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Fair and Scalable Electric Vehicle Charging
Under Electrical Grid Constraints

Georgios Tsaousoglou , Member, IEEE, Juan S. Giraldo , Member, IEEE, Pierre Pinson , Fellow, IEEE,
and Nikolaos G. Paterakis, Senior Member, IEEE

Abstract— The increasing penetration of electric vehicles
brings a consequent increase in charging facilities in the
low-voltage electricity network. Serving all charging requests
on-demand can endanger the safety of the electrical power
distribution network. This creates the issue of fairly allocating
the charging energy among electric vehicles while maintaining
the system within safe operational margins. However, calculating
efficient charging schedules for the charging stations bears
a high computational burden due to the non-convexities of
charging stations’ models. In this paper, we consider a tri-level
system with electric vehicles, charging stations, and a power
distribution system operator. The objective of each station is
formulated as a max-min fairness, mixed-integer linear opti-
mization problem, while the network constraints are modeled
using a second-order conic formulation. In order to tackle the
computational complexity of the problem, we decompose it and
use a novel approximation method tailored to this problem.
We compare the performance of the proposed method with that
of the popular alternating direction method of multipliers. Our
simulation results indicate that the proposed method achieves a
near-optimal solution along with promising scalability properties.

Index Terms— Electric vehicles, fairness, power distribution
system, distributed optimization.

NOMENCLATURE
Sets and Indices
�b Set of nodes, indexed by i , or κ , or j .
�l Set of lines, indexed by l, or κi , or i j .
�S Set of charging stations, indexed by s.
�s

N Set of charging tasks reserved at charging station s,
indexed by n.

�T Set of time periods, indexed by t .
Y Set of decision variables.
k Index of algorithm’s iterations.

Parameters
an Arrival time period for charging task n.
dn Desired completion time period for charging task n.
En Energy requirement for charging task n [kWh].
Ii j Maximum current magnitude for line i j [A].
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PD
i,t Active power demand at node i , period t [kW].

ps, ps Maximum/Minimum power consumption at
charging station s [kW].

QD
i,t Reactive power demand at node i , period t [kvar].

Rij Resistance of line i j [m�].
V, V Maximum/Minimum voltage magnitude [kV].
wn Priority weight for charging task n.
ws Priority weight of station s.
Xij Reactance of line i j [m�].
xn, xn Maximum/Minimum power allocation for charg-

ing task n [kW].
πt Wholesale electricity price at t .
δ Parameter of the approximation model.

Variables
θn Time delay for charging task n.
ζs Auxiliary variable.
ps,t Power consumption profile at charging station s,

period t [kW].
I sqr
i j,t Squared current magnitude at line i j , period t

[A2].
Pi j,t Active power flow at line i j , period t [kW].
PG

0,t Active power injection at the substation, period t
[kW].

Qi j,t Reactive power flow at line i j , period t [kvar].
QG

0,t Reactive power injection at the substation, period
t [kvar].

un,t Binary variable representing if charging task n is
served by timeslot t .

V sqr
i,t Squared voltage magnitude at node i , period t

[kV2].
xn,t Power consumption for charging task n, period t

[kW].
zs Auxiliary variable.

I. INTRODUCTION

A. Motivation and Related Work

VEHICLE electrification is promoted in many countries
through attractive subsidy measures or other policy

actions. It is estimated that around 130 million private chargers
and 13 million public chargers will be installed by 2030. These
projections have motivated studies that provide techniques
towards controlling Electric Vehicle (EV) charging. A survey
on EV charging control can be found in [1]. Depending on the
charging station’s business model, a charging control algorithm
can accommodate different objectives. In [2] and [3], the
charging station’s objective is to maximize the social welfare
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among its EVs. In [4] and [5], the objective refers to mini-
mizing the charging station’s electricity cost (maximizing its
profit respectively) throughout the day. In [6], the objective is
to optimize the user’s satisfaction in a station with bounded
power capacity. These works have used convex optimization
methods to formulate and tackle the charging control problem.
Fairness among EVs has been the objective of interest in [7],
while [8] adopts a charging protocol towards achieving propor-
tional fairness. Finally, a multiobjective approach is presented
in [9].

EV charging control inevitably affects the end-user. While
small modifications of the charging procedure can go unno-
ticed, larger deviations and charging delays can interfere with
the user’s comfort. Towards mitigating this effect, we propose
that a charging station adopts a Rawlsian welfare function,
i.e. minimizing the highest charging delay among the station’s
customers, which relates to the concept of max-min fairness.
Such an objective has been previously proposed in other, but
related, contexts (e.g. [10], [11]).

