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On tracking varying bounds
when forecasting bounded time series

Abstract

We consider a new framework where a continuous, though bounded, random vari-
able has unobserved bounds that vary over time. In the context of univariate time
series, we look at the bounds as parameters of the distribution of the bounded random
variable. We introduce an extended log-likelihood estimation and design algorithms
to track the bound through online maximum likelihood estimation. Since the result-
ing optimization problem is not convex, we make use of recent theoretical results
on stochastic quasiconvex optimization, to eventually derive an Online Normalized
Gradient Descent algorithm. We illustrate and discuss the workings of our approach
based on both simulation studies and a real-world wind power forecasting problem.

Keywords: Generalized logit-normal distribution; Normalized Gradient Descent; Online
quasiconvex optimization; Inventory problem; Wind power probabilistic forecasting.
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1 Introduction

Many statistical applications involve response variables which are both continuous and

bounded. This is especially the case when one has to deal with rates, percentages or

proportions, for example when interested in the spread of an epidemic (Guolo and Varin,

2014), the unemployment rates in a given country (Wallis, 1987) or the proportion of time

spent by animals in a certain activity (Cotgreave and Clayton, 1994). Indeed, proportional

data are widely encountered within ecology-related statistical problems, see Warton and

Hui (2011) among others. Similarly, when forecasting wind power generation, the response

variable is also such a continuous bounded variable. Wind power generation is a stochastic

process with continuous state space which is bounded from below by zero when there

is no wind, and from above by the nominal capacity of the turbine (or wind farm) for

high-enough wind speeds. More generally, renewable energy generation from both wind

and solar energy are bounded stochastic processes, with the same lower bound (i.e., zero

energy production) and different characteristics of their upper bound (since solar energy

generation has a time-varying maximum depending on the time of day and time of year),

see for example Pinson (2012) and Bacher et al. (2009).

These continuous bounded random variables call for probability distributions with a

bounded support such as the beta distribution, truncated distributions or distributions of

transformed normal variables as discussed by Johnson (1949). Often, the response variable

is first assumed to lie in the unit interval (0, 1) and is then rescaled to any interval (a, b). For

applications involving such response variables, these bounds (a, b) are always fixed to the

same values over the sample. While this assumption makes sense in some cases, we argue
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it can be misleading and negatively impacts inference when the bounds (a, b) actually vary

over time or depending on exogenous variables whilst not being observed. In particular,

it is highly relevant for energy applications, such as wind power forecasting, as the upper

bound b may change over time, while being unknown, for example in case of curtailment

actions for which information is not available or not reliable. Another application is the

inventory problem of the retailer (Laderman and Littauer, 1953). Let Xt be the demand

for a certain item at time t: Xt is double-bounded, from below by zero and from above by

the stock available at time t, i.e., by a time-varying upper bound bt. To prepare for demand

Xt+1, the retailer needs to find the quantity they should order in the light of the knowledge

they have of the past stocks and demands. Similarly to the problem of forecasting wind

power generation, the inventory problem might then involve a double-bounded random

variable, the demand for a certain item, which can be regarded as a continuous variable

for large quantities being involved, and upper bounded by a bound which may vary over

time whilst not being observed, for example in case of supply chain issues, information

mismanagement or very large retailers that could not track the evolution of the stocks for

each item or would rather benefit from an automatic data-driven tracking.

In both those applications, if the random variable happens to get very close to the upper

bound, it might be the case that a higher upper bound would have resulted in a higher

wind power generation or item demand. Therefore we do not observe the ”true” power

generation nor item demand. In that sense one could arguably think of it as being related

to censoring and truncation. However, while truncation assumes the value of the response

variable to be never seen (or recorded) if above the upper bound, and censoring assumes
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one does not know the exact value but does know it lies above the upper bound, we assume

here that an upper bound lower than the ”true” response results in squeezing the observed

value of the variable, and thus in reshaping the probability distribution of the variable.

There are at least two ways of looking at varying bounds which cannot be observed.

They can be introduced in the model as latent random variables A and B. Hence, the

distribution of the response variable is conditional given A and B. The main advantage

of this approach is its generality and flexibility, with A and B being distributed according

to a well-specified probability distribution, which might depend on exogenous variables.

Suppose we assume a parametric model for both the bounds and the response variable.

Because we do not have access to the realizations of the bounds, the maximization of the

likelihood might involve complicated high-dimensional integration, possibly computation-

ally infeasible, and would therefore call for algorithms of the Expectation-Maximization

kind (Dempster et al., 1977). Moreover, for forecasting applications, one needs to first

compute (good enough) forecasts of the bounds in order to be able to forecast the response

variable.

In the context of stochastic processes, varying bounds which cannot be observed can

alternatively be considered as scaling parameters a and b of the parametric distribution of

the bounded variable. Hence, a non-stationary framework is to be used for these additional

parameters to be able to evolve over time. We will focus in this paper on discrete-time

stochastic processes with an upper varying bound. Among the class of distributions with

a bounded support, we choose the generalized logit-normal (GLN) distribution introduced

by Mead (1965). The practical use of any family of distributions depends on the possible
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variation in its shape, and on the ease with which the distribution can be fitted. The GLN

distribution is very flexible, and because the transformed variable is normally distributed,

the probability density function (pdf) of the bounded variable Xt can be expressed as a

function of the standard normal density.

