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Abstract

Data markets facilitate decentralized data exchange for applications such as prediction, learning,

or inference. The design of these markets is challenged by varying privacy preferences as well as data

similarity among data owners. Related works have often overlooked how data similarity impacts pricing

and data value through statistical information leakage. We demonstrate that data similarity and privacy

preferences are integral to market design and propose a query-response protocol using local differential

privacy for a two-party data acquisition mechanism. In our regression data market model, we analyze

strategic interactions between privacy-aware owners and the learner as a Stackelberg game over the

asked price and privacy factor. Finally, we numerically evaluate how data similarity affects market

participation and traded data value.

Index Terms

information leakage, regression markets, collaborative learning, mechanism design, Stackelberg

game

I. INTRODUCTION

A. Context and Motivation

In recent years, there has been a surge in Internet of Things (IoT) devices with sensing and

computing capabilities, leading to an abundance of IoT data. Massively distributed heterogeneous
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data fuels various emerging applications, such as forecasting and analytics [1], learning models

[2], [3], and in diverse industry verticals [4], [5]. It is thus critical to investigate the ways in

which this data becomes available, respecting the privacy constraints and/or offering incentives

to the data owners. Data markets act as platforms that facilitate the collection, exchange, and

utilization of both personal and IoT data. In this study, the focus is on regression data markets

[1], [6], which addresses the regression problem in which data is distributed across multiple

agents. We motivate the use and operation of regression data markets through two examples.

Example 1: Consider a labour market where agents Alice and Bob are generating privacy-

sensitive distinct explanatory features x that may explain a common target variable y. Say,

Alice wants to learn a regression model that quantifies the target value y, e.g., hiring salary

using features x (such as age, gender, academic qualifications, etc.). This is effectively done

through learning the regression mapping function that involves features obtained from Bob as

input. However, Bob’s disclosure of features in a truthful manner leads to privacy loss and

requires reasonable monetary compensation from Alice. Another agent, Carol, enters the market

with an extensive history of employee hiring experiences, gathering similar features held by

Bob to explain y. However, she is constrained by her company’s intellectual property (IP)

regulations, preventing direct (unaltered) sharing of features with Alice and instead employing

privacy guarantees and appropriate compensation. Bob’s features are correlated with Carol’s, and

his willingness to share affects Carol’s decisions, while Bob and Carol have different privacy

preferences.

Example 2: Consider a startup company offering a location-based ride-sharing service. There

exist publicly accessible cameras at bus stations to capture passenger activities, owned by online

platforms such as “NAVER” [7] and “Kakao” [8]. Arrangements are made to uphold passenger

privacy and confidentiality. The data derived from these cameras are of poor quality and are

intentionally non-real-time due to security considerations. The startup wants to attain accuracy in

predicting the volume of ride-sharing requests. Prediction accuracy hinges upon diverse passenger

features, such as age, gender, number of passengers, and more. The setting also includes security

companies, and owners of cameras that monitor both these bus stops and nearby taxi stands.

The startup can incentivize the camera owners to retrieve data from these sources and enhance

its predictions. However, the data streams from these disparate cameras, although resembling

each other, necessitate measures to protect passenger privacy, which constrains the attainable

prediction accuracy.
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A regression data market allows data-driven analysis using a conditional model that explores

the dependency between the feature vector and the target value of interest. In Example 1,

Alice acts as a learner and can initiate a collaboration protocol to build a regression model,

soliciting features from Bob and Carol. Alice can employ any regression mapping functions to

the distributed features, subsequently assessing the collaboration’s merit using a chosen convex

loss function, such as mean square error (MSE). Both Bob and Carol share heterogeneous privacy

preferences and offer data of different qualities, such that Alice must incentivize both of them,

employing tailored pricing signals. In Example 2, companies owning different cameras observe

similar data and are market competitors. These companies may agree to provide their data to the

startup in a manner that is equitable and ensures data privacy. Their aim is to limit the exposure

of data similarities and the ensuing ramifications, such as data value depression [9], [10], while

simultaneously meeting passenger privacy mandates. However, privacy breaches can arise from

collaboratively computed target values or direct data exchanges among agents. This includes

questions about who controls IoT devices and maintains control over the collected data as well

as whether strategic agents can even exert influence over the outcome of computations.

In both examples, the agents are sensitive towards information leakage due to data similarity.

Consequently, they might opt for strategies like secure data computation methods (e.g., MPC [11],

[12]) or leverage differential privacy (DP) techniques [13], [14] to execute statistical analysis

while preserving privacy. Nevertheless, the employment of privacy mechanisms, such as DP,

invariably leads to a trade-off between data privacy and the accuracy of learned statistical models.

The application of rigorous data privacy techniques during data exchange can potentially com-

promise the model’s efficacy, with diminishing accuracy, particularly in situations characterized

by increased data similarity.

Thus, the learner is challenged with the optimization of query signals to extract distributed

features. Two critical aspects should be considered: (i) the value brought forth by each agent’s

features in addressing the regression problem and (ii) the impact of correlated features. These

considerations are bounded by constraints pertaining to pricing budgets and the inherent diversity

in agent privacy preferences. This brings us to the main question addressed by the present study:

“How to find the optimal trade-off between data privacy and agent’s utility under data similarity

in a regression data market?”
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B. Related Work

Existing literature [1], [6], [9], [15] on data markets explore various interactions among

agents, formulating algorithmic solutions. The interplay between data privacy and ownership

significantly influences the broader data trading process and the quality of offered services

provided through data exchanged. This duality, often termed the privacy-utility trade-off [13],

[16], can be addressed through incentives that balance data privacy considerations without

compromising utility. In the context of a regression data market, an effective incentive structure

becomes pivotal in aligning the strategies of distributed data sources towards a shared goal,

like training a learning model [2], [3], [17]. The overall operation is challenged by the data

characteristics, competition [9], [10], privacy requirements and the computing capabilities of

agents.

