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On tracking varying bounds
when forecasting bounded time series

oNOYTULT D WN =

10 Abstract

We consider a new framework where a continuous, though bounded, random vari-
able has unobserved bounds that vary over time. In the context of univariate time
14 series, we look at the bounds as parameters of the distribution of the bounded random
15 variable. We introduce an extended log-likelihood estimation and design algorithms
16 to track the bound through online maximum likelihood estimation. Since the result-
17 ing optimization problem is not convex, we make use of recent theoretical results
18 on stochastic quasiconvex optimization, to eventually derive an Online Normalized
Gradient Descent algorithm. We illustrate and discuss the workings of our approach
based on both simulation studies and a real-world wind power forecasting problem.

23 Keywords: Generalized logit-normal distribution; Normalized Gradient Descent; Online
24 quasiconvex optimization; Inventory problem; Wind power probabilistic forecasting.
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1 Introduction

Many statistical applications involve response variables which are both continuous and
bounded. This is especially the case when one has to deal with rates, percentages or
proportions, for example when interested in the spread of an epidemic (Guolo and Varin,
2014), the unemployment rates in a given country (Wallis, 1987) or the proportion of time
spent by animals in a certain activity (Cotgreave and Clayton, 1994). Indeed, proportional
data are widely encountered within ecology-related statistical problems, see Warton and
Hui (2011) among others. Similarly, when forecasting wind power generation, the response
variable is also such a continuous bounded variable. Wind power generation is a stochastic
process with continuous state space which is bounded from below by zero when there
is no wind, and from above by the nominal capacity of the turbine (or wind farm) for
high-enough wind speeds. More generally, renewable energy generation from both wind
and solar energy are bounded stochastic processes, with the same lower bound (i.e., zero
energy production) and different characteristics of their upper bound (since solar energy
generation has a time-varying maximum depending on the time of day and time of year),
see for example Pinson (2012) and Bacher et al. (2009).

These continuous bounded random variables call for probability distributions with a
bounded support such as the beta distribution, truncated distributions or distributions of
transformed normal variables as discussed by Johnson (1949). Often, the response variable
is first assumed to lie in the unit interval (0, 1) and is then rescaled to any interval (a, b). For
applications involving such response variables, these bounds (a,b) are always fixed to the

same values over the sample. While this assumption makes sense in some cases, we argue
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it can be misleading and negatively impacts inference when the bounds (a, b) actually vary
over time or depending on exogenous variables whilst not being observed. In particular,
it is highly relevant for energy applications, such as wind power forecasting, as the upper
bound b may change over time, while being unknown, for example in case of curtailment
actions for which information is not available or not reliable. Another application is the
inventory problem of the retailer (Laderman and Littauer, 1953). Let X; be the demand
for a certain item at time ¢: X, is double-bounded, from below by zero and from above by
the stock available at time ¢, i.e., by a time-varying upper bound b;. To prepare for demand
Xi11, the retailer needs to find the quantity they should order in the light of the knowledge
they have of the past stocks and demands. Similarly to the problem of forecasting wind
power generation, the inventory problem might then involve a double-bounded random
variable, the demand for a certain item, which can be regarded as a continuous variable
for large quantities being involved, and upper bounded by a bound which may vary over
time whilst not being observed, for example in case of supply chain issues, information
mismanagement or very large retailers that could not track the evolution of the stocks for
each item or would rather benefit from an automatic data-driven tracking.

In both those applications, if the random variable happens to get very close to the upper
bound, it might be the case that a higher upper bound would have resulted in a higher
wind power generation or item demand. Therefore we do not observe the ”"true” power
generation nor item demand. In that sense one could arguably think of it as being related
to censoring and truncation. However, while truncation assumes the value of the response

variable to be never seen (or recorded) if above the upper bound, and censoring assumes
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one does not know the exact value but does know it lies above the upper bound, we assume
here that an upper bound lower than the "true” response results in squeezing the observed
value of the variable, and thus in reshaping the probability distribution of the variable.

There are at least two ways of looking at varying bounds which cannot be observed.
They can be introduced in the model as latent random variables A and B. Hence, the
distribution of the response variable is conditional given A and B. The main advantage
of this approach is its generality and flexibility, with A and B being distributed according
to a well-specified probability distribution, which might depend on exogenous variables.
Suppose we assume a parametric model for both the bounds and the response variable.
Because we do not have access to the realizations of the bounds, the maximization of the
likelihood might involve complicated high-dimensional integration, possibly computation-
ally infeasible, and would therefore call for algorithms of the Expectation-Maximization
kind (Dempster et al., 1977). Moreover, for forecasting applications, one needs to first
compute (good enough) forecasts of the bounds in order to be able to forecast the response
variable.

In the context of stochastic processes, varying bounds which cannot be observed can
alternatively be considered as scaling parameters a and b of the parametric distribution of
the bounded variable. Hence, a non-stationary framework is to be used for these additional
parameters to be able to evolve over time. We will focus in this paper on discrete-time
stochastic processes with an upper varying bound. Among the class of distributions with
a bounded support, we choose the generalized logit-normal (GLN) distribution introduced

by Mead (1965). The practical use of any family of distributions depends on the possible
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variation in its shape, and on the ease with which the distribution can be fitted. The GLN
distribution is very flexible, and because the transformed variable is normally distributed,
the probability density function (pdf) of the bounded variable X; can be expressed as a
function of the standard normal density.

