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ABSTRACT We present an architecture to implement a decentralised data market, whereby
agents are incentivised to collaborate to crowd-source their data. The architecture is designed to
reward data that furthers the market’s collective goal, and distributes reward fairly to all those that
contribute with their data. This is achieved leveraging the concept of Shapley’s value from Game
Theory. Furthermore, we introduce trust assumptions based on provable honesty, as opposed to
wealth, or computational power, and we aim to reward agents that actively enable the functioning
of the market. In order to evaluate the resilience of the architecture, we characterise its breakdown
points for various adversarial threat models and we validate our analysis through extensive Monte
Carlo simulations.

I. INTRODUCTION

A. PREAMBLE

In recent years there has been a shift in many in-
dustries towards data-driven business models [62].
Namely, with the advancement of the field of data
analytics, and the increased ease in which data can be
collected, it is now possible to use both these disruptive
trends to develop insights in various situations, and
to monetise these insights for monetary compensation.
Traditionally, users have made collected data available
to large platform providers, in exchange for services
(for example, web browsing). However, the fairness and
even ethics of these business models continue to be
questioned, with more and more stakeholders arguing
that such platforms should recompense citizens in a
more direct manner for data that they control [65]
[39], [5], [6]. To give more context, Apple has recently
responded to such calls by introducing changes to their
ecosystem to enable users to retain ownership of data
collected on their devices. At the time of writing, it was
recently reported that these new privacy changes have
caused the profits of Meta, Snap, Twitter and Pinterest
plummet (losing a combined value of $278 billion

since the update went into effect in late April 20211).
The privacy change introduced by Apple allows users
to mandate apps not to track their data for targeted
advertising. This small change has been received well
amongst Apple users, with a reported 62% of users
opting out of the tracking [7]. Clearly this change will
have a profound impact on companies relying on selling
targeted advertisements to the users of their products.
Users can now decide how much data they wish to
provide to these platforms and they seem keen to retain
data ownership. It seems reasonable to expect that in
the future, companies wishing to continue to harvest
data from Apple will need to incentivise, in some
manners, users or apps to make their data available.

The need for new ownership models to give users
sovereignty over data is motivated by two principal
concerns. The first one regards fair recompense to
the data harvester by data-driven businesses. While
it is true that users receive value from companies in
the form of the services their platforms provide (e.g.,
Google Maps), it is not obvious that the exchange of
value is fair. The second one arises from the potential

1https://www.bloomberg.com/news/articles/2022-02-03/
meta-set-for-200-billion-wipeout-among-worst-in-market-history
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for unethical behaviours that are inherent to the cur-
rently prevailing business models. Scenarios in which
unethical behaviour have emerged arising out of poor
data-ownership models are well documented. Examples
of these include Google Project Nightingale, 2 3 where
sensitive medical data was collected of patients that
could not opt out of having their data stored in Google
Cloud servers. The scale of this project was the largest
of its kind, with millions of patient records collected
for processing health care data. Another infamous case
study was the Cambridge Analytica scandal in 2015.
Personal data of 87 million users was acquired via
270,000 user giving access to a third party app that
gave access to the users’ friend network, without these
people having explicitly given access to CA to collect
such data 4 [37]. Cambridge Analytica has a vast port-
folio of elections they have worked to influence, with
the most notorious one being the 2016 US presidential
elections [71], [48].

It is important to understand that these cases are not
anecdotal. Without the adequate infrastructure to track
and trade ownership, cases like the ones outlined above,
with for example, mass privacy breaches, having the
potential to become more frequent. Apple’s actions are
an important step in the direction of giving individuals
ownership over their data and potentially alleviating
such issues, however, one may correctly ask why users
should trust Apple, or any other centralised authority, to
preserve their privacy and not trade with their data. Mo-
tivated by this background, and by this latter question,
we argue for the shift towards a more decentralised
data ownership model, where this ownership can be
publicly verified and audited. We are interested in de-
veloping a data-market design that is hybrid in nature;
hybrid in the sense that some non-critical components
of the market are provided by trusted infrastructure,
but where the essential components of the market
place, governing ownership, trust, data veracity, etc.,
are all designed in a decentralised manner. The design
of such markets is not new and there have been
numerous attempts to design marketplaces to enable
the exchange of data for money [63]. This, however,
is an extremely challenging endeavour. Data cannot be
treated like a conventional commodity due to certain
properties it possesses. It is easily replicable; its value
is time-dependant and intrinsically combinatorial; and
dependent on who has access to the data set. It is also
difficult for companies to know the value of the data
set a priori, and verifying its authenticity is challenging
[2] [10]. These properties make marketplace models

2https://www.bbc.co.uk/news/technology-50388464
3https://www.theguardian.com/technology/2019/nov/12/

google-medical-data-project-nightingale-secret-transfer-us-health-information
4https://www.nytimes.com/2018/04/04/technology/

mark-zuckerberg-testify-congress.html

difficult to design and have been an emergent research
area.

In what follows, we describe a first step in the design
of a marketplace where data can be exchanged. Further-
more, this marketplace provides certain guarantees to
the buyer and seller alike. More specifically, the goal is
to rigorously define and address the challenges related
to the tasks of selling and buying data from unknown
parties, whilst compensating the sellers fairly for their
own data. As mentioned, to prevent monopolisation,
a partially decentralised setting will be considered,
focusing on the important case of data rich environ-
ments, where collected data is readily available and
not highly sensitive. Accordingly, this work focuses on a
specific use case from the automotive industry that, we
hope, might represent a first step towards more general
architectures.

B. SPECIFIC MOTIVATION
We focus on a class of problems where there is an
oversupply of data but where there is a lack of adequate
ownership methods to underpin a market. One example
of such a situation is where agents collaborate as part
of coalitions in a crowd sourced environment to make
data available to potential buyers. More specifically, the
interest is placed in the context of a city where drivers of
vehicles wish to monetise the data harvested from their
car’s sensors. An architecture is proposed that enables
vehicle owners to sell their data in coalitions to buyers
interested in purchasing their data.

While this situation is certainly a simplified exam-
ple of a scenario in which there is a need for data
market, it remains of interest for two reasons. Firstly,
situations of this nature prevail in many application
domains. Scenarios where metrics of interest can be
aggregated to generate a data rich image of the state
of a given environment are of value to a wide range of
stakeholders, which, in the given context, could include
anyone from vehicle manufacturers, mobility and trans-
port companies to city councils. Secondly, this situation,
while simplifying several aspects, still captures many
pertinent aspects of more general data-market design:
for example, detection of fake data; certification of
data-quality; resistance to adversarial attacks.