Recent works on IoT data markets focus on data acquisition models leading to efficient

incentive mechanism designs. The objective is to improve participation for various applications,

such as training a learning model [3], [18] and data utility maximization. Auction-based designs

are studied in the data market design, leading to truthful mechanisms for data exchanges.

Numerous privacy-preserving distributed model training approach exists where updates on local

raw data are shared rather than the data itself, as done in Federated Learning (FL) [2], [17].

Alternatively, variants of DP methods are implemented [13], [19], where the agents’ supply

features they have for training at a central entity after adding noise proportional to privacy

sensitivity. Therein, it is required to quantify the value of an individual agent’s contribution

in lowering the prediction error of the trained regression model. However, strategic interaction

between agents having heterogeneity in local privacy preferences and developing a participation

mechanism that respects the impact of the unknown degree of information leakage due to data

similarity (as hinted in Example 2) has not been explored yet in a regression market setting. In

[10], the authors proposed a game-theoretic setup that enables distributed coalition amongst

devices with similar data properties to minimize information leakage to prevent adversarial

under-pricing and data rivalry issues in the data market. However, they ignore the influence

of heterogeneity in individual privacy preferences. In [20], the authors introduced a Bayesian

regression markets design, which is compatible when considering a more general class of

regression tasks. The work builds the mechanism by adopting a Bayesian framework that offers

a fair allocation of market revenue for data trading. Regarding the literature gap, the existing
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works [1], [10] mostly focus on incentive design, participation, and the value of data trading.

Here, instead, we look into the optimal participation strategy of privacy-sensitive data holders

in order to realize a regression data market under information leakage due to data similarity.

C. Contributions and Paper Structure

We model a data acquisition method where we jointly analyze the impact of data similarity,

particularly correlation, on statistical information leakage in a privacy-aware finite player re-

gression data market. We develop incentive strategies that enforce loss minimization objectives

during collaborative data trading for solving the regression problem. This is done by taming

agents to provide high-quality data through incentives. We propose an incentive design that

offers control of the heterogeneous privacy factors on the distributed data and elicits them to

the learner. For the offered pricing and privacy budget, we summarize the strategic interaction

between the learner and the agents following a single-leader, multiple-followers Stackelberg game

structure, with the learner acting as a leader and the devices as followers. We show the Nash

best response strategies of the agents lead to a unique equilibrium in the non-cooperative game

amongst followers. With devices employing the local DP technique to trade data, we show there

exists a trade-off between the available data privacy budget and the value of device participation.

Finally, we show extensive numerical evaluations to verify these observations.

The paper is structured as follows. Section II introduces the system model and problem setup.

Section III develops the interaction framework between agents in the regression data market as

a two-stage Stackelberg game. This involves designing utility models and the mechanism design

with a first-order, low-complexity iterative solution to the posed problem. Section IV provides

a performance evaluation of the proposed algorithm with extensive numerical results and shows

comparative analysis with the intuitive baselines. Finally, Section V concludes this work with

discussions on the future outlook.

II. SYSTEM MODEL AND PROBLEM SETUP

We consider a network comprised of agents accumulating distinct features that, in principle,

contribute to learning the parameters of a regression model [1]. These agents can communicate

with each other through a platform that hosts a data market for training a regression model: a

regression data market. Then, any one of the interested agents can position herself as the “learner”

and initiate the exchange of the feature observations. In particular, the learner can send a query
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request to incorporate high-quality features from other agents to improve the overall prediction

accuracy of her model. Meanwhile, as agents are privacy-aware, they execute differential privacy

methods (details on DP in Definition 1, Section III-A) to avoid potential privacy loss during

data trading with the learner. Therefore, to maintain the quality of the collected features and the

utility they bring, the learner specifically asks agents to abide by a common privacy measure

(i.e., the privacy factor) in sharing their features for an offered pricing. However, in practice,

these devices exhibit heterogeneity in their data privacy preference, unknown to the learner, as

opposed to the commonly asked privacy factor. This suggests the strategic interaction of agents

with the learner. Further, the features they hold might be correlated, but to an unknown degree,

resulting in possible information leakage during features trading. In principle, correlated data

contribute less to improving the performance of the trained model. Therefore, not all agents but

a subset of available agents in the platform participate strategically in training the regression

model by supplying high-quality features. In the following, we formalize the problem setup.

Agents. Like [1], we consider a regression market consisting of a set of n agents A =

{a1, a2, . . . , an}. One of these agents i, called learner ai, is trying to fit a regression model

based on its own features as well as features bought from other agents. The learner is initiating

interaction with the other agents through the platform. Following the naming convention in [1],

we call the learner ai the central agent and the remaining agents aj, j ̸= i the support agents.

The term “data samples” means “features” in the context of regression tasks and will be used

interchangeably throughout this work. Without loss of generality, the learner is a1.

We assume that data samples are collected by agents at discrete points in time t ∈ {1, 2, . . . , τ}.