We aim to estimate the parameter vector θ of the pdf of Xt which includes a bound

parameter b through Maximum Likelihood Estimation (MLE). The first challenge we need

to tackle when dealing with the bound as a parameter in a non-stationary setup is how to

handle past observations which are out of the support (0, b) of the bounded distribution of

Xt and make the log-likelihood to be infinite. We introduce a new term which relies on the

sigmoid function to take into account those observations in a ”soft” finite way. Another

challenge is that when considering the bound as a parameter, we cannot assume convexity

anymore as the negative log-likelihood appears not to be convex with respect to (w.r.t.) the

new bound parameter. Instead, we propose to assume quasiconvexity and use recent results

from Hazan et al. (2015) about local quasiconvexity and Stochastic Normalized Gradient

Descent (SNGD) to design an online algorithm. We present the statistical parametric

model with a varying upper bound in Section 2 and the corresponding MLE in Section 3.

In Section 4, we perform simulations of synthetic data to run the algorithm we proposed

in Section 3. First we look at the performance when tracking the parameter vector θ over

time, then when forecasting the probability distribution of the bounded variable. In Section

5, we provide 10-min-ahead probabilistic forecasts of the wind power generation at Anholt

offshore wind farm (Denmark) using this new framework. Finally, we discuss the results,

the limitations and some prospects of the methodology in Section 6.
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2 Statistical model

2.1 Parametric distribution including the new parameter b

Let X̃t be a continuous bounded random variable, X̃t ∈ (0, 1), and Xt be the corresponding

variable rescaled to (0, b) by applying the transformation Xt = bX̃t. The generalized logit

transform Yt ∈ R of Xt ∈ (0, b) is given by

Yt = γ(Xt/b; ν) = log
(Xt/b)

ν

1− (Xt/b)ν
, ν > 0,

where ν is the shape parameter. When Yt is distributed according to a Gaussian distribution

N (µ, σ2), the original variable Xt/b is then distributed according to a GLN distribution

Lν(µ, σ
2), see for example Frederic and Lad (2008) and Pinson (2012). To handle dependent

observations, we assume the expectation of Yt to be an auto-regressive (AR) process of order

p, µt =
∑p

k=1 λkγ(xt−k/b; ν). Note that successive time points t are assumed to be spaced

at uniform intervals. The pdf of Xt conditional on the previous information set Ft−1 (the

σ-algebra generated by X1, . . . , Xt−1), with parameter vector θ = (λ1, . . . , λp, σ
2, ν, b), is

then

pθ(xt|Ft−1) =


1√
2πσ2

ν
xt(1−(xt/b)ν)

exp

[
−1

2

(
γ(xt/b;ν)−µt

σ

)2
]

if 0 < xt−k < b,

0 otherwise.

(1)

where k = 0, . . . , p.

2.2 Extended time-dependent log-likelihood function

We wish to estimate the parameter vector θ of the pdf pθ(xt|Ft−1) in (1) through MLE.

In the case of a stationary time series and constant parameter θ, this comes to minimizing
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the negative log-likelihood objective function

−l(θ) = −
T∑

t=p+1

log pθ(xt|Ft−1) (2)

w.r.t. θ, the data sample x1, . . . , xT being fixed, assuming the random variables Xt are

i.i.d conditionally on Ft−1. Note that we do not take into account the distribution of the

first p observed values (x1, . . . , xp) and consider instead the likelihood conditional on them.

For ease of notation and because the negative log-likelihood is to be minimized w.r.t. θ,

let pθ(xj|Fj−1) = pj(θ). In a non-stationary framework, an estimate of θ at time t can be

retrieved by minimizing a time-dependent negative log-likelihood, such as

−lt(θ) = − 1

nα

t∑
j=p+1

αt−j log pj(θ), (3)

where α ∈ (0, 1], is an exponential forgetting factor and nα = 1
1−α

if α < 1, nα = t − p

if α = 1, is used to normalize the weighted negative log-likelihood. From (1) we can see

that the negative log-likelihood in (2) we wish to minimize takes the value +∞ as soon

as an observation xt is greater or equal to b. This is an implicit constraint on b when

estimating θ̂. However, in a non-stationary framework we do not want b to be greater than

all the observations xt as b should be able to vary over time. Let Ut = {p + 1, , . . . , t},

Ct(θ) = {j ∈ Ut | xj−k < b, k = 0, . . . , p} and Ct(θ) = {j ∈ Ut | j /∈ Ct(θ)} the

complement of Ct(θ) in Ut. The log-likelihood takes finite values only for observations

xj such that j ∈ Ct(θ). Therefore we can - informally - rewrite
t∑

j=p+1

αt−j log pj(θ) as

∑
j∈Ct(θ)

αt−j log pj|b(θ) +
∑

j∈Ct(θ)

αt−j log 0, where pj|b(θ) is the pdf pj(θ) restricted to its sup-

port (0, b). When estimating the parameter vector at time t, we need to take into account

all past observations, including the observations for which the log-likelihood does not take a

7
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finite value, i.e., including observations xj such that j does not belong to Ct(θ). Therefore,

we propose to replace the value 0 in log 0, which originally corresponds to the value of the

pdf pj(θ) outside of its support, with a sigmoid function of b− xj,

sj(b) =
1

1 + exp(−b+ xj)
. (4)

The function sj is illustrated in Figure 1. It can be seen as the probability of xj to be

0

1

b = xj

b < xj b > xj

sj(b)

Figure 1: Sigmoid function sj(b) on the real line.

lower or equal than b: we have sj(b) → 0+ when b << xj and sj(b) → 1− when b >> xj.

Moreover − log sj(b) is convex and differentiable in b. Hence, we propose to use

−l∞t (θ) = − 1

nα

 ∑
j∈Ct(θ)

αt−j log pj(θ) +
∑

j∈Ct(θ)

αt−j log sj(b)

 , (5)

which we refer to as the extended time-dependent negative log-likelihood. One can note that

j ∈ Ct(θ) does not necessarily mean xj ≥ b as it can happen because a lagged observation

xj−k is such that xj−k ≥ b. In such a case, that is j ∈ Ct(θ) and xj < b, the observation

xj will still increase the value of the total log-likelihood compared to the event {xj ≥ b},

which is also a nice feature of using sj.