We aim to estimate the parameter vector € of the pdf of X; which includes a bound
parameter b through Maximum Likelihood Estimation (MLE). The first challenge we need
to tackle when dealing with the bound as a parameter in a non-stationary setup is how to
handle past observations which are out of the support (0,b) of the bounded distribution of
X, and make the log-likelihood to be infinite. We introduce a new term which relies on the
sigmoid function to take into account those observations in a ”"soft” finite way. Another
challenge is that when considering the bound as a parameter, we cannot assume convexity
anymore as the negative log-likelihood appears not to be convex with respect to (w.r.t.) the
new bound parameter. Instead, we propose to assume quasiconvexity and use recent results
from Hazan et al. (2015) about local quasiconvexity and Stochastic Normalized Gradient
Descent (SNGD) to design an online algorithm. We present the statistical parametric
model with a varying upper bound in Section 2 and the corresponding MLE in Section 3.
In Section 4, we perform simulations of synthetic data to run the algorithm we proposed
in Section 3. First we look at the performance when tracking the parameter vector 6 over
time, then when forecasting the probability distribution of the bounded variable. In Section
5, we provide 10-min-ahead probabilistic forecasts of the wind power generation at Anholt
offshore wind farm (Denmark) using this new framework. Finally, we discuss the results,

the limitations and some prospects of the methodology in Section 6.
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2 Statistical model

2.1 Parametric distribution including the new parameter b

Let X, be a continuous bounded random variable, X; € (0,1), and X; be the corresponding
variable rescaled to (0,b) by applying the transformation X, = bX,. The generalized logit
transform Y; € R of X, € (0,b) is given by

(X:/b)"

s,
1— (X;/b)

Y, = v(Xy/b;v) = log

where v is the shape parameter. When Y; is distributed according to a Gaussian distribution
N (11, 0%), the original variable X;/b is then distributed according to a GLN distribution
L, (i, 0%), see for example Frederic and Lad (2008) and Pinson (2012). To handle dependent
observations, we assume the expectation of Y; to be an auto-regressive (AR) process of order
P, e = 2 p_y My(zi—/b; v). Note that successive time points ¢ are assumed to be spaced
at uniform intervals. The pdf of X; conditional on the previous information set F;_; (the
o-algebra generated by Xi,..., X, 1), with parameter vector § = (\,...,\,, 0% 1,b), is

then

1 v L (Aweo) - )|
Vara? (i (e /7] P {_5 <T) } if 0 <y <b,

Po(we|Fir) = (1)

0 otherwise.

where £k =0,...,p.

2.2 Extended time-dependent log-likelihood function

We wish to estimate the parameter vector 6 of the pdf py(z;|Fi—1) in (1) through MLE.
In the case of a stationary time series and constant parameter 6, this comes to minimizing

6
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the negative log-likelihood objective function

—1(0) = — > logps(xe| Fioy) 2)

t=p+1
w.r.t. 6, the data sample x,...,z7 being fixed, assuming the random variables X; are
i.i.d conditionally on F;_;. Note that we do not take into account the distribution of the
first p observed values (1, ..., x,) and consider instead the likelihood conditional on them.
For ease of notation and because the negative log-likelihood is to be minimized w.r.t. 6,
let po(x;|Fj_1) = p;(0). In a non-stationary framework, an estimate of # at time ¢ can be
retrieved by minimizing a time-dependent negative log-likelihood, such as

1(0) = —— zt: ' log p;(0) (3)

L T
where a € (0, 1], is an exponential forgetting factor and n, = ﬁ ifa<l, n,=t—p
if a = 1, is used to normalize the weighted negative log-likelihood. From (1) we can see
that the negative log-likelihood in (2) we wish to minimize takes the value +oo as soon
as an observation x; is greater or equal to b. This is an implicit constraint on b when
estimating 0. However, in a non-stationary framework we do not want b to be greater than
all the observations z; as b should be able to vary over time. Let U, = {p + 1,,...,t},
Ci0) = {j € Uy | a0 < bk = 0,...,p} and Gi(6) = {j € Uy | j ¢ Cy(0)} the
complement of Cy(f) in U;. The log-likelihood takes finite values only for observations

t

x; such that j € Cy(f). Therefore we can - informally - rewrite Z o' logp;(0) as
J=p+1

Z o' log p;ls(0) + Z o' 1og 0, where p;|,(0) is the pdf p;(0) restricted to its sup-
JECH(0) J€C(0)
port (0,b). When estimating the parameter vector at time ¢, we need to take into account

all past observations, including the observations for which the log-likelihood does not take a

7



oNOYTULT D WN =

Technometrics Page 8 of 38

finite value, i.e., including observations z; such that j does not belong to Cy(#). Therefore,
we propose to replace the value 0 in log 0, which originally corresponds to the value of the

pdf p;(0) outside of its support, with a sigmoid function of b — z;,

1

(b) = .
S]( ) 1+6Xp(—b+$])

(4)

The function s; is illustrated in Figure 1. It can be seen as the probability of x; to be

Figure 1: Sigmoid function s;(b) on the real line.

lower or equal than b: we have s;(b) — 0% when b << z; and s;(b) — 1~ when b >> z;.

