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Abstract

We propose and develop a new algorithm for trading wind energy in elec-
tricity markets, within an online learning and optimization framework. In
particular, we combine a component-wise adaptive variant of the gradient
descent algorithm with recent advances in the feature-driven newsvendor
model. This results in an online offering approach capable of leveraging
data-rich environments, while adapting to the nonstationary character-
istics of energy generation and electricity markets, also with a minimal
computational burden. The performance of our approach is analyzed
based on several numerical experiments, showing both better adaptabil-
ity to nonstationary uncertain parameters and significant economic gains.

Keywords: Decision making under uncertainty, Online learning, Electricity
market, Newsvendor model

1



Springer Nature 2021 LATEX template

2 Online Decision Making for Trading Wind Energy

1 Introduction

1.1 Problem statement

Traditionally, the way in which trading wind energy has been considered relied
on a two-step approach. These start with the predictive modeling of future
energy generation (within either deterministic or probabilistic frameworks).
Such forecasts are subsequently used as input to expected utility maximization
strategies or, alternatively, some more general forms of optimization prob-
lems, e.g., within a stochastic framework and accommodating risk aversion.
Although fruitful, these methodologies may be computationally expensive. As
a representative recent example, for a scenario-based stochastic optimization
setup to offer in electricity markets, Kraft et al (2023) mentions that compu-
tational costs may reach 3 hours for a single trading instance. In addition, the
value of the final decisions is highly affected by the quality of the forecasts
employed. This fact was looked at for the general case of newsvendor prob-
lems (which are the type of stochastic opimization problems at hand here) by
Maggioni et al (2019), while a detailed investigation of the impact of forecast
quality on optimization in electricity markets (though, not exactly for mar-
ket participation problems), was detailed in Ordoudis and Pinson (2016). As
a consequence, it may be beneficial to integrate the forecasting and decision-
making steps, within a so-called prescriptive analytics framework (Bertsimas
and Kallus, 2019). In parallel, electricity markets are amid rapid transforma-
tions towards reducing granularity and lead times, facilitating the integration
of non-dispatchable energy sources but increasing the computational and
adaptability requirements of the offering algorithms.

In a data-rich and nonstationary environment, approaches relying on online
learning and online convex optimization are of direct relevance. For a very
complete introduction to these topics, the reader is referred to Shalev-Shwartz
et al (2012). On the one hand, online learning algorithms free the decision-
maker from most assumptions about the wind or market dynamics, since it
does not require specific probabilistic forecasts or models about such dynamics.
This is more generally the case for a broad range of prescriptive analytics
approaches that bypass the forecasting step. On the other hand, online learning
algorithms are typically efficient methods capable of adapting to the increasing
computational needs (as will be illustrated by the numerical case study in this
paper). Furthermore, the online learning analysis is based on regret as opposed
to the classical maximization of the expected utility, possibly allowing to derive
additional insights into the properties of trading strategies.

1.2 Status quo with trading wind energy and underlying
newsvendor problems

Most wind energy is traded in wholesale electricity markets (referred to as for-
ward markets in this paper), where an offer is submitted prior to the actual
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delivery of energy. However, the stochastic nature of wind energy entails incur-
ring deviations from the original offer. There are countless ways of approaching
this problem depending on the market structure and how uncertainty is accom-
modated, and therefore, it is infeasible to fully address such a vast literature.
However, let us provide an overview in the following. As a starting point, and
since there is no single authoritative review that covers this topic of renew-
able energy offering in electricity markets, we refer the reader to Morales
et al (2014), where the authors study different market variants and strategies
assuming a classical stochastic programming framework, as well as Conejo et al
(2010), which introduces general concepts of decision-making under uncer-
tainty within electricity markets. We deal, in particular, with markets with
a dual-price settlement for imbalances, under which there is no possibility of
benefiting from a deviation and where imbalance penalties are asymmetric.

Early works in this area proposed an optimal quantile strategy based on
probabilistic forecasts for wind energy production (Bremnes, 2004). Specifi-
cally, Pinson et al (2007) showed that, in its simplest version of a risk-neutral
wind farm without any other assets (e.g., storage, conventional generation),
the offering problem necessarily takes the form of a newsvendor problem.
Various generalizations were explored by others. Zugno et al (2013a) pro-
posed constraining the offer in both power and probability spaces in order to
accommodate risk aversion and behavioral aspects of trading (e.g., anchoring
effects towards traditional single-valued forecasts). In parallel, Mazzi and Pin-
son (2016) devised and tested a reinforcement learning algorithm to track the
optimal quantile in a nonstationary environment. Similarly, Dent et al (2011)
revisited the problem by accounting for the possibility of a population-based
price-making behavior. And, for more complex versions of the offering prob-
lems, one can revert to a stochastic programming setup (Morales et al, 2010),
for instance, owing to inter-temporal constraints, or risk-aversion. If generally
considering market offering problems where renewable energy producers are
not price-takers (i.e., their decision can then affect market outcomes), Baringo
and Conejo (2013), as well as Zugno et al (2013b), have proposed approaches
based on bilevel optimization. Recently, Kakhbod et al (2021) have investi-
gated the population effect of renewable energy producers and how this affects
their offering strategies. Even though these varied approaches explore alter-
native angles to generalizing the underlying newsvendor problems in wind
energy offering in electricity markets, they still require a two-step procedure
(i.e., “predict, then optimize”). In contrast, a prescriptive approach does not
require a forecasting step, since it directly goes from input data to decision.
Consequently, there is no need to describe future wind power generation and
market quantities. Hence, no assumption is made about their dynamics.

Inspired by new advances in decision making under uncertainty in data-rich
environments, this problem regained interest in recent years within a prescrip-
tive analytics framework (hence, by integrating forecasting and optimization
steps). As a representative example, Stratigakos et al (2022) used an ensemble
of decision trees that considers the objective function to estimate the energy
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production. From the modeling perspective, the work of Muñoz et al (2020) is
one of the closest to ours, also aligned with the new stream of research that
utilizes features to produce context-specific decisions in a fully data-driven
environment. They built upon recent advances with data-driven newsvendor
problems (Ban and Rudin, 2019), and proposed an approach that iteratively
solves a linear optimization problem to update offering decisions. Although
relatively inexpensive, the computation time involved may become an issue in
electricity markets like the Australian NEM1, where trading and dispatching
is based on 5-minute time steps and updates. Moreover, this approach seems
redundant in the sense that the complete optimization problem is solved at
each and every trading session, even though consecutive training sets may only
differ by one or a few samples. Such pitfalls motivates our proposal to explore
alternative approaches to wind energy offering in electricity markets.

1.3 From optimization to online learning

Instead of using optimization directly, we introduce an offering approach within
an online learning paradigm. Online learning can be seen as a special case of
online convex optimization (OCO – considering convex loss functions only)
where, instead of tracking optimal decisions, one adaptively and recursively
estimate parameters of decision rules (often also referred to as policies). Deci-
sion rules are functions that yield decisions based on values of relevant input
features. For an introduction to online optimization, we refer the reader to the
surveys of Shalev-Shwartz et al (2012) and Hazan et al (2016). In addition, for
the case of online learning, a recent extensive textbook-like coverage is given
by Orabona (2022).

Within OCO, we place emphasis on algorithms that continuously update
variables based on gradients (or subgradients) of a convex objective function.
Whenever new values of input features and outcomes become available, these
algorithms make a step along the gradient, towards the optimum. They ideally
accommodate problems for which a closed-form expression to evaluate the sub-
gradient exists (and fast to compute) (Duchi et al, 2011; Zheng, 2011). The
well-known online gradient descent approach can be traced back to Zinkevich
(2003) and inspired many further developments. Among those are numerous
applications within power system operation and electricity markets (Gan and
Low, 2016; Hauswirth et al, 2017; Colombino et al, 2019; Guo et al, 2021; Yuan
et al, 2022). These methods offer long-term regret guarantees (Orabona, 2022).

Within the frame of decision-making under uncertainty, the strategy
followed by online gradient descent algorithms is in sharp contrast with
optimization approaches. These latter approaches solve an independent opti-
mization problem with a different training set (a batch of data) every time a
decision has to be updated, e.g., the parameter of the decision rule in Muñoz
et al (2020). Under convexity assumptions, an optimal solution can be found
to each optimization problem, meaning that no single decision can ever achieve

1Australian National Electricity Market (NEM). See https://aemo.com.au/

https://aemo.com.au/
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better performance on average in that training set. However, there is no cer-
tainty that the out-of-sample performance of such a decision enjoys the same
privilege in finite sample sets. Instead, only probability guarantees can be
offered even if the samples are i.i.d. (Van Parys et al, 2021).

