent al-
gorithm to optimize the ensemble of regression trees according
to a given loss function (Friedman 2001). Hyperparameters are
the number of regression trees, the number of splits for each
tree, and a shrinkage parameter that controls the weight of
each tree in the ensemble. These parameters were tuned with
Bayesian optimization to minimize the validation loss. In this
work, a gradient boosting machine is trained with the quantile
loss for each predicted quantile a 2 Q 5 {0.05, 0.15, … , 0.45,
0.5, 0.55, … , 0.85, 0.95}, variable n 2 [1, N], and lead time
k 2 [1, K]. For a two-dimensional output, the full model then
consists in 1320 individual models. The predicted quantiles
form a marginal quantile function for the two output parame-
ters for each lead time. The obtained model is notedCGBM and
referred to as GBM:

CGBM(Xr
t ) 5 {CGBM

a,n,k (Xr
t )}a2Q,n2[1,N],k2[1,K]: (12)

Overall, the output of each individual gradient boosting ma-
chine model contains the quantile prediction CGBM

a,n,k (Xr
t )5

q̂a,n,k for a specific quantile a, variable n, and lead time k.
For each time step and variable, we approximate the quan-

tile function from the quantiles of the distribution. In addition

FIG. 5. Architecture of the ConvE-STF model illustrated for a forecast issue time t. Probabilistic forecast at the
target station for lead times t 1 1: t 1 k is obtained from NWP XNWP

t 5 XNWP(t : t1KNWP) and recent neighboring
ground station measurements XGS

t 5 XGS(t2KGS : t). A convolutional encoder outputs a time series of multivariate
Gaussian distributions {f̂ k}k2[1,K] that are passed through an invertible transform T to output the predicted posterior
distributions {ĝk}k2[1,K].
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to second-order derivative continuity at the predicted knots,
the monotony of the quantile function needs to be preserved.
Cubic spline interpolation is then used (Fritsch and Carlson
1980; McKinley and Levine 1998) to obtain the quantile func-
tion from the predicted knots. It is a commonly used assump-
tion for quantile function smoothing (Gilbert et al. 2021; He
et al. 2021). Samples can then be drawn from this approximate
quantile function to compute scores and generate scenarios.
The quantile probabilistic description has the advantage of be-
ing assumption free on the shape of the posterior distribution.
However, there is no explicit formulation for the likelihood of
the distribution and quantile crossing can appear. It also has a
substantial computational cost by requiring one model per
quantile, variable, and lead time. It has no explicit control for
overfitting, as it is only controlled by the hyperparameters of
the fitting of regression trees.

d. ConvE-STF-reduced

To compare the statistical baselines with the proposed ar-
chitecture, an additional baseline model is added. It consists
of a similar convolutional architecture as the one of the pro-
posed models in section 3, but runs with the reduced dataset
described in section 2e as input. This reduced baseline
is noted as ConvE-STF-reduced. Its hyperparameters are
tuned using Bayesian optimization to minimize the valida-
tion loss.

e. Hyperparameter tuning

We tuned the hyperparameters of the different models pre-
sented in the following sections, and those of the reduced da-
taset in section 2e, using a Bayesian optimization framework
(Akiba et al. 2019) with the loss metric on the validation data-
set as optimization metric. Using the Python package Optuna
(Akiba et al. 2019), it relies on tree-structured Parzen estima-
tors (Bergstra et al. 2011) to retrieve optimal hyperparameters
within a predefined search space. This Bayesian optimization
applies to the following hyperparameters for the ConvE-STF
model: kernel size, pool size, number of convolutional layers,
dropout rates, latent space dimensions, number of fully con-
nected layers, number of neurons in the fully connected layers,
learning rate, weight decay, learning rate, decay rate, and
batch size. For the gradient boosting machine, it is applied to
reduced dataset features, learning rate, number of trees, maxi-
mum depth, minimum leaf samples, and minimum split sam-
ples. For the analogs, it is applied to the number of analogs,
distance metric, and regression mode. Eventually, for the
normalizing flows, the number of layers, number of hidden
features, number of spline function bins, and dropout rate
are optimized.