With increasing levels of charging infrastructure being built
in various locations, a system-level approach is necessary
towards coordinating the charging decisions of multiple charg-
ing stations while also considering the impact on the physical
constraints of the electricity grid [12]. Centralized approaches,
where all the local information is communicated to a cen-
tral point, have been proposed for distributed assets with
well-defined characteristics e.g. for batteries [13]. However,
communicating the needs of charging tasks and local charging
station objectives is generally deemed impractical for various
reasons. One reason is the difficulty of accurately formulating
and representing the local information within a predefined,
standardized bidding format [14]. Moreover, having a central
entity deciding the charging schedule of each EV in all charg-
ing stations raises issues with computational complexity [15],
data privacy and security [16], [17], as well as issues with
decision-making transparency.

As a result, distributed algorithms constitute a suitable tool
towards optimizing the coordination procedure, e.g. in terms
of convergence speed, communication overhead, and global
system efficiency. Different ways to coordinate power con-
sumption decisions of charging stations have been proposed
in the literature, including methods stemming from queuing
theory (e.g. [18], [19]), game theory (e.g. [20] and [21]
propose different iterative auction procedures for allocating
energy to users and determining their charging schedules), arti-
ficial intelligence (e.g. [22], [23] propose Reinforcement (and
respectively Supervised) Learning algorithms for employing
a transaction, price-based control of EV scheduling), convex
optimization (e.g. in [24], EV users submit a convex utility
function that represents their charging preferences, and the
operator solves a convex optimization program to decide the
charging schedules) and distributed optimization (e.g. [25]
uses a dual decomposition technique where an operator itera-
tively updates a set of Lagrange multipliers, to be perceived
as energy prices at the EV user side).

However, such studies typically disregard the electrical
grid’s constraints, while some others consider only a static
upper bound on the charging station’s power. Examples of
studies adopting such a static upper bound include [2], [26],
where the authors have proposed online algorithms for

TABLE I
CLASSIFICATION OF LITERATURE BASED ON THE RELEVANT FEATURES

allocating charging to EVs in the absence of future
information, and [6] where a genetic algorithm was proposed.
In contrast, power-network-aware coordination is a more
efficient approach, and it is typically achieved by Lagrangian
methods [27], [28]; namely, the Alternating Direction Method
of Multipliers (ADMM). Nevertheless, these methods are
suitable for convex charging station models that facilitate
their convergence properties.

B. Challenges and Contributions

In this paper, departing from the simplifying assumptions
mentioned (namely convexity, and static upper bounds on
power instead of modeling network constraints), we formu-
late the objective of an EV charging station as a max-min
fairness, mixed-integer linear optimization problem, and con-
sider the coordination problem of multiple stations in a
network-constrained power distribution system.

An important observation is that, when the local problems
(that need to be repeatedly solved) are non-convex, as in
our case, the distributed optimization procedure can become
very slow. Improving the solution’s computational time is
especially important, considering the need to re-solve the
dispatch problem during operation (i.e., in a rolling horizon
fashion) to account for changes and updated forecasts of the
inflexible demand, EV arrivals, etc. Motivated by this issue,
this paper proposes an iterative algorithm, configured with
an approximation method, explicitly tailored to the problem
of fair coordination of EV charging. A comparison table is
presented in Table I, where related literature is characterized
by the way it deals with relevant features, namely whether it
accounts for the load-shifting capabilities of EVs, the fairness
objective, the power flow constraints of the electricity network,
non-convexities, and distributed implementations such that
privacy and scalability issues are addressed.

First, the Alternating Direction Method of Multipliers
(ADMM) algorithm is considered as a possible solution to
the non-convex problem. It is shown that ADMM suffers
from limited scalability with respect to increasing numbers
of EVs, since each station is required to solve a mixed-integer
linear problem (MILP) at each multiplier iteration. Then,
the novel algorithm is presented, which iteratively approxi-
mates the original MILP of the charging stations with linear
programming. The linear model is iteratively tuned to best
approximate the original problem. Thus, the paper’s main

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 25,2023 at 09:15:56 UTC from IEEE Xplore.  Restrictions apply. 



TSAOUSOGLOU et al.: FAIR AND SCALABLE EV CHARGING UNDER ELECTRICAL GRID CONSTRAINTS 3

technical contribution is the design of a novel distributed
algorithm for non-convex, constrained optimization problems.

The proposed algorithm is shown to converge to a feasible
near-optimal solution, while it exhibits attractive scalability
properties. Thus, from a practical point of view, this paper
addresses the increasingly emerging issue of fairness in sys-
tems with high penetration of EVs, while the proposition’s
attractive scalability properties offer quite some potential for
practical adoption and impact. Overall, and to the best of
our knowledge, this is the first paper to propose a dis-
tributed algorithm for the described problem and directly
compare it with (and outperform) the standard Lagrangian-
based approaches.