The context of automotive data collection is a ripe
opportunity to develop a decentralised data market. The
past decade has seen traditional vehicles transition from
being a purely mechanical device to a cyber-physical
one, having both a physical and digital identity. From a
practical viewpoint, vehicles are quickly increasing their
sensing capabilities, especially given the development
of autonomous driving research. Already, there is an
excess of useful data collected by the latest generation
vehicles, and this data is of high value. According to
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[46] “car data and shared mobility could add up to

more than $ 1.5 trillion by 2030”. Such conditions
prevail not only in the automotive sector; for example,
devices such as smartphones; smart watches; modern
vehicles; electric vehicles; e-bikes and scooters; as well
as a host of other IoT devices, are capable of sensing
many quantities that are of interest to a diverse range
of stakeholders. In each of these applications the need
for such marketplaces is already emerging. Companies
such a Nissan, Tesla, PSA and others have already
invested in demonstration pilots in this direction and
are already developing legal frameworks to develop
such applications5 in anticipation of opportunities that
may emerge. As mentioned, the main issue in the design
of such a data market lies in the lack of an adequate
ownership method. Who owns the data generated by
the vehicle? The answer is unclear. A study by the
Harvard Journal of Law & Technology concludes that
most likely, it is the company that manufactured the car
who owns the data, even though the consumer owns
the smart car itself [75]. According to the authors of
the study, this is because the definition of ownership
of data is not congruent to other existing definitions
of ownerships such as intellectual property (IP), and
therefore the closest proxy to owning a data set is
having the rights to access, limit access to, use, and
destroy data. Most importantly consumers do not have
the right to economically exploit the data they produce.
Nonetheless, EU GDPR laws expressly state that users
will be able to transfer their car data to a third party
should they so wish. According to [66] “The data
portability principle was expressly created to encourage
competition”. However, if the data is owned by the
automobile company, how can consumers verify who
has access to their data? Placing trust assumptions
on the car manufacturer should be rigorously justified
before such marketplaces emerge. Given the lack of
verifiability of a centralised authority, such as a car
manufacturing company, we propose exploring decen-
tralised or hybrid alternatives.

The objective in this paper is directly motivated by
such situations and by the issues described so far. How-
ever, as previously discussed, rather than enabling man-
ufacturers to monetize this data, we are interested in
situations where device owners, or coalitions of device
owners, own the data collected by their devices, and
wish to make this data available for recompense. This
is fundamentally different to the situation that prevails
today, whereby users make their data freely available
to platform providers such as Google, in exchange for
using their platform. Nevertheless, the recent actions of
Apple suggest that this new inverted (and emancipated)

5https://www.aidataanalytics.network/data-monetization/
articles/tesla-automaker-or-data-company

business model, whereby providers compete and pay for
data of interest, could emerge as an alternative model
of data management, and also whereby users are able to
control and manage the data that they reveal. Given this
background context, we are interested in developing a
platform whereby data owners can make available, and
securely transfer ownership of data streams, to other
participants in the market.

C. RELATED WORK
1) Decentralised vs Centralised Data Markets
Numerous works have proposed decentralised data
markets. While many of these proposals use Blockchain
architectures for their implementations, many simply
utilise the underlying technology and fail to address
Blockchain design flaws as they pertain to data mar-
kets [51] [36] [70]. For example, Proof-of-Work (PoW)
based Blockchains reward miners with the most com-
putational power. Aside from the widely discussed issue
of energy wastage, the PoW mechanism is itself an
opportunity, hitherto that has not been utilised, for a
data-market to generate work that can be useful for the
operation of the marketplace. As we shall shortly see,
the PoW mechanism can itself be adapted to generate
work that is useful for the operation of the marketplace.
In addition, Blockchain based systems also typically
use commission based rewards to guide the interaction
between users of the network, and Blockchain miners.
Such a miner-user interaction mechanism is not suitable
in the context of data-markets, effectively prioritising
wealthier users’ access to the data-market. In addition,
miners with greater computational power are more
likely to earn the right to append a block, and thus
earn the commission. This reward can then be invested
in more computational power, leading to a positive
feedback loop where more powerful miners become
more and more likely to write blocks and earn more
commissions. Similarly, the wealthier agents are the
ones more likely to receive service for transactions of
higher monetary value. This could cause traditional
PoW-based Blockchains to centralise over time [11].
Indeed, centralised solutions to data markets already
exist, such as [12], which namely focus on imple-
menting methods to share and copy data, and certain
rights to it, such as read rights. Considering the afore-
mentioned properties of PoW-based Blockchains, the
authors explore other distributed ledger architectures
to implement a decentralised data market.

2) Trust and Honesty Assumptions
Another possible categorisation of prior work relates
to the trust assumptions made in the system. The
work in [52] assumes that upon being shared, the
data is reported truthfully and fully. In practise, this
assumption rarely holds, and a mitigation for malicious
behaviour in shared systems must be considered. This

VOLUME 4, 2016 3

Page 4 of 27

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.aidataanalytics.network/data-monetization/articles/tesla-automaker-or-data-company
https://www.aidataanalytics.network/data-monetization/articles/tesla-automaker-or-data-company


assumption is justified in their work by relying on a
third party auditor, which the authors of [70] also
utilise. However, introducing an auditor simply shifts
the trust assumption to their honest behaviour and
forgoes decentralisation.

In [2], it is identified that the buyer may not be
honest in their valuation of data. They propose an
algorithmic solution that prices data by observing the
gain in prediction accuracy that it yields to the buyer.
However, this comes at the cost of privacy for the buyer:
they must reveal their predictive task. In practise, many
companies would not reveal this Intellectual Property,
especially when it is the core of their business model.
The work of [47] is an example of a publicly verifiable
decentralised market. Their system allows for its users
to audit transactions without compromising privacy. Un-
fortunately, their ledger is designed for the transaction
of a finite asset: creating or destroying the asset will
fail to pass the auditing checks. For the transaction of
money this is appropriate: it should not be possible to
create or destroy wealth in the ledger (aside from public
issuance and withdrawal transactions). However, for
data this does not hold. Users should be able to honestly
create assets by acquiring and declaring new data sets
they wish to sell. Furthermore, their cryptographic
scheme is built to transfer ownership of a single value
through Pedersen commitments.

There is a need to have trust assumptions in compo-
nents of the data market, whether it be centralised or
decentralised. However, we believe that the users of the
data market should agree on what or who to trust. A
consensus mechanism is a means for a group of agents
to agree on a certain proposition. For users to trust
the consensus mechanism, they must have a series of
provable guarantees that it was executed correctly. It is
not sufficient for the consensus mechanism to function
correctly, it should also prove this to the users.

We advocate for placing the trust assumptions in
consensus mechanisms that can be verified. In other
words, the users of a data market should have a means
to agree on what they trust, and they should have a
means to verify that this agreement was reached in a
correct, honest manner.

In fact, this verification should be decentralised and
public. Shifting the trust to a third-party auditing
mechanism to carry out the verification can lead to
a recursion problem, where one could continuously
question why a third, fourth, fifth and so on auditing
party should be trusted, until these can generate a
public and verifiable proof of honest behaviour.

3) Consensus Mechanisms
Consensus mechanisms are crucial in distributed
ledgers to ensure agreement on the state of the ledger.

For example, in the context of the branch of Computer
Science known as distributed systems, consensus can be
mapped to the fault-tolerant state-machine replication
problem [53]. In such systems, the users in the network
must come to an agreement as to what is the accepted
state of the network. Furthermore, it is unknown which
of these users are either faulty or malicious. This sce-
nario is defined as a Byzantine environment, and the
consensus mechanism used to address this issue must
be Byzantine Fault Tolerant (BFT) [20].

In permissionless networks, probabilistic Byzantine
consensus is achieved through the means of certain
cryptographic primitives [73]. Commonly this is done
by solving a computationally expensive puzzle.