Indeed, when the underlying data generating processes are nonstationary,
the out-of-sample performance can be very poor. This issue can be partly
compensated by using a rolling window setting (Bashir and Lehtonen, 2018)
that updates the variables frequently. However, there can also be substan-
tial changes within the training set. In that case, the performance of batch
optimization approaches may be affected by old samples that do not reflect
current conditions. On the contrary, online gradient descent algorithms update
the parameters of decision rules through a point-wise update that involves the
most recent information only, which enables capturing changes in the charac-
teristics of the underlying data generating processes. Therefore, online gradient
methods do not only offer computational advantages. They may also outper-
form established approaches, e.g., using linear programming with contextual
information (even if using a sliding window scheme). This is illustrated based
on the toy model examples in Section 4, as well as the case study in Section 5.
Their superiority eventually is in terms of both (i) better tracking of the opti-
mal solution within a nonstationary environment, as well as (ii) an increase in
market revenues.

1.4 Contributions and structure

The Australian NEM is an example of the existing trend towards shortening
lead times and increasing granularity in electricity markets. These devel-
opments reduce operational and forecast uncertainty, hence facilitating the
integration of stochastic renewable energy sources2. At the same time, they
increase computational needs and require methodologies that adapt to changes
in rapid manner. To face these new challenges, we propose an algorithm that
combines a feature-driven newsvendor model inspired by Ban and Rudin (2019)
with a variant of the online gradient descent algorithm presented in Zeiler
(2012). We conceive a case study in which we analyze an hourly forward mar-
ket that closes just before the start of the next period. It relies on actual data
from the Danish Transmission System Operator (TSO), Energinet3, and pro-
vide a relevant test bench to illustrate and discussion the salient features of
our approach. To the best of our knowledge, this is the first paper that ana-
lyzes the problem of trading wind energy in an online learning setting. The
contributions of our work are threefold:

• we develop an online offering algorithm within an online learning frame-
work. Results show that this algorithm is computationally inexpensive
and achieves substantial economic profits;

2Increasing time granularity in electricity markets, innovation landscape brief, International
Renewable Energy Agency (IRENA), Report, 2019

3See https://energinet.dk/

https://energinet.dk/
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• we propose a new nonstationary regret benchmark against which we
empirically compare our algorithm;

• we showcase the ability of the proposed algorithm to adapt to nonsta-
tionary scenarios through a concise illustrative example. In addition, we
analyze the superior economic performance and computational efficiency
of our approach based on a case study using real-world data (published
by the Danish TSO, Energinet) for a period of more than five.

The remaining of the manuscript is structured as follows: Section 2 intro-
duces the problem of a wind farm offering in the forward market, and for
which balancing using a two-price imbalance settlement. Section 3 develops a
new offering algorithm based on an adaptive gradient descent algorithm and
explores several performance metrics. Section 4 is built upon two illustrative
examples that investigate the behavior of an alternative online implementa-
tion and the dynamic response of this algorithm in comparison with previous
rolling window approaches. Section 5 empirically analyzes the performance of
our proposed algorithm in a case study based on real data retrieved from the
Danish TSO, Energinet. Finally, conclusions and perspectives for future work
are gathered in Section 6.

2 Preliminaries

2.1 Mathematical notations

We introduce here some of the most relevant mathematical notations used
throughout the paper. These are placed into context when further describing
the optimization and learning problems at hand in the following. In terms of
indices and sets, we use j as an index for features and auxiliary information,
while t is an index for time periods (hours in practice, or programme time
units in the electricity market of interest). These time indices are gathered
within 2 sets T in and T oos, which are for training (in-sample) and testing
(out-of-sample), respectively.

When looking at newsvendor problems and offering in electricity markets,
key parameters include ψ+

t , the marginal opportunity cost for overproduction
at hour t (e/MWh), and ψ−t , the marginal opportunity cost for underproduc-
tion at hour t (e/MWh). These are defined based on λF, λUP, and λDW ∈ R,
which are the forward, up-regulation and down-regulation prices, respectively.
In terms of the renewable energy producer, the asset or portfolio at hand has
a nominal capacity E, also translating to a maximum offer in terms of energy
in the market for each and every programme time unit (hence, we express E
in MWh eventually). The decision variable is then the energy bid EF

t (MWh)
for that time, while the amount of energy actually produced is Et (MWh).
Within our data-driven framework, that decision is based on a vector xt of
auxiliary information (i.e., features), associated to a decision rule vector qt.

Finally, for the type of online learning approach described in the following,
the method and resulting algorithm rely on the gradient or subgradient of
the objective function at hand, which we denote by gt, as well as a dynamic
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learning vector ηt. We write gt,j and ηt,j the jth components of these vectors.
The algorithm has a number of hyperparameters involved, i.e., µ as a forgetting
factor to temporally smooth the marginal opportunity costs ψ+

t and ψ−t , η to
control the learning rate, α to smooth the discontinuity in the derivative of the
pinball loss function, and ρ as a decay constant that controls the adaptation
to new gradients. A strictly positive, though small, constant ε is used in the
definition of the dynamic learning vector ηt in order to avoid dividing by 0.

2.2 Newsvendor problem on a rolling time-window

We first introduce the problem of a wind farm offering in a forward market,
which is cleared some time before their actual production is realized. Therefore,
the producer is likely to suffer deviations from her offer. These are settled ex-
post in a real-time (balancing) market under a two-price imbalance settlement
mechanism. Furthermore, the offer is assumed to be always accepted, as the
marginal operational cost of wind farms is close to zero and therefore this
technology is usually prioritized for being scheduled. The eventual market
revenue ρ ∈ R of a wind farm is given by the summation of the amounts
obtained in the forward (ρF) and in the balancing markets (ρB), i.e.,

ρ = ρF + ρB = λFEF − λUP(EF − E)+ + λDW(E − EF)+ , (1)

where (a)+ = max(a, 0). In addition, the unknown parameters λF, λUP, and
λDW ∈ R are the forward, up-regulation and down-regulation prices, respec-
tively. The key decision variable for the wind farm is her offer EF ∈ R+

at the forward stage. Note that E ∈ R+ denotes the actual realization of
her stochastic energy production, which is obviously unknown at the forward
stage. In accordance to (1), the revenue (λFEF) from the forward stage is then
altered when the producer deviates from her offer EF. When the production
is greater than expected E ≥ EF, the producer is to sell excess energy gener-
ation E −EF > 0 at the downward regulation at price λDW. On the contrary,
if she produces less than her forward offer E ≤ EF, the wind farm has to buy
the missing energy EF −E > 0 at teh upward regulation at price λUP. Under
a two-price imbalance settlement, one has λUP ≥ λF and λDW ≤ λF, with
at most one of them different from λF (Morales et al, 2014, Ch. 7). In accor-
dance with the aforementioned description, let ψ+, ψ− ∈ R+ denote penalties
for over- or under-production as

ψ+ = λF − λDW, (2)

ψ− = λUP − λF . (3)

Using (2) and (3) and the equivalence E −EF = (E −EF)+ − (EF −E)+, we
reformulate (1) as

ρ = λFE −
(
ψ+(E − EF)+ + ψ−(EF − E)+

)
. (4)
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Note that the first term of (4) is out of the control of the price-taker
wind farm, as both λF and E are uncertain parameters. Therefore, the profit-
maximizing offer EF∗ of the wind farm in the forward market can be computed
by minimizing the expected deviation cost as

EF∗ = arg min
EF∈[0,E]

E
[
ψ+(E − EF)+ + ψ−(EF − E)+

]
, (5)

where E[·] is the expectation operator. The optimization program (5) solves an
instance of the very well-studied newsvendor model (Qin et al, 2011). Under a
price-taker scenario, i.e., when the market participant’s decision are assumed
not to affect market outcomes, an analytical solution to (5) can be computed
with (Bremnes, 2004; Pinson et al, 2007)

EF∗ = F−1E

(
ψ̄+

ψ̄+ + ψ̄−

)
, (6)

where F−1E (.) is the cumulative distribution function (cdf) of the renewable
energy production and the overline denotes the expected value of the random
variable (estimated as the average over available data). The reader is referred
to Maggioni et al (2019) for a discussion about the value of right distribution
in newsvendor applications.