The remainder of this paper is organized as follows:
Section II, formulates the models of the charging stations
and the distribution network. In Section III, the fairness opti-
mization objective of each EV charging station is formulated
as a max-min, MILP problem, and the dispatch problem,
also accounting for alternate-current power flow constraints,
is formulated as a mixed-integer non-linear problem and
converted into a mixed-integer second-order cone program.
An approximation method is presented, that approximates the
local problems of the charging stations using a linear program.
A novel distributed algorithm is proposed, through which the
approximation is iteratively tuned, approaching the optimal
solution in a distributed manner. In Section IV, the proposed
algorithm is compared to the ADMM approach via simula-
tions and shown to scale better to more extensive settings,
while achieving a near-optimal solution. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

We consider a set �S of EV-charging stations, responsible
for serving charging requests of arriving EVs within a certain
time horizon �T. The stations are connected to an electrical
power distribution network, constituted by a set of nodes
b ∈ �b and a set of branches l ∈ �l . For each station s ∈ �S,
we assume a reservation system that accepts charging tasks for
the planning horizon. More precisely, for a station s located
at node b, the set of charging tasks reserved for the station
is denoted as �s

N, where �s
N = {1, 2, . . . , Ns}, with Ns being

the number of charging tasks at station s, e.g., the number of
EV spots in a parking lot.

A. Charging Station’s Model
An EV needs to be charged from the station up to a specific

battery level and within certain time preferences or constraints.
We say that an EV brings a charging task to the station,
and we use the terms EV and charging task interchangeably.
Consider a charging task n, of some station s, i.e., n ∈ �s

N.
The task is characterized by the tuple An = (an, dn, En, xn)

which is comprised by the task’s arrival time an , the task’s
desired departure time dn , the task’s required charging energy
En , and the task’s maximum charging rate xn . The power
consumption xn,t allocated to task n in timeslot t , is a decision
variable determined by the station.

Let ps =
{

ps,t
}

t∈�T
denote the power consumption profile

of station s through the scheduling horizon �T, where:

ps,t =

∑
n∈�s

N

xn,t , ∀ t ∈ �T (1)

The aggregate power consumption (or injection) of a charging
station at t is constrained by an upper (lower) bound, which
represents the capacity of the station’s transformer,

ps ≤ ps,t ≤ ps, ∀ t ∈ �T (2)

while the power allocation of each task is bounded by its
characteristics:

xn ≤ xn,t ≤ xn, ∀ n ∈ �s
N, t ∈ �T (3)

No power can be allocated to task n, before the task’s arrival
time:

xn,t = 0, ∀ n ∈ �s
N, t ∈ �T : t < an (4)

while all tasks should be completed during the time horizon:

En −

∑
t∈�T

xn,t ≤ 0, ∀ n ∈ �s
N (5)

A task departs from the station once its energy requirement En
has been allocated to it. Let the binary variable un,t denote
whether charging task n departs by time slot t . It is∑

τ∈�T : an≤τ≤t

xn,τ ≥ un,t En, ∀ n ∈ �s
N, t ∈ �T (6)

un,t ∈ {0, 1} , ∀ n ∈ �s
N, t ∈ �T (7)

Note that variable un,t is forced to zero, unless the accumu-
lated energy allocation of n until timeslot t , fulfils the task’s
energy requirement. Moreover, a task cannot depart before its
desired departure time dn :∑

t∈�T : t<dn

un,t = 0, ∀ n ∈ �s
N (8)

Finally, each task departs exactly once:∑
t∈�T

un,t = 1, ∀ n ∈ �s
N (9)

Depending on the power allocation, task n may suffer a delay
of θn timeslots beyond its desired departure time dn , i.e.:

θn =

∑
t∈�T

t un,t − dn, ∀ n ∈ �s
N (10)

B. Distribution Network Model
The combination of vectors { ps}s∈�S needs to satisfy the

set C of distribution network constraints, i.e., { ps}s∈�S ∈ C .
The feasible set C is defined by constraints (11)–(17) adapted
from [30]. Active power balance in the network is ensured by∑

κi∈�l

Pκi,t −

∑
i j∈�l

(
Pi j,t + Ri j I sqr

i j,t

)
+ PG

i,t

= PD
i,t +

∑
s∈�S:s=i

ps,t∀ i ∈ �b, t ∈ �T (11)

The reactive power balance is represented as∑
κi∈�l

Qκi,t −

∑
i j∈�l

(
Qi j,t + Xi j I sqr

i j,t

)
+ QG

i,t

= QD
i,t , ∀i ∈ �b, t ∈ �T (12)

where PD
i,t and QD

i,t denote the active and reactive power
demands at node i and timeslot t , Pκi,t , Qκi,t are the active