8
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2.3 (Local-)Quasiconvexity

While convexity, or pseudoconvexity, have proved to be suitable assumptions for estimating

the parameter vector of a GLN distribution (Pierrot and Pinson, 2021), this is not the

case anymore when introducing the bound parameter b. Various simulations of −l∞t in

(5) show the function not to be convex nor pseudoconvex in b, with plateau areas away

from the optimal value b∗ and steep concave cliffs in the neighborhood of b∗. However,

the same simulations also suggest that the function may still have a global minimum.

There is a broader class of functions which include convex functions as a subclass and are

still unimodal functions: quasiconvex functions. For simplicity let assume functions are

differentiable. We use ∥.∥ to denote the Euclidean norm. From Boyd and Vandenberghe

(2010), a definition of quasiconvexity is

Definition 2.1 (Quasiconvexity) A function f : Rd → R is called quasiconvex (or uni-

modal) if its domain and all its sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α},

for α ∈ R, are convex.

As an illustrative example, Figure 2 shows the negative pdf of a normal variable which is

a quasiconvex function but not a convex function. While quasiconvexity is a considerable

generalization of convexity, many of the properties of convex functions hold or have analogs

for quasiconvex functions. However, quasiconvexity broadens but does not fully capture the

notion of unimodality in several dimensions. This is the argument of Hazan et al. (2015)

who introduce local-quasiconvexity, a property that extends quasiconvexity and captures

9
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Figure 2: A quasiconvex differentiable function on R, the negative density of a normal

variable, with plateau areas when going away from the global minimum.

unimodal functions which are not quasiconvex. Let Bd(x, r) denote the d dimensional

Euclidean ball of radius r centered around x, and Bd := Bd(0, 1). The definition of local-

quasiconvexity as introduced by Hazan et al. (2015) is the following:

Definition 2.2 (Local-quasiconvexity) Let x, z ∈ Rd, κ, ϵ > 0.

We say that f : Rd 7→ R is (ϵ, κ, z)-Strictly-Locally-QuasiConvex (SLQC) in x, if at least

one of the following applies:

1. f(x)− f(z) ≤ ϵ.

2. ∥∇f(x)∥ > 0, and for every y ∈ Bd(z, ϵ/κ) it holds that ∇f(x)⊤(y − x) ≤ 0.

Hence, we propose to relax the convexity (or pseudoconvexity) assumption and instead rely

on local-quasiconvexity when minimizing −l∞t .

10
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3 Online maximum likelihood estimation

3.1 Quasiconvex optimization

Let f be the quasiconvex objective function we wish to minimize w.r.t parameter x ∈ Rd. It

is well known that quasiconvex problems can be solved through a series of convex feasibility

problems (Boyd and Vandenberghe, 2010). However, solving such feasibility problems can

be very costly and involves finding a family of convex functions ϕt : Rd → R, t ∈ R, that

satisfy

f(x) ≤ t ⇐⇒ ϕt(x) ≤ 0,

and ϕs(x) ≤ ϕt(x) whenever s ≥ t. In the batch setup, a pioneering paper by Nesterov

(1984) was the first to propose an efficient algorithm, Normalized Gradient Descent (NGD),

and to prove that this algorithm converges to an ϵ-optimal solution withinO(1/ϵ2) iterations

given a differentiable quasiconvex objective function. Gradient Descent (GD) with fixed

step sizes is known to perform poorly when the gradients are too small in a plateau area

of the function or explode in cliff areas. Among the deep learning community, there have

been several attempts to tackle plateaus and cliffs. However, those works do not provide a

theoretical analysis showing better convergence guarantees than NGD, which is similar to

GD, except one normalizes the gradient. Having introduced SLQC functions, Hazan et al.

(2015) prove that NGD also finds an ϵ-optimal minimum for such functions in O(1/ϵ2)

iterations.

11
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3.2 Online Normalized Gradient Descent

NGD can be used to minimize −l∞t w.r.t θ. However, this implies to run NGD every

time we want to update the parameter vector θ. Taking advantage of the SLQC assump-

tion, Hazan et al. (2015) present SNGD, which is similar to Stochastic Gradient Descent

(SGD) except they normalize the gradients, and prove the convergence of SNGD within

O(1/ϵ2) iterations to an ϵ-optimal minimum. From the observation that online learning

and stochastic optimization are closely related and interchangeable (see, e.g., Cesa-Bianchi

et al. (2004) and Duchi et al. (2011)), we use the Stochastic Normalized Gradient Descent

(SNGD) introduced by Hazan et al. (2015) and derive the corresponding Online Normalized

Gradient Descent (ONGD) for online learning. ONGD is presented in Algorithm 1. To the

best of our knowledge, this is the first time SNGD is used in an online learning fashion for

Online Quasiconvex Optimization. Following the framework introduced by Cesa-Bianchi

Algorithm 1 Online Normalized Gradient Descent (ONGD)

Input: convex set K, T, θm ∈ K, step size η, minibatch size m

for t = m, . . . , T do

Play θt and observe cost ft(θt) =
1

m

t∑
j=t−m+1

fj(θt).

