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Abstract

Many industries rely on data-driven analytics, yet
useful datasets are often distributed amongst mar-
ket competitors that are reluctant to collaborate
and share information. Recent literature proposes
analytics markets to provide monetary incentives
for data sharing, however many of these market
designs are vulnerable to malicious forms of repli-
cation—whereby agents replicate their data and
act under multiple identities to increase revenue.
We develop a replication-robust analytics market,
centering on supervised learning for regression.
To allocate revenue, we use a Shapley value-based
attribution policy, framing the features of agents
as players and their interactions as a character-
istic function game. We show that there are dif-
ferent ways to describe such a game, each with
causal nuances that affect robustness to replica-
tion. Our proposal is validated using a real-world
wind power forecasting case study.

1. Introduction
It is often the case that, when faced with an analytics task, a
firm could benefit from using the data of others. For exam-
ple, rival distributors of similar retail goods could improve
supply forecasts by sharing sales data, hotel owners might
find value in data from airline companies for anticipating
demand, hospitals could reduce socio-economic biases from
diagnostic support systems by sharing patient information,
and so forth. In our work, we consider the example of renew-
able energy producers. Specifically, wind power generators
exhibit uncertain levels of production and thus require fore-
casts to competitively participate in electricity markets, their
revenue being a function of predictive performance. By har-
nessing data that is distributed (i.e., both geographically and
by ownership) these agents can leverage spatio-temporal
correlations between sites to improve their forecasts (Tastu
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et al., 2013). However, in practice, such altruistic sharing
of information amongst market competitors would likely
be hindered by privacy concerns or perceived conflicts of
interest. Data can instead be commoditized within a market-
based framework, where remuneration provides an incentive
for data sharing (Bergemann & Bonatti, 2019).

Analytics markets are a subset of such frameworks, where
data of distributed agents is used to enhance an analytics task
without the need to directly transfer raw data to competing
agents, through the use of a central market platform (which
may additionally ensure privacy preservation) (Pinson et al.,
2022). Market revenue is then a function of the enhanced
capabilities provided, and the value this brings to the owner
of the task. For fair allocation of revenue, each dataset
owned by a distributed agent should be remunerated based
on its marginal contribution to the enhancement of the task
(e.g., improved forecast accuracy). However, this can be
challenging to quantify when these datasets are correlated.
For instance, if datasets are valued sequentially, correlations
can reduce social welfare, with agents eventually selling
their data for less than their initial valuation since their
information becomes redundant (Acemoglu et al., 2022).
Whilst this is not the case in our proposed analytics market
(i.e., valuation occurs in parallel, hence one agent cannot
intentionally undercut another), the value of overlapping
information is inherently combinatorial.

To address this, recent works have proposed to borrow con-
cepts from cooperative game theory, framing the features
as players and their interactions as a characteristic function
game (Ghorbani & Zou, 2019). For many practitioners, the
Shapley value (Shapley, 1997) is the solution concept of
choice for such a game, allocating each player its expected
marginal contribution towards a set of other players, sat-
isfying a collection of axioms that yield several desirable
market properties by design, namely individual rationality,
zero-element and truthfulness, symmetry, linearity and bud-
get balance, as demonstrated in Agarwal et al. (2019). That
being said, a key limitation of this approach is that there is
an incentive for agents to replicate their data and act under
multiple identities, rendering grossly undesirable revenue
allocations. This incentive arises from the fundamental na-
ture data—it can be replicated at zero marginal cost. Whilst
several attempts have been made to remedy this issue (e.g.,
Agarwal et al., 2019, Ohrimenko et al., 2019, Han et al.,
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2023), doing so typically involves a trade-off.

The contributions of our paper are as follows: (i) we develop
an analytics market with Shapley value-based attribution
that is replication-robust under a more favourable defini-
tion compared to previous works; (ii) we propose a general
market design that subsumes many of the existing proposals
in the literature and explore the intricacies of the different
ways in which an analytics task can be represented as a
cooperative game; (iii) we demonstrate that each has causal
nuances that can determine robustness to replication of the
market; and finally (iv) we apply our work on a real-world
case study—out of many potential applications, we choose
to study wind power forecasting due to data availability, the
known value of sharing distributed data, and the fact it is a
sandbox that can be easily shared and used by others.