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 25,2023 at 09:15:56 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

and reactive power flows to node i form parent nodes κ , I sqr
i j,t

is the squared magnitude of the current flowing in line i j at t ,
and (Pi j,t + Ri j I sqr

i j,t ),
(

Qi j,t + Xi j I sqr
i j,t

)
are the active/reactive

power flows from i to its descendant nodes j . For the purposes
of this work, we assume that the charging stations introduce
only active power to the system. It should also be pointed out
that PG

i,t = QG
i,t = 0 for all buses but the substation,

PG
i,t , QG

i,t = 0, ∀i ∈ �b/{0} (13)

while V sqr
i,t = 1.0 pu for the substation. The voltage magnitude

drop between nodes i and j is represented by:

V sqr
i,t − 2

(
Ri j Pi j,t + Xi j Qi j,t

)
−

(
R2

i j + X2
i j

)
I sqr
i j,t

= V sqr
j,t , ∀i j ∈ �l , t ∈ �T (14)

while branch power flows are calculated using

V sqr
j,t I sqr

i j,t = P2
i j,t + Q2

i j,t , ∀i j ∈ �l , t ∈ �T (15)

Upper and lower bounds on nodal voltage magnitudes and
current magnitudes are enforced by

V2
≤ V sqr

i,t ≤ V2
∀i ∈ �b, t ∈ �T (16)

0 ≤ I sqr
i j,t ≤ I2

i j ∀i j ∈ �l , t ∈ �T (17)

III. PROBLEM FORMULATION AND SOLUTIONS

The aim of each station s is to minimize the maximum
weighted delay maxn∈�s

N
{wnθn} among its tasks. A different

maximum delay among EVs corresponds to different quality-
of-service levels that the station can guarantee to its customers.
Thus, we assume that the station features a cost function of
the form ws maxn∈�s

N
{wnθn}, where ws is the station’s cost

parameter that depends on its business model. For example,
a station with a low ws is willing to receive lower priority
for power allocation, which results in lower station costs but
also worse delay guarantees for its EVs. On the other hand,
a station can guarantee a low delay to all its EVs by having
a high ws . This comes at a higher cost for the station, and
consequently also for its customers.

An operator entity, namely the Distribution System Operator
(DSO), is responsible for operating the system within safe
operational conditions by modeling the power flows of the
underlying physical grid. Moreover, constraint satisfaction
should be achieved in an efficient manner. Thereby, the DSO
is after calculating the economically optimal dispatch, i.e. the
dispatch that minimizes the horizon cost

∑
t∈�T

πt PG
0,t of the

energy P0,t that needs to be drawn from the main electrical
system, at a timeslot-varying price πt .

Hence, the DSO needs to solve a distribution level Optimal
Power Flow (OPF) problem to fulfill this objective. Thus, the
system-wide problem can be formulated as

min
Y

 ∑
s∈�S

ws max
n∈�s

N

{ wnθn} +

∑
t∈�T

πt PG
0,t


s.t.

(1) − (10), ∀s ∈ �S

(11) − (17) (18)

In problem (18), set Y contains the decision variables
ps, xn, un, θn, Pκi , Pi j , I sqr

i j , Qκi , Qi j , V sqr
i . By introducing

slack variables ζs and replacing (15) with

V sqr
j,t I sqr

i j,t ≥ P2
i j,t + Q2

i j,t , ∀i j ∈ �l , t ∈ �T (19)

problem (18) can be reformulated as

min
Y,ζs

 ∑
s∈�S

ws ζs +

∑
t∈�T

πt PG
0,t


s.t. ζs ≥ wnθn, ∀s ∈ �S, n ∈ �s

N

(1) − (10), ∀s ∈ �S

(11) − (14), (16), (17), and (19) (20)

Notice that (18) is a mixed-integer non-linear program
(MINLP), while the equivalent problem (20) is a mixed-
integer second-order cone program (MISOCP) based on a
well-known convex relaxation [31]. However, its solution
requires the information of all charging tasks, i.e., the tuples
{An}n∈�s

N
, of all EVs of each station s ∈ �S, in a centralized

fashion. Towardssolving problem (20) in a distributed fashion,
we consider the ADMM as a benchmark approach, which is
commonly used in the literature, and then we present a novel
algorithm which scales better to larger instances of our prob-
lem, in comparison to the ADMM. Improving the scalability
properties is particularly important since problem (20) needs
to be repeatedly solved at each operational timeslot, to account
for updated forecasts of demand, EV arrivals, etc.

In subsection III-A, we present the ADMM benchmark
for this problem, while in subsection III-B we present the
proposed novel algorithm. We note that the methods to be pre-
sented are directly extendable to a stochastic formulation with
realization scenarios for future prices and demand. We omit
the presentation of a stochastic formulation to avoid adding
nonessential extra notation.