The central agent has a response target variable Yt ∈ Y , denoted for each time instance,

and is trying to train a regression model that allows it to understand some statistics of {Yt},

collected over τ time instances. Then, a time series collection {yt} is obtained, which denotes

the realization of target variable {Yt}, one for each time instance. The regression model relies

on several explanatory variables (commonly called input features) indexed by a set Ω. Consider

K explanatory variables such that Ω = {xk, k = 1, . . . , K} and denote xk,t ∈ R,∀k, t, be the

xk feature observed1 at time instance t. Correspondingly, y = [y1, . . . , yτ ]
⊤ is the collected

target variable. Following our assumption that the features are observed at each time instance,

we denote xk = [xk,1, . . . , xk,τ ]
⊤ be the vector of all observed values for the feature xk and

1For simplicity, we restrict xk,t ∈ R.
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xt = [x1,t, . . . , xK,t]
⊤ be the vector of all features observed at time instance t. Each agent in A

holds a subset of relevant explanatory variables ω ⊂ Ω and xω,t the vector of features at time

instance t. We assume that the data is complete and non-redundant, i.e., for each explanatory

variable at each time step, a unique agent is holding the corresponding feature. However, we

will not assume these explanatory variables are uncorrelated with each other, i.e., there is a

possibility of having data similarity between samples of different agents. If we closely look at

this setting, it is a setup in the vertical model training setting of federated optimization [21],

where the features are distributed across agents. This requires the acquisition of data distributed

amongst several privacy-aware agents to identify the explanatory variable over time, which is

our focus in this work. We denote Xω ∈ Rτ×|ω| as the design matrix, whose column denotes the

features observed, and the t’th row is x⊤
ω,t.

Learning Model. The central agent ai holds a set of features ωi ⊂ Ω and the target variable y.

In a general setting, each agent j ∈ A\ai has a set of features ωj ⊂ Ω, such that |ωi|+
∑

j |ωj| =

K. As the features of potential relevance are distributed amongst the supporting agents j, at a

regular time interval or at every time instance, the central agent aims to obtain those features to

maximize its prediction ability on the target variable. Then, the regression problem of the central

agent is to describe a mapping function f between the set of explanatory variables ω ⊂ Ω and the

target variable y, i.e., f : xω,t ∈ R|ω| → yt ∈ R. As in the usual regression setup, the structure

of f defines the set of explanatory variables. For simplicity, we consider a linear regression

mapping that can be described fully with the set of parameters θω = [θ0, θ1, . . . , θd]
⊤, where

d = |ω|. Then, the mapping can be described as yt = θ0 +
∑

k|xk∈ω θkxk,t + nt,∀t, with nt

defining a Gaussian noise with zero mean and unit variance. The learning objective is to find

the optimal set of parameters θ̂ that minimizes the chosen loss function l, commonly taken as

a quadratic function of prediction errors (residuals) denoted et = yt − θ⊤
ω x̃t, in expectation, as

θ̂ω = argmin
θω

E[l(et)], (1)

where x̃t = [1,xt]
⊤ with the first element a unit value to incorporate the bias term θ0 during

computation. Here, θ⊤
ω x̃t results in the prediction ỹt with the parameter θ⊤

ω . In some settings,

the central agent might have additional budget constraints, and the optimization of ℓ will happen

subject to these constraints in this case2.

2As an example, consider the central agent incentivize supporting agents to find the best estimate of θ̂ω . Then, the budget

constraint at the central agent can be defined in terms of the total available monetary value to offer.
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The map f is commonly described in a matrix form ỹ = X̃ωθω with the t’th row of X̃ω is x̃ω,t.

The model is then completely determined by the design matrix X̃ω, where X̃ω is constructed

executing the data acquisition protocol. For example, the loss function at any time instance can

be given by

ℓ(y;θω) = ∥y − X̃ωθω∥2, (2)

where the central agent aims to obtain the best parameter θω that solves (1). In the considered

learning setup, we define θ̃ω,t as the optimal set of parameters minimizing the expected loss l

over time and L̃ω,t as the time-varying estimator of the loss function. Note that, in an online

learning setting, the optimization problem for updating the parametric information follows a

recursive approach, where new information is a function of the latest residuals (c.f. [1], Eq. (16)

and Eq. (17)). To that end, we consider qn ∈ [0, 1],∀n ∈ A\ai is the participation probability to

define the involvement of privacy-aware supporting agents in trading explanatory data samples.

This means the construction of Xω at the learner relies on the randomly perturbed features

(see Definition 1, Sec. III-A) from the supporting agents, particularly as per their individual

data privacy preference. Intuitively, as in [22], such noisy, lower-quality contributing features

impact the learner’s ability to correctly map input features to the target variable, following larger

parameter estimation errors. Furthermore, with qn = 0, the agent n opts out of data trading in

the market.

Problem Definition. At any time instance, the ultimate goal of the central agent is to find

the optimal mapping parameters 3 θ̂ executing the data acquisition protocol with the supporting

agents. The central agent aims to maximize the regression model performance by influencing

supporting agents with appropriate pricing signals to exchange high-quality data, i.e., with asked

perturbations as the privacy factor in DP terms. The supporting agents tune their responses as per

individual privacy preferences while considering the impact of data similarity and the announced

pricing. In the following, we present the details of the interaction framework.

III. INTERACTION FRAMEWORK IN THE REGRESSION MARKET

In this section, we show the strategic interaction between the central agent and the supporting

agents in the linear regression market. We will model the two-stage game and derive strategies

3In principle, the optimal mapping parameters can be static and time-varying as per the regression problem setting. In any

case, this will not influence the overall analysis made hereafter.
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of the supporting agents for participation given the asked pricing and privacy factor under a

potential data similarity situation from the central agent at equilibrium, respectively. After the

mechanism design, we analyze the properties of the derived solution through a low-complexity,

first-order backward induction method.

A. Strategies of agents

In this subsection, we explore the strategic behaviour of agents in the regression market.

Specifically, we characterize the privacy preferences of individual agents and the impact of data

similarity on their participation strategy.

Each agent an ∈ A has a preference on data privacy ϵn unknown to the central agent.

