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Abstract—The increasing use of renewable energy sources
(RESs) and responsive loads has made power systems more
uncertain. Meanwhile, thanks to the development of advanced
metering and forecasting technologies, predictions by RES and
load owners are now attainable. Many recent studies have re-
vealed that pooling the predictions from RESs and loads can help
the operators predict more accurately and make better dispatch
decisions. However, how the prediction purchase decisions are
made during the dispatch processes needs further investigation.
This paper fills the research gap by proposing a novel robust
generation dispatch model considering the purchase and use
of predictions from RESs and loads. The prediction purchase
decisions are made in the first stage, which influence the accuracy
of predictions from RESs and loads, and further the uncertainty
set and the worst-case second-stage dispatch performance. This
two-stage procedure is essentially a robust optimization problem
with decision-dependent uncertainty (DDU). A mapping-based
column-and-constraint generation (C&CG) algorithm is devel-
oped to overcome the potential failures of traditional solution
methods in detecting feasibility, guaranteeing convergence, and
reaching optimal strategies under DDU. Case studies demonstrate
the effectiveness, necessity, and scalability of the proposed model
and algorithm.

Index Terms—Robust generation dispatch, prediction pur-
chase, decision-dependent uncertainty, mapping-based C&CG

NOMENCLATURE
A. Abbreviations

C&CG Column-and-constraint generation
DDU Decision-dependent uncertainty
DIU Decision-independent uncertainty
RES Renewable energy resource

RGD Robust generation dispatch

RO Robust optimization

RUC Robust unit commitment

B. Indices and Sets
1 €7Z,.,24,7 Index and set of RESs/loads/agents

jedJ Index and set of controllable generators
lel Index and set of transmission lines
teT Index and set of periods

X Feasible set of the first-stage variable
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Robust feasible set

Uncertainty set

Feasible set of the second-stage variable
Vertex set

Number of RESs/loads/agents

Number of generators.

Number of transmission lines

Number of periods

Expected value of the maximum power out-
put of RES ¢ or power demand of load 7 in
period ¢

Variance of operator’s estimation for the un-
certainty of agent ¢

Probability parameters of uncertainty set
Prediction cost parameter

Binary parameter for the on/startup/shutdown
state of generator j in period ¢

Output cost coefficient of generator j
Upward/downward regulation cost coefficient
of generator j

Penalty coefficient of real-time RES power
curtailment

Upward/downward reserve cost coefficient of
generator j

Maximum upward/downward reserve of gen-
erator j

Maximum upward/downward ramping of
generator j

Minimum/maximum output of generator j
Capacity of transmission line [

Power transfer distribution factors

D. Decision Variables

Uncertain power of agent ¢ in period ¢
Prediction accuracy of the uncertainty of
agent ¢

Operator’s payment to agent ¢ for predictions
Contemporary output of generator j in ¢
Upward/downward reserve of generator j in
period ¢

Upward/downward power adjustment of gen-
erator j in period ¢

Real-time power curtailment of RES ¢ in
period ¢

I. INTRODUCTION
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EOGRAPHICALLY distributed renewable energy
Gsources (RESs) and responsive loads have flourished
in recent years, posing great challenges on power system
operations including higher risks of power imbalance and
inadequate ramping capacities [1]. Robust generation dispatch
(RGD) is an essential way to cope with the rising uncertainty
[2]. It allows the transmission grid operator to minimize the
operation cost under the worst-case uncertainty realizations.
The performance of RGD largely depends on the quality of
the uncertainty set it employs. A vast literature has been
devoted to building more accurate uncertainty sets [3].

The parameters of an uncertainty set were determined to
achieve the best trade-off between security and conservative-
ness [4]. A method for building polyhedral uncertainty sets
based on the theory of coherent risk measures was introduced
[5]. In addition to a better selection of parameters of the
uncertainty set, enhancing the accuracy of uncertainty predic-
tions is another important way. An improved wind forecasting
framework considering the spatio-temporal correlation in wind
speed was developed and used to build a more accurate
uncertainty set [6]. A dynamic uncertainty set was proposed
in [7], which improves the forecasts for the current period
based on uncertainty realizations in the past few periods.
In the studies above, the uncertainty sets were estimated by
the operator through processing their own data and forecasts.
Thanks to the development of advanced metering and forecast-
ing technologies, there is an emerging opportunity to further
improve the forecast and uncertainty set. That is, through
pooling of predictions from RES and load owners [8].

To aggregate and make use of the local predictions,
data/information markets have been introduced. For example,
regression markets were developed to aggregate local data for
energy forecasting with proper incentives based on cooper-
ative game theory [9], [10]. A data-sharing mechanism was
designed for electricity retailers to improve their profits in the
wholesale market [11]. A blockchain-based data transmission
framework was developed for energy imbalance market [12].
Due to the high communication burdens and the risk of private
data leakage, sharing data to perform a central prediction may
not always be a good way. An alternative approach is to build
an information market for aggregating predictions [8], [13].
A binary prediction market was proposed in [14] to forecast
RESs. The day-ahead trading and valuation of load forecast
were studied in [15]. This paper chooses to focus on the latter
approach, i.e., to help the operator improve the uncertainty set
by purchasing predictions from RESs and loads.

The fruitful works above focused on the forecasting tasks.
But in fact, the forecast improvement via prediction pur-
chase and the power system dispatch have mutual influences.
Therefore, a holistic model that integrates them is necessary,
which remains unexplored. This paper takes an initial step by
proposing a RGD model that allows the operator to purchase
and use predictions from RESs and loads. The proposed
model turns out to be a case of robust optimization (RO)
with decision-dependent uncertainty (DDU). DDU appears in
various optimization models under uncertain environments and
brings new solution challenges.

In decision-dependent stochastic programming (SP) prob-

lems, the current decision affects the underlying probabil-
ity distribution or the realization time of the future uncer-
tainty [16]. These problems were solved by hybrid mixed-
integer disjunctive programming [16], quasi-exact solution ap-
proach based on discretization and linearization [17], Benders
decomposition-based method [18], genetic algorithm [19], and
scenario reduction method [20].

For RO problems with DDU, a reformulation method by
exploiting the uncertainty set structure was proposed [21] and
extended to a more general uncertainty set [22]. These two
studies focused on static robust models, and the adjustable
two-stage robust model with DDU is even more challenging.
Aiming at solving general two-stage RO with polyhedral
decision-dependent uncertainty set, modified Benders decom-
position [23], Benders C&CG [24] and parametric C&CG
[24], [25] were proposed, which guarantees to find the optimal
solution if the master problem and the second-stage problems
can be solved effectively. However, if the left-hand-side coef-
ficient of the uncertainty set is decision-dependent, the master
problem will have bilinear terms and become nonconvex,
making the master problem hard to solve and hindering the
solution of the RO with DDU. Adaptive C&CG was another
exact solution method [26], which uses projection to keep
the critical vertex in the decision-dependent uncertainty set.
However, this method is not the most efficient one when
the uncertainty set has a natural mapping structure. Multi-
parametric programming method [27] was also established
for RO with DDU, but may easily become time-consuming
because of the curse of dimensionality. The uncertainty set
studied in this paper has decision-dependent left-hand-side
coefficients and possesses a natural vertex mapping structure.
Therefore, a more efficient solution method can be designed.

In distributionally robust optimization (DRO) problems with
DDU, ambiguity sets of probability distributions are decision-
dependent. Tractable reformulations of two-stage DRO prob-
lems with DDU were derived using duality theory in [28]
for various ambiguity sets in the finite support case. Multi-
stage mixed-integer DRO with DDU under a moment-based
ambiguity set was solved by the Stochastic Dual Dynamic
integer Programming (SDDiP) [29]. The total variation am-
biguity set case was solved by Benders decomposition [30].
A scenario-based formulation was handled by a customized
C&CG method in [31]. The two-stage decision-dependent
DRO under Wasserstein-distance ambiguity set with a con-
tinuous support was solved by an approximated SP based on
Lipschitz constants in [32].

Our core objective is to provide a holistic model that allows
the operator to exploit local predictions to build an improved
uncertainty set and considers the tradeoff between prediction
purchase cost and operation cost in the RGD. A mapping-
based C&CG algorithm is developed to solve the problem.
Our contributions are two-fold:

(1) Robust Generation Dispatch Model with Purchase of
Local Predictions. A novel RGD model is developed to help
the operator make better dispatch decisions by exploiting
predictions purchased from agents (RESs and loads). Distinct
from previous research that estimates the uncertainty set by
the operator’s own data/forecast, this paper builds an improved
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uncertainty set based on conditional expectations and variances
derived by combining forecasts from the operator and agents.
The proposed model turns out to be an RO with DDU. It
is worth noting that the proposed model is generic and not
limited to the RGD problem in this paper.