Update and project:

θ̃t+1 = θt − ηĝt where gt = ∇ft(θt), ĝt =
gt

∥gt∥

θt+1 = ΠK(θ̃t+1)

end for

and Lugosi (2006), we define ONGD in terms of a repeated game played between the online

12
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player and the ”environment” generating the outcome sequence. At each time t, we play a

parameter vector xt. After we have committed to this choice, a cost function ft is revealed

and the cost we incur is ft(xt), the value of the cost function for the choice xt. Similarly to

Online Gradient Descent (OGD), which is based on standard gradient descent from offline

optimization and was introduced in its online form by Zinkevich (2003), we have included

in ONGD a projection step ΠK(.). Indeed in each iteration, the algorithm takes a step from

the previous point in the direction of the normalized gradient of the previous cost. This

step may result in a point outside of the underlying convex set K. In such cases the algo-

rithm projects the point back to the convex set K, i.e. finds its closest point in K. SNGD

requires the gradient to be estimated using a minibatch of minimal size m. Indeed, Hazan

et al. (2015) provide a negative result showing that if the minibatch size is too small then

the algorithm might diverge. This is where SNGD differs from SGD as in the latter and

for the case of convex functions even a minibatch of size 1 is enough to ensure convergence.

GD methods update the current value of a parameter θ by taking a step in a descent

direction, according to the gradient of the cost function f over a complete set of observa-

tions:

θ̂i+1 = θ̂i − ηi
1

T

T∑
j=1

∇θf(xj|θ̂i), (6)

where i is the current iteration and ηi the step size at iteration i. Online/stochastic GD

is obtained by dropping the averaging operation in (6) and updating the parameter θ

according to

θ̂i+1 = θ̂i − ηi∇θf(xi|θ̂i), (7)

where xi has been chosen randomly for SGD and xi are successive observations for OGD.

13
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The simplification relies on the hope that the random noise introduced by this procedure

will not compromise the average behavior of the algorithm. Let α = 1 and −l∞t (θ) =

− 1

t− p

 ∑
j∈Ct(θ)

log pj(θ) +
∑

j∈Ct(θ)

log sj(b)

. Hence, ONGD can be applied to our framework

by taking

fj(θt) :=


− log pj(θ̂t) if j ∈ Ct(θ̂t),

− log sj(b̂t) if j ∈ Ct(θ̂t).

When minimizing w.r.t θ = (Λ, σ2, ν, b), we shall recover positive estimates of the scale

parameter σ2 and the shape parameter ν. This is constrained optimization which can be

easily overcome by replacing σ2 with ω = log σ2 and ν with τ = log ν. Such a change of

variable allows us to avoid the projection step in Algorithm 1.

3.3 Recursive maximum likelihood estimation

A straightforward competitor to ONGD is a (classic) recursive MLE procedure. While sub-

optimal for non convex problems, such a recursive procedure is a quasi-Newton approach

which approximates the Hessian with a positive definite matrix thanks to first-order in-

formation. Hence, the algorithm is ensured to run although its performance depends on

how close is the approximated Hessian to the true Hessian. Recall that nα = 1
1−α

. We can

rewrite (5) as

−l∞t (θ) =


−αl∞t−1(θ)− (1− α) log pt(θ) if t ∈ Ct(θ),

−αl∞t−1(θ)− (1− α) log st(b) if t ∈ Ct(θ).

(8)

Let now θ̂t be the estimate of the parameter vector at time t. The recursive MLE procedure

relies on a Newton step for obtaining θ̂t as a function of θ̂t−1, see, e.g., Madsen (2007) and

14
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Pinson and Madsen (2012). Let ht = ∇θ log pt(θ̂t−1) if t ∈ Ct(θ̂t−1), ht = ∇θ log st(b̂t−1) if

t ∈ Ct(θ̂t−1) and R̂t = −∇2
θl

∞
t (θ̂t). Our two-step recursive scheme at time t is

R̂t = αR̂t−1 + (1− α)hth
⊤
t ,

θ̂t = θ̂t−1 + (1− α)R̂−1
t ht.

An algorithm based upon such a scheme might face computational issues as it requires

inverting a matrix, the information matrix R̂t, at each iteration. This can be prevented by

directly working with the matrix inverse, the covariance matrix P̂t. The resulting algorithm

(rMLE.b) is described in Algorithm 2.

Algorithm 2 Recursive Maximum Likelihood Estimation (rMLE.b)

Input: T, θp ∈ Rp+3, forgetting factor α ∈ (0, 1), P̂p = 106Ip+3

for t = p+ 1, . . . , T do

Set ht = ∇θ log pt(θ̂t−1) if t ∈ Ct(θ̂t−1) or set ht = ∇θ log st(θ̂t−1) if t ∈ Ct(θ̂t−1).

Update:

P̂t =
1

α

[
Ip+3 −

P̂t−1hth
⊤
t

α
1−α

+ h⊤
t P̂t−1ht

]
P̂t−1

θ̂t = θ̂t−1 + (1− α)P̂tht if t > T0 + p

end for

The technical derivations and detailed computations required for Algorithms 1 and 2

are available in the supplementary material.

15

Page 15 of 38 Technometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

4 Simulation study

We perform an empirical study on synthetic data to check on the behaviour of ONGD, in

particular in comparison with a classic recursive MLE procedure, i.e., rMLE.b. We run

100 Monte Carlo (MC) simulations with T = 12000, λ = 0.9, σ2 = 1, ν = 1.5. Only the

bound parameter b is simulated so that it varies over time. Hence, in Section 4.1, while

we test the tracking ability of our algorithms regarding b, we also control their ability to

retrieve constant parameters, i.e., λ, σ2 and ν. Then, in Section 4.2, we introduce the task

of issuing predictive distributions using the tracked parameters and evaluate the algorithms

depending on the sharpness and calibration of these forecasts.