f. Evaluation metrics

Forecast quality is evaluated using an ensemble of deter-
ministic and probabilistic metrics (Messner et al. 2020). Deter-
ministic metrics compare the mean or median of the
predicted distribution with observations. The mean value of
the predicted distribution f̂ t1k|t is ŷ t1k|t, and the median value
is ~̂yt1k|t. The root-mean-square error (RMSE) and the mean

absolute error (MAE) are used in this work. Both metrics do
not penalize outliers as strongly. The metrics are computed
for each lead time k and noted with a subscript k when given
as such. Global metrics across the dataset are averaged over
all lead times and are noted without subscripts:

RMSEk 5


1
T
∑
T

t51
(yt1k 2 ŷt1k|t)2

√
, (13)

MAEk 5
1
T
∑
T

t51
|yt1k 2 ~̂yt1k|t |: (14)

For probabilistic forecasts, the full predicted distribution
should be scored against the observations. The continuous
ranked probability score (CRPS) is a proper scoring rule for
evaluating the performance of a distribution versus observa-
tions (Gneiting and Raftery 2007). It is a univariate score that
is computed for each variable n 2 [1, N] and noted with a sub-
script n for the variables. The global score is averaged across
variables and noted without subscript. The CRPS integrates
the difference between the predicted cumulative density func-
tion and the indicator function at the observation value as
follows:

CRPSn 5
1
T

1
K
∑
T

t51
∑
K

k51

�1‘

2‘
[F̂ t1k|t(y) 2 1(y # yt1k)]2dy: (15)

When the cumulative density function is not tractable, the
CRPS can be computed from samples drawn from the distri-
bution. Gneiting and Raftery (2007) show that the CRPS can
be computed from an ensemble of L samples as

CRPSn 5
1
T

1
K
∑
T

t51
∑
K

k51

1
L
∑
L

l51

∣∣∣ynt1k 2 ŷn,(l)t1k|t
∣∣∣[ ]{

2
1

2L2 ∑
L

l51
∑
L

m51

∣∣∣ŷn,(l)t1k|t 2 ŷn,(m)
t1k|t

∣∣∣( )}
, (16)

with ŷn,(l)t1k|t as a sample l 2 [1, L] from the predicted distribu-
tion of variable n and ynt1k as the corresponding observation.
The CRPS is equivalent to the MAE for deterministic fore-
casts (Messner et al. 2020).

The energy score (ES) is the multivariate generalization of
the CRPS and can be computed from samples seemingly to
Eq. (16) such that

ES 5
1
T

1
K
∑
T

t51
∑
K

k51

1
L
∑
L

l51
‖yt1k 2 ŷ

(l)
t1k|t‖

[ ]{

2
1

2L2 ∑
L

l51
∑
L

m51
‖ŷ

(l)
t1k|t 2 ŷ

(m)
t1k|t‖

[ ]}
, (17)

with ‖?‖ as the Euclidian norm. CRPS and ES are mostly
sensitive to the first moments of the distributions (Pinson
and Girard 2012) so the variogram score (VS) is introduced.
It only scores the correlation structure between the pre-
dicted variables and ignores the bias. It can be computed
from samples as
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VSp 5
1
T

1
K
∑
T

t51
∑
K

k51
∑
N

i51
∑
N

j51

[∣∣∣yit1k 2 yjt1k

∣∣∣p⎧⎪⎪⎨⎪⎪⎩
2

1
L
∑
L

l51

∣∣∣ŷi,(l)t1k|t 2 ŷj,(l)t1k|t
∣∣∣p]2⎫⎪⎪⎬⎪⎪⎭, (18)

with p as the order of the variogram. It is set to 0.5 as recom-
mended by Messner et al. (2020), and the score VS0.5 is noted
as VS for simplicity.

Eventually, rank histograms are used to assess the reliabil-
ity of the forecasts (Candille and Talagrand 2005). A proba-
bilistic forecast is reliable if it predicts probabilities that fit
with the observed relative frequencies. In the rank histogram,
the quantiles in which the observations fall are counted. For
an infinite number of observations, 1/Q of it should fall in the
a 2 Q quantile. The frequency of observed observations is
displayed as bar plots, and a perfectly reliable forecast should
display a flat rank histogram (i.e., uniform distribution). The
multivariate generalization of the univariate rank histogram
can be found in Gneiting et al. (2008).