(2) Solution Algorithm. A mapping-based C&CG algorithm
is developed to solve the proposed model by returning map-
ping constraints rather than the worst-case scenarios directly.
The proposed algorithm is proven to converge to the op-
timal solution within a finite number of iterations, while
the traditional RO algorithms may fail to detect feasibility
and guarantee optimality when dealing with DDU. Several
comparisons are conducted to demonstrate its effectiveness.

The rest of this paper is organized as follows. Section II
builds an improved uncertainty set based on the purchased
predictions. The RGD model and its solution algorithm are
developed in Section III and IV, respectively. Numerical
experiments are carried out in Section V. Section VI concludes
the paper.

II. IMPROVED UNCERTAINTY SET WITH
PURCHASE OF PREDICTIONS

We start with a general form of two-stage RO and develop
approaches to improving its uncertainty set via purchased
predictions from agents. Later in Section III, the RGD problem
will be introduced in detail. The two-stage RO can be generally

formulated as
min {f(a:) +max min g(y)} , (1)

ueU yeY(x,u)
s.t. ze XN XR,

with
Xrp={z | V(x,u) #0,Vuel}, 2)

where x and y are the first- and second-stage decision
variables, respectively. In parallel, u represents the potential
uncertainty realization varying within an uncertainty set U.
X and X are the feasible and robust feasible sets of =z,
respectively. According to (2), a first-stage decision x is robust
feasible if and only if for any realization of uncertainty u, we
can find a feasible second-stage solution y € Y(x, u).
Traditionally, the uncertainty set U is estimated by the
operator based on their own forecasts. With the recent advance
in metering and data analytic technologies, the agents (RESs
and loads) can also produce their predictions [14], [15], which
may be used to improve the operator’s forecast. To predict
more precisely, the operator can buy predictions from the
forecasting agents. For example, the operator may buy RESs’
predictions about their future outputs. It is worth noting that
there can also be independent forecasting agents, such as an
agent that has advanced technologies for weather forecasting
to support RES forecasting. The operator pays the forecasting
agents according to their prediction accuracy. In addition,
the agent does not need to disclose the specific prediction
technology and there is no restriction on the forecasting
methods, except that the prediction should be accompanied
by a variance value to indicate its accuracy. In the following,

we first investigate how, if provided with predictions from
agents, the operator can improve their forecasts and obtain
an improved uncertainty set. To make it easier to follow, the
procedures are summarized in Fig. 1.

Original Improved Improved
predictions predictions uncertainty set
Conditional expectation
Ofera;or U¢ ~ E[U;] Uipre _ u?re]
Ui, 0y, L 1 Polyhedral
+ enma uncertainty set (7)
Agent Conditional variance LETIIES
e var{U|Uf"® = u"™]
U 0
Lemma 2

Fig. 1. Overview of Section II.

A. Improved Forecasts

Suppose there are I agents indexed by i € Z = {1,2, ..., I}.
The uncertainty of agent ¢ € 7 is represented as a random
variable U; in R with an unknown distribution, and w; is
its realization. In this paper, we focus on the polyhedral
uncertainty set [2] that is commonly used in RO. The two
key parameters to determine such a set are the expectation
and variance of the uncertain factor. Traditionally, the operator
estimates the expectation and variance of U; using their own
historical data, denoted by @; := E[U;] and o7, := var[U],
respectively. These two estimates may not be accurate enough
due to the limited data of the operator. To predict more
precisely, the operator can buy predictions from the agents.
Suppose agent i’s forecast of U; is U™, then we have
U; = U + ¢;, where ¢; is a random noise. The prediction
UP" is also a random variable and let u!" be its realization.
Denote by o2 := varle;] the variance of ¢;. The higher
the agent’s prediction accuracy, the smaller the a?i. Agents
are heterogeneous and may have different prediction errors
reflected in afi. Throughout the paper, we adopt the following
assumption, which is a commonly adopted assumption about
multiple uncorrelated predictions [33]:

Al: {¢;,Vi € T} are independent. Each ¢; has zero expecta-
tion, i.e., El¢;] = 0, and ¢; is independent of U;.

First, let us see how the operator can improve their esti-
mation of U; with the help of prediction u}"“. We propose
to use the conditional probability P(U;|U" = u!"“) as an
approximation of the actual probability P(U;) of U;. Then the
uncertainty set can be constructed based on the conditional
expectation E[U;|UP™ = u"] and variance var[U;|U"° =
ul”®]. Generally, these two parameters can be complicated
nonlinear functions of u!"“. For simplicity, in this paper, we
adopt the best linear predictor of U;, Uf := «; + ;U that
minimizes the squared error expectation as follows,

min E [(U; — (a; + B:UP™))?

min E 3)

where «; and [3; are parameters to be determined. Denote the
realization of UJ by us.
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Lemma I: When A1 holds, the two parameters of the best
linear predictor Uf = «; + ;U are

" of +o2) “i=

Moreover, E[U; — Uf] = 0 and cov(U; — U£,UP"“) = 0.
The proof of Lemma 1 can be found in Appendix A. When
the error is very small (02 — 0), we have a; = 0,3; = 1, and
thus u¢ = u?"“. It means that the prediction u? "¢ is accurate
so the operator just uses it. When the error is very high (afi —
00), we have o; = U;, 8; = 0, and thus u{ = %;. It means that
the prediction u}" is so inaccurate that the operator cannot get
a better estimation than the original one u;. Let n; := U; —U;.
By Lemma 1, we have cov(n;, UF"™®) = 0, so it is reasonable
to make a stronger assumption that the improved forecast and
its forecast error are independent. Moreover, this assumption
can be proven in the case of Gaussian random variables [34].

(1= B)u;. 4

A2: n; and U™ are independent.

Based on the best linear predictor, the conditional variance
var[U;|UP" = u¥"®] can be calculated by Lemma 2.
Lemma 2: When Al and A2 hold, we have

varlU5 U7 = ul"™] = (1 - ;)0}, + B2o%  (5)

and var[U;|U"™® = u?"] < o3,

The proof of Lemma 2 can be found in Appendix B. From
Lemma 1, we have observed that the more accurate the pre-
diction (i.e., the smaller the 02 ), the larger the [3; (weight on

u?"). In an extreme case when (72 is zero, we have uf = u?"*
and var[U;|UF™ = ™ = 0. This indicates that with the
prediction from agent ¢, the operator can know the exact value
of u;, and so there is no uncertainty. On the contrary, when
0? — oo, we have u§ = u;, and var[U;|U"* = u"] = o, ,
meaning that the agent’s prediction is so inaccurate that the
operator still uses the same estimation as if there were no
purchased prediction. From the analysis above, we find that
B; € [0,1] can be a good indicator of prediction accuracy.
We borrow similar concepts from economics and define the
prediction accuracy as follows.

Definition 1: (Prediction Accuracy [34]) The parameter 3;
in (4) can be formally defined as the prediction accuracy. To
differentiate, we use 7; to denote the prediction accuracy, i.e.,

2
= o e [0,1] ©
Ti o2 o2 , 1.
The accuracy of each agent’s prediction to the operator is
influenced both by the agent’s forecasting technology and the
incentive paid by the operator (will be explained later).

B. Improved Uncertainty Set

With the improved forecasts above, the operator can then
construct an improved uncertainty set. Suppose there are T’
periods indexed by ¢ € T = {1, ..., T}, then we have the best
linear predictor u, and variance Var[Uzt|U e = b/ for all
it €7 and t € T. We adopt a polyhedral uncertainty set with
the following form.

Ur) = {uw,Vie IVte T |

WO —ul Sup <ul Ul VieI VteT

0
247“”” h“”' <Tg, VteT
i n

it

0

> W <Tr, VieI} 7
where I's and I'r are the uncertainty budgets to re-
strain the spatial and temporal deviations from the forecast
ufy. ud,ul, Vi, Vt and T's,I'7 are parameters to be deter-
mined based on the best linear predictor u$, and variance
var[U;|UE™ = uf/°]. Their values are given in Lemma 3.
Denote v;; := |u,t —ul|/ult, Vi, Vt, so vy = |mie/ull| when
uY, = ug,. For simplicity, we assume that:

A3: {nit/\/var[n;], Vi, Vt} are independent and identically
distributed (i.i.d.).

Assumption A3 means that the errors of improved forecasts
are independent, and they follow the same type of distribution
except that the variances may be different. This assumption
will hold if the predictions are obtained independently using
the same type of forecasting method. We adopt this assumption
for simplicity and derive theoretical confidence results for the
constraints of the uncertainty set in Lemma 3, which provides
guidance for constructing the uncertainty set and choosing the
parameters in general cases.