2. Preliminaries
We define an analytics task as a regression model to be used
for forecasting, such that our focus is on so-called regres-
sion markets (Pinson et al., 2022). This setting builds upon
prior work on data acquisition from both strategic (Dekel
et al., 2010) and privacy-conscious (Cummings et al., 2015)
agents. The owner of the regression model is characterized
by their private valuation for a marginal improvement in pre-
dictive performance, which sets the price for the distributed
agents, whom in turn propose their own data as features and
are eventually remunerated based on their relative marginal
contributions. We write this valuation as λ ∈ R+, the value
of which we assume to have been learnt through some pre-
liminary analyses.

Market Agents The set A denotes the market agents, one
of which c ∈ A is the central agent seeking to improve
their forecasts, whilst the remaining agents a ∈ A−c are
support agents, whom propose their own data as features,
whereby A−c = A \ {c}. Let yt ∈ R+ be the target signal
recorded by the central agent at time t, a sample from the
stochastic process {Yt}∀t. We write xI,t as the vector of all
features at time t, indexed by the ordered set I. Each agent
a ∈ A owns a subset Ia ⊆ I of indices. For each subset of
features C ⊆ I we write DC,t = {xC,t′ , yt′}∀t′≤t to be the
set of observations up until time t.

Regression Framework To model the target signal, Yt,
we use a parametric Bayesian regression framework, for-
mulating the likelihood as a deviation from a deterministic
mapping under an independent Gaussian noise process the
variance of which is treated as a hyperparameter. The map-
ping, f , is a linear interpolant parameterized by a vector of
coefficients, w, and represents the conditional expectation
of the target signal, such that the expectation of the likeli-
hood corresponding to the grand coalition (i.e., using all

available input features) at any particular time step can be
decomposed as follows:

f(xt,w) =

w0 +
∑
i∈|Ic|

wixi,t

Terms belonging
to the central agent.

+
∑

a∈A−c

∑
j∈|Ia|

wjxj,t

Terms belonging
to the support agents.

.
(1)

Market Clearing Once the data has been collected and
the valuation of the central agent is revealed, the market is
then cleared. We consider a two-stage (i.e., in-sample and
out-of-sample) batch market, as in Pinson et al. (2022). We
do, however, relax the assumption that features are inde-
pendent, but still assume that any redundant features owned
by the support agents (i.e., those highly correlated with the
central agent’s features) are removed via the detailed feature
selection process. An important step in the market clearing
procedure is parameter inference—to mitigate bias we opt
for a centred isotropic (i.e., uninformative) Gaussian prior,
which is conjugate for our likelihood, resulting in a tractable
Gaussian posterior which summarizes our updated beliefs,
which, for a particular subset of features is given by

p(wC |DC,t) ∝ p(xC,t, yt|wC)p(wC |DC,t−1), ∀t, (2)

where recall DC,t is the set of input-output pairs observed
up until time t, for all C ⊆ I. The market revenue is then
a function of the exogenous valuation, λ, and the extent to
which model-fitting is improved, which we measure using
the negative logarithm of the predictive density (i.e., the
convolution of the likelihood with the posterior), denoted by
ℓt = − log[p(yt|xt)], ∀t, where for a batch of observations,
the market revenue is π = λ(E[ℓt]Ic

− E[ℓt]I).

Revenue Allocation To allocate market revenue amongst
support agents, we define an attribution policy based on the
Shapley value. We let v : C ∈ P(I) 7→ R be a charac-
teristic function that maps the power set of indices of all
the features to a real-valued scalar—the set C represents
a coalition in the cooperative game. If we let Θ be the
set of all possible permutation of indices in I−c, the Shap-
ley value is ϕi = 1/|I−c|!

∑
θ∈Θ ∆i(θ), ∀i ∈ I−c, where

∆i(θ) = v(Ic∪{j : j ≺θ i})−v(Ic∪{j : j ⪯θ i}), where
j ≺θ i denotes that j precedes i in permutation θ. With this
attribution policy, the revenue of each support agent can be
written as πa =