The rank histogram is quantitatively evaluated thanks to
the reliability index that measures the mean deviation of the
bins to the perfect reliable model. With b̂j as the frequency of
observation falling below the jth predicted quantile â j, the
reliability index is defined as

REL 5
1
Q
∑
Q

j51

∣∣∣∣∣b̂j 2
1
Q

∣∣∣∣∣: (19)

5. Results

a. Forecast evaluation

Table 1 shows the scores obtained by the different forecast
models, with the best values shown in bold. All implemented
methods improve the RMSE compared to the AROME
forecast, showing the necessity to postprocess the output of
numerical weather prediction models for a specific target
station.

Baseline models using the reduced dataset as input are all
skillful at postprocessing the numerical weather prediction
with, for instance, a 26% decrease in RMSE for the gradient
boosting machine forecast. The analog forecast also improves

by 14% of the RMSE, with a higher variability. The proposed
ConvE-STF architecture largely outperforms the gradient
boosting machine by 0.36 m s21 in RMSE and 0.21 m s21 in
CRPS, achieving a 40% reduction in RMSE compared to
AROME. The ConvE-STF-reduced forecast is just as good as
the gradient boosting machine model but is largely surpassed
by the ConvE-STF model using the full input. It highlights the
presence of explanatory variables in the input dataset and il-
lustrates the capabilities of deep learning architecture to pro-
cess a large amount of heterogeneous input. The ConvE-STF
is 25% better than the gradient boosting machine at predict-
ing the correlation structure between the outputs as shown by
the VS, showing that the Gaussian description is competitive
for the two-dimensional wind probabilistic forecast. Eventu-
ally, the ConvE-STF with normalizing flow block slightly im-
proves the scores of the Gaussian output, with a higher
variability between splits.

The evolution of the generalized RMSE as a function of
lead time is shown in Fig. 6. Whereas the error clearly in-
creases with the lead time for the AROME baseline, it is not
exactly the case for the other models, for which the error stag-
nates or even decreases for the first 4 h of forecast. This is

TABLE 1. Probabilistic and deterministic metrics of implemented forecast models. The best obtained scores are shown in bold. The
bracket scores show the MAE which is equivalent to the CRPS for deterministic forecasts. The scores are given as mean and
standard deviation over the six splits.

CRPS (m s21)

Model RMSE (m s21) [MAE (m s21)] ES (m s21) VS

AROME 2.60 6 0.04 [1.98 6 0.02] } }

Analogs 2.23 6 0.09 1.20 6 0.05 1.89 6 0.07 0.61 6 0.01
GBM 1.93 6 0.04 1.05 6 0.02 1.65 6 0.03 0.52 6 0.01
ConvE-STF-reduced 1.93 6 0.04 1.04 6 0.02 1.65 6 0.03 0.53 6 0.02
ConvE-STF 1.57 6 0.04 0.84 6 0.02 1.31 6 0.04 0.39 6 0.01
ConvE-STF-NF 1.56 6 0.07 0.82 6 0.04 1.29 6 0.06 0.39 6 0.02

FIG. 6. Evolution of the RMSE for all models as a function of
lead time. The top dashed line is the output of the NWP AROME
corrected.
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likely to be due to diurnal effects coupled with fixed forecast
issue times (0600, 1200, 1800, 2400 LT). The trend is not visi-
ble in the AROME baseline and is equally captured by ana-
logs, gradient boosting machines, and ConvE-STF methods. It
shows that it is a trend in the dataset, independent of input
data. The proposed approach largely outperforms all base-
lines for all lead times.

The spatiotemporal correlation between the neighboring
stations and the target station helps correcting the numerical
weather prediction in the very short term. The ConvE-STF
model, with its ability of ingesting a large amount of input
data, shows a significant improvement throughout the forecast
window.

b. Reliability

In Fig. 7, the observed quantiles are plotted versus the pre-
dicted quantiles as a rank histogram for all the forecast mod-
els. The dashed line represents a perfectly reliable forecast.
The rank histogram is computed for each train–validation–
test split, and the 50% interquantile range between splits is
shown as error bars. The gradient boosting machine and
ConvE-STF-reduced models show clear U-shaped rank histo-
gram, which shows underdispersion (i.e., an underestimation
of the uncertainty). The analog model, while showing poor
deterministic and probabilistic quality metrics, is reliable
though slightly overdispersive. Indeed, the analogs estimate a