Lemma 3: When A1-A3 hold, if the parameters of the
uncertainty set (7) are chosen as

wly = ufy = (1— 730Ut + Tty ©, Vi, Ve, (8a)
uly = \JvarlUa U5 = )/ (1~ 8) = /varla /(T — 0)
= IO =702, +7202] /(1 —0). Vivt,  (8b)
I1-6)1+I1-1
Po \/ (EOIETE) o
T1-6(1+T-T
- \/ U-90+T-Tg) 0

Then, we can ensure that P(vy; > 1) < 1 — §,Vi, Vi,
P o,vie >Tg) <1=&Vtand P (3, vie > I'p) < 1-E,Vi.

The proof of Lemma 3 can be found in Appendix C. With
the help of purchased predictions, a smaller and more accurate
uncertainty set can be obtained. The improved uncertainty
set (7) depends on the prediction accuracy 7y, Vi, V¢t and
the confidence thresholds § and &. 7; is influenced by the
payment of the operator to agent ¢ for buying the agent’s
prediction (denoted by Cj, V7). The higher the payments, the
more accurate the predictions. § and £ are chosen according
to the operator’s preferences. The relationship between the
operator’s payment and the prediction accuracy is given in
the next section. The improved uncertainty set is impacted by
the payment C;, Vi determined in the first stage, and thus, is
decision-dependent.

Remark: The proposed method allows the operator to pur-
chase and use predictions in RGD. The participation of RESs
and loads in the day-ahead electricity market is not consid-
ered. In the proposed model, we assume that the forecasting
agents are trustworthy, which means that they will provide
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the operator with the predictions of the claimed quality. This
can be enforced by a penalty mechanism based on statistical
hypothesis testing after the real values are observed. The
hypothesis testing may combine multiple days’ forecasts for
a high enough level of significance. As long as the agents
are trustworthy, the operator’s optimal strategy can be found
using the proposed method. Since the operator optimizes
toward the best trade-off between prediction cost and operation
cost, the agents are encouraged to improve their forecasting
technologies to the most efficient degree.

ITII. ROBUST GENERATION DISPATCH MODEL WITH
PURCHASE OF PREDICTIONS

With the improved uncertainty set above, in the following,
we develop the RGD model integrating the purchase and use
of predictions from agents (RESs and loads).

A. General Form

To integrate the prediction purchase and RGD processes,
we need the relationship between the operator’s payment C;
and the prediction accuracy 7;;. The agent i assesses the
prediction cost h;(7;) as a function of the prediction accuracy
7; := {7, Vt} according to the forecasting method and then
offers it to the operator. The operator’s payment C; to agent
¢ should cover the prediction cost, i.e., C; > h;(7;). For the
sake of testing the proposed RGD framework with prediction
purchase, we use the prediction cost function in (9). The
function in (9) has been widely applied to market information
aggregation [34] and virtual power plants [13] to model the
prediction costs. It is worth noting that the proposed method
can be adapted to other forms of prediction cost function.

m I m T
it
i(7i) :ZT > ) ®)
=1 Oe, — Tit

t=1 TUs,

where m is a cost parameter estimated by the forecasting
agent. The prediction cost h;(7;) covers the costs in T periods.
In each period, the prediction cost is inversely proportional
to the variance, which indicates that the more accurate the
prediction (the smaller the 0621,), the higher the cost h;(7;).

For notation conciseness, we further assume that for each
agent, the prediction accuracy values in different periods are
the same, based on which we obtain the formulation in (10).
Nonetheless, the proposed model and algorithm can also be
applied to the case with heterogeneous prediction accuracy.

Cy > hi(r) = ”; i vieT, (10)
op, 1=
where m = Tm.

Definition 2: (Value of Prediction) The operator’s payment
C; to agent i can be formally defined as the value of prediction
from agent .

Remark: Prediction trading methods can be divided into two
categories, depending on whether the payments are determined
before or after the provision of predictions. In references [8],
[11], [15], [35], the payments for the forecasts are determined
based on the actual uncertainty realizations and benefits af-
terwards. In the proposed model, we adopt the other method,

where the agents offer the cost-accuracy function, and then
the operator decides on whether to buy or not and the level
of accuracy. The adopted method is more flexible in that the
prediction accuracy is adaptive.

The total payment for buying predictions from agents is also
a cost of the operator in the first stage. Therefore, the two-stage
RO model considering the purchase and use of predictions can

be formulated as
g(y)} , (D)

min
yeYV(z,u)

min {f(m) +>» C;+ max
z,C, 1 ‘ weU (1)
i€l
stz € XN Xg,
(10), 0 <1, <1,Vie T,

where
Xp = {z | Y(z,u) #0,Yu c U(T)}.

As the focus of this paper is the operator’s decision-making
in RGD, the predictive information market design between the
operator and agents will be left for future study. The model
(11) is an RO with DDU since the uncertainty set U(7) is
influenced by the first-stage decision 7. The details of the
objective function and constraints are given below.

(12)

B. Detailed Robust Generation Dispatch Model

There are J controllable generators indexed by j € J =
{1,...,J}, L lines indexed by [ € £ = {1,...,L}, I, RESs
indexed by i € Z, = {1,...,I.}, and I; loads indexed by
i€Zy={I+1,..,I.+ I} in a transmission grid. Let Z =
T, UZ,; denote the set of agents whose power outputs/demands
Ui, Vi € Z,Vt € T are uncertain. In particular, for i € 7., u;;
represents the uncertain maximum power output of RES ¢ in
period t; for ¢ € 7, u;; represents the uncertain power demand
of load 7 in period ¢. The operator may buy predictions from
the RESs and loads to improve their predictions. The best
linear predictors u, of u;; can be obtained by (8a).

In the first stage (day-ahead pre-dispatch stage), the trans-
mission grid operator decides on the reference output and
reserve capacity of the controllable generators and the pay-
ments for buying predictions from RESs and loads. In the
second stage (re-dispatch stage), knowing the exact RES power
outputs and exact demands, the operator adjusts the output of
controllable generators within their reserve capacity or curtails
RES power to maintain power balance. The RGD problem can

be formulated as
min > > (o +f 1+ ) + D Ci

cr’ teT jeJ i€Z
f(=)
+ — -
y(p rE “) teT ]EJ i€l
9(y)

(13a)
st. (p,rt) € XN Xg, (13b)
Ci>— T 0<r<1, Viel (13c)

o, 1—7’
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where
X = {(p, ) |

Zjej Pje ZieL. tir = Ziezd Ui VL E T (142)
0<7y; <Rf0;:,0<r;, <R;0;,YjeJVteT, (14b)

ijmejt + T;t < Pjt < PJT”’“”Gjt — ’I“;-;,Vj eJ,NteT,
(14c)
(pje + 7";;) — (Pj—1) — T;(t,l)) < R;rej(t—l)
+RYOSVjeT vt=2,..T, (14d)
- (pjt - 7";) + (pj(t_l) + T;L(t,l)) < R;Hjt
+RPO7 Vi€ TNVt =2,..,T, (14e)
— R mappt Y maug— Y maug, < Fl,vz,\#},
JjeT €L, €Ly
(141)
and
V(p, 1%, u) = {pi,pc |
0<pf,<r;,0<p;, <r;,VjeJ,VteT, (15a)
S pie+rh -+ Y (wa—ph) = u VteT,
JET i€Z, i1€Zy
(15b)
0<pS <uy,VieI. VteT, (15¢)
— R <> mlpie+ph —p3) + Y malui — )
JET i€l
— 3 miui < RVIE LVE e T}. (15d)
i€Lyq

The objective function (13a) minimizes the total cost under
the worst-case scenario, i.e., the total generation-related cost
and prediction purchase payment in the first stage plus the
total generation adjustment cost and curtailment penalty in the
second stage. In the first stage, the decision variable = consists
of the reference output {pj,Vj,Vt} and upward/downward
reserve capacity {r;,rj_t,Vj, Yt} of controllable generators.
C;,Vi is the payment for buying information from the
agents. The second-stage decision variable y includes the
upward/downward power output adjustment {pjt, Pt v, vt}
of controllable units and the real-time RES power curtail-
ment {p§,,Vi € I,,Vt}. 0;, 0%, 01 are binary parameters
for the on, startup, and shutdown states of generator j in
period ¢, respectively [25]. p;, ’y]i, and jS are the cost
coefficients of power output, upward/downward reserve, and
upward/downward regulation, respectively. p¢ is the real-time
curtailment penalty coefficient.