∑
i∈Ia

λE[ϕi], ∀a ∈ A−c. Observe that
calculating Shapley values requires evaluating the objective
function using subsets of features, which is not that straight-
forward in general—once trained, machine learning models
typically require an input vector containing a value for each
feature to avoid matrix dimension mismatch. As a result,
the characteristic function must lift the original objective to
simulate removal of features (Merrill et al., 2019).
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Recall that our objective function, ℓ, relates to the mapping
f : R|I| 7→ R described in (1), and is therefore itself only
defined in R|I|. To calculate the Shapley values, a value
for each of the 2|I| subsets of input features is needed. Ac-
cordingly, we lift the objective function to the space of all
subsets of features by formulating the characteristic func-
tion mapping as v(C) : R|I| × 2|I| 7→ R, ∀C. Hence, for
the grand coalition, v(I) = E[ℓI,t|Xt = xt], where Xt is
the multivariate random variable from which the features
are perceived to be sampled. For a particular feature, the
Shapley value is therefore not generally well-defined, since
there exists many methods to formulate such a lift (Sun-
dararajan & Najmi, 2020). In the next section we explore
the following: (i) how to compute such a lift within a linear
regression setup, (ii) what implications different lifts have in
relation to causality, and (iii) how this subsequently affects
the market revenue allocations.

3. Lift Formulations
Commonly adopted lifts can broadly be categorized as ei-
ther observational or interventional, differing only in the
functional form of the characteristic function that underpins
the cooperative game. The former is typically found in work
pertinent to regression markets (e.g, Agarwal et al. 2019),
with the latter used an approximation for the former for in-
terpreting model predictions (Lundberg & Lee, 2017). The
observational lift uses the observational conditional expec-
tation, the expectation of the objective over the conditional
density of the out-of-coalition features, given that those in
the coalition take on their observed values, such that

vobs(C) =
∫

E
[
ℓt|xC,t,xC,t

]
p(xC,t|xC,t)dxC,t, (3)

where C = I \ C denotes the out-of-coalition features.

The interventional lift uses the interventional conditional
expectation, whereby features in the coalition are manually
fixed to their observed values, intentionally manipulating the
data generating process, which we express mathematically
using Pearl’s do-calculus (Pearl, 2012), such that

vint(C) =
∫

E
[
ℓt|xC,t,xC,t

]
p(xC,t|do(xC,t))dxC,t. (4)

The difference between (3) and (4) is that in the latter, depen-
dence between the out-of-coalition features and those within
the coalition is broken. In theory, observing XC,t = xC,t
would change the distribution of XC,t if the random vari-
ables were connected through latent effects. However, by
intervening on a coalition, the distribution of these out-of-
coalition features is unaffected. To illustrate this, consider
two random variables, X and Y , with the causal relationship
in Figure 1. If we observe X = x the observational con-
ditional distribution describes: the distribution of Y given

X Y

Figure 1. Causal graph indicating a direct effect between two ran-
dom variables, X and Y .

that X is observed to take on the value x, which we nor-
mally write as p(y|x) = p(x, y)/p(x). The interventional
conditional distribution describes instead: the distribution
of Y given we artificially set the value of X to x, denoted
p(y|do(x)), obtained by assuming that Y is distributed by
the original data generating process. Graphically, interven-
tions remove all edges going into the corresponding vari-
able. Consequently, we get that, p(y|do(x)) = p(y|x) but
p(x|do(y)) = p(x). This means that the distribution of y
under the intervention X = x is equivalent to y conditioned
on X = x, yet for Y = y, x and y become disconnected,
hence x has no effect on y, which is simply sampled from
its marginal distribution.

Typically, the choice of which lift to use is driven by their rel-
ative computational expenditure (Lundberg & Lee, 2017)—
evaluating the conditional expectation of the objective func-
tion is intractable in general, requiring complex and costly
methods for approximation (Covert et al., 2021), whereas
cheap and relatively simple algorithms exist to intervene on
the features (Sundararajan & Najmi, 2020). Whilst the most
suitable method for evaluating the conditional expectation is
widely disputed (Chen et al., 2022), one such method merely
requires training separate models for each subset of features;
if each model is optimal with respect to the objective, then
this is equivalent to marginalizing out features using their
conditional distribution (Covert et al., 2021). Similarly, one
can evaluate the interventional conditional expectation of
the objective function for linear regression models by imput-
ing, or even removing completely, the features not present
in a coalition. We note that, both of these lifts preserve the
axioms of the original Shapley value, and subsequently the
market properties provided, albeit in expectation.