Moreover —log s;(b) is convex and differentiable in b. Hence, we propose to use

—ll‘t’O(Q):—i Z o' logp;(0) + Z ' logs;(b) |, (5)

Na | —
JEC1(9) Fj€C(0)

which we refer to as the extended time-dependent negative log-likelihood. One can note that
j € Cy(#) does not necessarily mean x; > b as it can happen because a lagged observation
xj_y is such that z;_; > b. In such a case, that is j € Cy(#) and x; < b, the observation
x; will still increase the value of the total log-likelihood compared to the event {z; > b},

which is also a nice feature of using s;.
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2.3 (Local-)Quasiconvexity

While convexity, or pseudoconvexity, have proved to be suitable assumptions for estimating
the parameter vector of a GLN distribution (Pierrot and Pinson, 2021), this is not the
case anymore when introducing the bound parameter b. Various simulations of —I7° in
(5) show the function not to be convex nor pseudoconvex in b, with plateau areas away
from the optimal value b* and steep concave cliffs in the neighborhood of b*. However,
the same simulations also suggest that the function may still have a global minimum.
There is a broader class of functions which include convex functions as a subclass and are
still unimodal functions: quasiconvex functions. For simplicity let assume functions are
differentiable. We use ||.|| to denote the Euclidean norm. From Boyd and Vandenberghe

(2010), a definition of quasiconvexity is

Definition 2.1 (Quasiconvexity) A function f : R? — R is called quasiconvez (or uni-

modal) if its domain and all its sublevel sets
Su={xedom f | f(x) <a}.
for a € R, are convex.

As an illustrative example, Figure 2 shows the negative pdf of a normal variable which is
a quasiconvex function but not a convex function. While quasiconvexity is a considerable
generalization of convexity, many of the properties of convex functions hold or have analogs
for quasiconvex functions. However, quasiconvexity broadens but does not fully capture the
notion of unimodality in several dimensions. This is the argument of Hazan et al. (2015)
who introduce local-quasiconvexity, a property that extends quasiconvexity and captures

9
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f(x)
~0.2
|

-0.3
]

-4 -2 0 2 4

Figure 2: A quasiconvex differentiable function on R, the negative density of a normal

variable, with plateau areas when going away from the global minimum.

unimodal functions which are not quasiconvex. Let By(x,7) denote the d dimensional
Euclidean ball of radius r centered around x, and B, := B4(0,1). The definition of local-

quasiconvexity as introduced by Hazan et al. (2015) is the following:

Definition 2.2 (Local-quasiconvexity) Let x,z € RY, k,¢ > 0.
We say that f : RY +— R is (e, k, z)-Strictly-Locally-QuasiConvezx (SLQC) in x, if at least

one of the following applies:
1 f0 - flz) <
2. |Vf(x)|| >0, and for every y € By(z,€/k) it holds that V f(x)" (y —x) < 0.

Hence, we propose to relax the convexity (or pseudoconvexity) assumption and instead rely

on local-quasiconvexity when minimizing —[;°.

10
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3 Online maximum likelihood estimation

3.1 Quasiconvex optimization

Let f be the quasiconvex objective function we wish to minimize w.r.t parameter x € R%. It
is well known that quasiconvex problems can be solved through a series of convex feasibility
problems (Boyd and Vandenberghe, 2010). However, solving such feasibility problems can
be very costly and involves finding a family of convex functions ¢, : R? — R, ¢t € R, that
satisfy

fx) <t = ¢i(x) <0,

and ¢4(x) < ¢4(x) whenever s > t. In the batch setup, a pioneering paper by Nesterov
(1984) was the first to propose an efficient algorithm, Normalized Gradient Descent (NGD),
and to prove that this algorithm converges to an e-optimal solution within O(1/€?) iterations
given a differentiable quasiconvex objective function. Gradient Descent (GD) with fixed
step sizes is known to perform poorly when the gradients are too small in a plateau area
of the function or explode in cliff areas. Among the deep learning community, there have
been several attempts to tackle plateaus and cliffs. However, those works do not provide a
theoretical analysis showing better convergence guarantees than NGD, which is similar to
GD, except one normalizes the gradient. Having introduced SLQC functions, Hazan et al.
(2015) prove that NGD also finds an e-optimal minimum for such functions in O(1/€?)

iterations.

11
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3.2 Online Normalized Gradient Descent

NGD can be used to minimize —[;° w.r.t §. However, this implies to run NGD every
time we want to update the parameter vector 6. Taking advantage of the SLQC assump-
tion, Hazan et al. (2015) present SNGD, which is similar to Stochastic Gradient Descent
(SGD) except they normalize the gradients, and prove the convergence of SNGD within
O(1/€%) iterations to an e-optimal minimum. From the observation that online learning
and stochastic optimization are closely related and interchangeable (see, e.g., Cesa-Bianchi
et al. (2004) and Duchi et al. (2011)), we use the Stochastic Normalized Gradient Descent
(SNGD) introduced by Hazan et al. (2015) and derive the corresponding Online Normalized
Gradient Descent (ONGD) for online learning. ONGD is presented in Algorithm 1. To the
best of our knowledge, this is the first time SNGD is used in an online learning fashion for

Online Quasiconvex Optimization. Following the framework introduced by Cesa-Bianchi

Algorithm 1 Online Normalized Gradient Descent (ONGD)

Input: convex set I, T, 0,, € K, step size 17, minibatch size m
fort=m,...,T do
1
Play 6, and observe cost f;(0;) = — Z
m. e

Update and project:

gt
gl

ét-i—l = 0y — ngy where g, = vft(gt)a Gt =

041 = T (Grs1)

end for

and Lugosi (2006), we define ONGD in terms of a repeated game played between the online