A. The ADMM Benchmark
We consider a decomposition of problem (20), where each

station s solves a local problem, deciding only on ζs and local
variables Ys = {ps,t , xn,t , un,t , θn}, where Ys ⊂ Y and the
DSO decides only on variables YDSO = {Pκi , Pi j , I sqr

i j , Qκi ,

Qi j , V sqr
i , PG

0,t , QG
0,t }, where YDSO ∪ Ys = Y . Note that

PG
0,t , QG

0,t is the active and reactive power injection at the
substation. Depending on whether the active power balance
constraints are satisfied, a set of Lagrange multipliers are
updated, denoted as λi,t . Thus, the problem is decomposed into
local subproblems, i.e., one for each station s ∈ �S. By taking
the augmented Lagrangian of problem (20)

La
(
Y, ζs, λi,t

)
=

∑
s∈�S

ws ζs +

∑
t∈�T

πt PG
0,t

+

∑
i∈�b

∑
t∈�T

(
λi,t ft +

ρ

2
∥ ft∥

2
)

(21)

where

ft =

∑
κi∈�l

Pκi,t −

∑
i j∈�l

(
Pi j,t + Ri j I sqr

i j,t

)
+ PG

i,t − PD
i,t −

∑
s∈�S:s=i

ps,t (22)
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the ADMM benchmark is defined based on the following
iterative variable update rules:
Charging Station

{y(k+1)
}y∈Ys = { p(k+1)

s , ζ (k+1)
s , x (k+1)

n , u(k+1)
n , θ (k+1)

n }

= argminYs ,ζs
La

(
Y(k), ζs, λ

(k)
i,t

)
s.t. ζs ≥ wnθn, ∀n ∈ �s

N

(1) − (10) (23)

DSO

{y(k+1)
}y∈YDSO = argminYDSO

La

(
Y(k+1), ζ (k+1)

s , λ
(k)
i,t

)
s.t. (12) − (14), (16), (17), and (19)

(24)

Coordinating Entity1

λ
(k+1)
i,t = λ

(k)
i,t + ρ f (k+1)

t (25)

where Eq. (25) determines the multiplier update between
iterations, as a function of the power imbalance at node i
and timeslot t .

It should be highlighted that the ADMM, or any other dis-
tributed optimization approach, does not provide convergence
guarantees for non-convex problems. However, ADMM has
been shown to converge, in practice, for dispatch problems in
low-voltage networks (e.g. [29]).

Updating the decisions of a charging station requires solving
problem (23). Note that (23) is a MILP which needs to
be solved iteratively by each station for every multiplier
update. This can seriously harm the computational time of
the iterative approach. In the next subsection, we propose a
linear approximation of the station’s local problem, which is
iteratively tuned to approach the original station’s model.

B. Proposed Decentralized MILP Model

The simple Lagrangian of problem (20) reads as

L
(
Y, ζs, λi,t

)
=

∑
s∈�S

ws ζs +

∑
t∈�T

πt PG
0,t +

∑
i∈�b

∑
t∈�T

λi,t ft

(26)

By decomposing problem (20), we define the local subprob-
lem of each charging station as:

min
Ys ,ζs

ws ζs +

∑
t∈�T

λs,t
∑

n∈�s
N

xn,t


s.t. ζs ≥ wnθn, ∀n ∈ �s

N

(1) − (10) (27)

where λs,t refers to the multiplier of node i where s is located.
Notice that problem (27) is defined as minimizing the simple
Lagrangian (26), where the terms of ft , that are not depended
on local variables, Ys are discarded. In the iterative method to

1Depending on regulatory aspects, the role of the Coordinating Entity can
be assumed by the DSO itself or by a third party, e.g. a market operator.

be presented, we propose that each station, instead of problem
(27), solves the following approximate problem:

min

ws zs +

∑
t∈�T

λs,t
∑

n∈�s
N

xn,t


s.t. zs ≥ wn

∑
t∈�T:t≥dn

δt−dn xn,t , ∀ n ∈ �s
N

(1) − (4), (5) (28)

where zs is an auxiliary variable that replaces ζs , while the
DSO solves

minYDSO {L} , s.t. (12) − (14), (16), (17), and (19) (29)

The term
∑

t∈�T:t≥dn
δt−dn xn,t penalizes the station for

allocating power to task n in time slots that come after the
task’s desired departure time dn , so that problem (28) con-
stitutes an approximation of the original local problem (27).
However, in order for this approximation to perform well,
information from other stations and from the system, need
to be incorporated into the station’s problem by adjusting
the value of the penalization parameter δ. In order to tune
the approximation to approach the optimal solution to (20),
an appropriate value for parameter δ needs to be established by
the DSO. For this purpose, an iterative algorithm is proposed,
as described in Algorithm 1.