While the value of privacy preferences differs amongst agents, we assume the agents shared

information about its distribution. Let Fε be the cumulative distribution function (cdf) capturing

the realizations ϵn from the random variable (RV) ε ∼ U [ϵl, ϵu]. A higher value of ϵn implies

a lower sensitivity towards data privacy, while a lower value means the agents prefer injecting

more noise on the traded data - generating perturbed statistics on explanatory features- to meet

tighter privacy requirements. Intuitively, smaller ϵ ∼ fε corresponds to lower information leakage

in the data market, where fε is the probability density function (pdf) of ε. Then, the agent can

be called ϵ−type to characterize their privacy preference, and the corresponding participation

strategy is referred to as qn(ϵn) ∈ [0, 1]; we use a shorthand qn hereafter. Therein, we formalize

the privacy preference with the following definition of local differential privacy.

Definition 1 (ϵ-Local Differential Privacy [13]). A mechanism M(·) satisfies ϵ−local differential

privacy (ϵ− LDP ) for ϵ ≥ 0, if an only if, given any input data sample x, x′ ∈ Dom(M(X )),

we have

∀y ∈ Dom(M) : P[M(x) = y] ≤ eϵP[M(x′) = y], (3)

where M(X ) is a mapping to discrete values denoting the set of all possible outcomes of M .

As outlined, the direct consequence of data similarity, particularly the correlation between

traded data, is the undervaluation of data and price allocation mismatch amongst the agents -

leading to market distrust and, eventually, a dropout scenario. To mitigate information disclosure,

the agents employ a local DP strategy that equivalently limits their participation contribution; as

such, the offered reward gets lowered. Hence, the supporting agents are reluctant to participate

beyond their privacy budget, as defined by the realizations of ε.
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Because the exact privacy preference of each agent is private information, the disclosure of

such information induces additional privacy costs for the supporting agents [23]; hence, it is

often unknown to the central agent. Instead, the central agent plays around with various pricing

signals and the asked privacy factors to align the strategies of supporting agents in improving

the trained model performance. On the other hand, to counter potential information leakage,

the supporting agents compete non-cooperatively and align strategies – as per their type – of

injecting structured noise into the trading data. We assume any rational agent joins the data

market with the pricing compatible with their incurred costs, both in terms of data privacy and

information leakage due to adjustments in the privacy budget; however, they opt out from the

market if the asked noise level is out of their individual privacy preference.

Remark 1. We define the statistical information leakage as the ability of the central agent

to decode the true type of the supporting agents precisely, manipulating the pricing and data

valuation. The supporting agents opt out of the market if the information leakage exceeds their

privacy preference.

We observe the interaction between the central agent and the supporting agents, therefore,

can be realized as a single leader multiple followers Stackelberg game, where supporting agents

are stimulated by the central agent (the leader) to align their strategies on participation and the

adjustment of privacy factor as DP noise during data trading in a non-cooperative manner.

Next, we model the utility functions that characterize such interactions between the central

agent and the supporting agents. Based on the utility models, we develop the two-stage game

and show the existence of Stackelberg equilibrium in such interactions.

B. Utility Models

We use p to define the offered pricing by the central agent for the asked privacy factor ϵ.

Then, for a given p, we model the valuation of the central agent as a monotonically increasing

concave function of the privacy factor: U(ϵ) = ln[αϵp+ 1]−β , where α > 0, β ∈ (−1, 0) are

system parameters. Intuitively, the proposed valuation function captures the improvement in the

central agent’s utility when obtaining high-quality data samples. Therein, we can define the

central agent’s utility as follows.

Central Agent’s Utility: Making the standard assumption of the concavity of the utility

function [24], [25], we propose the learner utility function based on the valuation U(ϵ) with the
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Figure 1: An illustration of learner’s valuation U(ϵ) for asked data privacy factor ϵ.

following definition.

Definition 2. Considering the improvement in model prediction accuracy L(ζ) = 1/(|L̃ωi
−L̃Ω|),

using features obtained from supporting agents through participation, the central agent’s utility

is defined as

S(p; ϵ) = L(ζ)
1

ln[αϵp+ 1]β
− p

∑
n∈A

⊮ϵn(qn)>ϵ, (4)

where ζ < ζref is the relative accuracy of the trained regression model for a reference requirement

of ζref in the regression market, p is the offering pricing of the central agent to stimulate individual

participation with no worse than ϵ privacy factor on the available data samples.

Following Definition 2, given the participation of all agents, we have p ≥
∑

n pan . And for

a known participation that quantifies L(ζ), S(p; ϵ) is decreasing in α and β, and is concave

with the privacy factor ϵ. In Fig. 1, we illustrate the influence of the asked privacy factor on

the valuation of the central agent for different system parameters. We observe a larger β offers

flexibility in data privacy factor with fair compromise on the utility. It is of interest for the central

agent to solicit high-quality data with a relaxed privacy factor for the available pricing budget.

Then, the central agent adopts an ex-ante differentiated pricing scheme to incentivize supporting

agents in terms of the valuation of their data as a model contribution (c.f., Definition 3).

Remark 2. Participation of supporting agents with quality data in the data trading improves the
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Figure 2: Example scenario: heatmap represents the impact on the normalized contribution of

each agent given information leakage due to data correlation ρ3,4 between {a3} − {a4} and the

noise injection σ4 by {a4}.

performance of the loss estimates. The model contribution is then defined and evaluated as the

marginal contribution of individual participation, where Ln(ζ) is calculated using the standard

Shapley Value [26], following Definition 3.

We assume the central agent updates the privacy factor during interactions with the supporting

agents.

At each time instance, the central agent chooses the pricing signal p that maximizes its utility

defined as a composite function of the performance improvement, expressed in terms of relative

accuracy ζ , and the information leakage due to the injection of the statistical uncertainty (i.e.,

the noise) ϵ.