12
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player and the ”environment” generating the outcome sequence. At each time ¢, we play a
parameter vector x;. After we have committed to this choice, a cost function f; is revealed
and the cost we incur is f;(x;), the value of the cost function for the choice x;. Similarly to
Online Gradient Descent (OGD), which is based on standard gradient descent from offline
optimization and was introduced in its online form by Zinkevich (2003), we have included
in ONGD a projection step Il(.). Indeed in each iteration, the algorithm takes a step from
the previous point in the direction of the normalized gradient of the previous cost. This
step may result in a point outside of the underlying convex set IC. In such cases the algo-
rithm projects the point back to the convex set I, i.e. finds its closest point in . SNGD
requires the gradient to be estimated using a minibatch of minimal size m. Indeed, Hazan
et al. (2015) provide a negative result showing that if the minibatch size is too small then
the algorithm might diverge. This is where SNGD differs from SGD as in the latter and
for the case of convex functions even a minibatch of size 1 is enough to ensure convergence.

GD methods update the current value of a parameter 6 by taking a step in a descent
direction, according to the gradient of the cost function f over a complete set of observa-

tions:
1 T
i1 =0; — i Z Vo f(x;16:), (6)
j=1
where i is the current iteration and 7; the step size at iteration i. Online/stochastic GD

is obtained by dropping the averaging operation in (6) and updating the parameter 6

according to
01 = 0; — iV f (2:]0:), (7)

where x; has been chosen randomly for SGD and z; are successive observations for OGD.

13
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The simplification relies on the hope that the random noise introduced by this procedure

will not compromise the average behavior of the algorithm. Let o = 1 and —[°(0) =

1
T Z log p;(0) + Z log sj(b) | . Hence, ONGD can be applied to our framework
)

t—p |. —
JECH(O FECH(0)
by taking

- Ingj(ét) if j € Ot(ét)a
fj(Ht) =
—logs;(b) if j € Cy(6y).

When minimizing w.r.t § = (A,02,v,b), we shall recover positive estimates of the scale
parameter o2 and the shape parameter v. This is constrained optimization which can be

2

easily overcome by replacing o with w = logo? and v with 7 = logv. Such a change of

variable allows us to avoid the projection step in Algorithm 1.

3.3 Recursive maximum likelihood estimation

A straightforward competitor to ONGD is a (classic) recursive MLE procedure. While sub-
optimal for non convex problems, such a recursive procedure is a quasi-Newton approach
which approximates the Hessian with a positive definite matrix thanks to first-order in-

formation. Hence, the algorithm is ensured to run although its performance depends on

L

- We can
—

how close is the approximated Hessian to the true Hessian. Recall that n, =

rewrite (5) as

—al®(0) — (1 — a)logp,(0) ift e Cy0),
—1(0) = (8)

—al®,(0) — (1 —a)logs,(b) ift e CiB).
Let now 6, be the estimate of the parameter vector at time ¢. The recursive MLE procedure

relies on a Newton step for obtaining 6, as a function of 6,_;, see, e. g., Madsen (2007) and

14
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Pinson and Madsen (2012). Let h; = Vy logpt(ét_l) if t € Ct(ét_l), h; = Vylog st(l;t_l) if

t € Ci(f,—1) and Ry = —V2I°(6,). Our two-step recursive scheme at time £ is

oNOYTULT D WN =

9 Rt = OéRt_l + (1 — Oé)hth;r,

ét = ét,1 + (1 — Oé)R;lht

15 An algorithm based upon such a scheme might face computational issues as it requires
inverting a matrix, the information matrix R, at each iteration. This can be prevented by
20 directly working with the matrix inverse, the covariance matrix P,. The resulting algorithm

22 (rMLE.Db) is described in Algorithm 2.

Algorithm 2 Recursive Maximum Likelihood Estimation (rMLE.Db)
26 Input: 7,0, € RP3, forgetting factor o € (0,1), P, = 10°T,,5

fort=p+1,...,T do
31 Set h, =V, logpt(ét_l) ift e C’t(ét_l) or set h, = Vjylog st(ét_l) ift e a(ét_l).

33 Update:

P, .hh' .
]:p—"_3 o - t 1—|—tA t P
38 75 th P, h

w
N
o
|
QIr

A

40 0,=0, ,+(1—a)P,h, if t >Ty+p

end for

47 The technical derivations and detailed computations required for Algorithms 1 and 2

are available in the supplementary material.
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4 Simulation study

We perform an empirical study on synthetic data to check on the behaviour of ONGD, in
particular in comparison with a classic recursive MLE procedure, i.e., rMLE.b. We run
100 Monte Carlo (MC) simulations with 7" = 12000, A = 0.9, 0* = 1, v = 1.5. Only the
bound parameter b is simulated so that it varies over time. Hence, in Section 4.1, while
we test the tracking ability of our algorithms regarding b, we also control their ability to
retrieve constant parameters, i.e., A, 02 and v. Then, in Section 4.2, we introduce the task
of issuing predictive distributions using the tracked parameters and evaluate the algorithms

depending on the sharpness and calibration of these forecasts.

4.1 Tracking the parameter vector

The lag p = 1 of the AR process is assumed to be known and the initial values of the
parameter vector 6 = (\, 02, v,b) are set to (0,1,1,1). From a theoretical point of view,
these initial values only need to be feasible, i.e., o5 > 0, vy > 0 and by = 1. We (a
priori) choose o5 = 1 and vy = 1 because they are standard values. The values of the
hyperparameters m and n for ONGD, « for rMLE.b, are empirically selected. We test
a grid of values for each hyperparameter and select the values which achieve the best
tracking/accuracy trade-off on the first MC simulation. The same values are then used on
the 99 remaining MC simulations. These values are listed in Table 1. ONGD runs as soon
as m observations are available, while rMLE.b runs from p observations on but needs a
warm-up period Ty = 150 to update the covariance matrix f’t before starting updating the

parameters. Note that the computational complexity is O(T'mp) for ONGD and O(T'p?)