In permissioned networks consensus is reached
amongst a smaller subset of users in the network.
This is done through BFT consensus mechanisms such
as Practical BFT (PBFT) [19] and PAXOS [18]. Often
the permissioned users are elected according to how
much stake in the network they hold, following a proof
of stake (PoS) method. This centralisation enables a
higher throughput of transactions at the cost of higher
messaging overhead, but ensures immediate consensus
finality. They also require precise knowledge of the
users’ membership [28]. Meanwhile, in permissionless
consensus protocols the guarantee of consensus is only
probabilistic but does not require high node synchronic-
ity or precise node memberships (ie: exact knowledge
of which users are in the quorum), and are more robust
[72] [73].

When considering consensus mechanisms for permis-
sionless distributed ledgers, there exist a wide range of
consensus mechanisms that are a hybrid combination of
either PoS and PoW (eg: Snow White), or PoW-BFT (eg:
PeerCensus) or PoS-BFT (eg: Tendermint). Each consen-
sus mechanism places greater importance in achieving
different properties. For example, Tendermint focuses
on deterministic, secure consensus with accountability
guarantees and fast throughput [17]. Snow White is
a provably secure consensus mechanism that uses a
reconfigurable PoS committee [13], and PeerCensus
enables strong consistency in Bitcoin transactions, as
opposed to eventual consistency [24].

There also exists a class of probabilistic consensus
mechanisms, such as FPC [50], Optimal Algorithms
for Byzantine Agreements [27], Randomised Byzantine
Agreements [69] and Algorand [32]. We find this class
of consensus mechanisms of particular interest for the
context of a data market. Namely, the fact that they
are probabilistic makes coercion of agents difficult for a
malicious actor. To ensure malicious actors are selected
by the consensus algorithm, they must know a priori
the randomness used in the mechanism, or coerce a
supra-majority of agents in the network. Furthermore,
we argue that selecting users in a pseudo-random way
treats users equally, and is closer to achieving fairness
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than selecting users with the greatest wealth or greatest
computational power. Another consideration of fairness
is made in [23], where the mechanism does not rely on
a correct leader to terminate, therefore decentralising
the mechanism.

In some examples described above, such as in [32],
agents with greater wealth in the ledger are more
likely to be selected by a Verifiable Random Function
to form part of the voting committee. However, we
believe that for the context of the work here presented,
voting power should be earned and not bought. In-
deed, this right should be earned irrespective of wealth
or computational power. This opens the question of,
how then, should this power be allocated? The market
should trust the actors that behave honestly and further
the correct functioning of the market. Agents should
prove their honesty and only then earn the right to be
trusted. A collective goal for the data market can be
defined, and agents who contribute to this should be
adequately rewarded. This goal can be characterised
mathematically, and each agent’s marginal contribution
can be evaluated. In this manner, rights and rewards
can be granted proportionally.

Algorand wishes to retain the voting power amongst
the agents with the most stake, based on the assumption
that the more stake an agent has in the system, the
more incentive they have to behave honestly. This as-
sumption cannot be made in our data market. Owning
more cars (i.e. more stake) does not equate to being
more trustworthy, and therefore should not increase an
agent’s voting power, or their chances of participating
in decision making. In fact, owning more vehicles could
be an incentive to misbehave in the data market and
upload fake data, whether this be to mislead competi-
tors or to force a favourable outcome for themselves as
a malicious actor. Purposely reporting fake data in the
context of mobility has been described in [55] and [68],
where collectives reported fake high congestion levels
to divert traffic from their neighbourhoods. 6 This attack
is known as data poisoning and is a known attack of
crowd-sourced applications, usually mounted through
a Sybil attack.

Furthermore, Algorand uses majority rule and their
consensus mechanism only has two possible outcomes:
accept the transaction or not (timeout or temporary
consensus) [32]. In the context of the data market,
this would not suffice. The consensus mechanism in
the work here presented is used to determine which
agents are the most trusted to compute the average
or median of the data collected of a certain location.
In other words, the consensus mechanism is a means
to delegate a computation to someone based on how
much they are trusted. Agents may be more, or less

6https://www.washingtonpost.com/local/
traffic-weary-homeowners-and-waze-are-at-war-again-guess-whos-winning/
2016/06/05/c466df46-299d-11e6-b989-4e5479715b54_story.html

trusted, with some being preferred over others. These
preferences may be stronger or weaker too. Using a
majority voting method that only yields two possible
options fails to encapsulate this information and is
known to exclude minorities. The disadvantages of
majority rule systems such as First-Past-the-Post voting
are known of and extensively documented [40], [14],
[22]. A common critique of these voting systems is that
they do not achieve proportional representation and
retain power within a wealthy minority. Consequently,
it could be argued that they are not an appropriate
consensus mechanism for a context where we aim for
decentralisation and fairness.

D. STRUCTURE OF THE PAPER
Firstly we introduce a series of desirable properties
that the market must satisfy. These are outlined in the
design criteria section II. Subsequently, a high level
overview of the working components of the data market
are presented in section IV, as well as describing how
each functional component contributes to achieving the
desired properties described in the preceding section.
Then we proceed to formalising definitions used in
each component of the data market, as well as the
assumptions made in V. This section describes in detail
how each component of the data market works. Finally,
in section VII, we describe the set of attacks considered,
and in section VII-A the robustness of the components
of the data market are evaluated.

II. DESIGN CRITERIA FOR THE DATA MARKET
Having discussed issues that pertain to and arise from
poor data ownership models, we present a series of
desirable criteria that the data market should achieve.
More specifically, the work here proposed, begins to
address the following research questions that are as-
sociated with data market designs:

a. How to protect the market against fake data or
faulty sensors?

b. Given an oversupply of data, how to ensure that
everybody receives a fair amount of write access
to the market?

c. How to enable verifiable exchange of data owner-
ship?

d. How to select data points from all those available
to add most value to the marketplace?

e. How to protect the marketplace against adversarial
attacks?

Following directly from these open questions, the
desirable criteria are defined as:

• Decentralised Decision Making: The elements of
the marketplace pertaining to trust, ownership
and veracity are decentralised and do not rely on
placing trust on third parties.
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• Verifiable centralisation: The infrastructure on
which the data market relies that is centralised,
can be publicly verified. The reader should note
that this ensures trust assumptions are placed on
components of the data market that are publicly
verifiable.

• Generalised Fairness: Access to the data market is
governed by the notion of the potential value that
a data stream brings to the market (as defined by
a given application). This will determine which
agents will get priority in monetising their data.
Agents with equally valuable data must be treated
the same and agents with data of no value should
receive no reward. Further notions of fairness
are considered and formalised by [58] under the
definition of Shapley Fairness, and described in V.8.
These are the definitions of fairness that we use for
this data market proposal.

• Resistant to duplication of data: The datamarket
must not allow malicious attackers to earn re-
ward by duplicating their own data. Precisely, a
distinction must be made between preventing the
monetisation of duplicated data, versus preventing
data duplication.