On top of the fact that the true distribution of the wind production and
the optimal quotient are generally unknown, (6) suffers from another major
drawback, which is its inability to directly profit of additional information
that may be available, e.g., wind energy forecasts for neighboring areas, or
additional information about the state of the electricity market. In fact, it
is usually the case that the wind farm operator has access to a vector of
auxiliary information, also known as features x ⊆ X ∈ Rp, where p denotes the
dimension of the feature vector. This feature vector may help explaining the
behavior of the uncertain parameters in (5). As proposed by Ban and Rudin
(2019), this information can be exploited in newsvendor instances assuming
that the optimal offer follows a linear decision rule of the form EF : X → R,
EF = x>q with q ∈ Rp being a decision vector that parameterizes the linear
model. This decision rule can easily reproduce an intercept setting a component
of the feature vector x equal to one. Then, considering that a set of historical
samples

{
(Et, ψ

−
t , ψ

+
t ,xt),∀t ∈ T in

}
is available, we compute the best decision

qLP for this set by solving the following linear program:

qLP∗ = arg min
q

1

|T in|
∑
t∈T in

ψ+
t

(
Et − x>t q

)+
+ ψ−t

(
x>t q− Et

)+
(7a)

s.t. 0 ≤ x>t q ≤ E, ∀t ∈ T in, (7b)

where |·| denotes the cardinality of a set. Note that this model does not implic-
itly assume a price-taker scenario. In fact, correlations between penalties and
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wind features may be captured in systems with high wind power penetra-
tion. Although the linear structure of the mapping may seem restrictive, more
complex relationships can be obtained by transforming the feature space, e.g.,
using a Taylor approximation (Ban and Rudin, 2019) or a spline basis. Next,
by defining the box projection

π(x,q) = min

(
max(0,x>q), E

)
, (8)

the optimal offer derived from new contextual information xt′ can be computed
as EF

t′ = π(xt′ ,q
LP). As discussed in Muñoz et al (2020), when new points are

incorporated into the dataset T in, the problem (7) can be iteratively solved to
update the value of qLP. In the remaining of the manuscript, we refer to this
approach as LP (from Linear Programming).

3 Online learning in newsvendor problems

In the Online Convex Optimization (OCO) framework, a decision-maker faces
an online learning problem where iterative decisions are to be made. The cost
of each decision is determined by a convex loss function ft : Rdz → R unknown
beforehand. After a decision zt ∈ Z ⊆ Rdz is made, the decision-maker learns
ft and pays ft(zt). Within OCO the Online Gradient Descent (OGD) algo-
rithm, introduced by Zinkevich (2003), has proven to be very effective and
versatile (Gan and Low, 2016; Narayanaswamy et al, 2012; Hauswirth et al,
2016; Nonhoff and Müller, 2020; Wood et al, 2021). Starting from an initial
value, the OGD performs iterative updates zt based on (sub-)gradients of ft,
denoted as gt from hereon. The magnitude of the step is controlled through
a variable learning rate ηt. On each round, the updated vector is forced to lie
within the feasible region Z through the Euclidean projection. In the OGD
we rely on just the last point learned to obtain a gradient, thus resulting in a
computationally inexpensive method, especially if the gradient and projection
can be computed through a closed-form expression.

The selection of the learning rate is of paramount importance. The original
proposal by Zinkevich (2003) presents two main alternatives, namely, a vari-
able and a fixed learning rate. In a dynamic environment, the classical choice
ηt ∈ R+, ηt ∝ t−1/2 where ∝ denotes the proportional operator, is not suit-
able due to the fact that limt→∞ = 0, reducing the ability to track changes as
t increases. Alternatively, one could select a fixed value ηt = η that keeps this
capacity unaltered but may lose the fast convergence that the initial high values
of ηt provide. Regardless of the selection, both choices are scale-dependent and
treat each component of the gradient vector equally. To tackle this, McMahan
and Streeter (2010) and Duchi et al (2011) propose to use a component-wise
adaptive rate ηt ∈ Rp and ηt,j = η(

∑t
k=1 g

2
k,j)
−1/2 where gt,j is a component

of the gradient vector gt = [gt,1, ..., gt,j , ..., gt,p]
>. As in the case of ηt ∝ t−1/2,

the previous expression is monotonically decreasing (component-wise), again
limiting the long-term ability to learn. Aware of this limitation, Zeiler (2012)
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suggests an exponentially decaying average of the squared gradients to mod-
ulate the learning rate based on the most recent information. We employ this
gradient descent variant to implement our algorithm in Section 3.1.

In the online learning community, the de facto metric to evaluate the per-
formance of a series of decision vectors z1, ..., zT is the regret RT ∈ R. The
regret provides a versatile and, in a sense, normalized metric to compare an
algorithm through different problems with the advantage that little assump-
tion is made about the oracle that generates the decisions. Traditionally, the
benchmark used to compute regret is the best single action in hindsight that
can be obtained as the solution to an offline optimization problem under per-
fect information. However, in a dynamic environment, this benchmark can
be beaten easily. In Section 3.3 we propose an alternative benchmark more
suitable for the nonstationary context of the wind energy problem.

3.1 Online newsvendor

In this section, we particularize the gradient descent introduced in the previous
paragraphs to the context of the wind farm offering in a forward market,
incorporating elements of the rolling window problem presented in Section 2.
We name the resulting algorithm OLNV (from OnLine NewsVendor). Contrary
to the rolling window approach, the OLNV algorithm updates q based on the
information provided by the last realization. The objective function (7a) when
the set T in reduces to one sample yields

NVt(q) = ψ+
t

(
Et − x>t q

)+
+ ψ−t

(
x>t q− Et

)+
. (9)

The OLNV method requires computing a gradient of the objective function,
for which we analyze two alternative procedures in the following paragraphs.

The first approach is inspired by the work of Zheng (2011) on the pinball
loss, a particular case of the objective function found in newsvendor models.
Since the pinball loss is not strictly differentiable, the authors propose an
alternative smooth approximation to ensure that computing gradients is always
possible. Note that in our case the objective function (9) is not differentiable
at Et = x>t q. Therefore, we first propose to circumvent this issue extending
the approach in Zheng (2011) to the more general expression (9) that considers
arbitrary (positive) penalties as

NVt,α(q) = ψ+
t (Et − x>t q) + α(ψ+

t + ψ−t ) log(1 + e−(Et−x
>
t q)/α) , (10)

where α > 0 is a parameter that controls the approximation and where higher
values of this parameter result in smoother functions. The function NVt,α is
convex in q and upper bounds NVt for any value of q as proven in Propo-
sitions 1 and 2 in Appendix A, respectively. Then, we derive a closed-form
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solution to obtain gradients of (10), yielding

∇NVt,α(q) =

(
− ψ+

t + (ψ+
t + ψ−t )

1

1 + e(Et−x
>
t q)/α

)
xt . (11)

The second approach deals directly with the objective function as formu-
lated in (9). Even though the original objective is not strictly differentiable, a
variant of the OLNV algorithm is readily applicable to subdifferentiable func-
tions, provided that a subgradient can be computed instead (Orabona, 2022).
In this case, the mapping that returns a subdifferential of (9) is given by

∂NVt(q) =


−ψ+

t xt, Et − x>t q > 0,

ψ−t xt, Et − x>t q < 0,

[−ψ+
t xt, ψ

−
t xt], Et − x>t q = 0 .

(12)

Note that, when Et − x>t q = 0, any value in the interval [−ψ+
t xt, ψ

−
t xt] is a

legitimate subgradient belonging to ∂NVt(q). For the sake of simplicity and
reproducibility, the implementation of our algorithm returns zero whenever
this condition is fulfilled.

Once a gradient as in (11) or a subgradient as in (12) has been computed,
the key step of OLNV is to update qt using a multidimensional learning rate
ηt ∈ Rp through

qt+1 = Π(qt − ηt ◦ gt,xt) , (13)

where ◦ denotes the element-wise product, gt = ∇NVt,α(qt) or gt = ∂NVt(qt)
depending on the implementation of OLNV, and Π is a projection operator
defined as Π : Rp×X → Rp. Precisely, Π maps its arguments into the solution
of the following optimization problem:

Π(o,x) = arg min
q∈Q(x)

1

2
‖q− o‖2 , (P)

where o represents a candidate to update the decision vector and is computed
o = qt − ηt ◦ gt. The feasible set in (P) is defined by the set-valued mapping
Q : X ⇒ Rp, Q(x) = {q : 0 ≤ x>q ≤ E}. Note that, for any input x
the output of Q is a convex region bounded by two parallel hyperplanes. As
the Euclidean norm is used, a unique solution is guaranteed to exist for any
instance of (P). Generally, the Euclidean projection of a point into a convex
set requires solving a convex optimization problem, however the definition of
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Q allows us to find a closed-form expression, yielding

Π(o,x) =


o, 0 ≤ x>o ≤ E ,
o + E−x>o

‖x‖22
x, x>o > E ,

o + −x>o
‖x‖22

x, x>o < 0 .