Definition 3. The contribution of supporting agents an ∈ A in each iteration of interaction as

Ln(ζ) =
1

|A|!
∑

π∈Π(qn)
[V (Aπan ∪ {an})− V (Aπan)], (5)

where V (·) is the standard valuation of traded data [27] – commonly known as performance

score – contributing to improving the model accuracy or lowering the loss function.

We then have three particular interpretations following the utility function of the central agent,

given all supporting agents trade their data as per their privacy budget, as follows.

C-I. When ϵ = 0, we have S(p; ϵ) < 0, considering the definition of the utility function of

the central agent S(p; ϵ). Furthermore, due to privacy restrictions, for ϵ = 0, we also have

L(ζ) ≈ 0, i.e., no contribution of the supporting agents.
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C-II. When ∃n : ϵn ∼ fε, and ϵ ∼ U[ϵl, ϵu], we have S(p; ϵ) > 0, leaving the central agent to

solve the following optimization problem:

P: maximize
p

S(p; ϵ) (6a)

subject to
∑

n
pan ≤ p, (6b)

p > 0, (6c)

L(ζ) > ζref. (6d)

Problem P is, therefore, an integral structure of the mechanism design problem where the

central agent plays with its pricing signal for arbitrary privacy restriction on the supporting

agents to ensure a level of performance ζref.

C-III. Following C-I, we have S(p; ϵ) ≤ 0 when ϵ /∈ [ϵl, ϵu]. Conversely, this leads to a similar

scenario where ϵ = 0, i.e., no participation; hence, S(p; ϵ) = 0.

Supporting Agent’s Utility Each agent an of type ϵn responds strategically over the offered

reward pan to minimize costs on data privacy, for the privacy budget ϵ asked by the central agent,

and the information leakage due to data similarity. To simplify our analysis, we use a linear-cost

model to define the agent’s privacy cost, i.e., cn(ϵ), where cn(·) models the cost of participation

employing a privacy factor of ϵ. We use the shorthand cn, hereafter. The individual data owner

aims to minimize the information leakage during data trading and tune privacy factor ϵn over

the offered pricing pan for maximal benefit of participation in the data market:

un(ϵn, pan) = γVn(qn, pan)− ϵnE[I(qn, ρn; ϵ)]− ψncn, (7)

where Vn(qn, pan) is the valuation4 of agent n on participation for the offered pricing pn, γ > 0

captures the participation preference of supporting agents, wherein a larger γ implies a higher

valuation on participation, and E[I(qn, ρn)] is a strictly increasing5 that captures information

leakage due to data similarity with added privacy cost on participation cn; we model it with the

number of active agents N(qn) as φn log(1 + N(qn)) for qn = 1, and φn and ψn are weight

parameters on information leakage and local privacy cost for agent n, respectively. We further

4For ease, we model it as a linear function of asked privacy factor for the offered pricing.
5The degree of information leakage is increasing with the number of high-quality data samples in the regression market, as

discussed in the data acquisition models [28], [29].
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exemplify information leakage with the following numerical example and discuss the utility

model design.

Example 3: In Fig. 2, we provide an example scenario to assess the impact of information

leakage due to data similarity on the valuation of the supporting agents’ data. We set supporting

agents A\{a1} = {{a2}, {a3}, {a4}} aiding the linear regression market initiated by the central

agent {a1}. The numerical evaluation follows the settings of [1]. In addition, we consider agents

{a2} and {a3} have correlated data samples denoted as ρ3,4 while agent {a4} is injecting noise

σ4 of different magnitude. The central agent is solving the regression problem, as defined in (2),

while the contribution is normalized contribution of each supporting agent is evaluated following

Definition 3. In the corresponding heatmap scales, we observe the information leakage due to

data similarity between agents {a3} and {a4} impacts the normalized contribution of both agents

and to the extent, where the high degree of noise injection in the shared data and perfect data

correlation would leave to having agent {a2} as the only contributor in solving the regression

problem.

Next, we formalize our proposed mechanism design that allows privacy-aware data acquisition

under data similarity in the regression market.

C. Mechanism Design

In this subsection, we derive the optimal strategies for the participation of the supporting

agents through their sequential interaction with the central agent over pricing. We build on the

utility models designed in Sec. III-B and formulate the two-stage game model of interaction

under data similarity.

Recall the utility models defined in (4) and (7). While it is true that agent n accrues a utility

un(ϵn, pan) only for a positive pricing signal, i.e., pan > 0, such that

un(ϵn, pan) =

un(ϵn, pan), if ϵn ∈ ε

−∞, otherwise.
(8)

We remark pan > 0 is a necessary but not sufficient condition for agent n to participate in the

data trading.

We have two participation scenarios to characterize the utility function of the individual agent,

as follows:
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S-I. We have qn = 1 when ϵn(qn) > ϵ, where

ϵn(qn) =
γVn(qn, pan)− ψncn

E[I(qn, σn; ϵ)]
, (9)

and qn = 0, otherwise.

S-II. The requirements of ϵn(qn) > ϵ restrict some of the supporting agents from participation in

the regression market, primarily due to individual privacy budgets.

Then, considering scenarios S-I and S-II results in the following derivations of the optimal

participation response of the supporting agents with necessary definitions.

Definition 4 (Feasibility). The mechanism is feasible for the offered pricing signal p if ∃n ∈

A : un(ϵn, pan) > 0. Feasibility criteria can be satisfied as the central agent is aware of the

distribution on privacy preference profiles Fε and stimulates interaction for the exchange of data

samples considering the agent with the highest privacy budget ϵu and set ϵ = ϵu.