Gaussian distribution from existing trajectories, which guar-
antee a certain stability in the uncertainty estimation. However,
the limited size of the catalog used can explain the overdisper-
sion. The ConvE-STF and ConvE-STF-NF reliability is even
more acceptable, with a slight difference for extreme quan-
tiles. The difference in reliability between ConvE-STF and
ConvE-STF-reduced shows that the choice of input data is of
greater importance for forecast reliability than the choice of
the posterior distribution. The ConvE-STF-NF and ConvE-
STF achieve relatively similar reliability patterns with differ-
ent posterior assumptions but the same input data and similar
architectures.

The generalized reliability index is given in Table 2 to quanti-
tatively assess the models’ reliability. The very high variability
with cross validation shows the sensitivity of models’ reliability
to the training dataset. It highlights the limitations of the
obtained models due to dataset length. The ConvE-STF-NF

FIG. 7. Generalized 2D rank histograms obtained on the test set. Perfect model calibration is shown as a dashed black line.

TABLE 2. Generalized reliability index for all models. Best
obtained reliability index is shown in bold.

Model Reliability index

Analogs 1.6 6 0.5
GBM 3.2 6 0.5
ConvE-STF-reduced 2.1 6 1.2
ConvE-STF 1.5 6 0.6
ConvE-STF-NF 1.4 6 0.4
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model is the most reliable model with a reliability index of 1.4
and the lowest variability. The use of normalizing flows im-
proves the model’s reliability, showing the interest of relaxing
the posterior parametric assumption for multivariate proba-
bilistic forecast.

c. Data representativity

This study relies on a 33-month-long dataset to develop and
benchmark deep learning–based postprocessing models. Fol-
lowing similar previous studies (Zheng et al. 2022; Gallego
et al. 2011; Wang et al. 2017), we aim to assess the potential
impact of the length of training dataset on the generalization
performance of the trained models. We then train and assess
the proposed ConvE-STF models using training datasets of
different lengths from 2 months to 2 years as illustrated in Fig. 8.
Overall, we observe the expected trend, the longer the training
dataset, the better the model performance. In Fig. 8a, the
RMSE skill score shows that from 60-day-long training datasets,
we train ConvE-STF models which are more skillful than the
AROME forecast. We also note a slower improvement of the
forecasting skills from 1-yr-long datasets, as well as a lower
variability between cross-validation splits. Similar results are
observed for the model reliability in Fig. 8b. These results
support the relevance of training datasets covering at least
1 or 2 years to retrieve a robust average improvement through
the ConvE-STF models of the AROME forecasts.

d. Computational cost

The computational cost of the different models was evalu-
ated for training, inference, and sampling. The deep learning

models (ConvE-STF, ConvE-STF-NF, and ConvE-STF-reduced)
are trained on a single 32Go NCIDA RTX A6000 graphics
processing unit (GPU). The gradient boosting model is trained
on multiple (60) AMD EPYC 7763 CPU. The obtained com-
putational costs are given in Table 3.

The training of a gradient boosting machine for quantile
forecasting requires the training of a single model for each
variable, lead time, and quantile. In this study, this results
in 1320 individual models. This results in a heavy model file
(348 hPa) and implies multi-CPU training. The training time
is then O(NTQ), with N as the number of samples, T as the
number of predicted lead times, and Q as the number of
quantiles. Deep learning models are easily parallelized using
GPU, resulting in a training time of ’500 s for ConvE-STF
on a single GPU. The addition of normalizing flows implies
transformation inversion that adds computational cost for
error gradient backpropagation, making it 3 times slower to
train than ConvE-STF. Analog methods need no training
time, making it very simple to implement probabilistic fore-
cast framework. The sampling from the predicted distribu-
tions is more efficient under the Gaussian assumption.
Normalizing flow transformation makes it 300 times slower
than with a simple Gaussian posterior assumption, and the
sampling using the empirical quantile function for the gradi-
ent boosting machine is 2000 times slower.

e. Probabilistic wind speed forecasts

The quantile description output by the gradient boosting
machine is flexible as it makes no assumption on the underlying
distribution. It can in theory capture heavy tail or multimodal

FIG. 8. Model improvement with training dataset length obtained with cross validation. (a) RMSE skill score vs
AROME forecast and (b) reliability index.