• Resistant to fake data and faulty sensors: The data
market must be resilient to data poisoning attacks,
wherein adversaries collude to provide fake data
to influence the network. Congruently, the data-
market must be resilient to poor quality data from
honest actors with faulty sensors. Formally, the
data for sale on the market must not deviate by
more than a desired percent from the ground truth.
For the purpose of this work, the ground truth
is defined as data measured by centralised infras-
tructure. Given that this measurement is publicly
verifiable (any agent in that location can verify that
this measurement is true), this is considered an
acceptable centralisation assumption.

• Resistant to spam attacks: The data market should
not be susceptible to spam attacks; that is, mali-
cious actors should not have the ability to flood
and congest the network with fake or poor quality
data.

III. PRELIMINARIES

The architecture for our proposed data market is il-
lustrated in Figure 2, and makes reference to several
technology components that are now briefly described
in the subsequent section.

A. DISTRIBUTED LEDGER TECHNOLOGY
A distributed ledger technology (DLT) will be used to
record access (or any other given right) to a dataset, in
the data market. A DLT is a decentralized database of
transactions where these transactions are timestamped
and accessible to the members of the DLT. They are
useful to allow agents to track ownership, and are de-
centralized. Compared to a centralised storage system,
this provides a geographically distributed, consensus-
based, and verifiable system which is immutable after
data has been written and confirmed. It is also more
resilient against failure points than a centralised infras-
tructure. There are many types of DLT structures, but
they all aim to provide a fast, reliable, and safe way
of transferring value and data. Namely, DLTs strive to
satisfy the following properties: have only one version
of the ledger state, are scalable, make double spend-
ing impossible, and have fast transaction times. One
example of a DLT is the IOTA Tangle, shown in Figure
1. In this DLT, all participants contribute to approving
transactions, and the transactions are low to zero fee
and near-instant. Further, decentralisation is promoted
through the alignment of incentives of all actors [56].

Figure 1. IOTA Tangle. credit: IOTA Foundation

B. ACCESS CONTROL MECHANISM
Because DLTs are decentralised, they need a method to
regulate who can write information to the ledger and
who cannot. An access control mechanism is necessary
to protect the distributed ledger from spam attacks. One
way is by using Proof-of-Work (PoW) as it is done in
the Blockchain, where computationally intense puzzles
need to be solved to be able to write to the ledger. In
this case, users with more computational power earn
the right to access the ledger. An alternative is Proof-of-
Stake where nodes can stake tokens to gain the access
rights proportional to their amount of staked tokens
[29].

C. CONSENSUS MECHANISMS
A consensus mechanism is a means for a collective to
come to an agreement on a given statement. In section
I-C3 some examples of consensus mechanisms are dis-
cussed that are appropriate for Byzantine environments.
Some of these utilise a voting mechanism to enable said
consensus, and we now discuss an alternative voting
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mechanism that satisfies a different set of properties. It
is important to note that there exist numerous methods
of aggregating preferences, which are well studied in
the field of social choice [57], and voting mechanisms
provide different means to enable this aggregation [77].

The taxonomy of voting systems is diverse. They can
be either be considered probabilistic or deterministic;
proportional or plurality rule; or ordinal as opposed
to cardinal. Depending on the set of practical con-
straints or preferred properties of the implementation
context, we encourage selecting an appropriate voting
mechanism that best satisfies the desired criteria for a
given application. Subsequently, we discuss Maximum
Entropy Voting, and why it has desirable properties for
the context of this data market.

1) Maximum Entropy Voting
Within the classes of voting schemes, Maximum Entropy
Voting (MEV) belongs to the family of probabilistic, pro-
portional and ordinal systems. Arrow famously defined
in [9] an impossibility theorem that applies to ordinal
voting systems. In it, he states that no ordinal voting
systems can satisfy all three of the following properties:

Definition III.1 (Non-Dictatorial). There exists no single

voter with power to determine the outcome of the voting

scheme.

Definition III.2 (Independence of Irrelevant Alterna-
tives). The output of the voting system for candidate A

and candidate B should depend only on how the voters

ordered candidate A and candidate B, and not on how

they ordered other candidates.

Definition III.3 (Pareto property). If all voters prefer

candidate A to candidate B, then the voting system should

output candidate A over candidate B. Representative

Probability states that the probability of the outcome of

candidate A being placed above candidate B should be the

same as the fraction of the voters preferring the one to the

other.

Whilst this impossibility theorem only applies to or-
dinal voting systems and not cardinal ones, it has been
shown by Gibbard’s theorem that every deterministic
voting system (including the cardinal ones) is either
dictatorial or susceptible to tactical voting [30]. Gibbard
later then shows in [31] that the Random Dictator
voting scheme satisfies a series of desirable proper-
ties, namely: voters are treated equally, it has strong
strategy proofness and it is Pareto efficient. With this
in mind, the reader can now understand the novelty
that the work in [44] presents. Here, MEV is presented
as a probabilistic system that first, determines the set
of voting outcomes that proportionally represent the
electorate’s preference, whilst selecting the outcome
within this set that minimises surprise. Lets proceed
to elaborate: if one were to pick a voting system that

is probabilistic and satisfies Arrow’s properties to the
greatest degree, the adequate system to choose would
be Random Dictator. However, whilst computationally
an inexpensive method to run, it suffers from a series of
drawbacks. The one of greatest concern for the context
of this work is the following: imagine a ballot is sampled
that happens to contain a vote for an extreme candidate
(or in this case, for a malicious actor). The entire
choices of an individual that votes for extremes now
dictate the entire electorate’s leaders. In this scenario,
a malicious agent would likely only vote for equally ma-
licious agents, although the number of malicious agents
is still assumed to be a minority. Could one reduce
the amount of information taken from that sampled
ballot? MEV proposes a way to sample ballots that while
still representing the electorate’s views, minimise the
amount of information taken from their preferences. In
essence, this is selecting a ballot that reflects the least
surprising outcome for the electorate, whilst ensuring
that it is still within the set of most representative
choices. Furthermore, MEV still satisfies relaxed ver-
sions of the Independence of Irrelevant Alternatives and
Pareto properties, whilst not being dictatorial. It also
enjoys the benefits of proportional voting schemes as
well as being less susceptible to tactical voting [44].
As a result of this, it can be argued that it is difficult
to predict the exact outcome of a vote and therefore it
is secure against timed attacks 7 because it is costly to
have high confidence of success. As a result, we believe
MEV offers a suite of benefits and properties that are
desirable for the context of the data market presented
here.

IV. ARCHITECTURE OF THE DATA MARKET
As can be observed in figure 2, some of the functional
components of the marketplace are decentralised, and
some of the enabling infrastructure is provided by an
external, possibly centralised, provider.

In a given city, it is assumed that a number of agents
on vehicles are collecting data about the state of the
location they are in. They wish to monetise this infor-
mation, but first, it must be verified that they are real
agents. They present a valid proof of their identity and
location, as well as demonstrating that they information
is timely and relevant.

The agents that successfully generate the aforemen-
tioned receive a validity token that allows to form
spatial coalitions with other agents in their proximity.
They then vote on a group of agents in their coalition
that will be entrusted to calculate the agreed upon
data of their corresponding location. The chosen agents
do this by aggregating the coalition’s data following a
specified algorithm.