Following Definition 4, and the utility profile of the supporting agents, however, we cannot

guarantee that the criterion for joining the regression market will be fulfilled for all available

agents ϵn(qn) > ϵ, i.e., we have

qn =

∫ ∞

0

q(ϵ)dFε(ϵ) (10)

that quantifies the joining fraction of supporting agents, in probability, in the market. This leads

to

qn =

∫ ϵn(qn)

0

dFε(ϵ) = Fε(ϵn(qn)). (11)

Therefore, we can formalize the participation probability of the supporting agent as follows.

Definition 5. Given the following condition satisfies, as

q∗n = Fε(ϵn(q
∗
n)), (12)

we define q∗n as a Nash equilibrium of the supporting agent.

Lemma 1. Given the incurred cost of data exchanges cn in the regression market, with a shared

value of instantaneous information leakage, there exists a unique Nash equilibrium q∗n defining

the probability of supporting agents joining the collaborative training in the regression market.

Proof. We begin the proof for the uniqueness of the solution by defining a variable ξ(qn) :=

Fε(ϵn(qn)) − qn. As E[I(qn, ρn)] is a strictly increasing in (9), consequently, we have ϵn(qn)
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a strictly decreasing on its domain, and leading to Fε(·) as an increasing function [30]. Then,

following the Definition 5, ξ(qn) should have a unique solution, i.e., a root, to guarantee q∗n is

an equilibrium at the best response. Then,

1) if Vn(qn, pan) ≤
(
ψn

γ

)
cn, we have q∗n = 0, resulting in unique root of ξ(qn).

2) if Vn(qn, pan) ≥ 1
γ

[
ψncn + ϵnE[I(qn, ρn)

]
for any γ > 0, we have q∗n = 1, resulting unique

root of ξ(qn).

3) otherwise, if we have a region between (1) and (2), i.e., cn < Vn(qn, pan) <

(
γ
ψn

)
ϵnE[I(qn, ρn)],

there exists a unique root q∗n ∈ (q′n, 1). This can be concluded based on the following

observations. We also drop the normalizing constants hereafter for simplifying the analysis,

as it won’t influence the conclusion made. Choose arbitrary q′n ∈ (0, 1), then there exists

cn < Vn(qn, pan) = cn + ϵnE[I(qn, ρn)] < cn + ϵnE[I(1, ρn)] as E[I(1, ρn)] is strictly

increasing. Then, using the definition of ξ(qn), which is a continuous, decreasing function,

we have ξ(qn) = 1− qn > 0,∀qn ∈ [0, q′n] and ξ(1) = Fε(ϵn(1))− 1 < 0.

Next, we show that q∗n is the Nash equilibrium with the following observations. As such, the

optimal strategy of supporting agents is to adopt their true privacy preference for incentives

during data trading. From conditions in (9), this is straightforward as we have,

1) the expected utility Ṽn of supporting agent n is Ṽn := Vn(q
∗
n, pan)− 1

γ

[
ψncn+ϵnE[I(q∗n, ρn)

]
>

0, if qn = 1. For any other strategy q̃n ∈ [0, 1), the expected utility is q̃n

(
Vn(q

∗
n, pan) −

1
γ

[
ψncn + ϵnE[I(q∗n, ρn)

])
< Ṽn.

2) The converse is true, as deviating from optimal strategy qn = 0 only lowers the expected

utility of the supporting agent Ṽn, when Vn(q∗n, pan) <
1
γ

[
ψncn + ϵnE[I(q∗n, ρn)

]
.

3) Finally, when Vn(q
∗
n, pan) = 1

γ

[
ψncn + ϵnE[I(q∗n, ρn)

]
, any deviation in the supporting

agent’s strategy does not improve its expected utility, i.e., un(ϵn, pan) = 0; hence, the

supporting agent has no incentive to deviate.

This completes the proof.

Following Lemma 1, after meeting the participation criteria, the supporting agents derive the

optimal response for maximizing their overall valuation with the pricing to the query made by

the central agent by solving the following optimization problem.

P1: maximize
qn(ϵ)

un(ϵ, pan|p) (13a)
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subject to Vn ≥
1

γ

[
ψncn + ϵE[I(qn, ρn)

]
, (13b)

ϵn(qn) > ϵ, (13c)

pn > 0, (13d)

where (13b) ensures a positive return on participation and constraint (13c) satisfies the individual

privacy budget. Consider qn(ϵ̃) is the solution of P1, then, we have q∗n = min{qn(ϵ̃), q∗n}.

Following the solution to P1, i.e., the strategic participation, without loss of generality, we

then formulate the overall regression market problem as follows:

P2: maximize
p, ϵ

S(p; ϵ|q∗) (14a)

subject to
∑

n
pan ≤ p(ϵ), (14b)

ϵn(q
∗
n) > ϵ > ϵref,∀n ∈ A, (14c)

p(ϵ) > 0, (14d)

L(ζ) > ζref, (14e)

where q∗ is a vector with the best response strategies of the supporting agents over the offered

pricing signal and the privacy requirements set by the regression market; constraint (14c) restricts

the asked privacy guarantees to a reference ϵref value. While it is in the best interest of the central

agent to keep the value of ϵ as large to improve participation with less perturbed explanatory

data samples in the regression market, it is mostly impractical. This is due to the influence of

heterogeneous privacy preferences. In principle, ϵref is set as max{ϵn},∀n ∈ A in each iteration

of interaction to satisfy participation constraint (14c), while satisfying the price allocation under

budget constraints (14b).

Lemma 2. The optimal solution for P2 ϵ∗ for the known pricing budget at the central agent

can be derived as max{ϵn(q∗n), ϵref}, where the asked privacy guarantees are set by the central

agent to a reference ϵref value.