TABLE 3. Computational cost comparison.

Model Machine Model size (Mo) Training CPU/GPU time (s) Inference time (s) Sampling time (s)

Analogs CPU 0 0 0.076 0.076
GBM 60 CPU 348 3600 0.0005 1.05
ConvE-STF-reduced GPU 1 45 (0.4 s epoch21) 0.008 0.003
ConvE-STF GPU 10 500 (1.4 s epoch21) 0.015 0.006
ConvE-STF-NF GPU 16 3500 (4.3 s epoch21) 0.018 0.18
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distribution. However, it is limited to the prediction of marginal
distributions, and the correlation structure is not explicitly de-
scribed. This is observed with the VS in section 5a. The lack of
correlation structure in the gradient boosting machine output is
a drawback for the joint probabilistic forecasting of correlated
variables. For the two-dimensional wind speed, it can result in
unrealistic sampled wind direction. Though it is hard to measure
the impact of the correlation structure with standard statistical
metrics, it is expected to strongly impact the generation of multi-
variate scenarios for offshore wind operation weather window
forecasting.

In the ConvE-STF and analog methods, a multivariate
Gaussian assumption is made for the output with (2, 2) covari-
ance matrices. The Gaussian assumption can be relaxed using
normalizing flows in the ConvE-STF-NF model, but no clear
quantitative effects are observed in terms of model perfor-
mance. However, the normalizing flow approach adds little
computational cost to the previous Gaussian assumption. By
construction, the likelihood can be easily calculated, and sam-
ples can be directly generated. It can in theory adapt to com-
plicated posterior distributions with a limited added model
complexity. A sample from the latent Gaussian distribution is
passed through several layers of neural splines (Durkan et al.
2019) to be transformed into a sample in real space. The non-
linearities within the neural spline flows can approximate very
complex distributions and are conditioned by the input data.
By doing so, we lift any assumption on the posterior data, com-
pared to the quantile approach or the Gaussian assumption.

The shapes of the predicted distributions from the different
methods are illustrated in Fig. 9 for two entries in the test da-
taset. For the first entry (Figs. 9a,c,e), the gradient boosting
machine distribution has heavy tails, showing the flexibility of
the quantiles. For the second entry (Figs. 9b,d,f), it has a very
low spread, probably due to overfitting. Figures 9a and 9b
show multimodal distributions obtained with normalizing
flows. The obtained shapes are not very different from the
Gaussian distributions in Figs. 9c and 9d, but show a discreti-
zation in wind direction. This is an artifact of the dataset,
knowing that the wind direction at the target station is mea-
sured with a resolution of 58. Normalizing flows can partially
capture this complicated relationship between the predicted
variables in a nonsupervised way. It shows the great flexibility
of normalizing flows for probabilistic forecasting.

f. Input sensitivity

The ConvE-STF is trained with different input sets to com-
pare the value of each data source. The size of the numerical
weather prediction domain and the number of neighboring
stations are the two main parameters considered for sensitiv-
ity. They are crucial parameters for the method generaliza-
tion, and they can give indications on explanatory variable
importance.

In Fig. 10a, the sensitivity of RMSE to the number of
ground stations used as input is plotted. A clear trend is iden-
tified, with a decreasing RMSE for the 12 closest stations and
a stabilization for an increased number of stations. This

FIG. 9. The three different probabilistic approaches are illustrated on two entries of the dataset. Samples generated from the predicted
distribution in the generative case (ConvE-STF-NF), Gaussian case (ConvE-STF), and quantile case (GBM) are scattered on polar plots
of wind speed and wind direction. The observation is shown as a blue circle and the AROME prediction as an orange circle.
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validates the choice of 12 closest stations as input for the main
model. This optimal number of input stations, however,
strongly depends on the experimental setup. First, it is site de-
pendent and represents the limit of spatiotemporal correla-
tion between measured parameters and target parameters.
This is a function of the distance and position of the neighbor-
ing ground stations, which will be specific for every site.
Second, it depends on the length of the time series considered
as input. In this study, we limited the length of the neighbor-
ing measurement time series to 6 h. Longer time series might
then exhibit larger areas of spatiotemporal correlation. Even-
tually, it depends on the length of the forecast window, which
is for this experiment limited to 6 h.