7An attack wherein a malicious actor wishes to influence the
outcome of an election with high certainty of success at a given
instance in time.
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Figure 2. Data Market Architecture. Credit for the images is given in 9

This procedure happens simultaneously in numerous
locations of the city. At a given point in time, all the
datasets that have been computed by a committee in
a spatial coalition then enter the access control mecha-
nism. One can consider the data a queue and the access
control mechanism the server. Here, they are ranked in
order of priority by determining which data provides
the greatest increase in value to the data market. The
coalitions with the most valuable data perform the least
amount of work.

Coalitions wishing to sell their data must complete
a useful proof of work that is inversely proportional
to their added value to the market. This PoW entails
calculating the added value of new data in the queue.
Once this work is completed, the data can be sold.
The buyers are allocated to the sellers through a given
bidding mechanism, and the reward of this sale is
distributed amongst the sellers using the reward dis-
tribution function. Successful transactions are recorded
on the distributed ledger, and the data corresponding to
the successful transactions are removed from the data
market.

In what follows, we describe the high level function-
ing of each of the components shown in figure 2, and
how each contribute do achieving the desired properties
described in section II.

A. VERIFICATION
Agents are verified by a centralised authority that
ensures they provide a valid position, identity and
dataset. This component ensures that spam attacks are
expensive, as well as enabling verifiable centralisation.
All agents in the market can verify the validity of a
proof of position and identity because this information
is public.

B. CONSENSUS

9In order of appearance: Icons made by Freepik, Pixel per-
fect, juicy_fish, srip, Talha Dogar and Triangle Squad from
www.flaticon.com

1) Voting Scheme

In a decentralised environment, agents must agree on
what data is worthy of being trusted and sold on the
data market. Agents express their preferences for who
they trust to compute the most accepted value of a data
point in a given location. This is carried out through a
voting scheme.

2) Data Consensus

Once a group of trusted agents is elected, they must
then come to a consensus as to what the accepted data
value of a location is. This is computed by the group
following an algorithm that aggregates the coalition’s
data.

These components enable the property of decen-

tralised decision making, allowing coalitions to govern
themselves and dictate who to trust for the decision
making process. Furthermore, they make uploading
fake data to the market costly, as malicious agents must
coerce sufficient agents in the voting system, to ensure
enough coerced actors will be elected to compute the
value of a dataset that they wish to upload.

C. ACCESS CONTROL

1) Contribution Ranking

Once datapoints are agreed upon for the given loca-
tions, it is necessary to determine which ones should
receive priority when being sold. The priority is given
to the data that increases the combined worth of the
data market. This can be measured by using the Shapley
value, defined in [58], that in this case is used to
measure the marginal contribution of dataset towards
increasing the value of the market with respect to
a given objective function. A precise formalisation is
presented in definition V.8. This component provides
the property of generalised fairness of the market, and
agents with more valuable data should do less work to
sell their data.

8 VOLUME 4, 2016
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2) Useful Adaptive Proof of Work
Coalitions must perform a proof of work that is pro-
portional to how valuable to the market their data is
deemed. The work performed is adaptive, and further-
more, it is useful to the functioning of the market. This
is because the work performed is in fact, calculating the
worth of the new incoming data into the market. This
feature ensures that spam attacks are costly and that
the market is resistant to duplication of profit by simply
duplicating data. This is because for every dataset a
coalition wishes to sell, they have to complete a PoW.

D. DATA MARKETPLACE
This is where the collected and agreed upon data of
specific locations is posted to be sold. The datasets
themselves are not public, but rather a metadata label
of the dataset, who it is owned by (the spatial coalition
that crowd-sourced it) and the location it is associated
with. Sellers can access and browse the market and
place bids for specific datasets in exchange for monetary
compensation. Sellers may wish to purchase access to
the entire dataset, to a specific insight or to other
defined rights, such as the rights to re distribute or
perform further analytics on said dataset. Each right
has a corresponding price.

E. BIDDING MECHANISM
The mechanism matches buyers to the sellers of data.
This component determines the price-per-right. At this
stage, a spatial coalition formed of multiple agents is
considered to be one seller. Successful sales will be
recorded in an immutable ownership record that is
public, such that all participants of the market can see
which agents have rightful access to a dataset.

F. REWARD DISTRIBUTION
Once a bid is successful, then the reward of the sale is
distributed amongst the participants of the spatial coali-
tion that generated the sold dataset. This is to ensure
that all agents participating in the crowd-sourcing of
the dataset receive adequate compensation for it.

G. DISTRIBUTED LEDGER
Successful transactions are recorded on a distributed
ledger to provide a decentralised, immutable record of
ownership. This ledger will represent which agents have
access to who’s data, and what access rights they are
allowed.

V. BUILDING BLOCKS OF THE DATA MARKET
A. CONTEXT
We present a case study with cars driving in a given city.
We focus on Air Quality Index (AQI) as our metric of
relevance, which is calculated by aggregating averages

of different pollutant concentrations 10. To illustrate
the function of the proposed data market, we divide
the city into a grid with constant sized quadrants. As
agents drive across the city they measure pollution con-
centration values of varying contaminants at different
quadrants of the city. Only agents with a valid license
plate are granted access to collect and sell data on the
marketplace.

B. ASSUMPTIONS
1) For each potential data point that can be made

available in the marketplace, there is an over-
supply of measurements.

2) Competing sellers are interested in aggregating
(crowd-sourcing) data points from the market to
fulfil a specific purpose.

3) Competing buyers only purchase data from the
regulated market, and that each data point in the
market has a unique identifier so that replicated
data made available on secondary markets can be
easily detected by data purchasers.

4) There is an existing mechanism that can verify the
geographical location of an agent with a certain
degree of confidence, and thus the provenance of
the aforementioned agent’s data collected. Several
works have been carried out that corroborate that
this is a reasonable assumption to make [43], [76]
[16] [74] [15].

5) Following from 4 a Proof of Position algorithm is
defined in V.14. Furthermore it is assumed that
agents cannot be in more than one location at the
same time. When an agent declares a measurement
taken from a given location, we can verify this dat-
apoint, the agent’s ID and their declared position
using V.14.

6) Following from assumption 1 and 2, the cases when
a buyer wishes to purchase data from a geograph-
ical location where there is no data available are
not accounted for.

C. DEFINITIONS
Definition V.1 (Datapoint). A datapoint is defined as

xi 2 X where xi denotes the data point of agent i and

X is the space of all possible measurements.

Definition V.2 (Location quadrant). The set of all pos-

sible car locations is defined as L. The location quadrant

q, is an element of L, where q 2 L.

Definition V.3 (Buyer). A buyer is defined as m, where

m 2 M and M is the set of agents looking to purchase

ownership (or any other given rights) of the datasets that

are available for sale on the marketplace.

Definition V.4 (Agent). An agent is defined as ai,s 2 A
where A is the set of all agents competing to complete the

10https://app.cpcbccr.com/ccr_docs/How_AQI_Calculated.pdf
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marketplace algorithm to become sellers. The index i 2 N ,

where N is the total number of agents on the algorithmic

marketplace at a given time interval t 2 T . The index

s denotes the stage in the access control mechanism that

agent ai,s is in, where s 2 {1, 2}. In stage 1, agents are in

the contribution ranking stage, where the value of their

data is ranked according to their Shapley value. In stage

2, the must complete a useful, adaptive PoW before they

can pass the access control mechanism and enter the data

marketplace. For example, agent a5,2 is the agent number

5, currently in stage 2 of the access control mechanism.