16
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for rMLE.b. Since p = 1 and m = 100 here, rMLE.b is slightly faster. However, this is not
always the case, as we will see when applying the algorithms to wind power forecasting in
Section 5 with p > m. Overall, because T >> m and T" >> p, the computational cost is

similar for both algorithms.

Table 1: Hyperparameter values for each algorithm: step size n and minibatch size m

(Algorithm 1) and forgetting factor a (Algorithm 2)

n m o

Algorithm 1: ONGD  0.001 100 -

Algorithm 2: rMLE.b - - 0975

We provide in Figure 3 the plots of —[° for the first MC simulation, ¢ = 3000 and
a = 0.975 w.r.t. each parameter, the other parameters being fixed to their true value.
From the function being not convex in b, it is clear that the optimization problem cannot
be assumed to be convex when introducing an upper bound parameter b. The tracked
parameters averaged over the simulations are presented in Figure 4 along with correspond-
ing MC intervals. ONGD manages to accurately estimate both time-varying and constant
parameters while tMLE.b performs well in tracking a decreasing b, but fails to properly
track an increasing b. Moreover, this comes with a cost in accuracy which is very high for
constant parameters. The estimation of o? and v is also rather unstable. Note that o2
is already at its true value when the algorithms get started and allows us to control that

there is no divergence from the optimal value. As a matter of fact and as stated by Hazan

17
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Figure 3: The extended time-dependent negative log-likelihood for the first MC simulation,
t = 3000, o« = 0.975, w.r.t. A (top left), w (top right), 7 (bottom left) and b (bottom right).

For each plot, the remaining parameters are set to their true value.

et al. (2015), for ONGD we have observed ¢ to diverge when the minibatch size m was

too small, i.e., for m < 10.

4.2 Forecasting the distribution

Because many applications which might benefit from this framework involve forecasting,
we are now interested in the performance of the algorithms when forecasting at time ¢
the distribution of the bounded variable X;.;. To be able to track the bound parame-
ter b over time, we have introduced in Section 2 the extended time-dependent negative

log-likelihood —[° which makes sense from an inference point of view. Because we are

18



Page 19 of 38

oNOYTULT D WN =

Technometrics

1.00- 4- 5-
4- 0.9-
0.75- 3-
3 -
.~ N e o 0.6-
<< 050 <o 2 <> <Q
2 -
0.25- 1 - NG ettt bttt ¢ 0.3-
0.00- 0 0 0.0
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
0 4000 8000 12000 0 4000 8000 12000 0 4000 8000 12000 0 4000 8000 12000
1.00- 4- 5
4 0.9
0.75- 3-
3 -
~ o 0.6-
<< 0.50 B 2 <> <9
2-
0.25- 1-- " ] 0.3-
1 -
0.00- 0- 0- 0.0-

(I) 4OIOO SdOO 12600 (I) 4OIOO 80IOO 12600 (I) 4OIOO 80IOO 12600 (I) 4OI00 SOIOO 12600
t t t t

Figure 4: Confidence intervals of the tracked parameters for ONGD (top) and rMLE.b
(bottom) with coverage probabilities 0.9 and 0.5, along with the average estimates (solid

lines) and the true parameters (dotted lines).

working with series of dependent observations, when moving to forecasting the distribu-
tion of X1, we need the current value b; of b to be greater than all the p former ob-
served values of Xy,..., X, for the expected value of X;;; to exist. Therefore, we

introduce a projection step as described in Section 1 for ONGD: we project 6, on the

convex set K = RP™ x (max(z,...,24py1), +00) and we get the projected parameter
ét = H}C(ét) = (At, (;.)t, 7A't, Bt) where Bt = max(l‘t, c. 7xt—p+1) + 0 if max(xt, N axt—p—i—l) > Bta
l;t = l;t if max(zy, ..., 2 pr1) < l;t. Note that we need to introduce a small § > 0 as we

project b; on an open convex set. When looking at the observation z; as a coarsened version

of X;, 6 can be seen as a coarsening parameter. This coarsened data framework has been
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formalized by Heitjan and Rubin (1991) and Heitjan (1993). We use § = 0.001.

We evaluate the predictive distributions through proper scoring rules. Scoring rules
are attractive measures of predictive performance as they evaluate calibration and sharp-
ness simultaneously. The paradigm of maximizing the sharpness subject to calibration
was proposed in Gneiting et al. (2007) under the conjecture that ideal forecasts and the
maximization of sharpness subject to calibration are equivalent. Not only scoring rules
are measures of both calibration and sharpness. When they are proper for the class of
predictive distributions at hand, they also incentivize truthful calibrated and informative
forecasts (Holzmann and Eulert, 2014). We use the Continuous Ranked Probability Score
(CRPS) which is a proper scoring rule relative to the class P of the Borel probability mea-
sures on R (Gneiting and Raftery, 2007). Proper scoring rules are often used in negative
orientation, e.g., the lower the better. As we work with predictive densities, one could
think of using the logarithmic score which is strictly proper relative to all measures that
are absolutely continuous. However, in our framework it can always happen that =, falls
out of the support of the predictive density p;,; we have issued at time ¢, when the current
estimate b, of the upper bound is too low. In such a case, the logarithmic score is equal to
—log pri1(xi41) = —log0 = +o0, which is not suitable. In contrast the CRPS is defined

on R as

o0

CRPS(F,z) = / (F(y) — 1,5,)% dy, (9)