Causal Nuances With independent features, both lift for-
mulations are in fact equivalent. Specifically, Janzing et al.
(2020) showed that by distinguishing between the true fea-
tures and those actually used as input to the model, as in our
example we get that p(xC,t|do(xC,t)) = p(xC,t). We can
then calculate (4) from (3) by simply replacing p(xC,t|xC,t)
with the marginal distribution, which would be equivalent
for independent features.

Theorem 3.1. Marginal contributions derived using the
observational conditional expectation formulation for v(·)
as defined in (3) can be decomposed into indirect and direct
causal effects.

3
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Proof. Following (3), the marginal contribution of the i-th
feature for a single permutation θ ∈ Θ derived using the
observational lift can be written as

∆obs
i (θ) = v(C)− v(C ∪ i),

=

∫
E
[
ℓt|xC,t,xC∪i,t

]
p(xC∪i,t|xC,t)dxC∪i,t

−
∫

E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC∪i,t)dxC,t

Total effect

,

=

∫
E
[
ℓt|xC,t,xC∪i,t

]
p(xC∪i,t|xC,t)dxC∪i,t

−
∫

E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC,t)dxC,t

Direct effect

+

∫
E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC,t)dxC,t

−
∫

E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC∪i,t)dxC,t

Indirect effect

,

where C = {j : j ≺θ i} and C = {j : j ≻θ i}. This
decomposition measures the difference in the loss function
when: (i) the value of the i-th feature is observed and the
distribution of the remaining out-of-coalition features is
unchanged (i.e., direct effect); and (ii) the distribution of the
other out-of-coalition features does changed as a result of
observing the i-th feature (i.e., indirect effect).

Following Theorem 3.1, by replacing the condition by obser-
vation with the marginal distribution as in (3), we eliminate
the indirect effect entirely. Hence, using the interventional
lift removes consideration of causal effects between features,
and subsequently any root causes with strong indirect effects
(Heskes et al., 2020). As a result, this lift is more effective
at crediting features on which the regression model has an
explicit algebraic dependence. In contrast, the observational
lift attributes features in proportion to indirect effects (Aas
et al., 2021).

To illustrate this, consider the following example, adapted
from Janzing et al. (2020) to fit our context. Let x1,t, x2,t ∈
{0, 1} be two binary features such that p(x1,t, x2,t) = 1/2
if x1,t = x2,t, otherwise p(x1,t, x2,t) = 0. If p(yt|xt) =
N (x1,t, 1) and yt = 1, the expected value of the loss func-
tion simplifies to: E[ℓt|x1,t, x2,t] = log(

√
2π)+1/2(x1,t−

1)2. The following results are obtained:

(i) Observational lift

v(∅) = log(
√
2π) + 1/4, (5a)

v({1}) = log(
√
2π) + (1− x1,t)

2, (5b)

v({2}) = log(
√
2π) + (1− x2,t)

2, (5c)

v({1, 2}) = log(
√
2π) + (1− x1,t)

2, (5d)

which gives,

E[ϕ2] ∝ E[(5a)− (5c) + (5b)− (5d)]

= 1/4− (1− x1,t)
2 = E[ϕ1],

(ii) Interventional lift

v(∅) = log(
√
2π) + 1/4, (6a)

v({1}) = log(
√
2π) + (1− x1,t)

2, (6b)

v({2}) = log(
√
2π) + 1/4, (6c)

v({1, 2}) = log(
√
2π) + (1− x1,t)

2, (6d)

which gives,

E[ϕ2] ∝ E[(6a)− (6b) + (6c)− (6d)]

= 0 ̸= E[ϕ1].

We see that in (5), these features are given equal attribution,
which some works argue to be illogical as features not ex-
plicitly used by the model have the possibility of receiving
non-zero allocation (Sundararajan & Najmi, 2020), whereas
in (6), ϕi ̸= 0 intuitively implies that the model depends
on xi,t. Whilst this dispute has been used as an argument
to reject the general use of Shapley values for model inter-
operability in machine learning (Kumar et al., 2020) and
that Lundberg & Lee (2017) were mistaken to only convey
(4) as a cheap approximation of (3) (Janzing et al., 2020),
the choice between the observational and interventional lifts
can in fact be viewed as conditional on as to whether one
wants to be true to the data or true to the model, respectively
(Chen et al., 2020), meaning the trade-offs of each approach
can be seen as context-specific.