4.1 Tracking the parameter vector

The lag p = 1 of the AR process is assumed to be known and the initial values of the

parameter vector θ = (λ, σ2, ν, b) are set to (0, 1, 1, 1). From a theoretical point of view,

these initial values only need to be feasible, i.e., σ2
0 > 0, ν0 > 0 and b0 = 1. We (a

priori) choose σ2
0 = 1 and ν0 = 1 because they are standard values. The values of the

hyperparameters m and η for ONGD, α for rMLE.b, are empirically selected. We test

a grid of values for each hyperparameter and select the values which achieve the best

tracking/accuracy trade-off on the first MC simulation. The same values are then used on

the 99 remaining MC simulations. These values are listed in Table 1. ONGD runs as soon

as m observations are available, while rMLE.b runs from p observations on but needs a

warm-up period T0 = 150 to update the covariance matrix P̂t before starting updating the

parameters. Note that the computational complexity is O(Tmp) for ONGD and O(Tp2)
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for rMLE.b. Since p = 1 and m = 100 here, rMLE.b is slightly faster. However, this is not

always the case, as we will see when applying the algorithms to wind power forecasting in

Section 5 with p > m. Overall, because T >> m and T >> p, the computational cost is

similar for both algorithms.

Table 1: Hyperparameter values for each algorithm: step size η and minibatch size m

(Algorithm 1) and forgetting factor α (Algorithm 2)

η m α

Algorithm 1: ONGD 0.001 100 -

Algorithm 2: rMLE.b - - 0.975

We provide in Figure 3 the plots of −l∞t for the first MC simulation, t = 3000 and

α = 0.975 w.r.t. each parameter, the other parameters being fixed to their true value.

From the function being not convex in b, it is clear that the optimization problem cannot

be assumed to be convex when introducing an upper bound parameter b. The tracked

parameters averaged over the simulations are presented in Figure 4 along with correspond-

ing MC intervals. ONGD manages to accurately estimate both time-varying and constant

parameters while rMLE.b performs well in tracking a decreasing b, but fails to properly

track an increasing b. Moreover, this comes with a cost in accuracy which is very high for

constant parameters. The estimation of σ2 and ν is also rather unstable. Note that σ2

is already at its true value when the algorithms get started and allows us to control that

there is no divergence from the optimal value. As a matter of fact and as stated by Hazan
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Figure 3: The extended time-dependent negative log-likelihood for the first MC simulation,

t = 3000, α = 0.975, w.r.t. λ (top left), ω (top right), τ (bottom left) and b (bottom right).

For each plot, the remaining parameters are set to their true value.

et al. (2015), for ONGD we have observed σ2 to diverge when the minibatch size m was

too small, i.e., for m < 10.

4.2 Forecasting the distribution

Because many applications which might benefit from this framework involve forecasting,

we are now interested in the performance of the algorithms when forecasting at time t

the distribution of the bounded variable Xt+1. To be able to track the bound parame-

ter b over time, we have introduced in Section 2 the extended time-dependent negative

log-likelihood −l∞t which makes sense from an inference point of view. Because we are
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Figure 4: Confidence intervals of the tracked parameters for ONGD (top) and rMLE.b

(bottom) with coverage probabilities 0.9 and 0.5, along with the average estimates (solid

lines) and the true parameters (dotted lines).

working with series of dependent observations, when moving to forecasting the distribu-

tion of Xt+1, we need the current value bt of b to be greater than all the p former ob-

served values of Xt, . . . , Xt−p+1 for the expected value of Xt+1 to exist. Therefore, we

introduce a projection step as described in Section 1 for ONGD: we project θ̂t on the

convex set K = Rp+2 × (max(xt, . . . , xt−p+1),+∞) and we get the projected parameter

θ̃t = ΠK(θ̂t) = (Λ̂t, ω̂t, τ̂t, b̃t) where b̃t = max(xt, . . . , xt−p+1) + δ if max(xt, . . . , xt−p+1) > b̂t,

b̃t = b̂t if max(xt, . . . , xt−p+1) < b̂t. Note that we need to introduce a small δ > 0 as we

project b̂t on an open convex set. When looking at the observation xt as a coarsened version

of Xt, δ can be seen as a coarsening parameter. This coarsened data framework has been
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formalized by Heitjan and Rubin (1991) and Heitjan (1993). We use δ = 0.001.

We evaluate the predictive distributions through proper scoring rules. Scoring rules

are attractive measures of predictive performance as they evaluate calibration and sharp-

ness simultaneously. The paradigm of maximizing the sharpness subject to calibration

was proposed in Gneiting et al. (2007) under the conjecture that ideal forecasts and the

maximization of sharpness subject to calibration are equivalent. Not only scoring rules

are measures of both calibration and sharpness. When they are proper for the class of

predictive distributions at hand, they also incentivize truthful calibrated and informative

forecasts (Holzmann and Eulert, 2014). We use the Continuous Ranked Probability Score

(CRPS) which is a proper scoring rule relative to the class P of the Borel probability mea-

sures on R (Gneiting and Raftery, 2007). Proper scoring rules are often used in negative

orientation, e.g., the lower the better. As we work with predictive densities, one could

think of using the logarithmic score which is strictly proper relative to all measures that

are absolutely continuous. However, in our framework it can always happen that xt+1 falls

out of the support of the predictive density p̂t+1 we have issued at time t, when the current

estimate b̂t of the upper bound is too low. In such a case, the logarithmic score is equal to

− log p̂t+1(xt+1) = − log 0 = +∞, which is not suitable. In contrast the CRPS is defined

on R as

CRPS(F, x) =

∫ ∞

−∞
(F (y)− 1y≥x)

2 dy, (9)

where F is the cumulative distribution function (cdf) of the probabilistic forecast and y is

the evaluation point. Let F := F̂t+1 and x := xt+1. If xt+1 happens to be greater than b̂t
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we get

CRPS(F̂t+1, xt+1) =

∫ b̂t

−∞

(
F̂t+1(y)− 1y≥xt+1

)2

dy +

∫ ∞

b̂t

(
1− 1y≥xt+1

)2
dy,

=

∫ b̂t

−∞
F̂t+1(y)

2dy +

∫ xt+1

b̂t

1 dy +

∫ ∞

xt+1

0 dy,

=

∫ b̂t

−∞
F̂t+1(y)

2dy + xt+1 − b̂t.