—0o0

where F is the cumulative distribution function (cdf) of the probabilistic forecast and y is

the evaluation point. Let F := Ft+1 and x := xy1. If 2,11 happens to be greater than ZA)t

20
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we get

by oo

N N 2
CRPS(EJrlaxtJrl) = / <Ft+1(y) - ]lyZIH-l) dy + ~ (1 - ﬂy2$t+1)2 dy7

—0o0 bt

l;t R Tt41 o0
z/ Ft+1(y)2dy+/ 1 dy+/ 0 dy,
—00 be Ti41

b )
= / Fra(y)*dy + o1 — by

Hence, the CRPS is increased by an observation falling out of the support of the predictive
distribution but to a higher finite value contrary to the logarithmic score which becomes
infinite. Moreover, the CRPS allows us to compare discrete and continuous distributions,
that is to compare our density-based algorithms to usual benchmarks such as climatology
and probabilistic persistence, since if the predictive distribution takes the form of a sample
of size N, then the right side of (9) can be evaluated in O(N log N) operations (Hersbach,
2000). Climatology is based on all data available at the time of forecasting and probabilistic
persistence is the last observed value, which we dress with the past persistence errors. We
also evaluate the predictive distributions issued by rMLE.1, i.e., by the usual recursive
MLE when the bound is assumed to be fixed and equal to 1 (Pierrot and Pinson, 2021).
We start computing predictive distributions after 2,000 observations. Recall that the
hyperparameters were chosen in Section 4.1 upon looking at only the first MC simulation,
but the whole simulated time series, i.e., looking at the data we are now computing prob-
abilistic forecasts for. This may be optimistic, even if we only looked at the data from
the first MC simulation. In order for our algorithms to not be more optimistic than the
benchmarks, we use the hyperparameters for probabilistic persistence and rMLE.1 that

give the best CRPS on the first MC simulation. The CRPS are available in Table 2. The
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Table 2: 1-step-ahead CRPS and respective improvement over persistence and rMLE.1.

The CRPS is averaged over the MC sample, and the standard deviation is also provided.

mean (sd) Imp./persist. Imp./rMLE.1

ideal forecaster 5.78% (0.10) - -

climatology 15.26% (0.24) - )

probabilistic persistence  6.28% (0.10) - -

rMLE.1 6.04% (0.09) 3.77% -
Algorithm 1: ONGD 5.81% (0.10) 7.52% 3.89%
Algorithm 2: rMLE.b 6.05% (0.17) 3.61% 0.17%

average CRPS obtained by the ideal forecaster, i.e., the GLN distribution with the true
values \, 0%, v, by_pi1, ..., b1, is 5.78%. Probabilistic persistence performs very well on
our synthetic dataset with a CRPS which is already much closer to the ideal forecaster’s
than climatology’s. ONGD, which properly handles the varying upper bound, shows a
CRPS which is very close to the ideal forecaster’s. Moving from tMLE.1 to ONGD pro-
vides a significant improvement, which is similar to moving from probabilistic persistence
to tMLE.1. As for ONGD’s natural competitor rMLE.b, it does not manage to improve
the results of rMLE.1.

To specifically check on probabilistic and marginal calibration, Probability Integral
Transform (PIT) histograms and marginal calibration plots are available in the supple-

mentary material.

22
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5 Application to wind power forecasting

Accurately forecasting wind power generation is highly important for the integration of
wind energy into power systems. We are interested in very short-term forecasting, that is
in lead times of a few minutes, which are not only crucial for transmission system operators
to keep the system in balance but also very difficult to improve the forecasts for, especially

compared to the simple but very efficient persistence.

5.1 Data description

We have historical data from a large offshore wind farm, Anholt in Denmark, from July 1,
2013 to August 31, 2014. The active power is available for 110 wind turbines at a temporal
resolution of every 10 minutes. We scale each time series individually according to the
nominal power of the wind turbine, and compute the average generation over the wind
farm depending on the number of wind turbines which are available at each time ¢ in order
to handle missing values. The response random variable we wish to forecast at time ¢ is
X411 € (0,1), the average active power generated by the wind farm at time ¢4 1. As stated
in Section 4.2, we choose to look at the observation x; as a coarsened version of X; with
0 = 0.001. Hence, an observation z; is set to ¢ if x; < d and to 1 — ¢ if z; > 1 — 9 and

x € [6,1 — §] whereas X, € (0,1).

5.2 Validation setup

We split our dataset into two datasets that we keep separate: a training/cross-validation

dataset from July 1, 2013 to March 31, 2014, resulting in 39,450 observations; a test dataset
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from April 1 to August 31, 2014, resulting in 22,029 observations. As in Section 4.2, we
compare Algorithms 1 and 2 to climatology, probabilistic persistence and rMLE.1. For
methods involving hyperparameters, that is all of them but climatology, we choose the
hyperparameters upon CRPS-based cross-validation: we run each competing algorithm
from the beginning of the training set, issue the corresponding probabilistic forecasts, and
select the hyperparameters which give the lowest CRPS on the cross-validation dataset, i.e.,
data from November 1, 2013 to March 31, 2014. The subsequent hyperparameter values

are available in Table 3.