(14)

This reduces the resolution of the optimization problem (P) to evaluating the
above expression. Even though the operator Π guarantees the feasibility of qt
under the realization xt−1, we need to resort to (8) setting EF

t = π(xt,qt) to
guarantee EF

t remains feasible for any new arbitrary xt.
The last remaining aspect is to compute the vector ηt following the ideas in

Zeiler (2012). Let gt = [gt,1, ..., gt,j , ..., gt,p]
> be a gradient or subgradient vec-

tor computed through (11) and (12). Then, we can define the squared running
average of each component as

g2t,j = ρg2t−1,j + (1− ρ)g2t,j , (15)

where ρ ∈ [0, 1) is a decay constant and g20,j = 0. The auxiliary variable g2t,j is
then used to compute the independent learning rate applied to the associated
decision vector component following

ηt,j =
η√

g2t,j + ε
, (16)

where ε ∈ R+ helps better conditioning the denominator (by avoiding division
by 0)and η > 0 is a constant. We use the update given by (15) and (16) in
the proposed OLNV algorithm with the values ε = 10−6 and ρ = 0.95, as
originally suggested in Zeiler (2012). The benefits of this update is twofold.
On the one hand, OLNV adapts each learning rate component to the scale
of the incumbent feature. On the other hand, OLNV tracks the most recent
dynamic between the uncertain vector [Et, ψ

+
t , ψ

−
t ] and the feature vector xt.

The OLNV algorithm for the feature-driven wind energy trading problem is
compiled in Algorithm 1.

Despite the fact we have considered a single wind farm in the derivation, the
proposed OLNV algorithm is general enough to be exploited for an aggregation
of wind farms, or in general, for a portfolio of diverse renewable energy sources
with uncertain production, just by combining the capacity and generation
of the assets. Equally, the potential spatial correlation among production of
wind farms does not affect the feasible region of the newsvendor model, and
therefore does not complicate the OLNV algorithm. On the contrary, adding
storage to the generation portfolio forces the model to include inter-temporal
constraints that dramatically reshape the feasible region, implying that the
current decision will affect future outcomes. In this case, the decision-maker
can resort to classical dynamic programming (Hargreaves and Hobbs, 2012) or



Springer Nature 2021 LATEX template

Online Decision Making for Trading Wind Energy 13

Algorithm 1 Online Newsvendor (OLNV)

Require: Initial values q1 ∈ Rp, η > 0, ρ ∈ [0, 1), ε ∈ R+

1: Initialize g20,j = 0, ∀j
2: for t = 1 to T do
3: Output qt
4: Receive xt
5: Compute EF

t = π(xt,qt)
6: Receive NVt and pay NVt(E

F
t )

7: Set gt = ∇NVt,α(qt) or gt = ∂NVt(qt)
8: Accumulate g2t,j = ρg2t−1,j + (1− ρ)g2t,j , ∀j
9: Compute ηt,j = η(g2t,j + ε)−1/2, ∀j

10: Update qt+1 = Π(qt − ηt ◦ gt,xt) solving (P)
11: end for

more advanced learning algorithms such as budget-constrained online learning
(Liakopoulos et al, 2019; Sherman and Koren, 2021) or reinforcement learning
algorithms (Kuznetsova et al, 2013; Sutton and Barto, 2018).

Finally, even if a population effect may be present for renewables in elec-
tricity markets (i.e., even if price-taker individually, the sum of individual
actions of these producers may impact market outcomes), several wind power
producers can effectively use the OLNV algorithm to improve the profitability
of their offer within the same region. The fact that each competing producer
has different contextual information available and may process it in alterna-
tive ways mitigates possible increases in the volatility of their outcomes that
could arise from correlated generation.

3.2 Regularization through average penalty anchoring

In an electricity market with a two-price imbalance settlement scheme, it is
common that ψ+

t = ψ−t = 0 over a significant number of hours, meaning that
load and generation are close to being balanced. In this situation, from (9), the
producer experiences no cost no matter the deviation from the actual produc-
tion. Moreover, the gradients computed through (9) are zero and therefore the
variable vector qt is not updated, wasting information about the relationship
between EF

t and xt. And, when penalties are different from zero, they typically
exhibit random behavior with sharp spikes representing highly imbalanced sce-
narios which, in turn, yields destabilizing updates of the vector qt. To tackle
both issues, we propose performing the following convex transformation of the
original penalties:

ψ+′

t = µψ+
t + (1− µ)ψ

+
, (17)

ψ−
′

t = µψ−t + (1− µ)ψ
−
, (18)
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where 0 ≤ µ ≤ 1 and ψ
+
, ψ
− ∈ R+ are the historical average penalties. This

convex transformation is inspired by the concept of constraining the optimal
offer around the point forecast proposed by Zugno et al (2013a). In contrast
though, we do not impose hard constraints on the decision vector qt. Instead,
we smooth the objective function using as anchor the sample average optimal

market quantile determined by the average market penalties ψ
+

and ψ
−

. To
do so, we consider a convex combination of the original objective function (7a)
with an additional term that minimizes such a quantile,

NV R
t =µψ+

t

(
Et − x>t q

)+
+ µψ−t

(
x>t q− Et

)+
+ (1− µ)ψ

+ (
Et − x>t q

)+
+ (1− µ)ψ

− (
x>t q− Et

)+
. (19)

Then, using (17) and (18), the original objective structure is recovered, i.e.,

NV R
t = ψ+′

t

(
Et − x>t q

)+
+ ψ−

′

t

(
x>t q− Et

)+
. (20)

Therefore, by replacing ψ+
t , ψ

−
t with ψ′+t , ψ

′−
t in the original objective function,

we regularize the learning procedure at no extra computational cost. When the

available samples are not sufficient to provide reliable estimates of the true ψ
+

and ψ
−

, the producer can resort to assume a balanced market with penalties

ψ
+

= ψ
−

= 1. Thus, with µ < 1, provided that ψ
+
, ψ
−
> 0, the algorithm

utilizes the information contained in samples with both penalties equal to
zero, potentially accelerating the convergence and obtaining smoother updates
through the gradient. The same reasoning applies to the smooth objective
function.

3.3 Performance evaluation

In order to assess the economic performance of our algorithm over a set of
testing samples

{
(Et, ψ

−
t , ψ

+
t ,xt),∀t ∈ T oos

}
, we use the average deviation

cost. To lighten the notation, we write T = |T oos|. Consider that we have
obtained successive offers EF

1 , ..., E
F
T over the test set, by using (7) and (8) or

from Algorithm 1, after iteratively going through all the samples belonging to
the test set T oos. We then calculate the average deviation cost as

NV oos =
1

T

∑
t∈T oos

ψ−t (Et − EF
t )++ψ+

t (EF
t − Et)+ . (21)

The value of this metric gives limited information about how a particular
method is performing. A natural benchmark is the score obtained when a
forecast of the wind energy production (in the sense of minimizing the root
mean square error) is directly used as an offer in the market. We refer to this
method as FO (from FOrecast). Let NV oos

FO be the deviation cost incurred by
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FO. We then redefine the original metric in relative terms, i.e.,

NV oos(%) = 100
NV oos

FO −NV oos

NV oos
FO

. (22)

Consequently, the metric expresses an improvement (as a percentage), where
a value of 100% means perfect performance with zero deviation cost.