For brevity, in sections where an agent is not in the access

control mechanism, we omit the use of the second index.

Definition V.5 (Spatial Coalition). A spatial coalition is

defined as a group of agents in the same location quadrant

q. The coalition is denoted as Cq.

Definition V.6 (Crowdsourced Dataset). Agents in a

spatial coalition Cq aggregate their individual data to

provide an agreed upon dataset Dq, of their location

quadrant q.

Definition V.7 (Value Function). The value function

maps the aggregate of datapoints provided by a spatial

coaltion to utility for a buyer. For the purpose of this case

study, the data provided will be valued with respect to a

linear regression model to predict Air Quality Index of a

city. The function is denoted as v(S) = y where y is the

utility allocated to a dataset and S is a coalition of agents

with corresponding datapoints.

Definition V.8 (Shapley Value). The Shapley Value is

defined in [58] as a way to distribute reward amongst

a coalition of n-person games. Each player i in the game

receives a value  i that corresponds to their reward. The

Shapley Value satisfies the notions of Shapley fairness

which are:

1) Balance:

AX

ai=1

 m(ai) = 1

2) Efficiency: The sum of the Shapley value of all the

agents is equal to the value of the grand coalition of

agents [A]:
AX

ai=1

 ai(v) = v(A)

3) Symmetry: If agents ai and aj are equivalent in

the coalition of agents S such that both agents are

providing data of the same value where v(S[{ai})+
v(S [ {aj}) for every subset S of A which contains

neither ai nor aj , then  ai(v) =  aj (v)
4) Additivity: If we define a coalition of agents to be

k = {ai, aj} then  k =  ai +  aj

5) Null agent: An agent ai is null if v(S[{ai}) = v(S).
If this is the case then  ai = 0.

Therefore formal definition of the Shapley value of an

agent ai that is in a set of A players is

 (ai) =
X

S✓A\{ai}

|S|!(|A|� S � 1)!

|A|!
(v(S [ {ai})� v(S))

The Shapley Value is the unique allocation  that

satisfies all the properties of Shapley fairness [58].

Definition V.9 (Smart Contract). A smart contract is a

program that will automatically execute a protocol once

certain conditions are met. It does not require intermedi-

aries and allows for the automation of certain tasks [21]

[67]. In our context, a smart contract will be executed

by agent ai,2 to compute the Shapley value of agent aj,1’s

dataset. The outputs will be the Shapley value of agent

aj,1’s dataset and a new smart contract for agent ai,2.

Calculating the new smart contract generated serves as

the proof of agent aj,1’s useful work. Every agent’s smart

contract will also contain a record of the buyer IDs and

the permission that they have purchased from the agent.

These could include permission to read the dataset, to

compute analytics or to re-sell the dataset.

Definition V.10 (Bidding Mechanism). Following from

the assumption 6, there is a set of buyers Mq for each q 2
L wishing to purchase a dataset Dq from that quadrant.

A Bidding Mechanism is defined, BM , as a function that

returns a buyer m that will purchase Dq, such that m 2
M . Consequently, for all q 2 L: m BM(M,Dq).

Definition V.11 (Reward Distribution Function). The

reward associated with the datapoint of a specific quad-

rant is defined as v(Cq). In other words, the value that

the spatial coalition Cq provides with their agreed upon

datapoint Dq, of the location quadrant q. Each agent

in Cq receives a coefficient ↵ = 1
|Dq�di| , where di is

the agent’s individual datapoint. Consequently, the value

v(Cq) is split amongst all the agents in Cq as follows: for

each agent, they receive ||
v(Cq)
|Cq| ⇥ ↵||

Definition V.12 (Commitment). An agent commits to

their datapoint by generating a commitment that is bind-

ing, such that the datapoint cannot be changed once the

commitment is provided. A commitment to a datapoint

di, location quadrant q and ID i of an agent ai is defined

as c Commitment(ai, di, q, t)

Definition V.13 (Proof of ID). Let the Proof of Id be

an algorithm, PoID, that verifies the valid identity of

an agent ai, with ID i. In the context presented, this

identification will be the license plate. The algorithm will

return a boolean ↵ that will be True if the agent has

presented a valid license plate and False otherwise. Then

PoID is defined as the following algorithm:

↵  PoID(i, c). This algorithm is executed by a central

authority that can verify the validity of an agent’s identity.
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Page 11 of 27

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Definition V.14 (Proof of Position). Let Proof of Position

be an algorithm, PoP, that is called by an agent ai,
with ID i. The algorithm takes as inputs the agent’s

committment c, and their location quadrant q. We define

PoP as the following algorithm:

�  aPoPi (q, c)
where the output will be a boolean � that will be True if

the position q matches the agent’s true location and False
otherwise. This algorithm is executed by a central author-

ity that can verify the validity of an agent’s position.

Definition V.15 (TimeCheck). The function TimeCheck
takes in three arguments, the timestamp, t, of a data-

point, the current time at which the function is executed,

timeNow, and an acceptable range of elapsed time, r.

The output of the function is �. If t � timeNow < r, �
takes value True and False otherwise.

�  TimeCheck(t, timeNow, r)

Definition V.16 (Verify). Let Verify be an algorithm that

checks that outputs of PoID and PoP. It will return a

token Token that will take the value True iff ↵, � and

� are all True, and False otherwise.

Token  Verify(↵,�, �)

Definition V.17 (Reputation). An agent ai assigns a

score of trustworthiness to an agent aj . This score is

denoted as ri!j . This reputation is given by one agent to

another in a rational, efficient and proper manner, and

is an assessment of honesty.

Definition V.18 (Election Scheme). We use a gen-

eralised definition for voting schemes, following from

the work in [45] and [59].An Election Scheme is

a tuple of probabilistic polynomial-time algorithms

(Setup,Vote,Partial� Tally,Recover) such that:

Setup denoted (pk, sk) Setup(k) is run by the admin-

istrator. The algorithm takes security parameter k as an

input, and returns public key pk and private key sk.

Vote denoted b  Vote(pk, v, k) is run by the voters.

The algorithm takes public key pk, the voter’s vote v and

security parameter k as inputs and returns a ballot b, or

an error (?).

Partial� Tally denoted e  Partial� Tally(sk, bb, k) is

run by the administrator. The algorithm takes secret key

sk, bulletin board containing the list of votes bb, and

security parameter k as inputs and returns evidence e of

a computed partial tally.

Recover denoted v  Recover(bb, e, pk) is run by the

administrator. The algorithm takes bulletin board bb,

evidence e and public key pk as inputs and returns the

election outcome v.

Definition V.19 (Ballot Secrecy). Ballot secrecy can be

understood as the property of voters having a secret vote;

namely, no third party can deduce how a voter voted.

We utilise the definition for Ballot Secrecy presented in

the work [59]. This definition accounts for an adversary

that can control ballot collection. The adversary must

be able to meaningfully deduce which set of votes they

have constructed a bulletin board for. This definition is

formalised as a game where, if the adversary wins with

a significant probability, the property of Ballot Secrecy
does not hold. An Election Scheme is said to satisfy Ballot
Secrecy if for a probabilistic polynomial-time adversary,

their probability of success is negligible.