Hence, the CRPS is increased by an observation falling out of the support of the predictive

distribution but to a higher finite value contrary to the logarithmic score which becomes

infinite. Moreover, the CRPS allows us to compare discrete and continuous distributions,

that is to compare our density-based algorithms to usual benchmarks such as climatology

and probabilistic persistence, since if the predictive distribution takes the form of a sample

of size N , then the right side of (9) can be evaluated in O(N logN) operations (Hersbach,

2000). Climatology is based on all data available at the time of forecasting and probabilistic

persistence is the last observed value, which we dress with the past persistence errors. We

also evaluate the predictive distributions issued by rMLE.1, i.e., by the usual recursive

MLE when the bound is assumed to be fixed and equal to 1 (Pierrot and Pinson, 2021).

We start computing predictive distributions after 2,000 observations. Recall that the

hyperparameters were chosen in Section 4.1 upon looking at only the first MC simulation,

but the whole simulated time series, i.e., looking at the data we are now computing prob-

abilistic forecasts for. This may be optimistic, even if we only looked at the data from

the first MC simulation. In order for our algorithms to not be more optimistic than the

benchmarks, we use the hyperparameters for probabilistic persistence and rMLE.1 that

give the best CRPS on the first MC simulation. The CRPS are available in Table 2. The

21

Page 21 of 38 Technometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Table 2: 1-step-ahead CRPS and respective improvement over persistence and rMLE.1.

The CRPS is averaged over the MC sample, and the standard deviation is also provided.

mean (sd) Imp./persist. Imp./rMLE.1

ideal forecaster 5.78% (0.10) - -

climatology 15.26% (0.24) - -

probabilistic persistence 6.28% (0.10) - -

rMLE.1 6.04% (0.09) 3.77% -

Algorithm 1: ONGD 5.81% (0.10) 7.52% 3.89%

Algorithm 2: rMLE.b 6.05% (0.17) 3.61% -0.17%

average CRPS obtained by the ideal forecaster, i.e., the GLN distribution with the true

values λ, σ2, ν, bt−p+1, . . . , bt+1, is 5.78%. Probabilistic persistence performs very well on

our synthetic dataset with a CRPS which is already much closer to the ideal forecaster’s

than climatology’s. ONGD, which properly handles the varying upper bound, shows a

CRPS which is very close to the ideal forecaster’s. Moving from rMLE.1 to ONGD pro-

vides a significant improvement, which is similar to moving from probabilistic persistence

to rMLE.1. As for ONGD’s natural competitor rMLE.b, it does not manage to improve

the results of rMLE.1.

To specifically check on probabilistic and marginal calibration, Probability Integral

Transform (PIT) histograms and marginal calibration plots are available in the supple-

mentary material.
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5 Application to wind power forecasting

Accurately forecasting wind power generation is highly important for the integration of

wind energy into power systems. We are interested in very short-term forecasting, that is

in lead times of a few minutes, which are not only crucial for transmission system operators

to keep the system in balance but also very difficult to improve the forecasts for, especially

compared to the simple but very efficient persistence.

5.1 Data description

We have historical data from a large offshore wind farm, Anholt in Denmark, from July 1,

2013 to August 31, 2014. The active power is available for 110 wind turbines at a temporal

resolution of every 10 minutes. We scale each time series individually according to the

nominal power of the wind turbine, and compute the average generation over the wind

farm depending on the number of wind turbines which are available at each time t in order

to handle missing values. The response random variable we wish to forecast at time t is

Xt+1 ∈ (0, 1), the average active power generated by the wind farm at time t+1. As stated

in Section 4.2, we choose to look at the observation xt as a coarsened version of Xt with

δ = 0.001. Hence, an observation xt is set to δ if xt < δ and to 1 − δ if xt > 1 − δ and

xt ∈ [δ, 1− δ] whereas Xt ∈ (0, 1).

5.2 Validation setup

We split our dataset into two datasets that we keep separate: a training/cross-validation

dataset from July 1, 2013 to March 31, 2014, resulting in 39,450 observations; a test dataset
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from April 1 to August 31, 2014, resulting in 22,029 observations. As in Section 4.2, we

compare Algorithms 1 and 2 to climatology, probabilistic persistence and rMLE.1. For

methods involving hyperparameters, that is all of them but climatology, we choose the

hyperparameters upon CRPS-based cross-validation: we run each competing algorithm

from the beginning of the training set, issue the corresponding probabilistic forecasts, and

select the hyperparameters which give the lowest CRPS on the cross-validation dataset, i.e.,

data from November 1, 2013 to March 31, 2014. The subsequent hyperparameter values

are available in Table 3.

Table 3: Hyperparameter values for each algorithm: order p of the AR process, step size

η, minibatch size m and forgetting factor α.

p η m α

Algorithm 1: ONGD 4 0.03 1 -

Algorithm 2: rMLE.b 5 - - 0.9982

5.3 Assessment of the probabilistic forecasts

The probabilistic forecasts associated with each algorithm are assessed on the test set. The

corresponding CRPS are presented in Table 4. Again, probabilistic persistence improves

the CRPS of climatology by a large percentage already and both rMLE algorithms perform

similarly. As for ONGD, the improvement over both persistence and rMLE.1 is very signif-

icant and much larger than the one observed during the simulation study. The parameters
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Table 4: 10-minute-ahead CRPS and respective improvements over probabilistic persistence

and rMLE.1.