For online learning problems the customary performance measure is the
regret. Traditionally, the regret compares a sequence of decision q1, ...,qT
against the best single vector in hindsight qH. The latter is computed ex-post
solving a problem analogous to (7) once the whole collection of samples belong-
ing to T oos is known. Let QH be the intersection of all feasible sets Q(xt),
more precisely QH : X ⇒ Rp, QH = {q : 0 ≤ x>t q ≤ E, t ∈ T oos}. The static
regret is

RsT =
∑
t∈T oos

NVt(qt)− min
q∈QH

∑
t∈T oos

NVt(q) . (23)

Given the assumption of a nonstationary environment, outperforming a
constant qH can be a relatively easy task even though it is determined under
perfect information. Alternatively, one may consider the worst-case regret
(Besbes et al, 2015) interchanging the sum and minimum, i.e.,

RwT =
∑
t∈T oos

NVt(qt)−
∑
t∈T oos

min
q∈Q(xt)

NVt(q) , (24)

where the second term of (24) gives the best individual decision qHt ∈
arg minq∈Q(xt)NVt(q). The regret computed in this way can be very pes-
simistic and unrealistic. Note that in the context of the wind farm, it is
always possible to find a value for q such that Et − x>t q = 0, and there-
fore (24) readily reduces to the summation of the original objective function
RwT =

∑
t∈T oos NVt(qt). Alternatively, Zinkevich (2003) proposed to compare

the performance of online algorithms against a sequence of arbitrary decisions
u1, ...,uT , ut ∈ Q(xt),

RdT =
∑
t∈T oos

NVt(qt)−
∑
t∈T oos

NVt(ut) . (25)

We refer to this approach as dynamic regret. This formulation allows to
define a metric with an adjustable difficulty between the previous bench-
marks. Note that (23) and (24) are special cases of (25) with ut = qH ∀t
and ut = qHt ∀t, respectively. Then, the question is how to choose a reason-
able series of reference benchmarks ut to use against OLNV. To this end, we
propose dividing T oos in k adjacent partitions of equal length l, except pos-
sibly the last one. Without loss of generality, by assuming T − kl = 0, we
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have T oos
i = {t : (i − 1)l + 1 ≤ t ≤ il}, i = 1, ..., k. Let us define the feasi-

ble sets QHi = {q : 0 ≤ x>t q ≤ E, t ∈ T oos
i }. Accordingly, we can compute

qHi = arg minq∈QHi

∑
t∈T oos

i
NVt(q). Finally, the sequence of reference bench-

marks that we propose to use in this paper is ut = qHi ,∀t ∈ T oos
i . We will

empirically investigate the regret performance of OLNV in the case study
presented in Section 5.

4 Illustrative examples

This section analyzes several illustrative examples to gain insight into the
behavior of OLNV. The first case compares the two alternative implementa-
tions introduced in Section 3.1 and discusses their main properties. As a result
of this analysis, we select the subgradient objective function as the default pro-
cedure to perform the update of qt in OLNV. One of the key features of online
learning algorithms is their tracking ability, given the chronological order in
which the updates are performed. In the second illustrative example, we deal
with alternating penalty scenarios, showing the salient properties of OLNV to
adapt to a changing environment.

4.1 Comparing the smooth and subgradient
implementations

This illustrative example aims to elucidate whether the smooth approximation
presented in (10) provides any advantage over the direct subgradient imple-
mentation of OLNV. This will allow us to determine which implementation to
be used for further numerical experiments.

We consider a simplified setting with a single feature, a forecast of the wind
power generation that we also use as the baseline for the FO method, and a
single regressor qt ∈ R. No intercept is considered to ease the representation
and analysis of qt. We sample the feature from a uniform distribution xt ∼
U [10, 90] (MW) and the true wind generation series is built adding a Gaussian
noise, Et = xt + εt with εt ∼ N (0, 6) (MW). We generate a dataset of a 1-
year duration (8760 samples, as if of hourly temporal resolution). Given that
the penalties ψ+

t and ψ−t are difficult to simulate, we compute them based
on real day-ahead and regulation prices of the Danish DK1 bidding zone. We
retrieve data corresponding to the year 2017 from the data portal of the Danish
TSO, Energinet4. Four implementations of Algorithm 1 are executed, three of
them computing gradients of the smooth objective function through (11) with
α = 0.05, 5 and 20 and the last one using subgradients of the original cost
mapping as in (12), to which we refer to as ∂. All instances are initialized with
q1 = 1, which means that the first offer produced by FO and OLNV are the
same. In this section we do not use any convex transformation of the prices,
i.e., µ = 1, and we set η = 0.005. We run the OLNV algorithm throughout the
dataset, performing updates of qt every hour.

4See https://www.energidataservice.dk/

https://www.energidataservice.dk/
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Fig. 1: Sample of ∂NVt and ∇NVt,20 computed in the dataset of the
illustrative example.

In this section, we accompany the numerical results with some theoreti-
cal analysis. The function NVt,α(q) approximates well the original function
NVt(q) when |Et−x>t q| → ∞ as shown in Proposition 3 in Appendix A. Then,
an interesting point of analysis related to the behavior of both functions in the
neighborhood of Et−x>t q = 0, defined by ϕ = {q : −δ ≤ Et−x>t q ≤ δ} with
δ > 0. Let q1 and q2 be two vectors with Et − x>t q1 ≤ 0, Et − x>t q2 ≥ 0 and
q1,q2 ∈ ϕ. The subgradient that OLNV computes for each vector changes sub-
stantially with ∂NVt(q1) = ψ−t xt and NVt(q2) = −ψ+

t xt, which may result
in very different updates of the vector q for similar values of xt or qt. Con-
versely, NVt,α is everywhere differentiable, which ensures a smooth change of
∇NVt,α(q) for similar values of q− T and xt.

Figure 1 shows a sample of ∂NVt and ∇NVt,20 that corresponds to the
subgradient and gradient of the smooth objective function with α = 20. Only
NVt and NVt,20 are represented, for the sake of clarity. Most of the spikes in the
case of NVt,20 are comparatively lower due to the aforementioned smoothing
effect in the neighborhood of Et−x>t q = 0. This is aligned with the decreasing
value of the standard deviation of the (sub-)gradients σ collated in Table 1 as
α increases.

Table 1: Average absolute value |g| and standard deviation σ of the (sub-)
gradients and the metric NV oos(%) computed for three smooth (α) and one
subgradient (∂) implementations of the OLNV.

∂ α = 0.05 α = 5 α = 20
|g| 121.7 122.0 125.6 133.5
σ 380.8 379.7 310.4 293.3

NV oos(%) 5.3 5.2 0.8 -14.5
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On the contrary, the mean absolute value of the (sub-)gradients, denoted
as |g|, follows the opposite evolution. To understand the rationale behind this
evolution, we provide Figure 2 showing three instances of the original and
smooth losses. In all cases, we see that NV t,α is an upper bound for NV t
by a finite amount as expressed in Proposition 2 (with a proof available in
Appendix A). However, Figure 2(a) shows that the minimum of NV t,α is not
aligned with the minimum of the original pinball loss function. This is true
whenever ψ+

t 6= ψ−t (i.e., asymmetric penalties in the market), a common
situation in markets with a two-price imbalance settlement. Furthermore, when
one penalty is equal to zero, the minimum is never attained.

Consequently, the gradient computed through (11) almost always intro-
duces a deviation that is positive, compared to the true value returned by (12).
The value of this error is given by the following expression:

∇NV t,α−∂NVt(q) =
(ψ+
t + ψ−t )(1 + e(Et−x

>
t q)/α)−1xt, Et − x>t q > 0 ,

−(ψ+
t + ψ−t )(1 + e−(Et−x

>
t q)/α)−1xt, Et − x>t q < 0 ,

[−ψ
+
t +ψ−t

2 xt,
ψ+
t +ψ−t

2 xt], Et − x>t q = 0 .

(26)

The imperfect approximation of NV t,α distorts the magnitude and even the
sign of the gradients, causing a long-term drift of qt that increases with the
smoothing parameter α as shown in Figure 3.

Finally, the last row of Table 1 presents the NV oos(%) obtained by each
implementation with respect to FO. One sees thatNV oos(%) deteriorates when
α increases. The smooth approach increasingly dampens the evolution of the
decision vector for higher values of α, but at the expense of a biased qt and
with non-negligible economic losses. Therefore, the smooth approximation does
not provide any substantial advantage over the subgradient implementation in
this application, given that the producer is neutral to risk and volatility (only
being concerned with expected profits), while there is no technical constraint
that encourages a smooth evolution of q. As a consequence, we will only use
subgradients to implement the OLNV method throughout the remainder of
the manuscript.

4.2 Dynamic behavior

In this illustrative example, we compare the tracking ability of OLNV and
LP approaches in a nonstationary environment. Similar to the previous case,
we assume that the producer has access to a unique feature and considers a
model with a single regressor. Again, we sample the forecast from a uniform
distribution xt ∼ U(10, 90) (MW) and the true wind power generation series
is obtained by adding a normal noise Et = xt + εt with εt ∼ N (0, 6) (MW).
Instead of the real DK1 data, we consider two possible scenarios with penal-
ties ψ+

t = 1, ψ−t = 3 and ψ+
t = 3, ψ−t = 1, alternating every two months.

This process yields 8 months of data (5760 hours) using the last 4 months
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Fig. 2: Different instances of the original NV and smooth NV0.3 objective
function with α = 0.3 and u = Et − xtq.
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Fig. 3: Example of the evolution of the coefficient q for different implementa-
tions of OLNV.