Constraints (14a)-(15d) stipulate the operational limits. Con-
straints (14a) and (15b) are the power balance conditions.
The upward/downward reserve capacity should not exceed
the bounds Rji as in (14b). The upper/lower power limits of
controllable generators considering reserve requirements are
given in (14c), where PJW" / P;’“” is the minimum/maximum
power output. (14d)-(14e) ensure the satisfaction of ramping
limits when offering reserves [26]. The upper/lower power

limits of RES curtailment are given in (15c). The network
capacity limits are imposed in (14f) and (15d); Fj is the
power flow limit of line ! and m;;, 7;; are the power transfer
distribution factors (PTDFs) deduced from the DC power flow
model, so constraints (14a), (14f), (15b), and (15d) constitute
the network model. Constraint (15a) ensure that the power
adjustment is within the reserve capacity.

Remark: Load shedding is not allowed in the proposed
model (13)-(15). This is because in some countries such as
China, load shedding is viewed as an operation failure and is
prohibited [2]. But it is worth noting that the proposed model
can also accommodate load shedding by adding slack variables
to (15b), (15d) and a penalty term in the objective function.

As mentioned earlier, the proposed model (13)-(15) is an
RO with DDU. The traditional algorithms such as Benders
decomposition and C&CG cannot be directly applied since
they may fail to converge or lead to suboptimal solutions. In
the next section, a mapping-based C&CG algorithm will be
developed to overcome this difficulty.

IV. SOLUTION ALGORITHM

In this section, a mapping-based C&CG algorithm is devel-
oped to solve problem (13), an RO with DDU. Noticing that
the re-dispatch problem (15) is a linear program, ¢(y) and
Y(z,u) can be expressed by

9(y) = ¢y, (16)
Y@,u)= {ye€R™ | Az + By+Du<g}. (7
A. Second-Stage Problem Transformation
Given the first-stage decision € X’ and 7; € [0,1],Vi € Z,
the second-stage problem is a bilevel optimization:
S(z,7) = max min ¢y, 18
( ) weU (1) yeY(z,u) 4 (18)
which is equivalent to the sub-problem (SP) (19).
SP: max ¢y, (19a)
uelU(r),y,v
st. BTv =g, (19b)
0<-—vLl[-(Az+By+Du)+q>0. (19c)

In SP (19), the decision variables are the uncertainty u, the
second-stage decision variable y, and the second-stage dual
variable v. The constraints (19b) and (19¢) constitute the KKT
conditions of the inner “min” problem minycy s ) c'y. The
complementary slackness condition (19¢) can be linearized by
the Big-M method [36].

Furthermore, for a given first-stage decision (z,7), the
problem (18) may be infeasible. Remember that we need to
ensure x is robust feasible (z € /’\?R), so we construct the
following relaxed problem for checking feasibility.

F(x,7) = max minl's, (20a)
weU(t) Y,s
st. Ar+ By+ Du—s<gq,s>0. (20b)

In the relaxed problem (20), a nonnegative slack variable
s is added to the constraint Ax + By + Du < ¢ so that the
new constraint (20b) is always feasible. Moreover, the original
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problem is feasible if the minimum 1'7s = 0 in the relaxed
problem, which means the slack variable is not needed. By
maximizing the minimum 17 s over u € U(7), we can know
whether the original second-stage problem is feasible for all
possible realizations in the uncertainty set by checking whether
the optimal value F'(x,7) = 0. Similarly, the relaxed problem
(20) is equivalent to

FC: (21a)

max 17s,
wEU(T)
Y,S,V, 1
st Blu=0, —v+pu=1,0<puls>0, (21b)
0<-v L [-(Ax+ By+ Du—3s)+4q] >0. (2lc)

We call (21) the feasibility-check (FC) problem. In FC (21),
v and p are the dual variables of the two constraints in (20b)
in the inner “min” problem, respectively, and the constraints
(21b) and (21c) constitute the KKT conditions. In particular,
the parameters of I/(7) are fixed in (19)-(21), including «*¢ and
u" which can be determined by 7 in the first-stage decisions.

Given a candidate first-stage decision, we first solve the FC
problem to check whether z € Xg. If not, a feasibility cut will
be returned; otherwise, we continue to solve the SP problem
to identify an optimality cut.

Lemma 4: Suppose u* is the optimal solution of SP or FC,
then u* can be reached at a vertex of U/(7).

The proof of Lemma 4 is similar to that in [37] and is
omitted here. The traditional RO algorithms return the worst-
case scenario {u},,Vi,Vt} directly to the master problem to
generate a feasibility/optimality cut. However, when dealing
with DDU, a previously selected scenario may no longer be a
vertex of the new uncertainty set when the first-stage decision
changes (U(7) changes with 7). This causes the traditional
algorithms to fail to find the optimal solutions.

To tackle this problem, instead of returning the scenario
uy,, Vi, Vt directly, we propose to map the worst-case scenario
to an unchanged vertex set and return the mapping constraints.
Define the set ® by:

O = {$y,VieI,VteT|
— Vit < i <Y, Vi K LVi€eZVEET,

Doip Vi ST VEET, Y by <Tr,Vi €T}

Lemma 5: The set @ and its vertex set V(@) are unchanged,
i.e., they are independent of 7. For any 7 subject to 7; €
(0,1),Vi € Z, the mapping 7 : & — U(7) defined by 7(¢) =
u with

wip = u$y(1;) + ul (1) pir, Vi € TV €T,

is bijective. Moreover, the restriction on the vertex set 7 :
V(®) — V(U(T)) is also bijective.

The proof of Lemma 5 can be found in Appendix D. Lemma
5 uses the assumption that 7; € (0, 1), Vi € Z, which naturally
holds when the forecasting variances are not zero, i.e., the
operator and the agents cannot predict exactly. Under this
assumption, Lemma 5 shows that there is a bijection between
the unchanged set ® and uncertainty set ¢ (7) that preserves
the vertices. For a worst-case scenario u* generated by FC or
SP, we can get the corresponding ¢7j,, Vi, Vt by:

o = (ufy —ul)/ul Vi € TVt € T.

Then, instead of returning u* to the master problem, we return
the following mapping constraints:

wiy = ué (1) +ul (1), Vi € TVt € T.

Here, u;, u$,(7;), and ul*(7;) are all variables in the master
problem. When 7; changes, the point calculated by (22)
remains at a vertex of U(7), as illustrated in Fig. 2.

(22)

Uz worst-case
A scenario
IN
uﬁ‘ (T2,6)
u®(zg)
h
uy (T1,5) o,
u®(Tg41)

Uy

Fig. 2. Illustration of (22). The yellow and orange regions are the uncertainty
sets in the K and K 4 1 iterations, respectively. Point A is the worst-case
scenario in the K iteration. When u¢ and u’ change with 7, (22) moves
point A to point A’, which is a vertex of the new uncertainty set.

B. Mapping-Based C&CG Algorithm

With the mapping constraints returned, the master problem
(MP) can be formulated as

MP:  omin o f(2)+ Z Ci +¢, (23a)
stz € X,(10),7; € [0,1],Vi € T, (23b)
¢>c'yF VE € [K], (23¢)
Az + By* + DuF < ¢,Vk € [K], (23d)
ub = ul () +u" (7)o, Vk € K], (23e)

where the symbols with superscript & are variables while the
symbols with subscript k are given parameters. [K'] represents
all positive integers not exceeding K.

The overall procedure of the proposed mapping-based
C&CG algorithm is given in Algorithm 1. The proposed
algorithm is different from the traditional C&CG algorithm
[38] as it returns the mapping constraints instead of the worst-
case scenarios {u};, Vi, Vt} to the master problem to generate
new cuts. To be specific, in the traditional C&CG algorithm,
Step 6 in Algorithm 1 is replaced by: “6: Create variables
yX+1 and add the following constraints to MP (23):

¢>cTyEH Az + ByfEt 4+ Cugyq < q.

Update K = K + 1 and go to Step 2.” Note that uz-,, is a
constant vector obtained by solving FC (21) or SP (19).

Theorem 1: Let ny := |V(®)| be the number of extreme
points of ®. The mapping-based C&CG algorithm generates
the optimal solution to problem (11) within O(ny) iterations.