The DSO begins with δ(0) and updates δ(k) at each itera-
tion k of the outer-loop of Algorithm 1. A set of Lagrange
multipliers λs,t are iteratively updated in an inner loop. Each
station solves its approximation local problem (28) using the
current value of δ(k) and the latest updated multipliers λs,t .
The final state of the inner loop is characterized by a set of
equilibrium multipliers λ̃s,t

(
δ(k)

)
, which are a function of δ(k)

and correspond to the value of δ(k) for the current iteration k
of the outer loop.

Lemma 1: For a given value δ(k), the inner loop of
Algorithm 1 is guaranteed to converge to an equilibrium.

Proof: Consider local problems (28) that are solved
in line 5 of the algorithm. These problems taken together,
constitute a decomposed convex program, the centralized form
of which is defined as

min
Y,zs

 ∑
s∈�S

ws zs +

∑
t∈�T

πt PG
0,t


s.t. zs ≥ wn

∑
t>dn

δt−dn xn,t , ∀s ∈ �S, ∀n ∈ �s
N

(1) − (4), (5)

(11) − (14), (16), (17), and (19) (30)

The equilibrium multipliers λ̃s,t
(
δ(k)

)
of the algorithm’s

inner loop, are the optimal dual variables that correspond
to constraints (11) of problem (30) and since (30) is a
convex problem, it can be solved to optimality by a dual
decomposition algorithm (e.g. ADMM). Thus, the optimal set
of dual variables, i.e., the equilibrium multipliers, can always
be obtained. □

Once the inner loop has converged to the equilibrium
multipliers, each station is required to solve the original, MILP
local problem (27) using λ̃s,t

(
δ(k)

)
. The resulting profile ps
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Algorithm 1 The proposed algorithm

1: Initialize k = 0, δ(0) = 1
2: while

{
ps

}
s∈�S

/∈ C :
3: initialize λs,t = 0, ∀ s, t
4: repeat:
5: each station solves (28), DSO solves (29)
6: if ft > β

7: [λ update rule]
8: else
9: λ̃s,t

(
δ(k)

)
= λs,t

10: break
11: each station re-calculates ps by solving problem (27)

using λ̃s,t
(
δ(k)

)
12: if

{
ps

}
s∈�S

/∈ C
13: k = k + 1
14: δ(k) = δk−1

+ ε

of each station is communicated to the DSO, and the latter
checks if the network constraints are satisfied. In the case that
network constraints are violated, the DSO increases the value
of δ by setting δ(k+1) = δ(k) + ε. The inner loop is executed
again, using the updated value δ(k+1).

The above procedure iterates until the DSO identifies a
value of δ(k) and a corresponding set of equilibrium multipliers
λ̃s,t

(
δ(k)

)
, for which the combination of problems (27) results

in a set of station power profiles that respect the network
constraints, i.e.,

{
ps

(̃
λs,t

(
δ(k)

))}
s∈�S

∈ C .
With respect to the behavior of the equilibrium multipliers

λ̃s,t
(
δ(k)

)
, calculated by the algorithm’s inner loop, we write

the following lemma
Lemma 2: The equilibrium multipliers λ̃s,t

(
δ(k)

)
resulting

from the inner loop of Algorithm 1 are increasing with every
outer-loop iteration.

Proof: Notice that δ(k) is increasing with every iteration
of k. Thus, it suffices to show that the derivative of λ̃s,t with
respect to δ is higher or equal than zero, i.e. ∂λ̃s,t (δ)

∂δ
≥ 0.

Problem (30) is convex. Therefore, it admits to strong duality
and the optimal dual variables λ̃s,t

(
δ(k)

)
satisfy the KKT

conditions. By considering the stationarity conditions of (30),
we have

λ̃s,t (δ) = νnwnδt−dn + φ(·), ∀n ∈ �s
N : dn < t (31)

where λ̃s,t is the optimal dual variable that corresponds to
equality constraint (11), νn is the optimal dual variable that
corresponds to inequality constraint zs ≥ wn

∑
t>dn

δt−dn xn,t
of problem (30), and the expression φ(·) contains the terms
that are not dependent on δ. Since we are interested in the
rate of change of λ̃s,t as a function of δ, i.e. in the derivative
∂λ̃s,t (δ)

∂δ
, those terms will be zero when we take the derivative.

By taking the derivative ∂λ̃s,t (δ)
∂δ

, we have that

∂λ̃s,t (δ)

∂δ
= νnwn(t − dn)δt−dn−1, ∀n ∈ �s

N : dn < t (32)

Since νn is non-negative (by the KKT conditions), we have
that ∂λ̃s,t (δ)

∂δ
≥ 0, which completes the proof. □

The intuition behind Lemma 2, is that a higher value of δ

makes the stations less elastic by placing higher coefficients

on the timeslots that come after the deadline dn of each task.
Thus, a higher δ makes the stations less eager to shift their
consumption, which means that higher multipliers are needed
in order to make the problem feasible. This intuition guides
us to formulate the following conjecture

Conjecture 1: For lower values of ε, the probability of
non-convergence for Algorithm 1 diminishes.