(2880 hours) as the test set. The start of the test set is aligned with the begin-
ning of a two-month scenario with ψ+

t = 1 and ψ−t = 3. The rolling window
approach is implemented solving the optimization problem (7) with a set of
historical samples T in. Then, we use (8) to cast an offer based on the context
EF
t = π(xt, q

LP
t ). The coefficient qLPt is refreshed every 24 hours by solving

problem (7), and based on a rolling window. The reason for a 24-hour update
is twofold: it is aligned with the original proposal in Muñoz et al (2020) and
we empirically checked that there was little economic gain to be obtained with
more frequent updates. The computing time in the case of an hourly update,
for example, took 24 times longer. As will be shown in the following, LP based
on a rolling window approach only produces small changes over the training
set, resulting in similar qLPt . We train four versions of the LP model with
|T in| = 720, 1440, 2160 and 2880 (1, 2, 3, or 4 months), denoted as LP-1M
to LP-4M, respectively. We use the first four months of the dataset to con-
struct the initial training sets. Although the concept of training is not strictly
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the same for OLNV (since it always learns on the fly, as new samples become
available), only the last month of the training set is used to update the value
of qt, originally initialized with q1 = 1, to resemble a model that has been
operating for some time.

Figure 4 depicts the evolution of the single regressor qt over the test set,
together with the optimal q∗ for each penalty scenario. Over the first two
months, the higher value of ψ−t penalizes offers above the true production
EF
t > Et and, consequently, the optimal strategy is to underestimate EF

t with
q∗ < 1. Over the final months, we observe the opposite.

As one may expect, the evolution of the decision vector of LP models is
smoother than in the case of OLNV, given that the former approach considers
many historical samples at once to perform the update. However, Figure 4 also
shows that the trajectory of qt produced by the rolling window models LP-1M
to LP-4M is substantially lagged with respect to the change in the penalty
scenario (emphasized by different background colors). This delay increases with
the length of the training set, to the point that LP-4M completely overlooks it.
Note that the length of the training set in LP-4M and the period of the penalty
scenarios are identical. Therefore, the number of samples that penalizes under-
or overproduction is equal and remains constant. As a result, LP-4M offers
no incentive to overestimate or underestimate the forecast, yielding the same
value as FO (neglecting slight deviations due to the finite sample and noise).

Figure 4 additionally shows that OLNV is substantially faster at tracking
the optimal q∗. In contrast, the LP problem (7) determines the decision qt
with the best performance on average in the training set, assuming that all
the samples in the set are equally probable representations of future outcomes.
Conversely, OLNV only uses the most recent information to perform a point-
wise update that swiftly captures changes in the environment.

The tracking capability of both approaches has an impact on their eco-
nomic performance. Table 2 summarizes the out-of-sample NV oos(%) obtained
by each approach in the test set. In line with the previous analysis, LP-4M
obtains the same performance as FO. The other three LP methods experience
decreasing NV oos(%) as the length of the training set and the lag of qt increase.
Finally, the adaptability of OLNV allows outperforming the LP approaches.

Table 2: Out-of-sample NV oos (%) obtained in the test set of the illustrative
example.

OLNV LP-1M LP-2M LP-3M LP-4M
NV oos (%) 13 5 -5 -6 0

In this simplified example, we could have analyzed LP models with a shorter
training set, probably resulting in reduced lag and better performances. How-
ever, in a realistic situation with a huge feature space and random penalties,
months of data are typically required to capture the underlying relationships
and generalize well in the out-of-sample set (Muñoz et al, 2020). Therefore, the
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Fig. 4: Evolution of q produced by five models over the test set. The blue and
orange shaded periods correspond to the penalty scenarios ψ+

t = 1, ψ−t = 3
and ψ+

t = 3, ψ−t = 1, respectively. The entry q∗ corresponds to the best single
vector for each penalty scenario.

length of the training set of the LP models has to be selected as a trade-off;
enough data is required to learn a policy that generalizes well, but shorter sets
capture dynamics better. On the contrary, the OLNV approach completely
avoids this dichotomy, providing a fast and effective method that adapts to
uncertain parameters generated by nonstationary environment.

5 Case study

Electricity markets are in the midst of a rapid development towards reducing
the time between market transactions and the actual exchange of electric-
ity. Examples of this transformation are given, i.e., by the reduction of the
electricity lead time (Australian NEM or the Californian CAISO5) or by the
development of new intraday markets (OMIE intraday markets or NordPool
ELBAS6). Inspired by this trend, we analyze a case study that considers an
online forward market that takes place every hour followed by a balancing
market with a two-price imbalance settlement. The gate closure of the for-
ward market happens just before the start of the next period. We assume that
the wind farm continuously participates in the market and her offer is always
accepted.

In the following we first describe the data used in this case study. Then,
several benchmark methods are proposed to compare against OLNV. Finally,
in a last part, we analyze the numerical results obtained, based on regret,
economic performance and computational costs.

5See https://aemo.com.au and http://www.caiso.com/
6See https://www.omie.es/ and https://www.nordpoolgroup.com/

https://aemo.com.au
http://www.caiso.com/
https://www.omie.es/
https://www.nordpoolgroup.com/
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5.1 Data and experimental setup

This case study is based on historical data compiled by the Danish TSO,
Energinet.dk, since it includes market prices and several wind power forecasts
that can be employed as input features. We collect the true and day-ahead fore-
cast issued by Energinet for the on- and offshore wind power production of both
DK1 and DK2 Danish bidding zones together with the day-ahead and regula-
tion prices of DK1 for the period 01/07/2015 to 06/04/2021 (mm/dd/yyyy).
The day-ahead spot and regulation prices are mapped into hourly penalties
through equations (2) and (3) and some small negative values, obtained due
to rounding errors, are filtered out.

Table 3: Installed capacity in MW by bidding zone and technology.

DK1 DK2
year Onshore Offshore Onshore Offshore
2015 2966 843 608 428
2016 2966 843 608 428
2017 2966 843 608 428
2018 3664 1277 759 423
2019 3669 1277 757 423
2020 3645 1277 757 423
2021 3725 1277 756 423

The raw wind power forecast series are also processed to suit our needs.
Given that the installed capacity of the four wind categories shown in Table 3
varies differently over the dataset, we independently normalize each series to
lie between 0 and 100 MW, a figure that can easily represent the capacity of a
large wind farm. According to the Danish TSO, the raw wind power forecasts
are issued between 12 to 36 hours ahead, although the exact time is difficult
to know because no timestamp is provided. To overcome this issue, we use a
standard ordinary least square regression model to produce enhanced forecasts
with an accuracy comparable to an hour-ahead forecast and, therefore, suitable
for our case study. We feed each raw wind power forecast into an independent
linear regression model together with the last three lags of the true historical
wind realization of the pertaining series. Finally, we use the first 6 months of
our dataset to independently train each of the four predictive models, one per
column of Table 3.

Table 4: Average RMSE (MWh) of the original forecast, the persistent (naive
1h lag) and improved 1h-ahead forecast computed on the out-of-sample period
07/01/2015 to 06/04/2021 with a normalized generation capacity of 100 MW.

Model
DK1 DK2

Onshore Offshore Onshore Offshore
original 6.19 9.55 6.77 10.68

persistent 3.36 6.39 3.90 7.49
improved 2.72 5.70 3.34 6.66
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Table 4 compares the root mean square error (RMSE) of the original and
improved out-of-sample forecast against the naive benchmark provided by the
first lag of each series (the wind power production of the previous hour), also
known in the literature as persistence. Results show that the improved hour-
ahead series significantly outperforms both original forecasts and persistence.
As a byproduct, note that the wind power forecasts issued by the Danish TSO
have quality metrics (e.g., RMSE) that are consistent with expectation, i.e.,
with offshore conditions being harder to predict than onshore conditions, while
DK2 also having lower predictability since having small capacity and coverage
area.

Once we have processed the wind power production series, we explain how
we use them in our case study. The power generation of the wind farm offer-
ing in the market is simulated using the normalized onshore time-series of the
Danish DK1 bidding zone, which is consistent with the bidding zone of the
imbalance penalties utilized. The four hour-ahead forecasts of the wind power
production of DK1 and DK2 are available to the producer as contextual infor-
mation. Although additional wind power forecasts of neighboring bidding zones
could have been used as features, we restrict ourselves to the ones produced by
the Danish TSO to avoid potential inconsistencies regarding the issuing time
that could cast doubt on the results obtained (Muñoz et al, 2020).

Given that our goal is to reduce the imbalance cost incurred by the wind
farm, we also consider several price-related features to be used as contextual
information. To this end, we include the first lag of the imbalance penal-
ties ψ+

t−1 and ψ−t−1 in the vector of contextual information. As commented in
Section 2, it is well known that the ratio between the penalties provides valu-
able information about the optimal decision of the newsvendor model and,
therefore, we add the series rt−1 = ψ+

t−1/(ψ
+
t−1 + ψ−t−1 + υ) where υ = 10−5

is a constant that helps better condition the denominator. Finally, we add
a column of ones that enable one of the regressors to become an intercept,
completing our feature set.