Interpreting Payments We can explore this conjecture
by considering how the revenues of the support agents may
differ depending on the choice of lift. We know that the pre-
dictive performance of the regression model out-of-sample
is contingent upon the availability of features that were used
during training, which, in practice, requires data of the sup-
port agents to be streamed continuously in a timely fashion,
particularly for an online setup (Pinson et al., 2022). If the
stream of any of these features were interrupted, the efficacy
of the forecast may drop, the extent to which would relate
not to any root causes or indirect effects regarding the data
generating process, but rather solely the magnitude of direct
effects. Ergo, in a market with an attribution policy based
on the interventional Shapley value, larger payments would
be made to support agents that own features to which the
predictive performance of the model is most sensitive.

This provides an incentive for investment in efforts to de-
crease the chance of their data being unavailable, resembling
availability payments in electricity markets, whereby assets
are remunerated for being available in times of need. For the
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−2 −1 0 1 2

−2

−1

0

1

2

x1

x
2

do(X1 = x1)

do(X2 = x2)

Figure 2. Interventions yielding points outwith the true data mani-
fold. The green and red lines represent the level set within which
0.99 quantile of the training data when features (i.e., X1 and X2)
are independent and correlated, respectively. The blue lines repre-
sent the data extrapolated as a result of intervening on X1 (solid)
and X2 (dashed).

observational lift, it would instead be unclear as to whether
comparatively larger payments in the regression market are
consequential of features having a sizeable impact on pre-
dictive performance, or merely a result of indirect effects
through those that do. It could however be argued that the
latter outcome is more fair, accounting for the fact that a
feature having only indirect effects does not necessarily di-
minish its propensity to increase predictive performance in
the absence of its counterpart with a direct effect, albeit only
if the model is re-trained. At this point, this trade-off merely
highlights that the choice of lift could yield counter-intuitive
allocations if not considered carefully.

Risk Implications When features are not independent,
unlike the observational lift, conditioning by intervention
leads to the possibility of model evaluation on points out-
with the true data manifold (Frye et al., 2020). This can
visualized with the simple illustration in Figure 2. If inde-
pendent, intervening on either feature yields samples that
remain within the original data manifold. However, if fea-
tures are correlated, there is a possibility for extrapolating
far beyond the training distribution, where the model is not
trained and behaviour is unknown. We now consider what
impact this may have on the market outcomes.

We know that if multicollinearity exists, the variance of the
coefficients is inflated, which can distort the estimated mean
when the number of in-sample observations is limited. The
posterior variance of the i-th coefficient can be written as
var(wi) = κi/ξ|Dt|, where ξ is the intrinsic noise precision
of the target and κi is the variance inflation factor, given

by κi = e⊤i (
∑

t≤t x
⊤
t xt)

−1ei, ∀i ∈ I , where ei is the i-th
basis vector. Although κi ≥ 1, it has no upper bound, such
that κi 7→ ∞, ∀i, with increasing collinearity.

From a variance-decomposition perspective, the expected
Shapley value of the i-th feature can be shown to be equiv-
alent to the variance in the target signal that it explains,
such that, E[ϕi] = E[wi]

2 var(Xi), approximating the be-
haviour of the interventional Shapley value when features
are correlated (Owen & Prieur, 2017). As the posterior
distribution is Gaussian, the Shapley value for each feature
will follow a noncentral Chi-squared distribution with one
degree of freedom. For a particular feature, we can write the
probability density function of the distribution of the Shap-
ley value in closed-form as p(ϕi)/(var(Xi)var(wi)) =∑∞

k=0(1/k!)e
η/2(η/2)k)χ2(1+2k), ∀i, where the noncen-

tral Chi-squared distribution is seen to simply be given by a
Poisson-weighted mixture of central Chi-squared distribu-
tions, χ2(·), with noncentrality η = E[wi]

2/var(wi). Since
we know the moment generating function for such a mix-
ture, we derive the second moment as follows: var(ϕi) =

2var(wi)
(
2E[wi]

2 + var(wi)
)
(var(Xi))

2
, ∀i.

This implies that the variance of the attribution, and sub-
sequently the revenue, for any given feature is a quadratic
function of the variance of the corresponding coefficient,
thus the variance inflation induced by multicollinearity. That
being said, this problem indeed vanishes with increasing
sample size, as var(wi) 7→ 0, ∀i (Qazaz et al., 1997). If
only a limited number of in-sample observations are avail-
able, distorted revenues could in theory be remedied using
zero-Shapley or absolute-Shapley proposed in Liu (2020),
or restricting model evaluations to the data manifold (Taufiq
et al., 2023). We leave a thorough investigation of these
remedies in relation to analytics markets to future work.