Proof. The proof follows the characteristics of the constraints, leading the optimal solution to

be the boundary conditions for a fixed offered pricing p(ϵ) > 0. Note that the differential price

allocation constraint on the available monetary budget,
∑

n pan ≤ p(ϵ) is evaluated as per the

proportional contribution measure of the individual supporting agent, as in [10], [31].
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Algorithm 1 First-order Iterative Backward Induction

1: Start with random sample ϵref < ϵ ∼ fε, offered pricing signal p = pmax, normalizing

parameters γ, {ψn, φn},∀n set to 1, ζref = 0.9.

2: P = {},A ← {n|qn = 1,∀n};

3: repeat

4: R = A;

5: Evaluate the performance improvement L(ζ);

6: Solve the following optimization problem:

maximize
p>p̃

L(ζ)
1

ln[αϵ∗p(ϵ∗) + 1]β
− p(ϵ∗)

∑
n∈A

qn(ϵ
∗);

7: for all agents n ∈ A do

8: Invoke proportionally fair price allocation pan with the marginal contribution (5);

9: P ← P + {pan}

10: R = A \ n;

11: end for

12: Set ϵ = max{ϵn(q∗n), ϵref}, p̃ = supP;

13: until A = {∅};

For the pricing signal p and the asked privacy budget ϵ, following P1 and problem P2, leads

the regression market problem a two-staged leader-follower game, where the market aims to

receive high-quality explanatory data samples for the feasible pricing signal to the agents who

strategically response to the query made for participation in a non-cooperative setting.

Following Lemma 2 results in the following overall utility maximization problem:

P3: maximize
p > 0,q

L(ζ)

ln[αϵ∗p(ϵ∗) + 1]β
− p(ϵ∗)

∑
n∈A

qnϵ
∗(qn) (15a)

subject to L(ζ) > ζref (15b)

qn ∈ {0, 1},∀n ∈ A (15c)

The solution to the optimization problem P3 is non-trivial, first, given the participation con-

straints following response to feasibility (Definition 4), the influence of pricing on participation,
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and its overall consequence on the performance improvement factor L(ζ). Second, with a possible

2|A| configurations, it might require exponential-complexity effort to solve the problem with an

exhaustive search solution. We propose a low-complexity solution to address this.

We develop a first-order iterative solution (Algorithm 1) that aims to satisfy the conditions for

the Nash solution and builds on top of the backward induction method to reach the Stackelberg

equilibrium. The proposed method satisfies the following economic properties.

Incentive Compatibility: The mechanism is incentive compatible given if all supporting agents

behave rationally according to their local privacy preference, i.e., their true type, such that

E[ϵn, un(pan)] ≥ E[ϵ, un(pan)],∀ϵ,∀n ∈ A. Individual Rationality: For each supporting agent,

there exists a non-negative utility un(ϵn, pan) ≥ 0,∀n ∈ A, if they respond with their true type.

This is the participation constraint, which is observed following Lemma 1. The supporting agents

always opt for their true data type, ensuring a positive utility.

Besides the fundamental properties of our mechanism, its computational properties are covered

through the following theorem.

Theorem 1. The first-order Algorithm 1 solves the overall utility maximization problem P3 with

linear complexity.

Proof. The proof follows the convexity property of the maximization problem in (line 6) with

the responses of supporting agents to the asked privacy factor ϵ = max{ϵn(q∗n), ϵref} (line 12),

that eventually reduces the problem into a single variable optimization with the initial maximum

offered pricing.

With this, we now have all the ingredients to characterize the Stackelberg equilibrium. Obtain-

ing the solution of (15) p∗(ϵ), involving best-responses of supporting agents with Definition 5,

we have the following proposition.

Proposition 1. For any values of p and ϵ, we have the Stackelberg equilibrium if the following

conditions are satisfied:

S(p∗, ϵ∗) ≥ S(p, ϵ∗) (16)

un(ϵn(q
∗
n), p

∗) ≥ un(ϵn(qn), p
∗),∀n ∈ A. (17)



UNDER REVIEW 20

2000 3000 4000 5000

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Agent {a2}

Agent {a3}

Agent {a4}

Time (t)

N
or

m
al

iz
ed

pa
ym

en
t

3000 4000 5000
0.7

0.75

0.8

0.85

0.9

0.95

15.3%

Time (t)

3000 4000 5000

0.18

0.2

0.22

0.24

0.26

0.28

0.3

5.6%

Time (t)

Figure 3: (Left – Right) Evolution of normalized payment to agents {a2, a3, a4} during training

in the online regression market by the agent {a1}.

IV. NUMERICAL RESULTS

This section introduces the evaluation results for the proposed framework. We begin with the

evaluation setup, where we show the underlying model used in the regression task. Then, we

provide a performance evaluation following an analysis of the pricing, strategic participation,

and comparison under the impact of data similarity.

Setup: We consider a plain regression learning problem. For this, we generate the data to

match the setup in which four agents, where {a1} is a central agent posing the online regression

problem, as in [1], and {a2, a3, a4} are the supporting ones supplying contributing features. The

agents use distinct features sampled from the Gaussian distribution with unit variance. Central

agent {a1} own feature x1, while the supporting agents {a2, a3, a4} hold relevant features x2, x3,

and x4, respectively, at each time step. We particularly consider a single-order regression model

such as yt = θ0 + θ1,tx1,t + θ2,tx2,t + θ3,tx3,t + θ4,tx4,t + βt, where the last term βt is Gaussian

noise with zero mean and a finite variance of 0.3, with quadratic loss, as in (2). Furthermore,

to demonstrate the impact of participation due to data similarity and, further, the information

leakage, we model features as correlated with each other through linear models, as in [10]. We

first simulate the process using the true parameters as θ⊤ = [0.2 0.4 − 0.3 − 0.6 0.2]. We

follow the batch estimation process [see Section 2.3.2 in [1], equation (15)], gathering features

for τ = 10000 times, and later use this initialization for the online regression. The privacy budget

is set as ϵref = ln 10. and the agents strategically employ ϵ− LDP following Definition 1, while

the utility model uses parameters α = 0.45 and β = −0.4.