In Fig. 10b, the sensitivity to the size of the input numerical
weather prediction mask is shown. The change in input size
(from 20 3 20 images to 120 3 159 images) implies a change
in the convolutional architecture (from two to three layers).
A hyperparameter tuning for the numerical weather predic-
tion data encoder was made for each input size using Bayes-
ian optimization as described in section 4e. The link between
forecast error and numerical weather prediction input size is
not as straightforward and can only be discussed for this spe-
cific site. The best performances are obtained with a mask of
28 in latitude and longitude. It is possible that the larger input
area in this specific region does not carry more information
than the smaller input mask, but there is no guarantee that
even larger masks would not bring additional information. In
particular, the atmospheric circulation in the eastern Gulf of
Lion is notably influenced by the situation in the Gulf of
Genoa and Ligurian Sea which would require a wider input
mask.

In Fig. 11, we report the performance of ConvE-STF mod-
els using different combinations of wind data as inputs. We
consider three wind data sources: namely, the wind measure-
ments from ground station input (GS), the wind prediction
from the operational NWP for the considered domain, and
the wind prediction from the operational NWP for the grid
point the closest to the targeted offshore location (Closest)
(see Fig. 5). These results illustrate the relative importance of
the different data sources in the prediction of the ConvE-STF

model. The addition of ground station input greatly improves
the RMSE compared to the two central bars. It highlights the
importance of neighboring measurements as explanatory vari-
ables. From the GS-only case, it can be noted that both the
addition of numerical weather prediction input and closest
grid point input improve the forecast postprocessing. It shows
that information can be extracted from regional forecasts to
improve the forecast at a target station, but that it is hard to
capture the forecast at the closest grid point using convolution
neural network.

g. Qualitative improvements

The forecast quality of ConvE-STF is analyzed as a func-
tion of the weather situations. The RMSE improvement of
ConvE-STF and gradient boosting machine models compared
to the AROME closest grid point is shown in Fig. 12. The

FIG. 10. Sensitivity of the RMSE (a) to the number of ground stations taken as input and (b) to the size of the
NWP input. The dashed line is the generalized RMSE, and blue error bars show the 50% interquantile range over the
six splits.

FIG. 11. Sensitivity of the RMSE to the input data. Blue bars
show the generalized RMSE, and error bars show the 50% inter-
quantile range over the six splits. Input data are the combination of
neighboring GS, NWP, and closest NWP grid point (Closest).
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ConvE-STF model shows general improvement in RMSE
compared to AROME, with a RMSE reduction for most wind
speed and direction. It shows the model’s skills at postprocess-
ing numerical weather prediction in most weather situations.

The patterns are relatively similar for both models, but
ConvE-STF is notably more efficient than the gradient boost-
ing machine for southwest-blowing winds. This can be due to
the processing of a larger amount of coastal in situ measure-
ments situated upwind from the target station.

However, both models fail to improve the RMSE for north-
east and southwest winds with an increased error compared
to the AROME closest grid point. It is important to note that
such winds are relatively rare in the eastern Gulf of Lion.
Thus, this likely illustrates a shortcoming of the considered
training configurations with 2-yr-long datasets. When such
wind situations are not present in the training dataset, deep
learning models cannot extrapolate during the test phase for
so-called out-of-distribution samples.

6. Conclusions and discussion

This paper proposes a deep learning architecture for the
probabilistic wind speed forecast at sea. It uses convolutional
neural network to process a large amount of input data and is
compared to state-of-the-art statistical methods. Several prob-
abilistic assumptions are proposed for multivariate probabilis-
tic forecasting. A Gaussian posterior assumption is compared
to normalizing flows and quantile approaches. The proposed
method proves skillful at improving the short-term wind forecast
(1–6 h ahead) at a target offshore location, with a 40% reduction
in RMSE compared to the numerical weather prediction fore-
cast. Other baseline methods improve the forecasts by 14% for
analogs to 26% for the gradient boosting machine. It stresses the
importance of numerical weather prediction postprocessing for
offshore applications. Furthermore, the proposed architecture
can emulate probabilistic forecasts with satisfying reliability.