The proof of Theorem 1 can be found in Appendix E.
While the traditional algorithms fail to guarantee finite-step
convergence and optimality of the obtained strategy, the pro-
posed algorithm can overcome these limitations. Case studies
in Section V-C also demonstrate the advantages and necessity
of the proposed algorithm.
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Algorithm 1 Mapping-Based C&CG Algorithm
1: Imitiation: Error tolerance ¢ > 0; K = 0; UBg = +o0.
2: Solve the Master Problem
Solve MP (23). Derive the optimal solution
(@1 Cho1Ti415 G{eryl*v ey Ut L u)
and update LBx 11 = [(fcy1) +2ier O ki + Cheyr-
3: Solve the Feasibility-check Problem
Solve FC (21) with (27,1, Ti 1)
Let (W15 @41 Victr1> e 10 Yk 415 Sk 1) be the opti-
mal solution. If 1Ts}(+1 > 0, let UBg4+1 = UBK and
go to Step 6. Otherwise, go to Step 4.
4: Solve the Sub-problem
Solve SP (19) with (2%, ,, 7). Denote the optimal

solution by (U;(-s-p ¢§<+17 V?{ﬂ»?ﬁ(ﬂ)- Let
* * T %
UBk1 = f(%)iq1) + ZiEI Ciks1+¢ Ukp

5: If [UBkgy1 — LBg41| < € terminate and output
(%1, T4 1) Otherwise, go to Step 6.
6: Create variables (y®*! uX*!) and add the following
constraints to MP (23):
¢>c'yf Az + Byft 4+ Cuf T < g,
WS = () (7).

Update K = K + 1 and go to Step 2.

C. Transformation and Linearization

In Algorithm 1, MP (23) is highly nonlinear due to the
term u®(7), u"(7), and the constraint (10). In the following,
we show how to turn (23) into a solvable form.

First, it is easy to prove that at the robust optimum, we
have C; = h;(7;). Otherwise, if C; > h;(7;), we can always
reduce C; a little bit without changing the value of the other
variables, so that all constraints are still satisfied but the
objective value decreases. This contradicts the definition of the
robust optimum. Therefore, we can eliminate constraint (10)
and replace ), C; in the objective function with ). h;(7;).

Second, if we let u?*,Vi € Z be the decision variables and
use them to represent 7;,Vi € Z, then the prediction cost
>, hi(7;) can be represented by

1 1
hi(m) = n|l———-—-——51]. 4
et = ¥y (s 0U> 9
Let h;(ul') denote the term in the right-hand side of (24) for
each 7 € 7, where ui‘ is the decision variable. Then, hi(u?)
is a convex function. Similarly, u$,(7) can be represented by
u, which is

_ h\2 _ h\2
ug (ul)) Gl 19 (1—(1‘5)“‘”) uly ¢, Vi, vt.

2 2
(25)

O'Ui O—Ui

Next, we introduce a new variable 4f,,Vi € Z,Vt € T, use
it to replace u°(7) in (23e), and add the following penalty
function to the objective:

H(@ u") =1 ZieI ZteT (@5 — uft(“?)f ) (26)

where ¢ is a large constant. Then, the remaining nonlinear
term in the objective function, 3, h;(ul) + H(a¢,u"), can
be linearized by a convex combination approach [39], after
which MP (23) has been turned into a linear program that can
be solved efficiently.

D. Comparison with Generalized C&CG Methods

In this subsection, we discuss generalized C&CG methods
in literature designed for two-stage RO problems with DDU,
namely, Benders C&CG [24], parametric C&CG [24], [25],
and adaptive C&CG [26].

The main difficulty of using C&CG to solve two-stage RO
with DDU is that the worst-case scenarios found in previous
iterations may become inside or outside of the new uncertainty
set if the first-stage decision changes. In Benders C&CG and
parametric C&CG, the idea is to add the KKT conditions for
the following optimization problem to MP in order to consider
the uncertainty set vertices:

max —v' Du

27
weU(T) ’ ( )

where v is a dual variable value obtained from the second-
stage problems SP and FC. The proposed uncertainty set I (7)
in (7) can be written as:

UT) = {u, Vi e I,vteT |
— v < Uy — u?t < i, Vi < uZ,Vi eINteT

Vit Vit .

- <TgMteT, Y u7 <Tp,Viell,
icT it teT it

where the auxiliary variable v;; represents |u;; — uY|. Since

the parameters ul, = u¢, and u?, depend on T, the uncertainty

set U(7) has the following compact form:
U(r) ={u | Gru+ Ga(m)v < H(T)},

where G1, Go(7), and H (1) are coefficients. Since G5(7) and
H(7) depend on 7, both the left-hand-side and right-hand-side
coefficients are decision-dependent. Then the KKT conditions
of problem (27) are:

GiA=—-D"v,Go(r) "X =0, (28a)
0<AL[H(T)— Gru— Ga(T)v] > 0. (28b)

When added in MP, the KKT condition constraint (28) con-
tains decision variables 7, u, v, and A. Although the comple-
mentarity relationship in (28b) can be linearized using binary
variables and the Big-M method, the bilinear term Ga(7)v still
exists, which brings nonlinearity and nonconvexity to MP and
makes it intractable. Since the effectiveness of the Benders
C&CG and parametric C&CG methods relies on the optimal
solution of MP, the two methods are not suitable for the
current model. Further linearization may help to solve such a
type of MP effectively, which is one of our future directions.

To deal with the problem of the changing uncertainty set, the
adaptive C&CG method projects the previously found worst-
case scenario to a vertex of the new uncertainty set, and the
projection method works for the general polyhedral decision-
dependent uncertainty set. The considered uncertainty set I/ (7)
has a natural mapping to the unchanged polyhedron ® and
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we utilize this fact to track the uncertainty set vertex in the
proposed solution method. To this end, the proposed method
can be regarded as another implementation of the idea of
adaptive C&CG that further exploits the specific uncertainty
set structure and reduces the computation burden of vertex
projection.

In summary, the considered uncertainty set has decision-
dependent left-hand-side coefficients and a natural mapping
structure, which makes the proposed method the most suitable
one compared with the three generalized C&CG methods.

V. CASE STUDIES

We first use a simple 5-bus system to verify the proposed
method and reveal some interesting phenomena; then, larger
systems (33-, 69-, and 123-bus systems) are tested to show the
scalability. Detailed data can be found in [40]. The mapping-
based C&CG algorithm is implemented in MATLAB with
GUROBI 9.5. All the simulations are conducted on a laptop
with Intel i7-12700H processor and 16 GB RAM.

A. Benchmark

A 5-bus system with 3 controllable generators, 5 agents
(2 wind farms and 3 uncertain loads), and 3 fixed loads is
tested, whose parameters are shown in Table I. The time
interval is 1 h. In the case study, it is assumed that the agent’s
prediction equals the actual value plus an error term, whose
size depends on the variance value. We call the expected
values estimated by the operator without using the agents’
prediction information by original forecasts. The operator’s
original forecasts u; and the actual uncertainty realization wu;
of agent 7 in hindsight are depicted in Fig. 3. The original
forecasts of agents 3 and 4 are the same. Suppose in every
period o, = [8000, 2000, 4000, 9000, 1000] MW?2.

TABLE I
PARAMETERS

Value

[30,35,25] $/MWh
[700,700,800] MW
[280,280,320] MW
[350,350,400] MW
[350,350,400] MW/h

Parameter

Generator cost coefficient p
Generator maximum output P %%
Generator minimum output P™*™
Generator maximum reserve R™

Generator maximum ramp rRE

Period number T° 24
Prediction cost parameter m 10% $-MW?
Curtailment penalty p© 100 $/MWh
Linearization penalty ¢ 10* $/MW?
Uncertainty set confidence d, £ 0.95,0.95

The proposed algorithm converges after 14 iterations in
987 s, which is acceptable for the day-ahead scheduling.
The total operation cost (sum of the first-stage and the
worst-case second-stage operation costs) is $1.115 x 10,
while the prediction payments C; for the 5 agents are
$[4.00,4.28,3.73,3.55, 0] x 103, respectively. Hence, the total
cost (13a) under the worst-case scenario is $1.131 x 106.
We also test the performance of the obtained day-ahead
predispatch strategy when dealing with the actual uncertainty
realizations. A feasible real-time redispatch strategy still exists

500 500
= Agent 1 (wind farm Agent 3 (lo:
(wind farm) (load)
= Agent 2 (wind farm) Agent 4 (load)
S 400 2400 Agent 5 (load)
5
a =
3 300 5 300
° - g
z » N\ 5
2001 . L4 A S 200
IS <i P o]
g R
% 100 R 100
= RS \/(
0 0
0 5 10 15 20 0 5 10 15 20

Time (h)

Fig. 3. Original forecasts (solid lines) and actual values (dashed lines).

but with a lower total cost ($1.071 x 10°). Although the pre-
diction cost is relatively small compared to the operation cost,
the purchased predictions still play an important role in the
dispatch, because they improve the forecasting accuracy, help
to narrow the uncertainty set, decrease the conservativeness of
the robust dispatch strategy, and therefore reduce the operation
cost. The operation cost is $1.178 x 10° without prediction
purchasing, whereas the total cost is $1.131x10° ($1.115x 106
for operation and $1.556 x 10* for prediction) if it is allowed
to purchase predictions. Therefore, the purchased predictions
have a nonnegligible impact on the operation cost even if the
prediction cost is small, and they can reduce the total cost by
about 4% in the benchmark case.