CRPS Imp./persist. Imp./rMLE.1

climatology 22.03% - -

probabilistic persistence 1.35% - -

rMLE.1 1.08% 19.89% -

Algorithm 1: ONGD 0.89% 34.22% 17.89%

Algorithm 2: rMLE.b 1.06% 21.83% 2.43%

*Best forecast bolded.

tracked by rMLE.1 and Algorithms 1and 2 are plotted for some sub-sample of the test set in

Figure 5. We plot the projection b̃t of b̂t, see Section 4.2, to display the upper bound which

is actually used for prediction. The estimates of the parameter vector Λ are consistent

between ONGD and rMLE.b, while more noisy for ONGD. The parameter estimates from

rMLE.1 and rMLE.b are in general very close to one another and show similar patterns.

Indeed, rMLE.b does not manage to track a varying upper bound since the estimated b̂t

does not vary significantly away from 1. Only ONGD captures variations of the bound

parameter b below 1. When selecting the hyperparameters, we observed a significant im-

provement on the cross-validation set for a minibatch size m = 1 only, the values tested for

being m ∈ {1, 5, 10, 20, 50, 100, 150}). By looking at the parameter estimates, we noticed

that for m = 5 the bound estimate was also significantly varying below 1, but more slowly
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Figure 5: Estimates Λ̂t, σ̂
2
t , ν̂t and projected estimate b̃t on a sub-sample of the test set for

rMLE.1 (top), ONGD (center) and rMLE.b (bottom).

and closer to 1. When looking at the power generation itself, the bound tracked by ONGD

for m = 1 does make sense. This result and the generalization performance of the model

are confirmed on the test set, since the CRPS we get is very close to the one we got on the

cross-validation set. Therefore, it seems that these data call for a very aggressive choice of

m, so that the algorithm can track the bound. In return some noise is introduced into the

other parameter estimates.

In Figure 6, we provide the probabilistic forecasts of ONGD over a 36-hour period of

time on the test set. One can note that the prediction intervals are tight. When looking

at probabilistic calibration, the PIT histogram shows a too large number of very low and

very high PIT values, which suggests that the predictive distributions issued by ONGD
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Figure 6: Probabilistic forecasts from ONGD, based on prediction intervals with nominal

coverage rates of 95 and 75%, along with power measurements (solid black line).

are underdispersed. However, when an observation falls outside of the prediction interval,

it does not fall far away, which explains the very good CRPS achieved by ONGD overall.

PIT histograms and marginal calibration plots for all algorithms are again available in the

supplementary material.

6 Discussion

We have introduced a framework where where we aim to track varying bounds for bounded

time series as well as an extended time-dependent negative log-likelihood to deal with

this new framework. As the objective functions now at hand are not convex anymore,

we have proposed to use the broader local-quasiconvexity assumption through an online

algorithm. To compete with this quasiconvexity framework and online algorithm, we have

also proposed a more usual recursive MLE procedure. We have run these algorithms on
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both a synthetic and a real dataset to track the parameters of a time series distribution

over time, including the upper bound of the support of the distribution. Then, we have

presented how to use such a new framework for forecasting.

The algorithm we propose in the new framework we have introduced is an online al-

gorithm which is directly derived from SNGD and so, similarly to ”ordinary” OGD, only

relies on the negative log-likelihood we observe at time t for our current set of parameters.

It does not longer require any kind of forgetting action and only asks for the usual step

size when updating the parameter vector through the gradient at time t. A new hyper-

parameter which is related to a specificity of SNGD is the size m of the minibatch, since

SNGD is not guaranteed to converge for m = 1, unlike SGD. This algorithm performs

very well on our simulated examples, with performances very close to the ideal forecaster.

When moving to wind power forecasting, it improved the CRPS of probabilistic persistence

by more than 30% on the test set. However, the predictive distributions do not achieve

probabilistic calibration, as the prediction intervals appear to be too narrow in general. It

is worth noting that ONGD required to set the minibatch size m to 1 on the wind power

generation dataset in order to be able to track the upper bound. This is quite aggressive

and suggests that this kind of data may call for methods which can handle big jumps in

the bound values.

We challenged ONGD with two competitors, that both rely on recursive MLE: rMLE.1

and rMLE.b. The former operates in the usual framework when the upper bound is assumed

to be fixed to 1, while the latter is as straightforward adaptation of rMLE.1 in the context of

an upper varying bound. These algorithms showed similar performances on both synthetic
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and real data, rMLE.b failing to properly track an upper varying bound. Since this is,

to the best of our knowledge, the first time such a framework with varying bounds has

been studied, further research could explore different assumptions, e.g., on the stochastic

process, on the distribution of the bounded variable, or a lower bound.

SUPPLEMENTARY MATERIAL

Calculation details: Technical derivations and detailes computations required for Algo-

rithms 1 and 2. (.pdf file)

Additional plots: PIT histograms and marginal calibration plots for all competing algo-

rithms in the simulation study and the application to wind power forecasting. (.pdf

file)

R project: R project with the R scripts for the simulation study in section 4, along

with the corresponding synthetic data. All outputs necessary for the study can be

reproduced with the corresponding scripts and are also provided. The structure and

content of the R project is described in a README file. (.zip file)
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Additional plots

1 Introduction

To empirically assess probabilistic calibration, we provide Probability Integral Transform (PIT)
histograms in Figures 1 and 3. To empirically assess marginal calibration, we provide marginal
calibration plots which show the difference between the predictive and the empirical cumulative
distribution functions in Figures 2 and 4. Probabilistic calibration is reflected through a uniform
histogram and marginal calibration through the proximity between the predictive and the em-
pirical cumulative distribution functions. Note that we have removed climatology from Figure
4 since the corresponding predictive cumulative distribution function is too far on average from
the empirical one for the difference to be plotted on the same graph as the other methods’.