VI. THE DATA MARKET
A. THE VERIFICATION ALGORITHM

Algorithm 1: Verification: Verifying Algorithm
(ai,0, di, q, t, r)

c Commitment(ai, di, q, t);
↵  PoID(i, c);
�  PoP(q, c);
�  TimeCheck(timeNow, t, r);
Token  Verify(↵,�, �);
return Token  {True, False};

The validity of the data submission must be ver-
ified before the data reaches the data marketplace,
to avoid retroactive correction of poor quality data.
This is done through the VerifyingAlgorithm. Firstly,
an agent provides an immutable commitment of their
datapoint, location quadrant, timestamp and unique
identifier (Line 1). Next, the agent submits their unique
identifier to a centralised authority that verifies that this
is a valid and real identity (Line 2). In practise, for
this context, this identifier will be the agent’s vehicle
license plate. Subsequently, the agent generates a valid
proof of position (Line 3). Following from assumption
2, an agent can only provide one valid outcome from
algorithm V.14 at a given time instance t. Then, the
datapoint is checked to ensure it is not obsolete through
TimeCheck (Line 4). Finally, the outputs of all previous
functions are verified to ensure the agent has produced
a valid proof (Line 5). If and only iff all of these are
True, the agent is issued with a unique valid token, that
allows them to participate in the consensus mechanism
(Line 6).

B. VOTING SCHEME: REPUTATION-BASED MAXIMUM
ENTROPY VOTING
In what follows we present an adaptation of the Max-
imum Entropy Voting scheme that takes into consid-
eration the reputation of agents in the system. Both
components are introduced and will work as a single
functional building block in the the data market design.
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1) Reputation
In the general sense, reputation can be seen as a perfor-
mance or trustworthiness metric that is assigned to an
entity or group. For the purpose of this work, reputation
should be earned through proof of honesty and good
behaviour. In this case, agents that can demonstrate
they have produced an honest computation should
receive adequate recompense.

In our context, agents can be administrators by run-
ning an election. They must prove that an election
outcome was correctly computed to earn reputation.

In the case of Maximum Entropy Voting, the adminis-
trator running the election must prove that: the voting
outcome was correctly computed, and that it does
indeed satisfy the optimisation formulation defined
in equations 5. To provide guarantees of correctness
to the voters, we propose using an end-to-end (E2E)
verifiable voting scheme. E2E voting schemes require
that all voters can verify the following three properties:
their vote was cast as intended, recorded as cast and
tallied as cast [3]. An example of an E2E voting
scheme is Helios [1]. This scheme uses homomorphic
encryption, enabling the administrator to demonstrate
the correctness of the aggregation of votes operation.
The operations required in the aggregation of votes
for MEV can be done under homomorphic encryption,
and an E2E voting scheme such as Helios could be
used to carry out this step. This aggregation is then
used to solve the optimisation problem and yield a
final vote outcome. Once the optimisation is solved, the
administrator can release the aggregation of votes and
prove that the aggregation operation is correct and that
the solution of the optimisation problem satisfies the
KKT conditions. Upon presenting the verifiable proofs
mentioned above, agents behaving as administrators
should receive reputation from other agents in the
network.

Remark: We note that the Helios voting scheme has
been proven not to satisfy Ballot Secrecy in [59] and
[45], although a variant of Helios that does satisfy Bal-
lot Secrecy is proposed in [60]. Proposing and testing an
E2E verifiable voting scheme that satisfies definitions of
Ballot Secrecy, receipt-freeness and coercion resistance
is beyond the scope of this work, although of interest
for future work.

2) Reputation-based Maximum Entropy Voting
Definition VI.1 (Vote). The vote of agent ai 2 A, is

defined as a pairwise preference matrix in S(i)RN⇥N
.

Each entry is indexed by any two agents in A and its

value is derived from datapoint xi V.1 and reputation

ri!j V.17. An example of a pairwise preference matrix

for three agents is shown in equation (2).

Definition VI.2 (Administrator). An agent that carries

out the vote aggregation and the computation of the

election outcome is defined as an administrator, A.

Definition VI.3 (Aggregation of Votes). The aggregation

of all agents’ votes S(A), is defined as the average of

S(i), i 2 A, as follows:

S(A) :=
1

N

X

ai2A

S(i). (1)

Definition VI.4 (Agent Ordering). An agent ordering,

denoted as t, is defined as a permutation of agents in [44],

i.e., arranging all agents in order. Further, concerning

computation complexity, we suggest t being a combination

of agents, i.e., selecting a subset of agents as the preferred

group, such that the order of agents does not matter.

Definition VI.5 (Ordering Set). The ordering set T is

the set of all possible agent orderings, such that t is an

element of T . See Figure 3 for the example of an ordering

set of combinations with 3 agents.

Definition VI.6 (Probability Measure of Ordering Set).
The (discrete) probability measure, ⇡ : T ! R�0 gives

a probability of each ordering t 2 T being selected as

the outcome ordering t⇤. The measure ⇡ of maximal

entropy whilst adhering to Representative Probability,

described in definition III.3, i.e., the optimal solution

of the optimisation problem defined in equations 5 is

denoted as ⇡⇤
.

Given a set of agents of cardinality |A| = N , each
agent ai has a data point xi 2 X and a reputation
ri!j for all agents ak 2 A. The data point xi in this
context is defined as measurements of pollutants of
an agent which they want to submit and sell. The
reputation ri!j 2 R+ is a non-negative value that
represents the individualised reputation of agent aj
from the perspective of agent ai.

To combine maximum entropy voting and reputation,
a key step is to move from reputation ri!j to a pairwise
preference matrix S(i) 2 RN⇥N . The entry of a pairwise
preference matrix is indexed by every two agents of A,
and its values is defined as follows:

S(i)j,k =

8
><

>:

1 if ai prefers aj and j 6= k

0.5 if ai prefers both equally and j 6= k

0 if ai prefers ak or j = k

,

(2)
for aj , ak 2 A and aj is preferred to ak if and only
if 1+|xi|·ri!j

1+|xi�xj | > 1+|xi|·ri!k

1+|xi�xk| and both agents are equally
preferred if the two values are equalised, such that the
reputation is scaled by their absolute differences from
agent ai. Likewise, we could find a pairwise preference
matrix S(i) for each agent ai. The average of pairwise
preference matrices over all agents are denoted as the
preference matrix S(A), as in 1. S(A) represents the
pairwise preference of all agents in A, whose entries
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S(A)j,k, displays the proportion of agents that prefers
agent aj over agent ak.

The original MEV [44] runs an optimisation over
all candidate orderings, which strongly defines the
computational complexity of the problem because the
number of orderings is the factorial of the number of
candidates. As a variant of MEV, we consider agent
combinations, instead of permutations for the ordering
set T , such that A is divided into a preferred group P of
cardinality M and non-preferred group NP, where M
is the number of winners needed. Hence, the cardinality
of the ordering set decreases from N ! to M !

M !(N�M)! . For
small M , this leads to to a dramatic reduction of the
computational complexity.