The reference and worst-case power outputs of controllable
generators are shown in Fig. 4. In the results, the cheapest
generator (generator 3) has the highest output, and the most
expensive generator (generator 2) has the lowest output.

1000
900
800
< 700
=
S 600
2
3 500
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2 400t
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O 300r
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— Generator 3
0 I . . .
0 5 10 15 20
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Fig. 4. The reference (solid lines) and worst-case (dash-dotted lines) power
outputs of controllable generators.

To visualize the impact of predictions from RESs and loads
on the forecast of the operator, the original (green area) and
improved (blue area) uncertainty sets of agents 3 and 4 (i.e.,
loads 1 and 2) are shown in Fig. 5. Both sets have a confidence
probability § = 0.95 in each period. The centers of the original
uncertainty sets are the original forecasts wu;:, Vi, Vi. After
purchasing the predictions from RESs and loads, the centers
become the best linear predictors u$,, Vi, V¢, which are closer
to the actual uncertainty realizations. The shaded areas show
the variation ranges of the demand of loads 1 and 2.

Both uncertainty sets contain the actual load demand, but
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the improved sets are much narrower so the operator is facing
less uncertainty. The original forecasts of agents 3 and 4 are
the same, but the uncertainty variance of agent 4 is larger, so
agent 4’s original uncertainty set is wider (u? = 134 MW)
than that of agent 3 (ug = 89 MW). The widths of their
improved sets are similar with uf = 33 MW and u? = 35
MW. Moreover, Fig. 6 shows how the uncertainty sets narrow
as the prediction payments increase. Note that Fig. 6 is a
semi-log plot and the prediction payment grows very quickly
when the width of the uncertainty set is small. This is because
the marginal prediction cost increases with a higher accuracy.
In other words, it costs more to improve the accuracy of an
already quite accurate prediction. The optimal payments and
the corresponding widths 2u/'*, Vi are also marked in Fig. 6.
We can find that the values of uf*,w are similar, which is
due to the equal incremental principle, i.e., at the optimum,
0C;/Oul Vi are equal. The subtle difference between ul*,Vi
is caused by the linearization approximation errors.

a
5]
a
Q
o

’;“ Original forecast ’;‘ Original forecast
= Actual value = Actual value
: 400 Best linear predictor ;_/ 400 Best linear predictor
5 5
2300 Q300
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Fig. 5. Original and improved uncertainty sets of agents 3 and 4.
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Fig. 6. Width of uncertainty sets under different prediction payments; circles
represent the results at the optimum (the optimal payment for agent 5 is zero,
which is outside of this figure).

B. Sensitivity Analysis

We further investigate the impacts of three different factors:
the agent’s prediction cost coefficient m, the probability pa-
rameters § and & of the uncertainty set, and the variance of
the uncertain factor o7.

1) Impact of Prediction Cost Coefficient: First, we test
how the strategy of the operator changes with a rising agent
prediction cost by changing m from 0 to 2 x 10° $-MW?. The
total costs, operation costs, and prediction payments under

different m are shown in Fig. 7. The change of prediction
accuracy 7 and the width of the improved uncertainty set
are given in Fig. 8. We can find that when m = 0, the
agents’ prediction payments are zero since the operator can
know the exact value of u without making any payment,
and thus, there is no uncertainty (7; = 1,Vi). When m
is very large, e.g., 2 x 10° $-MW?, the agents’ prediction
costs are extremely high, so the operator cannot afford to
purchase predictions from the agents. Therefore, as shown
in Fig. 8, the final prediction accuracy 7; is zero for each
agent ¢ and the uncertainty sets are the widest. As m grows,
from Fig. 7, the operation cost and the total cost are always
less than the cost of the traditional model (1) without buying
predictions from the agents. The lower the m, the higher
the operation cost reduction, showing the potential of our
model. According to Definition 2, the prediction payment C;
can be interpreted as the value of prediction from agents.
This value is influenced by agent’s prediction cost coefficient
m and the system parameters. From Fig. 7, the value of
prediction of all agents follows a similar trend (first increases
and then declines) and the peak value of the agent with a larger
uncertainty variance o7, tends to be higher. This indicates that
predictions from agents will play an increasingly important
role in future power systems with higher uncertainties.
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Fig. 7. Costs and prediction payments under different m.

1 300
s —%—1
08 2250 [—%—2
§ B —*—3
5 2001 |—*—4
§ 0.6 E 5
_5 o4 %‘ 150
o U c
-&c) ; 100
0.2
0 s L
Q@’&@ﬁ’»&ﬂ/&@?@’@’ 0\,@%&@\,@‘%@&@@%@
m ($-MW?) m ($-MW?)

Fig. 8. Prediction accuracy and width of uncertainty set under different m.

2) Impact of Uncertainty Set Probability Parameters: We
next change the probability parameters § and £ simultaneously,
i.e., keeping § = &£. The costs as well as the widths of
uncertainty sets of agents 3 and 4 are shown in Fig. 9.
When § and £ increase, the uncertainty sets expand, giving
a more robust optimal predispatch strategy but also result-
ing in higher total and operation costs. Moreover, the total
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cost of the proposed model is always less than that of the
traditional model without predictions from the agents (when
6 = & > 0.99, the traditional model become infeasible). The
improved uncertainty sets are much narrower than the original
uncertainty sets. The widths of the improved uncertainty sets
of agents 3 and 4 are similar under different § and ¢ due to
the same reason as in Section V-A.

6
L2 X+lo Total cost 1000
Of =) -
—%—— Operation cost = —¥%— Agent 3 op_n maA
121 % Traditional mode 2 g0l | S Agent3origina
(infeasible when § = ¢ > 0.99) 3 —%— Agent 4 optimal
118 - —&— Agent 4 original
D £ 600
& =
B 116 2
© S 400
114 5
S
1,125 £ 200E
L = F_*———m——/*"*}
11 o
0.8 0.85 09 0.95 1 0.8 0.85 0.9 0.95 1

dand ¢ dand &

Fig. 9. Costs and widths of uncertainty sets under different § and &.

3) Impact of Uncertainty Variance: We further investigate
the impact of 0'(2J, the variance of the uncertain factor (or the
operator’s original estimate). To do this, we multiply o by
a positive constant. The original forecasts and actual values
are still the same as those in Fig. 3. The cost and prediction
accuracy 7;, V4 are shown in Fig. 10. When the multiple
of variance exceeds 2.0, the traditional model is infeasible
because the uncertainty is too severe. The proposed model
is still feasible because buying predictions from the agents
enables the operator to effectively mitigate the uncertainty they
face. This shows the advantage of the proposed model. When
the variance is small, the operator already has a relatively
good original estimate, so they tend to pay less for buying
predictions from the agents. When the variance is large, at the
optimum, the prediction accuracy is close to 1 for every agent,
meaning that the operator relies on the predictions from the
agents to make better dispatch decisions.

x10°

1.25 2
—— Total cost —H—1
——¥—— Operation cost —k—2
—¥— Traditional model § 15F | —%—3
1.2 (infeasible when the 5 —d—4
& multiple > 2.0) § 5
8 - k
O B
115 -
& 05
¥
11 0
0.2 0.5 1.0 20 3.0 0.2 05 1.0 20 3.0

Multiple of variance Multiple of variance

Fig. 10. Cost and prediction accuracy 7 under different multiples of variance.

C. Comparison With the Traditional C&CG Algorithm

To show the necessity of the proposed mapping-based
C&CG algorithm, we compare it with the traditional C&CG
algorithm [38] using the benchmark case. The iteration pro-
cesses are shown in Fig. 11. The mapping-based C&CG

algorithm converges to the optimal solution given in Section
V-A. The traditional algorithm stops in 30 iterations with the
optimal objective value equals $1.178 x 108, which is higher
than that of the proposed algorithm ($1.131 x 10%). This is be-
cause a previously added worst-case scenario may lie outside
of the uncertainty set when the first-stage decision changes.
Therefore, the master problem is no longer a relaxation of
the robust optimization, which may lead to over-conservative
results. Moreover, the previous scenarios that are outside of the
uncertainty set hinder the improvement by buying predictions
from the agents. At the optimum of the traditional C&CG,
we can find that the prediction payments are zero. Given the
reasons above, the proposed algorithm is necessary.