4. Robustness To Replication
Although it is natural for datasets to contain some amount
of overlapping information, in our analytics market such
redundancy may also arise as a result of replication. The
fact that data can be freely replicated differentiates it from
traditional commodities—a motive for reassessing funda-
mental mechanism design concepts (Aiello et al., 2001). For
example, implementing a simple second price auction be-
comes impractical unless sellers somehow limit the number
of replications, which may in turn curtail revenue.

Definition 4.1. A replicate of the i-th feature is defined as
x′
i,t = xi,t + η, where η represents centred noise with finite

variance, conditionally independent of the target given the
feature.

In our context, replication can be seen as strategic behaviour.
Specifically, under Definition 4.1, markets that harness the
observational lift described in (3) in fact provide a monetary
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incentive for support agents to replicate their data and act un-
der multiple identities. To see this, consider the causal graph
in Figure 3. Suppose that x1,t and x2,t are identical features,
such that w1 = w2, each owned by a separate support agent,
a1 and a2, respectively. Considering Theorem 3.1 and the
example in Section 3, the payment to each support agent be-
fore any replication is made will be π/2, where π is the total
market revenue. Now suppose a2 replicates their feature k
times and for simplicity assume var(η) = 0. With the same
logic, the revenues of agents a1 and a2 will be π/(2 + k)
and

∑
1+k π/(2 + k) = π(1 + k)/(2 + k), respectively.

Hence there is an incentive for agents to simply replicate
their data infinitely many times so as to maximize revenue,
which is undesirable in practice.

Definition 4.2. Let x+
t denote the original vector of features

augmented to include any additional replicates, with an
analogous index set, I+. According to Agarwal et al. (2019),
a market is replication-robust if π+

a ≤ πa, ∀a ∈ A−c,
where π+

a is the new revenue derived using x+
t instead.

Since allocation policies based on the observational lift vio-
late this definition, the authors propose Robust-Shapley de-
scribed by ϕrobust

i = ϕi exp(−γ
∑

j∈I−c\{i} s(Xi,t, Xj,t)),
with s(·, ·) a similarity metric (e.g., cosine similarity). This
method penalizes similar features so as to remove the in-
centive for replication, satisfying Definition 4.2. However,
not only replicated features are penalized, but also those
with naturally occurring correlations between features. This
yields a loss of budget balance, the extent to which depends
on the chosen similarly metric and the value of γ. A sim-
ilar result is obtained by Han et al. (2023) by considering
the general class of semivalues to which the Shapley value
belongs (Dubey et al., 1981). It is shown that the way in
which a semivalue weights coalition sizes has an affect on
the resultant properties, and that the Banzhaf value (Lehrer,
1988) is in fact replication-robust by design (i.e., with re-
spect to Definition 4.2), along with many other semivalues,
albeit still penalizing naturally occurring correlations. In our
view, what has lacked acknowledgement so far is that Def-
inition 4.2 leaves the market susceptible to spiteful agents
(i.e., those who seek to minimize the revenue of other agents
while maximizing their own profits), thus we refer to this
definition as weakly robust.

Proposition 4.3. Analytics markets that adopt a Shapley-
value based attribution policy based on the interventional
lift instead yield a stricter notion of being replication-robust,
such that π+

a ≡ πa, ∀a ∈ A−c.

Proof. Under Definition 4.1, each replicate in x+
t will only

induce an indirect effect on the target. However from Theo-
rem 3.1, we know that the interventional lift only captures
direct effects. Therefore, for each of the replicates, we write

Yt

X2.tX1,t X ′
2,t X ′...

2,t· · ·
w2w1

Figure 3. Causal graph indicating direct effects (solid lines) and
indirect effects (dashed lines) induced by replicating X2,t. The
prime superscript denotes a replicated feature.

the marginal contribution for a single permutation θ ∈ Θ as

∆int
i (θ) =

∫
E
[
ℓt|xC,t,xC∪i,t

]
p(xC∪i,t|xC,t)dxC∪i,t

−
∫

E
[
ℓt|xC∪i,t,xC,t

]
p(xC,t|xC,t)dxC,t,

= 0, ∀i ∈ I+
−c \ I−c,

and therefore ϕi ∝
∑

θ∈Θ ∆i(θ) = 0 for each of the repli-
cates. For the original features, any direct effects will remain
unchanged, as visualized in Figure 3. This leads to

π+
a =

∑
i∈Ia

λE[ϕi] +
∑
j∈Ja

λ���E[ϕj ] , = πa, ∀a ∈ A−c

where Ja = I+
a \ Ia.