2 Simulation study
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Figure 1: PIT histograms for all benchmarks and Algorithms 1 and 2: (a) ideal forecaster, (b)
climatology, (c) probabilistic persistence, (d) rMLE.1, (e) ONGD, (f) rMLE.b.
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Figure 2: Marginal calibration plot for all benchmarks and Algorithms 1 and 2.

3 Application to wind power forecasting
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Figure 3: PIT histograms for all benchmarks and Algorithms 1 and 2: (a) climatology, (b)
probabilistic persistence, (c) rMLE.1, (d) ONGD, (e) rMLE.b.
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Figure 4: Marginal calibration plot for probabilistic persistence, rMLE.1 and Algorithms 1 and
2.
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Calculation details

1 Algorithm 1: ONGD

In this section,
θ = (Λ, ω, τ, b) = (Λ, log σ2, log ν, b) ∈ Rp+3,
Um
t = {t−m+ 1, . . . , t},

Cm
t (θ) = {j ∈ Um

t | xj−k < b, k = 0, . . . , p}, Cm
t (θ) = {j ∈ Um

t |j /∈ Cm
t (θ)},

y = (yj) ∈ R|Cm
t (θ)|, where yj = γ(xj/b; ν) and j ∈ Cm

t (θ),
Y is a matrix with columns By, B2y, . . . , Bpy ∈ R|Cm

t (θ)|×p, where B is the backshift operator,
C is a constant which does not depend on θ.

1.1 Objective function

ft(θ) =
1

m

 ∑
j∈Cm

t (θ)

log pj(θ) +
∑

j∈Cm
t (θ)

log sj(b)

 ,

=
1

m

(ω
2
− τ

)
|Cm

t (θ)| − 1

m

∑
j∈Cm

t (θ)

log (1− (xj/b)
exp τ )

+
1

m

1

2 expω
(y −YΛ)⊤(y −YΛ) +

1

m

∑
j∈Cm

t (θ)

log(1 + exp(−b+ xj))

+ C.

1.2 Gradient

First derivative w.r.t. Λ

∂ft
∂Λ

= − 1

m expω
Y⊤(y −YΛ).

First derivative w.r.t. ω

∂ft
∂ω

=
1

2m
|Cm

t (θ)| − 1

2m expω
(y −YΛ)⊤(y−YΛ).

First derivative w.r.t. τ

∂ft
∂τ

= − 1

m
|Cm

t (θ)| − exp τ

m

∑
j∈Cm

t (θ)

exp yj log(xj/b) +
1

m expω
(u−UΛ)⊤(y −YΛ),

where u =
∂y

∂τ
, uj = exp τ

log(xj/b)

1− (xj/b)exp τ
.
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First derivative w.r.t. b

∂ft
∂b

=
1

m

exp τ

b

∑
j∈Cm

t (θ)

exp yj +
1

m expω
(z− ZΛ)⊤(y −YΛ)− 1

m

∑
j∈Cm

t (θ)

exp(−b+ xj)

1− exp(−b+ xj)
,

where z =
∂y

∂b
, zj = − exp τ

b (1− (xj/b)exp τ )
.

2 Algorithm 2: rMLE.b

In this section,
θ = (Λ, ω, τ, b) = (Λ, log σ2, log ν, b) ∈ Rp+3,
y = (yt−1, . . . , yt−p) ∈ Rp, yj = γ(xj/b; ν).

2.1 Gradient

ht =

{
∇θ log pt(θ̂t−1) if t ∈ Ct(θ),

∇θ log st(b̂t−1) if t ∈ Ct(θ).

First derivatives w.r.t. Λ

∂ log pt
∂Λ

=
1

expω
(yt − Λ⊤y)y,

∂ log st
∂Λ

= 0.

First derivatives w.r.t. ω

∂ log pt
∂ω

= −1

2
+

1

2 expω
(yt − Λ⊤y)2,

∂ log st
∂ω

= 0.

First derivatives w.r.t. τ

∂ log pt
∂τ

= 1 + exp τ exp yt log(xt/b)−
1

expω
(ut − Λ⊤u)(yt − Λ⊤y),

∂ log st
∂τ

= 0,

where u =
∂y

∂τ
, ut = exp τ

log(xt/b)

1− (xt/b)exp τ
.

First derivatives w.r.t. b

∂ log pt
∂b

= −exp τ

b
exp yt +

1

expω
(zt − Λ⊤z)(yt − Λ⊤y),

∂ log st
∂b

=
exp(−b+ xt)

1 + exp(−b+ xt)
,

where z =
∂y

∂b
, zt =

exp τ

b (1− (xj/b)exp τ )
.
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2.2 Detailed computation of the matrix P̂t

We use the matrix inversion rule

[A+BCD]
−1

= A−1 −A−1B
[
DA−1B+C−1

]−1
DA−1,

with A = αR̂t−1, B = D⊤ = ht, C = (1− α)I and we get

P̂t = R̂−1
t ,

=
[
αR̂t−1 + (1− α)hth

⊤
t

]−1

,

=
(
αR̂t−1

)−1

−
(
αR̂t−1

)−1

ht

[
h⊤
t

(
αR̂t−1

)−1

ht + ((1− α)I)
−1

]−1

h⊤
t

(
αR̂t−1

)−1

,

=
1

α
P̂t−1 −

1

α2
P̂t−1ht

[
1

α
h⊤
t P̂t−1ht +

1

1− α

]−1

h⊤
t P̂t−1,

=
1

α
P̂t−1 −

P̂t−1hth
⊤
t P̂t−1

α2
[
1
αh

⊤
t P̂t−1ht +

1
1−α

] ,
=

1

α

[
I−

P̂t−1hth
⊤
t

α
1−α + h⊤

t P̂t−1ht

]
P̂t−1.
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