6
14210%
131 .
@ 12r
o}
Q
O 1l1r /i - q
P ~ % — LB of mapping-based C&CG
’ ~——— UB of mapping-based C&CG
1r — % = LB of traditional C&CG ]
* —%— UB of traditional C&CG
0.9 . . . . . . . ! ! ! ! ! !

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration

Fig. 11. Iteration processes of the proposed and traditional C&CG algorithms.

D. Out-of-Sample Test

To analyze the statistical performance of the obtained strat-
egy, out-of-sample tests are conducted. To imitate various
prediction errors, we randomly generate scenarios from a
uniform and a Gaussian distribution with the same expectation
u and standard deviation, respectively. We change the standard
deviation via multiplying +/var[U|UP"¢] by a constant from
0.5 to 2.5 and test the average total cost under the selected
scenarios. Ten thousand (10000) scenarios are tested for each
setting. The average total costs of the proposed algorithm and
the traditional C&CG are compared in Table II. We can find
that the proposed algorithm has lower costs.

TABLE II
OUT-OF-SAMPLE TEST OF THE PROPOSED ALGORITHM AND THE
TRADITIONAL C&CG: AVERAGE TOTAL COST (106 $)

Multiple of standard

o 0.5 1.0 1.5 2.0 2.5
deviation
. Proposed 1.0733 1.0741 1.0762 1.0796 1.0840
Uniform
Traditional 1.1237 1.1245 1.1257 1.1274 1.1294
. Proposed 1.0733 1.0741 1.0762 1.0794 1.0830
Gaussian
Traditional 1.1237 1.1245 1.1257 1.1272 1.1286

E. Scalability

The proposed RGD model and algorithm can be extended
to the robust unit commitment (RUC) problem by adding the
unit commitment decision variables, constraints, and costs to
the first stage. The new decision variables 6, 9%, and Qﬁ
are binary variables for the on, startup, and shutdown states
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of the controllable generator j in period ¢, respectively. The
first-stage feasible region X in the RGD model (14) already
contains the power balance, reserve, ramp rates, and network
capacity constraints. The following new constraints are added
to further incorporate unit commitment [25]:

01,605,607 € {0,1},V5,vt, (29a)
t+UT;—1 U -
Do, O =UT5. 9,1 <t <T —UTj+1, (29b)

T
D Ok —05) 20V T —UT; +2<t <T, (29

t+DT;—1 D
> (1—6j,) > DT;600,%j,1 <t <T — DT; + 1,

k=t it
(29d)
S (-0 6) >0, T - DI +2<t<T,
(29)
00 — O;—1) = 05, — 05,V4, V¢, (291)
0% + 077 < 1,Vj,Vt. (299)

Constraint (29a) defines the binary variables. Constraints
(29b)-(29e) stipulate the minimum up time UT); and minimum
down time DT} of the controllable generator j [41]. Constraint
(29f) depicts the state change and constraint (29g) prohibits
simultaneous startup and shutdown. The total startup and
shutdown cost Zjej(P?QjUt + p?@ﬁ) is also added to
the first-stage objective function f(z), where pg and p]D are
cost coefficients.

To show the scalability of the proposed algorithm on models
with and without unit commitment decisions, the computa-
tional time and the number of iterations under different settings
are recorded in Table III. The 33-bus, 69-bus, and 123-bus
cases have 4, 8, and 8 generators, respectively. UT; and
DT;,Vyj are set as 4 h.

TABLE III
COMPUTATIONAL TIME/NUMBER OF ITERATIONS UNDER DIFFERENT
SETTINGS

Number of agents

Case Model

4 8 12 16
33-bus RGD 84s/3 116 s /3 163s/3 1576 s / 15
69-bus RGD 104s/3 329s/6 2614 s /17 3609 s / 17
123-bus RGD 542s/6 968 s /5 21565 /8 6411 s/ 11
33-bus RUC 58s/2 243 s /4 331s/4 741s/6
69-bus RUC 123s/3 566 s /8 2458 s /13 5399 s/9
123-bus RUC 938s/6 1043 s /6 3793 s /8 4557 s /4

As Table III shows, the computational time needed is less
than 2 h in all test cases, which is acceptable for day-ahead
generation dispatch and unit commitment. Generally, as the
number of agents increases, the number of iterations usually
increases due to the growing dimension of the uncertainty set.
Apart from this, the number of iterations does not have a
direct connection with the case complexity and whether unit
commitment is considered or not. The number of iterations
in C&CG types of methods is theoretically guaranteed to be
no larger than the vertex number of the uncertainty set but is
case-by-case. It is possible that we may need a large number of
iterations to converge. In the test cases, most iteration numbers

are below 10, whereas the maximum iteration number is 17,
which is still much lower than the theoretical bound.

Compared with the RGD model, the RUC model generally
requires longer computational time, but it is at most about
two times as long in the test cases. The solution process of
RGD and RUC differs in the master problem MP. RGD’s
MP is a linear program. In the RUC case, the total dimension
of additional binary variables is 3J7, and MP becomes a
mixed-integer linear program (MILP). However, the uncer-
tainty set and the second-stage MILP problems SP and FC
are not changed. Therefore, the computational efficiency is
still acceptable for day-ahead usage after incorporating unit
commitment in the proposed model.

VI. CONCLUSION

This paper proposes a novel RGD model in which the
operator can purchase predictions from the agents to obtain
a more accurate uncertainty set and make better decisions.
The proposed model renders a two-stage RO with DDU. A
mapping-based C&CG algorithm with convergence guarantee
is developed to solve the model. Some interesting findings are:

o Compared with the traditional model without buying
predictions from the agents, the proposed model can help
the operator greatly narrow the uncertainty set and reduce
the total cost.

e The value of predictions from the agents grows with the
variance of uncertainty, indicating that they will play an
increasingly important role in future power systems with
more volatile renewable generation.

e When dealing with DDU, the proposed algorithm out-
performs the traditional C&CG algorithm in terms of
solution optimality.

A detailed predictive information market design between the
operator and agents and a more efficient solution algorithm
will be our future research directions.

APPENDIX A
PROOF OF LEMMA 1

Set a function

9(a;, B;) == E |:(Ui — (a; + ﬁiUipre))Q

af + E[(U)?167 + 2E[U;" )3
—2E[UiJoy — 2E[UU]")3; + E[UF]. (A1)

Note that ¢; is independent of U;, then

E[U; U] = E[U?] - E[Uie;] = E[U}] = of, + 2,

E[(U™)?] = E[U7] - 2E[Uie)] + E[€]] = ofy, +T; + 07,
Since «; and 8; minimizes g(«;, 8;), we have
dg(as, Bi) dg(a, Bi)
=0 =0 A2
£y T ; (A.2)
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whose solution is

op, _
Bi = o +o2’ a; = (1= B;)u;. (A3)
Then
EU, - U] =4 — a; — BiT; =0, (A4)
and
cov(U; — UL, UP™)
= E(U; - U)U™] - E[U; - UFIE[U}™]
= E[U; — (o + B:U))UF™]
= E[U,UP] — ;E[U] - BE[(UP)?] =0. (A.5)

This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Since Uf = «; + B;U™ is a function of U™, for
any random variable X with finite second moment we have
E[XUF|UP™] = USE[X|UFP™] [33, p. 348]. Therefore,

var(n; (U]
= E[U; - Up)*|Uf™] - (E[U; - UF|UP™)?
= (E[UF|U™) = 2UFEU| U™ + (UF)?)

— ((B[U|UF™)? — 207 E[U|UF] + (UF)?)
= E[U7|U7"] - (B[U:|UF™])?

= var[U;|U"™]. (B.1)

Moreover, we have n; and UP"® are independent random
1
variables. Therefore,

var[U; U]

var([n;|UP"] = var([n;]
var[U; — (1 = Bi)u; — BiU" ]
var[(1 — B;)U; + Biei]

= (1— 8’00, + Bio?. (B.2)
Moreover,
pre 2 d eQL 2
var[U; | U] = anm <oy, (B.3)
This completes the proof.
APPENDIX C

PROOF AND DISCUSSION OF LEMMA 3
A. Proof of Lemma 3

Recall that according to Lemma 1 we have E[n;;] = E[U;:—
Uf) = 0. Combining the fact var[n;;] = var[U;;|U}“] shown
in (B.2), we have E[n;/ul] = 0 and var[n;;/ul] = 1 — 6.
Then according to the Chebyshev inequality,

P (|mir /| > 1)
P (10me/ul) ~ Bl k]| = o] /0= 6))

1/( 1/(1—5))2 —1-4.