This proposition shows that by using the inverventional lift,
the Shapley value-based attribution policy, and hence the
regression market, is strictly robust to both replication and
spiteful agents by design.

5. Experimental Analysis
We now validate our main findings using a real-world case
study.1 We use an open source dataset to aid reproduction
of our work, namely the Wind Integration National Dataset
(WIND) Toolkit, detailed in Draxl et al. (2015). Our setup is
a stylised electricity market setup where agents—in our case,
wind producers—are required to notify the system operator
of their expected electricity generation in a forward stage,
one hour ahead of delivery, for which they receive a fixed
price per unit. In real-time, they receive a penalty for devia-
tions from the scheduled production, thus their downstream
revenue is an explicit function of forecast accuracy.

Methodology The dataset comprises wind power mea-
surements simulated for 9 wind farms in South Carolina,

1Our code has been made publicly available at: https://
github.com/tdfalc/regression-markets
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(a) Observational: The revenue earned by a4 is increased
due to indirect effects induced by the replicates.
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(b) Interventional: The revenue earned by a4 remains un-
changed by accounting only for direct effects.

Figure 4. Revenue allocations for each support agent for both (a) observational and (b) interventional lifts, when agent a4 is honest
(//) and malicious (◦), by replicating their feature. The gray and white bars correspond to in-sample and out-of-sample market stages,
respectively. The revenue split amongst replicates is depicted by the stacked bars highlighted in red.

Table 1. Agents and corresponding site characteristics considered
in South Carolina (USA). Cf denotes the capacity factor and P the
nominal capacity.

AGENT ID. CF (%) P (MW)

a1 4456 34.11 1.75
a2 4754 35.75 2.96
a3 4934 36.21 3.38
a4 4090 26.60 16.11
a5 4341 28.47 37.98
a6 4715 27.37 30.06
a7 5730 34.23 2.53
a8 5733 34.41 2.60
a9 5947 34.67 1.24

all located within 150 km of each other—see Table 1 for
a characteristic overview. Whilst this data is not exactly
real, it captures the spatio-temporal aspects of wind power
production, with the benefit of remaining free from any spu-
rious measurements. Measurements are available from 2007
to 2013, with an hourly granularity. For simplicity, we let a1
be the central agent, however in practice each could assume
this role in parallel.

We use the regression framework described in Section 2. We
employ an Auto-Regressive with eXogenous input model,
such that each agent is assumed to own a single feature,
namely a 1-hour lag of their power measurement. For wind
power forecasting, the lag not only captures the temporal
correlations of the production at a specific site, but also
indirectly encompasses the dependencies amongst neigh-
boring sites owing to the natural progression of wind pat-
terns. We are interested in assessing market outcomes rather
than competing with state-of-the-art forecasting methods,
so we consider only a very short-term lead time (i.e., 1-

hour ahead), thereby permitting a fairly simple time-series
analysis. Nevertheless, our mechanism readily allows more
complex models for those aiming to capture specific intri-
cacies of wind power production, for instance the bounded
extremities of the power curve (Pinson, 2012).

We perform a pre-screening, such that given the redundancy
between the lagged measurements of a2 and a3 with that
of a1, we remove them from the market in line with our
assumptions. The first 50% of observations are used to clear
the in-sample regression market and fit the regression model,
whilst the latter half is used for the out-of-sample market.
We clear both markets considering each agent is honest,
that is, they each provide a single report of their true data.
Next, we re-clear the markets, but this time assume agent
a4 is malicious, replicating their data, thereby submitting
multiple separate features to the market in effort to increase
their revenue.