The proposed ConvE-STF architecture shows the best per-
formance in terms of deterministic and probabilistic metrics.
It shows an acceptable forecast reliability, with a marginal

gain for a Gaussian assumption compared to normalizing flows.
Normalizing flow addition can reproduce highly non-Gaussian
behaviors for a relatively low computational cost. This can be
of great use for multivariate probabilistic metocean forecasting.
Other generative models such as GAN, VRAE, or diffusion
models could probably achieve similar results and were not
explored in this study. Normalizing flows, however, provide a
simple yet efficient method to relax the parametric assump-
tion on the posterior distribution.

The use of deep learning methods allows the integration of
various sources of data. It permits the use of recent neighbor-
ing measurements that have a great impact on the forecast
correction. In the context of offshore operations, it shows the
opportunity of postprocessing numerical weather prediction
using coastal measurements. Moreover, once trained, deep
learning models run fast and could enable short-term opera-
tional decision-making based on high-frequency forecasts.

Normalizing flows are used as an add-on block to the
ConvE-STF architecture with the Gaussian assumption. The
normalizing flow transformation conditioning can be con-
structed in different ways. It is applied in this paper for each
lead time independently, and the sampling is to be done for
each lead time. The temporal correlation between lead times
is not explicit. Whether normalizing flows can be used to
jointly model the temporal correlation and variable correla-
tion is still an open question (Dumas et al. 2022).

The considered dataset has inherent limitations. It would
be beneficial to complement the study with an extended data-
set. The forecast horizon is here limited to 6 h after forecast
issue time. In real operational contexts, offshore operation
planning and execution (Gintautas and Sørensen 2017) would
likely require the extension to 24-h forecasts. Operational
NWP forecasts fulfill this requirement (Bauer et al. 2015).
Our experiments also assess how the length of the training da-
taset impacts the forecasting performance of the proposed
deep learning scheme. While we retrieve significant average
improvement compared with the operational NWP forecast
using a 2-yr-long training dataset, we also point out limitations

FIG. 12. RMSE improvement between ConvE-STF, GBM, and AROME. The RMSE
improvement [RMSE(AROME)2 RMSE(model)] is shown in color, with blue sectors indicat-
ing a RMSE decrease compared to AROME and red sectors indicating a RMSE increase. The
RMSE improvement is plotted as a function of wind direction and wind speed.
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for rare events, especially southwest and northeast winds in
our case study. This is likely a limiting factor for a complete
forecast evaluation (Schultz et al. 2021); however, it shows
that a skillful data-driven model can be obtained using 2 years
of training data. Related studies applied to wind speed fore-
casting often use shorter or similar datasets to train postpro-
cessing models (Zheng et al. 2022; Gallego et al. 2011; Wang
et al. 2017). Extending the considered dataset to longer time
series strongly depends on the availability of longer time se-
ries of offshore measurements and requires the deployment
of dedicated in situ observatories (Marcille et al. 2023). The
availability of ensemble NWP forecasts also seems appealing
both as a complementary benchmarking baseline as well as to
explore how deep learning schemes could benefit from ensemble
forecasts as input data (Grönquist et al. 2021). Furthermore, it
would be very beneficial to compare the forecasts’ reliability
with the ensemble prediction of AROME to assess the im-
pact of data representativity on forecast calibration.

Other sources of data could be used to improve the post-
processing of numerical wind forecast. For offshore surface
winds, sea surface roughness data through satellite synthetic
aperture radar (SAR) images provide high-resolution infor-
mation (Mouche et al. 2012). To date, SAR images have too
low temporal availability (2–3 days) to be integrated into
an operational postprocessing model. Further studies on the
impact of marine exogenous variables for offshore wind fore-
casting could be considered.

This study could be extended to jointly forecast wind and
wave parameters (Ahmadreza et al. 2008). Potential non-
Gaussian distributions are expected between wind and wave
parameter forecast uncertainties. From there, the value of the
forecast could be evaluated with regard to probabilistic opera-
tional decision-making by modeling a realistic maintenance
operation (Gintautas and Sørensen 2017; Catterson et al.
2016). The model reliability is then a crucial parameter to jus-
tify the operational use of probabilistic forecasts.
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