As a summary, let Eon1t , Eof1t , Eon2t , Eof2t denote the hour-ahead wind
power forecast of DK1 onshore, DK1 offshore, DK2 onshore and DK2 offshore,
respectively. Then, at the moment of delivering the offer, the producer has
available a feature vector xt = [1, Eon1t , Eof1t , Eon2t , Eof2t , ψ+

t−1, ψ
−
t−1, rt−1]> to

infer the optimal offer EF
t .

5.2 Benchmark methods and implementation details

In this section, we describe several benchmark methods against which we com-
pare the performance of OLNV. The first benchmark approach is the enhanced
hourly forecast of DK1 itself, produced through the ordinary least square
regression model described before. Although a prediction that minimizes the
RMSE may seem naive, one can expect that the deviation cost incurred by the
producer vanishes as the RMSE of the forecast approaches zero. Therefore, an
hour-ahead forecast is expected to perform relatively well. We also use this
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hour-ahead forecast as the baseline to compute the metric NV oos(%) for the
rest of the approaches in the way described in Section 3.3.

The second benchmark is that of Muñoz et al (2020), based on two-step
approach using two variants of (7). In the first step, the first model only con-
siders wind-related features plus the intercept and set ψ+

t = ψ−t = 1, ∀t. The
series resulting from such model can be interpreted as an enhanced forecast of
the wind energy production with a reduced mean absolute error. In a second
step, this enhanced forecast is fed into (7), considering this time the true his-
torical penalties ψ+

t and ψ−t to correct for market patterns but neglecting the
capacity constraint (7b). The training set is updated following a rolling win-
dow, adding new samples and eliminating the same amount of the oldest. We
replicate this method, called LP2 (Linear Programming 2-steps), considering
the four-hour-ahead enhanced wind power forecasts of DK1 and DK2 as the
input of the first step, this is, xt = [1, Eon1t , Eof1t , Eon2t , Eof2t ]>. In line with
their findings, we choose a training set of |T in| = 4320 (6 months) and a rolling
window step of 24 hours.

In addition, we analyze a rolling window model, called LP, that solves
exactly (7) and (8) using the full vector of available contextual information.
This method is the one from the illustrative example in Section 4.2, but with
different inputs. Given the similarities with the other rolling window approach
LP2, we also choose a training set length of 6 months and a rolling window
step of 24 hours.

Finally, we discuss a benchmark that cannot be implemented in practice,
inspired by the static regret metric defined in (23). We assume perfect infor-
mation about the whole out-of-sample dataset and consider (7) to compute
the best linear model in hindsight, determined by the vector qH. Once this
optimal single vector is computed, the whole sequence of offers is determined
through EF

t = π(xt,q
H). We name this benchmark FX (for FiXed).

Next, we discuss the implementation of OLNV in this case study. The
OLNV algorithm does not need to solve an optimization problem but requires
initializing two parameters. To choose µ and η, we perform an offline grid
search on the chunk of data spanning 07/01/2015 to 12/31/2015. As candidate
values for µ we consider [0, 0.1, . . . , 1] and for η we analyze [10−2, 10−3, 10−4].
The grid search is carried out executing 3 × 11 = 33 independent instances
of the OLNV algorithm, initializing each time the OLNV regressor associated
with the onshore DK1 forecast to 1 and the rest of the values to 0.01. The
average NV oos(%) obtained by each instance is collated in Table 5. After
analyzing the results, we select the combination of values µ = 0.7 and η = 0.001
which achieve the highest NV oos(%). Even though in this case study a grid
search was used for the sake of clarity, other more complex cross-validation
techniques (?) can be used instead to select the values of µ and η, including
repeating this process periodically to update the values of µ and η after a
change in the environment.

In this case study, we assume a balanced penalty anchor ψ
+

= ψ
−

= 1.
Again, we initialize the OLNV regressor associated with the onshore DK1
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forecast to 1 and the rest of the values to 0.01. In other words, we start the
online offering with a strategy very close to FO, mainly relying on the forecast
of the wind energy production. We use the next 6 months (01/01/2016 to
06/30/2016) to update (initialize) qOL with the aim of having a fair comparison
against LP and LP2.

The performance of all the methods presented in this section is evaluated
using the dataset spanning from 07/01/2016 to 06/04/2021 (5 years with 43
200 samples). The optimization models LP, LP2, and FX are implemented
with the Python package Pyomo (Bynum et al, 2021) and solved through the
optimization solver CPLEX7, whereas the implementation OLNV is developed
by the authors based on standard Python packages and uploaded to an open
repository8.

Table 5: Out-of-sample NV oos (%) for different combinations of parameters
µ and η0 over the span 07/01/2015 to 12/31/2015. Highlighted in black are
shown the best result and parameters selected.

η
µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−2 -13,8 19,2 33,7 19,2 27,7 8,4 39,7 29,2 32,3 32,3 42,0
10−3 12,5 27,1 33,7 36,9 39,2 39,9 42,1 42,2 42,0 41,6 41,5
10−4 -5,2 1,3 4,4 6,0 7,0 7,7 8,2 8,6 8,9 9,4 9,4

5.3 Numerical results

Next, we discuss the results obtained in this case study. We start examining
the regret suffered by OLNV over the aforementioned out-of-sample dataset
with a length of D = 43, 200 hours (60 months). Let T oos

j = ∪ji=1T oos
i and

recall ut = qHi ∀t ∈ T oos
i . We assess the average dynamic regret RdT /T for

each sequence T oos
j , j = 1, ..., D/l with partition length l = 2160, 4320, 8640

hours (3, 6, 12 months). As an additional case, we compute the evolution of
the static regret for a sequence T oos

j , j = 1, ..., 20 with a step of l = 2160
hours (3 months). In each step, we refresh the best single action in hindsight
as qHj = arg minq∈QHj

∑
t∈T oos

j
NVt(q) and ut = qHj ∀t.

The four aforementioned regret series are depicted in Figure 5. As expected,
the average dynamic regret incurred by OLNV deteriorates quickly as l
decreases since lower values of l translate in a more challenging benchmark
closer to the the worst-case regret defined in (24). Nevertheless, Figure 5 clearly
shows that OLNV achieves a sublinear static regret, i.e., limT→∞ supRsT /T ≤
0. This is also the case for the dynamic regret with partitions of length l ≥ 6
months, proving the ability of OLNV to track dynamic environments.

7IBM ILOG CPLEX Optimization Studio. See https://www.ibm.com/analytics/
cplex-optimizer.

8Experiment’s code and data available at: https://github.com/Miguel897/
online-trading-wind-energy

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://github.com/Miguel897/online-trading-wind-energy
https://github.com/Miguel897/online-trading-wind-energy
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Fig. 5: Average dynamic regret RdT /T for l = 3, 6, 12, months and static regret
RsT /T updated every 3 months (denoted as s) of the OLNV method.

The economic gains obtained by each method are assessed through the
NV oos(%). The average values achieved over the evaluation dataset are col-
lated in Table 6. First, note that all methods outperform the naive FO strategy
of offering the DK1 forecast, obtaining positive values and demonstrating that
this set of features contributes to reducing the deviation cost.

The LP2 method is developed in a context where recent lags in the penal-
ties are not available. Indeed, the lack of penalty-related features translates
into a modest score, showing the evident benefits of disclosing recent infor-
mation in electricity markets, i.e., reducing the lead time. Even though FX
determines the optimal qH in hindsight (i.e., under perfect information), its
choice is limited to a single vector for the whole horizon. The fact that several
approaches perform better than FX proves the dynamic behavior of the uncer-
tain parameters and the need for updating the decision vector. Therefore, it
does not come as a surprise that LP improves the first two approaches as it
relies on the full vector of features and periodically updates qLP

t . However, the
superior adaptability of OLNV allows it to obtain the best score, achieving an
additional 7.6% compared to LP and a total 38.6% deviation cost reduction
compared to FO. The latter figure translates into an extra 25,930.22 e/year
on average for a wind farm with a capacity of 100 MW.

Finally, the last row of Table 6 summarizes the computational time cor-
responding to four approaches. The FX method requires little time as it only
solves a single optimization problem for the whole horizon. This contrasts with
the significant amount of time required by the constant re-optimization of LP
and LP2. It is noteworthy that even though OLNV produces 24 times more
updates of the vector qt, the time invested is several orders of magnitude
lower. In conclusion, OLNV is up to the challenge of the electricity markets
transformation achieving significant cost reduction together with exceptional
computational performance.
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Table 6: Out-of-sample NV oos (%) and execution time (s) over the span
07/01/2016 to 06/04/2021.