Results We start by setting the number of replicates k = 4,
and λ = 0.5 USD per time step and per unit improvement
in ℓ, for both in-sample and out-of-sample market stages.
However, we are primarily interested in the revenue allo-
cation rather than the magnitude—see Pinson et al. (2022)
for a complete analysis of the monetary incentive to each
agent participating in the market. Overall the in-sample and
out-of-sample objectives improved by 10.6% and 13.3%
respectively with the help of the support agents. In Fig-
ure 4, we plot the resultant allocation for each agent with
and without the malicious behavior of agent a4, for both
lifts. When this agent is honest, we observe that the obser-
vational lift spreads credit relatively evenly amongst most
features, suggesting that many of them have similar indirect
effects on the target. The interventional lift favours agent
a8, which, as expected, owns the features with the greatest
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Figure 5. Revenue allocation of agent a4 with increasing number
of replicates.

spatial correlation with the target. In this market, most of
the additional revenue of agent a8 appears to be lost from
agent a9 compared with the observational lift, suggesting
that whilst these features are correlated, it is agent a8 with
the greatest direct effect.

When agent a4 replicates their data, with the observational
lift we see agents a5 to a8 earn less, whilst agent a4 earns
considerably more. This demonstrates that this conditional
expectation indeed spreads revenue proportionally amongst
indirect effects, of which there are now four more due to
the replicates, and consequently the malicious agent out-
earns the others. In contrast, since the interventional lift
only attributes direct effects, each replicate is allocated zero
revenue, hence the malicious agent is no better off than
before. Lastly, we observe that in both cases, the market
outcomes were relatively consistent between the in-sample
and out-of-sample stages, likely due to the large batch size
considered, combined with limited nonstationarities within
the data.

To compare our proposal with those in related works, in
Figure 5 we plot the allocation of agent a4 with increasing
number of replicates. Here, Robust-Shapley and Banzahf
Value refer to both the penalization approach of Agarwal
et al. (2019) and the use of an alternative semivalue in Han
et al. (2023), respectively. With the observational lift, the
proportion of revenue obtained increases with the number
of replicates as expected, as a greater number of indirect
effects are owned by the agent. With Robust-Shapley, the
allocation indeed decreases with the number of replicates,
demonstrating this approach is weakly replication-robust,
but is considerably less compared with the other approaches
since natural similarities are also penalized. The authors ar-
gue this is an incentive for provision of unique information,
but this allows agents to be spiteful. The Banzahf Value is
strictly replicaiton-robust for k = 0, but only weakly for

k ≥ 1. Lastly, unlike these approaches, our proposed inter-
ventional lift remains strictly replication-robust throughout
as expected, with agent a4 not able to benefit from replica-
tion their feature, without penalizing the other agents.

6. Conclusions
Many analytics tasks akin to the one presented here could
benefit from distributed data, however convincing firms to
share information, even with assurances of privacy protec-
tion, poses a challenge. Rather than relying on data altruism,
there have been several proposals of market mechanisms
(e.g., analytics markets) to provide incentives for data shar-
ing through monetary compensation, many of which adopt
Shapley value-based attribution policies. Nevertheless, there
are a number of open issues that remain before such mecha-
nisms can be used in practice, one of which is vulnerability
to replication.

In this work, we introduced a general framework for Shapley
value-based regression markets that subsumes these existing
proposals. We demonstrated that there are different ways to
formulate this cooperative game and provided a full causal
picture for each formulation, as well as an insight into how
each influences the market outcomes. Conventional use of
the observational lift to value a coalition is the source of the
vulnerability to replication, which many works have tried to
remedy through penalization methods, which enable only
weak robustness. Our main contribution is the alternative
use of the interventional lift, which we have proved to be ro-
bust to replication by design, even under a more favourable
definition of strict robustness.

From a causal perspective, the interventional lift has other
potential benefits, including revenue allocations that better
represent the reliance of the model on each feature, pro-
viding an incentive for timely and reliable data streams for
useful features. There is of course, no free lunch, as using
the interventional conditional expectation can yield undesir-
able payments when feautres are highly correlated and the
number of observations is low. Nevertheless, future work
could examine the extent to which the mentioned remedies
mitigate this issue, as well as their impact on the market
outcomes. Ultimately, when it comes to data valuation,
the Shapley value is not without its limitations—it is not
generally well-defined in a machine learning context and
requires strict assumptions, not to mention its computational
complexity. Perhaps this should also incite future work into
alternative mechanism designs, for example those based on
non-cooperative game theory instead.
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Taufiq, M. F., Blöbaum, P., and Minorics, L. Manifold
restricted interventional shapley values. In International
Conference on Artificial Intelligence and Statistics, pp.
5079–5106. PMLR, 2023.

10