Table 3: Hyperparameter values for each algorithm: order p of the AR process, step size

7, minibatch size m and forgetting factor a.

P n m (0%

Algorithm 1: ONGD 4 0.03 1 -

Algorithm 2: tMLE.b 5 - - 0.9982

5.3 Assessment of the probabilistic forecasts

The probabilistic forecasts associated with each algorithm are assessed on the test set. The
corresponding CRPS are presented in Table 4. Again, probabilistic persistence improves
the CRPS of climatology by a large percentage already and both rMLE algorithms perform
similarly. As for ONGD, the improvement over both persistence and rMLE.1 is very signif-

icant and much larger than the one observed during the simulation study. The parameters
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Table 4: 10-minute-ahead CRPS and respective improvements over probabilistic persistence

and rtMLE.1.

CRPS Imp./persist. Imp./rMLE.1

climatology 22.03% - -

probabilistic persistence  1.35% - -

rMLE.1 1.08% 19.89% -
Algorithm 1: ONGD 0.89% 34.22% 17.89%
Algorithm 2: rtMLE.b 1.06% 21.83% 2.43%

*Best forecast bolded.

tracked by rMLE.1 and Algorithms land 2 are plotted for some sub-sample of the test set in
Figure 5. We plot the projection b, of ZA)t, see Section 4.2, to display the upper bound which
is actually used for prediction. The estimates of the parameter vector A are consistent
between ONGD and rMLE.b, while more noisy for ONGD. The parameter estimates from
rMLE.1 and tMLE.b are in general very close to one another and show similar patterns.
Indeed, rMLE.b does not manage to track a varying upper bound since the estimated by
does not vary significantly away from 1. Only ONGD captures variations of the bound
parameter b below 1. When selecting the hyperparameters, we observed a significant im-
provement on the cross-validation set for a minibatch size m = 1 only, the values tested for
being m € {1,5, 10,20, 50, 100, 150}). By looking at the parameter estimates, we noticed

that for m = 5 the bound estimate was also significantly varying below 1, but more slowly
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Figure 5: Estimates At, 62, Uy and projected estimate b, on a sub-sample of the test set for

rMLE.1 (top), ONGD (center) and rtMLE.b (bottom).

and closer to 1. When looking at the power generation itself, the bound tracked by ONGD
for m = 1 does make sense. This result and the generalization performance of the model
are confirmed on the test set, since the CRPS we get is very close to the one we got on the
cross-validation set. Therefore, it seems that these data call for a very aggressive choice of
m, so that the algorithm can track the bound. In return some noise is introduced into the
other parameter estimates.

In Figure 6, we provide the probabilistic forecasts of ONGD over a 36-hour period of
time on the test set. One can note that the prediction intervals are tight. When looking
at probabilistic calibration, the PIT histogram shows a too large number of very low and

very high PIT values, which suggests that the predictive distributions issued by ONGD
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22 Figure 6: Probabilistic forecasts from ONGD, based on prediction intervals with nominal

coverage rates of 95 and 75%, along with power measurements (solid black line).

27 are underdispersed. However, when an observation falls outside of the prediction interval,
30 it does not fall far away, which explains the very good CRPS achieved by ONGD overall.
32 PIT histograms and marginal calibration plots for all algorithms are again available in the

supplementary material.

20 6 Discussion

43 We have introduced a framework where where we aim to track varying bounds for bounded
time series as well as an extended time-dependent negative log-likelihood to deal with
48 this new framework. As the objective functions now at hand are not convex anymore,
50 we have proposed to use the broader local-quasiconvexity assumption through an online
53 algorithm. To compete with this quasiconvexity framework and online algorithm, we have

55 also proposed a more usual recursive MLE procedure. We have run these algorithms on
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both a synthetic and a real dataset to track the parameters of a time series distribution
over time, including the upper bound of the support of the distribution. Then, we have
presented how to use such a new framework for forecasting.

The algorithm we propose in the new framework we have introduced is an online al-
gorithm which is directly derived from SNGD and so, similarly to ”ordinary” OGD, only
relies on the negative log-likelihood we observe at time ¢ for our current set of parameters.
It does not longer require any kind of forgetting action and only asks for the usual step
size when updating the parameter vector through the gradient at time t. A new hyper-
parameter which is related to a specificity of SNGD is the size m of the minibatch, since
SNGD is not guaranteed to converge for m = 1, unlike SGD. This algorithm performs
very well on our simulated examples, with performances very close to the ideal forecaster.
When moving to wind power forecasting, it improved the CRPS of probabilistic persistence
by more than 30% on the test set. However, the predictive distributions do not achieve
probabilistic calibration, as the prediction intervals appear to be too narrow in general. It
is worth noting that ONGD required to set the minibatch size m to 1 on the wind power
generation dataset in order to be able to track the upper bound. This is quite aggressive
and suggests that this kind of data may call for methods which can handle big jumps in
the bound values.

We challenged ONGD with two competitors, that both rely on recursive MLE: tMLE.1
and rMLE.b. The former operates in the usual framework when the upper bound is assumed
to be fixed to 1, while the latter is as straightforward adaptation of rMLE.1 in the context of

an upper varying bound. These algorithms showed similar performances on both synthetic
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and real data, rtMLE.b failing to properly track an upper varying bound. Since this is,
to the best of our knowledge, the first time such a framework with varying bounds has
been studied, further research could explore different assumptions, e.g., on the stochastic

process, on the distribution of the bounded variable, or a lower bound.