LP2 FX LP OLNV
NV oos(%) 3.8 24.6 31.0 38.6
Time (s) 23366 53 16077 179

6 Conclusions

This paper develops a new algorithm, named OLNV, combining a variant of
the online gradient descent with recent advances that extends the newsven-
dor model to consider contextual information directly. The component-wise
update of the learning rate enables the use of features with different scales
seamlessly. In nonstationary environments, conventional stochastic approaches
may consider misleading old samples in their training sets. On the contrary,
our algorithm tracks the most recent information of the gradients, adapting the
learning rate to follow the dynamics of the uncertain parameters and poten-
tially obtaining higher profits. The closed-form expressions derived to compute
the projection into the feasible region and a gradient of the objective function
yield a efficient algorithm that can be used in computationally expensive prob-
lems. We envision the use of OLNV in future electricity markets that evolves
toward continuous offering with reduced lead time. In particular, we apply this
algorithm to the wind farm problem offering in an hourly forward market with
a dual-price settlement for imbalances.

Several numerical experiments are carried out to assess the properties of the
proposed OLNV algorithm. In the first illustrative example, we compare the
behavior of two alternative implementations, namely, a subgradient approach
and a smooth approximation of the original newsvendor function. The numeri-
cal and theoretical analysis provided in this example indicates that computing
subgradient on the original objective function proves more profitable since it
avoids update errors that may be introduced by the smooth approximation.
Consequently, we determined that the subgradient implementation was the
most suitable to this application and used it throughout the rest of the numer-
ical experiments. Nevertheless, the smooth approximation could be utilized in
other applications where other technical concerns advice a smooth update.

The second example shows the adaptability of the OLNV algorithm to non-
stationary environments, clearly outperforming other stochastic approaches
that optimize (using mathematical programming techniques) over a training
set of past information. This superior performance is justified by the point-
wise update that only uses the most recent information. Our case study, built
upon real data of the Danish TSO Energinet, shows that OLNV achieves a
38.6% cost reduction against using a point forecast as offer and 7.6% compared
to a state-of-the-art method. These significant improvements contribute to
accelerating the integration of renewable energy technologies. Furthermore, we
empirically analyze several dynamic definitions of regret, showing the desired
sublinear convergence against most benchmarks.
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Although this research focused on wind energy producers, OLNV is read-
ily applicable to managing a portfolio of variable renewable energies with zero
marginal cost, including wind, solar and other technologies. Similar algorithms
can be developed when the producer’s portfolio includes other assets such as
loads, thermal power plants, or energy storage facilities, replacing the aggre-
gated source of uncertainty, i.e., the variable net energy production, by a linear
decision rule. In this case, the projection step on the feasible region would
likely involve solving a quadratic optimization program that can still be effi-
ciently solved with modern solvers, when the feasible region is convex. Another
attractive front is extending the OLNV algorithm to address inter-temporal
constraints, observing a similar note with regard to the feasible region as in the
previous case. This may require first generalizing the newsvendor framework
to offering in electricity markets though.

Future work also includes delving into the theoretical guarantees that this
algorithm offers in terms of regret. On a different front, a wealth of other
algorithms within the field of online learning can be applied to this prob-
lem, potentially bringing additional benefits such as faster convergence rates
or improved performance. Similarly, variable selection techniques could help
determine the subset of the available feature streams that provide the most eco-
nomic value, whereas nonlinear mapping, i.e., kernels or generalized additive
models (GAMs), can extend the regression capabilities of the method. Another
exciting line of research concerns the risk analysis of the producer, where
other metrics can be used instead of the expected value to create risk-averse
strategies.
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Appendix A Smooth function properties

This appendix provides a lemma and several propositions related to the smooth
approximation NVt,α defined in (10). Some of the proofs in this appendix are
based on the proofs provided in Zheng (2011). In this appendix we assume
that ψ+

t , ψ
−
t ≥ 0 and ψ+

t + ψ−t > 0 ∀t. Next, we define an auxiliary function
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St,α(u), St,α : R→ R with α > 0 as follows

St,α(u) = ψ+
t u+ α(ψ+

t + ψ−t ) log(1 + e−u/α) , (A1)

where u ∈ R. We use this function in the proofs covered within this appendix.
First, we prove the convexity of St,α.

Lemma 1. For any given α > 0, the function St,α, defined in (A1), is a
convex function.

Proof From the definition of St,α in (A1), we calculate that

d2St,α(u)

du2
=
ψ+
t + ψ−t
α

e−
u
α

(1 + e−
u
α )2

> 0 , (A2)

for any u ∈ R since ψ+
t + ψ−t > 0 and α > 0.

We use this intermediate result to prove the convexity of NVt,α in the
following Proposition.

Proposition 1. For any given α > 0, the function NVt,α, defined in (10), is
a convex function of q.

Proof Let u = Et − x>t q in (A1). Thus,

NVt,α(q) = St,α(Et − x>t q) . (A3)

For 0 ≤ ω ≤ 1 and any q1 and q2, we have

NVt,α(ωq1 + (1− ω)q2) = St,α(Et − x>t (ωq1 + (1− ω)q2))

= St,α(Et − ωx>t q1 − (1− ω)x>t q2)

= St,α(ω(Et − x>t q1)− (1− ω)(Et − x>t q2)) (A4)

≤ ωSt,α(Et − x>t q1) + (1− ω)St,α(Et − x>t q2) ,
(A5)

where the inequality in (A5) follows from the convexity of St,α, proved in
Lemma 1. Then, using (A3), the above inequality renders

NVt,α(ωq1 + (1− ω)q2) ≤ ωNVt,α(q1) + (1 + ω)NVt,α(q2) , (A6)

showing that NVt,α is a convex function on q.
Next, we show that NVt,α asymptotically approaches NVt for α → 0. We

also show that the function NVt,α upper bounds NVt for all q ∈ Rp.
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Proposition 2. Let NVt and NVt,α be the functions defined in (9) and (10),
in that order, with α > 0. Then, we have

0 < NVt,α(q)−NVt(q) ≤ α(ψ+
t + ψ−t ) log 2 , (A7)

for any q ∈ Rp. Thus,

lim
α→0+

NVt,α(q) = NVt(q) . (A8)

Proof When Et − x>t q ≥ 0, we have that

NVt,α(q)−NVt(q) = α(ψ+
t + ψ−t ) log(1 + e−(Et−x

>
t q)/α) , (A9)

hence,

0 < NVt,α(q)−NVt(q) ≤ α(ψ+
t + ψ−t ) log 2 , (A10)

for Et − x>t q ≥ 0. When Et − x>t q < 0,

NVt,α(q)−NVt(q) = (ψ+
t + ψ−t )(Et − x>t q)

+ α(ψ+
t + ψ−t ) log(1 + e−(Et−x

>
t q)/α) (A11)

= α(ψ+
t + ψ−t ) log(1 + e(Et−x

>
t q)/α) . (A12)

While

0 < α(ψ+
t + ψ−t ) log(1 + e(Et−x

>
t q)/α)

< α(ψ+
t + ψ−t ) log(1 + e0/α) = α(ψ+

t + ψ−t ) log 2 , (A13)

since Et−x>t q < 0. This shows that NVt,α(q)−NVt(q) also falls in the range
(0, α(ψ+

t +ψ−t ) log 2) for Et−x>t q < 0. Thus, (A7) is proved. Eq. (A8) follows
directly by letting α→ 0+ in (A7).

Finally, we show that for high values of |Et − x>t q| the function NVt,α
asymptotically approximate NVt.

Proposition 3. Let NVt and NVt,α be the functions defined in (9) and (10),
in that order, with α > 0. Then, when |Et − x>t q| → ∞ we have that NVt,α −
NVt → 0.

Proof For the sake of a clearer exposition we define µ(q) = Et − x>t q, where
µ : Rp → R. When µ(q)→ +∞, we have that

lim
µ(q)→+∞

NVt,α(q)−NVt(q) = lim
µ(q)→+∞

α(ψ+
t + ψ−t ) log(1 + e−(µ(q))/α) = 0

(A14)
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When µ(q)→ −∞, and using (A12), we have that

lim
µ(q)→−∞

NVt,α(q)−NVt(q) = lim
µ(q)→−∞

α(ψ+
t + ψ−t ) log(1 + e(µ(q))/α) = 0

(A15)

Combining both cases, this proposition is proved.
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