Analysis on offered pricing and loss estimates: For evaluation, we consider the following two
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Figure 4: Temporal evolution of the parameters over the period.

intuitive baselines: (i) Case I, which ignores the strategic participation of the agent allocates

pricing as per the contribution made by the agents, (ii) Case II, which considers strategic

participation and allocates pricing as per the contribution made by the agents. Our method Alg.

1 considers the strategic participation of devices with a proportional price allocation scheme

as per their data contribution. In Fig.3, we show the evolution of normalized payment to three

agents with contributing features in the regression market established by agent {a1}, where

agent {a2} is sharing the poorest quality data (i.e., implementing extreme privacy measures) and

agents {a1}, {a2} have correlated data. We observe that in both cases, the agents are offered

payments more than the asked price, with a variability of 5.6% to 15.3%. This situation ensures

the participation of the agents; however, they do not align their privacy budget accordingly as

asked by the learner - leading to unintended consequences in the payment for the learner and

its utility. As compared to Case I, in Case II, the payment is shared amongst agents as per their

strategic participation that influences individuation contributions.

In Fig. 4, we see the temporal evolution of the model parameters as per the underlying model

we have adopted. Correspondingly, Fig. 5 validates the performance of the learned regression

model for the online regression task with four agents. We consider three scenarios for the

evaluation of loss estimates: (i) Central Info, where only the feature available at agent {a1} is

provided; (ii) Partial Info, where only features of agents {a1, a2, a3} are solicited by the agent

{a1}; and (iii) Full Info, where all features are provided, i.e., full participation. It is intuitive
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online learning scenarios with four agents: (i) Central Info, with only agent {a1}, (ii) Partial

Info, with agents {a1, a2, a3}, and (iii) Full Info, with all agents.
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Figure 6: Impact of dynamic participation of agent {a4} on normalized payment: Case I, Case

II, Alg. 1.

that the temporal evolution of loss estimates with Partial Info is better than the Central Info,

where the central agent is missing relevant features in keeping track of estimating the true model

parameters. This results in poor loss estimates, which is intuitive.
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Figure 7: Performance comparison of regression market’s utility defined for the central agent

while varying reference privacy factor: (left) ϵref = ln 10, and (right) ϵref = ln 60.

Impact of data similarity and privacy factor: In Fig.6, we analyze the influence of strategic

participation on data valuation and normalized payments in the regression market. Agent {a4} has

intermittent connectivity and leaves the regression market after a few iterations. Following Case

I, the Shapley valuation is obtained based on all estimation subsets and allocated to the agents.

This results in higher payment (up to 49%) for even those agents, i.e., {a4}, particularly without

making a contribution, as compared with Case II. Case II accounts for strategic participation but

still allocates payment following the recursive nature of the contribution evaluation procedure.

Alg. 1 account for the participation variable in evaluating the performance improvement, followed

by the price allocation. Hence, the contribution made by the remaining agents is only considered,

offering a gain of two factors.

Fig. 7 shows the performance gain in terms of the overall market utility as compared with

the baselines for different asked privacy budgets. We evaluate the mechanism for two extreme

privacy budgets: ϵref = {ln 10, ln 60}, which allows a comparative performance evaluation of

the proposed method against baselines participation strategies. First, the central agent relaxing

privacy budget enforces supporting agents with better privacy preferences to opt out from the

market; hence, we observe a reduction in the market utility for ϵref = ln 60 in Fig. 7. This

follows our analysis for the drop in the loss estimates under such a scenario, as in Fig. 5.

Second, we observed the naive scenario of Case I performs the worst among all, where the

agents are not strategic in participation but are offered higher pricing. Our approach considers

the heterogeneous privacy preferences of the supporting agents and offers pricing to ensure the
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Figure 8: Convergence analysis (in terms of number of required iterations) at different privacy

budgets under data similarity.

supply of quality data. Consequently, this improves the overall market utility, as seen in Fig. 7

for ϵref = ln 10. This follows improved contributions of the supporting agents, considering the

adjustment in privacy factor, as defined in Alg. 1, line 12.

Finally, in Fig. 8, we analyze the number of iterations required for the convergence of

the proposed approach under the influence of different degrees of data similarity and against

different privacy budgets. Following the original underlying model (as in Fig. 2), we vary the

data similarity measure ρ between the agents {a3, a4}. We observe with the increase in the

privacy budget, i.e., lower sensitivity towards data privacy; the algorithm takes more iterations

to converge following the tight privacy preference used for the agents. Furthermore, involving

the participation of all agents, the results show the adversarial influence of data similarity on the

convergence iterations. Statistical information leakage due to data similarity lowers the number

of iterations where the correlated feature is less, contributing to the loss estimates. This supports

the analysis made in Fig. 2 regarding data contribution in solving the regression problem under

data similarity.

V. CONCLUSION

In this work, we analyzed the interplay between data pricing, privacy, and learning. In particu-

lar, we showed the impact of statistical information leakage (for instance, due to data similarity,
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e.g., data correlation) on the offered pricing and its influence on the value of traded data in

a regression data market setting. We proposed a holistic market design where we account for

such dependencies. Therein, we developed a query-response strategy for a leader-followers data

acquisition mechanism that enjoys a local differential privacy technique, where participation in

the trading of data samples happens between a number of data owners and the learner in an

elastic fashion. We modelled the strategic interactions between the privacy-aware data owners

and the learner as a Stackelberg game and evaluated the consequences of data similarity in terms

of participation and the value of traded data on the online regression data market setup.
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