SUPPLEMENTARY MATERIAL

Calculation details: Technical derivations and detailes computations required for Algo-

rithms 1 and 2. (.pdf file)

Additional plots: PIT histograms and marginal calibration plots for all competing algo-
rithms in the simulation study and the application to wind power forecasting. (.pdf

file)

R project: R project with the R scripts for the simulation study in section 4, along
with the corresponding synthetic data. All outputs necessary for the study can be
reproduced with the corresponding scripts and are also provided. The structure and

content of the R project is described in a README file. (.zip file)
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Additional plots
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12 1 Introduction

14 To empirically assess probabilistic calibration, we provide Probability Integral Transform (PIT)
15 histograms in Figures 1 and 3. To empirically assess marginal calibration, we provide marginal
16 calibration plots which show the difference between the predictive and the empirical cumulative
17 distribution functions in Figures 2 and 4. Probabilistic calibration is reflected through a uniform
18 histogram and marginal calibration through the proximity between the predictive and the em-
19 pirical cumulative distribution functions. Note that we have removed climatology from Figure
20 4 since the corresponding predictive cumulative distribution function is too far on average from
21 the empirical one for the difference to be plotted on the same graph as the other methods’.

24 2 Simulation study
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48 Figure 1: PIT histograms for all benchmarks and Algorithms 1 and 2: (a) ideal forecaster, (b)
49 climatology, (c) probabilistic persistence, (d) rtMLE.1, (¢) ONGD, (f) rtMLE.b.
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Figure 2: Marginal calibration plot for all benchmarks and Algorithms 1 and 2.

3 Application to wind power forecasting
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Figure 3: PIT histograms for all benchmarks and Algorithms 1 and 2: (a) climatology, (b)
probabilistic persistence, (¢) rMLE.1, (d) ONGD, (e) rtMLE.b.
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Calculation details

1 Algorithm 1: ONGD

In this section,

0= (A,w,7,b) = (A, logo?, logv,b) € RPH3,

Ur={t—m-+1,...,t},

CrO)={j €U | zj—r <b,k=0,....p}, C7"(0) = {j € U"|j & C"(9)},

y = (y;) € RICT O where y; = y(z; /b ) and j € C"(6),

Y is a matrix with columns By, B2y, ..., BPy € RIC"(@Ixr where B is the backshift operator,
C'is a constant which does not depend on 6.

1.1 Objective function

1
fi(0) = — > logpi(0)+ Y logs;(b)] .
JE€CT(6) JE€CT(0)
1 /w 1
_ (= m _ _ i exp T
= (S-7)ICrO) - — > log(l— (a;/5)™")
JECT(0)
Ll YTy oYN Y log(l+exp(—b+ 1))
m2eXpwy Y m = o8 P ¥
JECT(9)
+ C.
1.2 Gradient
First derivative w.r.t. A
O 1 yT(y_vya.

oA _mexpw

First derivative w.r.t. w

O _ L1
o = IO O) — Gy~ YA) (v~ YA,

First derivative w.r.t. 7

Of 1 expT T
G = —ler @) = P2 Y expyylog(a/b) + ———— (u=TUN) T (y — YA)
JEC (0)
log(;/b)

dy
where u = =, u; =expr

or 1— (xj/b)yxpT’
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First derivative w.r.t. b

Oft  lexpr T 1 exp(—b+z;)
W om b 2 CPUT s @Iy - YA - S ey

jecr (o) JECT(0)

oNOYTULT D WN =

expT
b(1— (z;/b)>®T)’

0
vvhereZ:—y Zj=—

9 b’

14 2  Algorithm 2: rMLE.b

In this section,
0= (A,w,7,b) = (A, logo?, logv,b) € RPH3,
18 Y= W1, yi-p) € RY, y; = y(2;/b;v).

20 2.1 Gradient
21 h — {Va logpy(0i—1) if t € Cy(0),
\—

Vologsi(bi_1) ift € Ci(h).

25 First derivatives w.r.t. A

0log ps 1
oA exp w

0log s¢
oA

First derivatives w.r.t. w

33 dlog py 1 n 1
Ow 2 2expw

35 0log s;

36 Ow

38 First derivatives w.r.t. 7

01
40 TOBPt _ 1 4 exprexp vt log(z¢/b) —
41 or expw

42 0 log St
43 or

(ue — ATa)(y — ATy),

207

log(x+/b)

0
45 where u = 873',7 Uy = eXpTw.

48 First derivatives w.r.t. b

49 O0logp; expT
50 ab b expye+ exp w
dlogsi  exp(—b+x)

ob  1+exp(—b+axy)’

(2 —AT2z)(y — Aly),

54 9] expT

55 where z = —y, z = .
b b(1— (z;/b)*P7)
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2.2 Detailed computation of the matrix P,

We use the matrix inversion rule
[A+BCD] '=A'—-A'B[DA"'B+C"'] 'DA,
with A = aR,_1, B=DT =h,;, C = (1 — a)I and we get

P,

I
=
*
-

. -1
aR,_; +(1— a)hth:] )

—

=

@ t71)71 - (af{tq)il h, [h: (ath)il h, +((1 - a)I)_l} B h: (O‘f{tfl)

Il
/N

1. P J 117
= aPt—l - gpt—lht [ahtTPt—1ht + l—a] h/P,_,,
_ le, B P, hh/P,
- t—1 ~ )
o o2 [Ln/P,_ih, + L]
_1y P, ;hh/ p
T4 T« TP t—1
« o5 th,/ P,_h

-1

?
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