By Lemma 2, we have that higher values of δ result in
higher equilibrium multipliers λ̃s,t

(
δ(k)

)
. Consequently, with

higher multipliers, the second term of problem (27) is more
weighted, which results in more consumption shifts and higher
delays for the charging stations. This leads us to expect that,
if this consumption shifting happens gradually, the aggregated
active power profile of the system (as resulting from line 11 of
the algorithm) will become flatter (i.e., exhibit a lower peak-
to-average ratio) in each iteration of the outer loop, thereby
enhancing the chances of finding a feasible allocation. Note,
however, that if the step ε is not small enough, the equilibrium
multipliers λ̃s,t

(
δ(k)

)
can increase abruptly between two con-

secutive iterations, and the overly high multipliers would cause
the charging stations to simultaneously shift their consumption
to less popular timeslots (through line 11), which will result in
a reverse peak effect. Thus, in conclusion, Lemma 2 implies
that for smaller values of ε, Algorithm 1 runs a higher chance
of convergence, while for higher values of ε, the algorithm
will diverge. This intuition cannot be proved analytically, since∑

s∈�S
ws ζs dependency on δ is non-linear (i.e., they are

linked through Algorithm 1, which contains a set of local
MILP problems). However, in the next Section, we will test
this hypothesis using simulations.

With respect to the scalability of Algorithm 1 and the
ADMM benchmark, we make the following remark

Remark 1: In contrast to the ADMM approach, Algorithm 1
avoids the need to solve the non-convex problem (23) at each
update of the multipliers. Instead, in its inner loop, it solves
the much faster, approximate linear program (28) for each
multiplier update and it only solves MILP (27) after the
multipliers have converged, in order to check the choice of δ.
This allows Algorithm 1 to scale better to larger problems.

Moreover, while the optimal multipliers can be volatile from
one day to another, the value of parameter δ is not expected
to exhibit the same volatility, since it is not linked to the
particular instance of the problem’s parameters, but rather, it is
related to the more general issue of tailoring the formulation
of problem (28) to approximate problem (27). Thus, after
applying the algorithm to several instances of the system, the
DSO could observe the confidence interval of parameter δ

and start initializing it at some value higher than 1. In turn,
a higher initial value for δ, would act as a warm start, which
further reduces the computational time of Algorithm 1. These
expectations are tested in the next Section.

IV. EVALUATION

In this section, we evaluate the proposed algorithm using
simulations. For this purpose, we considered a radial 11 kV
distribution system with 34 buses, shown in Fig. 1, with a peak
total nominal power of 6.2 MW and 4.1 Mvar [32]. Charging
stations are placed in nodes 5, 9, 13, and 22. For a horizon
of 12 timeslots, we assumed a number of 100 charging tasks,
unless stated otherwise, distributed randomly among stations.
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Fig. 1. 34-bus test system with four EV charging stations.

TABLE II
VALUES/DISTRIBUTIONS OF SETTING’S PARAMETERS

Fig. 2. Delay suffered by EVs as a function of their priority weights wn for
the fairness and social welfare optimization case.

The EV arrival times were sampled from a random normal
distribution (µ = 3, σ = 1) and rounded to the nearest integer
below (with timeslot 1 as the minimum), thus simulating a rush
hour. The task’s deadline is sampled from a random uniform
distribution within the interval [an +En/ps, 12]. The values or
random distributions for the rest of the system’s parameters
are presented in Table II.

First, we showcase the difference between the proposed
fair solution and the case where the average delay among
EVs is optimized (i.e. the typical Social Welfare maximization
approach). In Fig. 2, the delay of each EV is plotted against
its priority weight wn for the two cases. As can be observed,
the socially optimal dispatch sacrifices some low-priority EVs
(they suffer a delay of 5-6 timeslots) to the benefit of the rest.
In contrast, the proposed fair approach maintains the delay
of all EVs below 3 timeslots, at the cost of a higher average
delay.