IN

(C.1)

Note that vy = |n;¢/ul|. Thus, we have P(vy > 1) =
P(mit/uly] > 1) <1-4.
Again by the Chebyshev inequality,

P (Zi v 2B (Y v + \/Var > v /- 5))

" (Zi B[ ] 2 e[ ] m)

< {1ya-¢rt=1-¢ (C.2)
We find an upper bound for E[} . vy] +

Vvaryo, vl /(1 = €). {ni/var[n;], Vi, Vt} are independent
and identically distributed (i.i.d.), so {v,Vi,Vt} are also
iid. random variables. Therefore, E[) ", v;;] = IE[v;] and
var[y . v;¢] = Ivar[v;;]. Moreover,

varlvr] = B[] — (Elvi])?
= E[(nie/uiy)’] — (Elvi])?
= var[nie/uy] + (Elnie/u}])? — (Elvi))?
=1—-6— (E[vit})Q. (C3)
Then
£ 0] T 0
= IE[vi] + VI(1 =0 — (Evi])?)/(1 - &) =: G(E[vi])

is a function of E[v;] for 0 < E[vy] < +/1-4. By
calculating its derivative, it is easy to show that G(IE[v;4]) first
increases and then declines, whose unique maximum value is
I's. Therefore, we have P(> , viy > I's) < 1-£, Vt. Similarly,
we can prove that P(>°, vy > T'p) <1 —¢,Vi.

B. Discussion of Lemma 3

The bound P(v;y > 1) < 1 — 4 is tight for n;/+/var[n;]
with the following discrete probability distribution:

P/ v/ var[ni] = —1/vV1—=0) = (1 - §)/2,
P(nie//var[ng] = 0) =6,
P(nie//var[ng] = 1/vV/1—6) = (1 —6)/2,

which satisfies

Elnie//var[ni]] = 0, var[ni/+/var[n;]] = 1.

Now we focus on the bound P(> ", v;y > I's) < 1 —§,
where I'g is given by (8c). We consider some specific test-
ing probability distributions of n;;/+/var[n;;] and calculate
P(>, vit > I's) under varying I's.

First, consider the probability distribution with

P(nie/ v/ var[ni] = 1) = P(nie//var[ny] = —1) = 1/2.
Then P(vyy = V1 —0) =1,Viand P(3_, vy = IV1 —9) =
1. Therefore, P(> ", viy > I's) = 1 for I's < I\/1 —0 and
P>, vie >Ts) =0 for I's > Iv/1—0.

Second, construct a discrete probability distribution as fol-
lows with parameter & € (0, 1).

P(nie/\/Var[ni] = a) = P/ \/Varlnu] = —a) = p,
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P(nit//var[ni) = 0) =1 — 2p,

where

1+1—I¢ I(1-¢€)
a=\l———F, D=

I1-¢ -’ 20+ 1-18)°

Then P(viy = ayv/1—6) = 2p and P(vyy = 0) = 1 — 2p, Vi,
based on which P(3 vz > I's) can be calculated under
different I'g.

Bound (8c) is compared with the values of P(}_, vy > I's)
under the two kinds of testing probability distributions in Fig.
12, where I = 3 or I = 5 and £ varies in (0, 1). All the curves
of the testing probability distributions are above the curves of
bound (8c), which verifies the effectiveness of the bound.

1

o (

6 8 10 0 2 4 6 8 10

(=2}

1t <Tg)

PO

Fig. 12. Bounds (8c) (red thick curves) and testing values (other curves) of
P(>;vit > I'g) when I = 3 (left) and 1 = 5 (right).

When I is large, by the central limit theorem, the probability
distribution of >, v;; can be approximated by a normal
distribution with mean I'E[v;;] and variance Ivar[v;] = I(1—
§ — (E[vi4])?). Therefore, with a high probability, Y, vy will
not exceed I+/1 — § much. Hence, I'g &~ I1/1 — § can be used
as the bound in P(}_, v;s > I's) ~ 0 when [ is large.

APPENDIX D
PROOF OF LEMMA 5

In the definition of the set ®, the coefficients I'g and I'p
are independent of 7 according to their definitions in Lemma
3. Then @ is unchanged and thus so is the vertex set V(®).

Now fix some T subject to 7, € (0,1),Vi € Z. By the
definitions of 7; and u in Definition 1 and Lemma 3, we
have ul'(7;) > 0,Vi € I For any ¢ € @, it can be verified
that v = 7(¢) and viy = |uy — us(7)|,Vi € Z,Vt € T
satisfy the constraints of U/(7). Therefore, m(¢) € U(T) and
7 ® — U(7) is well-defined. The inverse map 7~ (u) = ¢
is given by:

“”}7““(7),\1@' cTVteT.

u (7)

Similarly, for any u € U(7), ¢ = 7~ (u) and Yy = |y, Vi €
Z,Vt € T satisfy the constraints of ®. Therefore, 71 (u) € ®
and then 7 : & — U(7) is bijective.

Assume u* € V(U(7)) is a vertex and ¢* = 7 (u*).
Suppose ¢* = a¢’ + (1 —a)¢” for a € [0,1] and ¢, ¢" € .
Then 7(¢'), 7(¢") € U(T) and u* = an(¢’) + (1 — a)7(¢”).
Since u* € V(U(T)), we have 7(¢') = 7(¢"”) = w*, which
implies ¢ = ¢’ = ¢*. Therefore, ¢* € V(®) and then
Y (V(U(r))) c V(®). Similarly, 7(V(®)) < V(U(T)).

bit = D.1)

Then the restriction on the vertex set 7 : V(®) — V(U(7))
is also bijective.

APPENDIX E
PROOF OF THEOREM 1

Suppose the optimal solution of the two-stage RO model
(11) is (z*,7*) and the optimal objective value is

0" = min flz)+ E Ci(m) + max  min g¢(y).
zeXN¥p , wel(7) yeY(z,u)
7;€[0,1],(10), Niez i€L

We start the proof of Theorem 1 by providing the following
claims. For any K € Z*:

(1) Claim 1: LBx < O* < UBk;

(2) Claim 2: If the algorithm does not terminate after K
iterations, then for any K1, Kz € [K], we have ¢} # ¢%,.

Proofs of claims:
(1) Claim 1: The master problem in the K-th iteration is

equivalent to
z)+y_ Ci(m)

€T

LB = min
TEXNXp 1

7; €[0,1],(10),Vi€T

+ max min ,
u€Uk 1 (1) yeV(z,u) 99)

where

Uk _1(7) = {uF =u®(r) +u" (1)} | k e [K — 1]},

(E.1a)

Xi_1:= {z | V(x,u) #0,Vu € Ug_1(7)}. (E.1b)

Since Uy,_1(7) C U(T) and X1 D Xg, we have LBy <
O*.

Next, we prove UBK > O* by induction. First of all,
UBy = 400 > O*. Suppose for the sake of induction
that UBg_1 > OF, then if 17s% > 0, we have UBx =
UBg_1 > O*; otherwise, (7}, 7} ) is robust feasible and

(%) +Z

f@x)+ ) Cfx+ max n
K) Z K uEU(TK)yE)J(xK,u)g(y)

UBg = f T+ 9yk)

> O (E.2)

The last inequality is due to the optimality of (z*,7*).

(2) Claim 2: Without loss of generality, we assume that
K, < K. If we have ¢} = ¢k, then uj, = u®(7f, ) +
W (T )0k, = U (TR,) + WM (T, )0k, € Usy (T )s 50
:L'}‘{z must be robust feasible. Moreover,

LBk, = f(x},)+ ma; min
2 Kz Z HEUK2 I(TKZ)yey(xK2,u)g(Z/)
> f(zk,) Z min _ g(y) = UBk,.
(‘/L‘K uKQ)
(E.3)
Together with LBy, < UBg, from Claim 1, we have

LBy, = UBk,. This contradicts to the assumption that the
algorithm does not terminate after K > Ko iterations.

Now the proof of Theorem 1 is given below.

First, we prove that the algorithm converges in O(ny) iter-
ations. With Lemma 4, we know that the worst-case scenario
uj;, can be achieved at a vertex of Uy, (7;). A vertex of the set ¢
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corresponds to a vertex of the set Uy, (7;). According to Claim
2, the same vertex of ® will not be picked up twice. Moreover,
the number of vertices of ® is ny. Hence, the algorithm stops
in O(ny) iterations.

Suppose the algorithm terminates after K < ny iterations.

Next, we show the robust feasibility of (z7%, 7). Obviously,
we have =}, € X and 75 € [0, 1]. Moreover, s} = 0 when
the algorithm terminates, so (z7, 7} ) is robust feasible.

Finally, we show the optimality of (27}, 7j;). According to
Claim 1, we have LB < O* < UBg. Together with the
condition for termination |UBg — LBk| < €, we have

This completes the proof.
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