Through experimentation, it was observed that in line 2 of
Algorithm 1, the decisive constraint was constraint (17). That
is, the maximum value maxi j,t I sqr

i j,t of the currents flowing
in the power distribution system’s lines was above the upper
bound I2

i j . However, for small values of step ε, the value
of maxi j,t I sqr

i j,t exhibited a decreasing trend along with the
increase in parameter δ. Intuitively, by increasing δ, the

Fig. 3. Evolution of the value of maximum current maxi j,t I sqr
i j,t , across lines

of the power distribution network, as a function of parameter δ.

charging stations are made less elastic, i.e., more resistant
to shifting the consumption of their EVs to later timeslots.
Thus, with higher δ the inner loop of Algorithm 1 converges to
higher equilibrium multipliers λ̃s,t (δ) as shown in Lemma 2.
In turn, each time the stations solve problems (27) with
increasing multipliers for the congested timeslots, they increas-
ingly shift electricity consumption to less congested timeslots.
This causes a flattening of the loads across the time horizon,
which causes a decrease in the values of the power distribution
system’s lines’ currents. On the other hand, if parameter δ

is updated using a large step, the algorithm can miss the
feasible points and start diverging. This behavior is depicted
in Fig. 3, where the maximum value of the lines’ currents
(maxi j,t I sqr

i j,t ) is plotted against the value of δ for two different
cases (2.5 and 40) of the update step ε. As can be observed
from the figure, in the case of a small step, the algorithm’s
progress is monotonous until it finally converges to a point
where all currents lie below the upper bound, while in the
case of a large step the algorithm diverges. These observations
provide an empirical verification of Conjecture 1.

More generally, Conjecture 1 indicates that the chance
of non-convergence for Algorithm 1 diminishes as the step
parameter ε becomes smaller. In this test, we tried differ-
ent values of step ε, and tested each value for a num-
ber of 100 experiments. By counting the times that the
algorithm failed to converge, we estimate the probability of
non-convergence as a function of ε. The results are shown
in Fig. 4 for different values of ε, where it is observed
that for small values of ε, the algorithm converged in all of
the experiments, while for higher values of ε, the chances
of Algorithm 1 not converging increase, thus experimentally
verifying Conjecture 1.

The algorithm’s behavior exhibited through Figs 3 and 4
provides a useful, practical tool in the hands of the DSO: If the
DSO observes that the value of maxi j,t I sqr

i j,t starts increasing
after a certain iteration of the Algorithm’s outer loop, it can
safely infer that the value of ε is too high and the Algorithm
will not converge. Therefore, the DSO can interrupt the
Algorithm’s execution and start over, using a lower step which,
by Fig. 4, increases the chances of convergence. Moreover,
in the case where non-convergence persists (e.g. the original
problem is infeasible), the DSO can retrieve the best dispatch
found through the algorithm’s iterations and, starting from that,
some other protocol would be activated (e.g. load curtailment).

In order to evaluate the quality of the solution provided by
Algorithm 1, we define a performance metric F , noted as the
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Fig. 4. Probability of non-convergence as a function of the step ε.

Fig. 5. Fairness factor (optimality loss) for different values of step ε.

Fig. 6. Scalability of the proposed algorithm compared to ADMM.

algorithm’s fairness factor. Factor F is defined as the ratio
between the objective value of problem (20) achieved by the
proposed algorithm, to the optimal objective value achieved by
solving problem (20) centrally. Naturally, it is F ≥ 1. A lower
fairness factor means better performance, while a fairness
factor of 1 means that the algorithm achieves exactly the fairest
solution. The metric F was evaluated for various experiments.
The average and lower-upper values among the experiments
are depicted for different choices of step ε, in Fig. 5. For small
values of ε, the algorithm achieves a near-optimal solution on
average.

Finally, we compare the proposed algorithm with the
ADMM benchmark regarding scalability. For Algorithm 1,
we also tested an extra version in which we warm-start
parameter δ, based on the lowest past observation of its final
value, to enhance the algorithm’s computational time further.
The results for the three approaches are depicted in Fig. 6.
The experiments were run in an i5, 2.7GHz computer with
8GB RAM and two cores, using CPLEX. For small numbers
of users, the proposed algorithm does not achieve a lower
computational time than the ADMM benchmark (and it even

does a little worse). Nevertheless, as expected by Remark 1,
the proposed algorithm scales much better to larger problems
(mainly when the warm-start of δ is also featured).

V. CONCLUSION

In this paper, we considered a system with multiple charging
stations drawing charging power from a low-voltage electricity
grid, where each charging station wants to achieve a fair
charging schedule for its electric vehicles. The problem of each
charging station was modeled as a max-min, mixed-integer
linear program. At the same time, the constraint satisfaction
problem of the grid operator was modeled as a second-order
cone program. A novel distributed algorithm was proposed
for achieving coordination, i.e., satisfying the system con-
straints in a globally efficient manner. The proposed algorithm
achieved better scalability than the ADMM benchmark by
approximating each station’s MILP with a linear program, thus
avoiding the need to solve many non-convex local subproblems
at each iteration. The approximation was made effective by
iteratively tuning a penalization parameter. Our simulation
results indicate that the algorithm is able to achieve near-
optimal solutions while effectively scaling to settings with high
levels of EV penetration.
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