For each ordering t 2 T , we could define its pair-
wise preference matrix S(t), whose entry is defined in
equation (3), and likewise in equation (2):

S(t)j,k =

8
><

>:

1 if aj is placed over ak
0.5 if both are in the same group and j 6= k

0 if ak is placed over aj or j = k

,

(3)
for aj , ak 2 A. Let us define an unknown probability
measure ⇡ : T ! R�0. ⇡(t), t 2 T gives the probability
of t being chosen as the outcome ordering. Then,
we construct a theoretical preference matrix S(⇡) as
follows:

S(⇡) :=
X

t2T
⇡(t) · S(t). (4)

The entry S(⇡)j,k states that under probability mea-
sure ⇡, the probability of the outcome ordering plac-
ing aj over ak. Recall the definition of Representative
Probability in Section III.3 or [44], it simply requests
S(⇡) = S(A).

The entropy of ⇡ measures the uncertainty of choos-
ing elements in T . The uniform distribution has the
maximum amount of entropy. Associated with ⇡, the
entropy is defined as �

P
t2T ⇡(t) log ⇡(t) [33]. Hence,

the original formulation of maximum entropy voting
adhere to Representative Probability is as (5). In this
formulation, when maximising the entropy, we ensure
the solution ⇡⇤ to be the most moderate probability
measure with obeying Representative Probability in
III.3.

⇡⇤ = max
⇡
�

X

t2T
⇡(t) log ⇡(t)

s.t.
X

t2T
⇡(t) · S(t) = S(A)

X

t2T
⇡(t) = 1

⇡(t) � 0 8t 2 T

(5)

3) A Motivating Example
Consider A = {ai, aj , ak} and only one winner is
needed (M = 1), all possible combinations are in shown

in Figure 3, while the number of permutations would
be 3!.

T t1 t2 t3
Preferred P (ai) (aj) (ak)

Non-Preferred NP (aj , ak) (ai, ak) (ai, aj)

Figure 3. The lower-carnality ordering set when A = {ai, aj , ak} and
M = 1. Agents in the same brackets are given the same rank in an ordering.

As an example, the pairwise preference matrix S(t1)
is displayed in (6), following the definition in (3).

S(t1) =

ai aj ak
ai 0 1 1
aj 0 0 1/2
ak 0 1/2 0

(6)

Suppose an optimal measure ⇡⇤ is extracted from
the optimisation problem in equations 5. Assuming
⇡⇤(t1) = 0.3, ⇡⇤(t2) = 0.4 and ⇡⇤(t3) = 0.3, to sample
an outcome ordering t⇤ from ⇡⇤, consider a prize wheel
as in Figure 4. The wheel includes |T | wedges where
each wedge represents one ordering t and takes the
share of ⇡⇤(t). To obtain an outcome ordering, simply
spin the wheel and t⇤ is the wedge where the red arrow
stops, i.e., t1 in Figure 4.

Figure 4. A prize wheel for sampling an outcome ordering t 2 T from a
probability measure ⇡.

Maximum Entropy Voting is summarised in the fol-
lowing steps: first, each agent ai constructs their vote,
the pairwise preference matrix S(i), from the data point
xi and reputation ri!j . Then, an average of all agents’
pairwise preference matrix S(A) is calculated by the
administrator A, which is seen as the aggregation of
all agents’ votes. Then, a low-cardinality ordering set
of agents T is constructed from M , the number of
necessary winners needed. For every possible ordering
of candidates t, a theoretical pairwise preference matrix
S(t) is constructed. These two steps can be computed
by any agent in the election, or the administrator. Then,
the administrator solves the optimisation problem to
maximise entropy as defined in equation 19 to find a
probability measure ⇡⇤ of a given ordering. This proba-
bility measure also adheres to the Representative Prob-
ability property III.3. Finally, the administrator samples
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an outcome ordering t⇤ from ⇡⇤, independently and at
random, using a "prize-wheel" sampling, as shown in
Figure 4. This ordering is the final election outcome.

C. DATA CONSENSUS
In an oversubscribed environment, crowd-sourcing can
be used to estimate an agreed upon measurement
which should reflect the ground truth as closely as
possible. The assumption is that every agent measures
the same source and should therefore have the same
results within margins of measurement precision. The
only reasons why there can be deviations are: either
the used sensor is faulty or the agent is intentionally
submitting incorrect results. Therefore, by comparing
agents’ measurements against each other the aim is to
sort out faulty and incorrect results.

There are different ways to approach this and in order
to characterise them two concepts will be introduced,
namely k-anonymity and the breakdown point.

1) K-Anonymity
One way to define k-anonymity is that data sourced
from multiple agents satisfies k-anonymity if any in-
dividual data point cannot be related to less than k
agents, where k is a positive integer. [54]11 In other
words, if a agreed upon dataset includes multiple mea-
surements and is assigned a k-anonymity with k = 2, it
is not possible to identify a single measurement without
a second agent revealing their measurement.

2) Breakdown Point
In general, the breakdown point characterises the ro-
bustness of an estimator and is usually dependent on
the sample size n. For this work the definition given
below is used to characterise the theoretical breakdown

point. In such a way the theoretical breakdown point
BPth characterises the minimum share of malevolent
agents needed to break the system and alter the the
agreed upon dataset arbitrarily, given the worst case
configuration of the system. [35]. Complementary to
that we define the practical breakdown point in defini-
tion VI.7

Definition VI.7 (Practical Breakdown Point). The prac-

tical breakdown point BPpr is the average share of malev-

olent agents at which the agreed upon dataset is arbitrar-

ily altered, given naturally occurring configurations of the

system.

3) Mean
The mean x̄ in its simplest form is defined in equation
(7).

x̄ =
1

n

 
nX

i=1

xi

!
=

x1 + x2 + · · ·+ xn

n
(7)

11latanyasweeney.org; k-anonymity

where xi are the individual measurements and n the
sample size.

The mean can be calculated in a decentralised and
privacy preserving manner [49]. The k-anonymity of
the mean results then in k = n � 1. The theoretical
breakdown point of the mean is 1

n or in other words,
a single measurement can cause the mean to take on
arbitrarily high or low values. This can be mitigated
with domain knowledge, i.e. restraining the range for
valid measurements. However, even with this mitigation
in place, a larger coalition of malevolent agents is still
able to influence the mean significantly. This, in com-
bination with the fact that the presence of malevolent
agents can be expected in a data market, may suggest
that the mean is not sufficiently robust to compute an
agreed upon dataset for most use cases.

4) Median
The median is the value separating the higher half from
the lower half of a data sample. It can be defined for a
numerically ordered, finite sample of size n, as follows:

median(x) =

(
x(n+1)/2 if n is odd
1
2 · (x(n/2) + x(n/2)+1) if n is even.

(8)
This definition is invalid for an unordered sample

of measurements. In order to compute the median for
such a sample, the measurements need to be sorted
numerically first, at least partly. Given a multi-agent
setting, this can be done in a distributed way by us-
ing a selection algorithm that finds the kth smallest
element(s) as long as the data of the agents can be
shared with other agents in their coalition. If data
cannot be shared with other members, calculating the
median in a privacy-preserving way demands a more
complex scheme [26] and is not trivial. The theoretical
breakdown point of the median characterises it as one
of the most robust estimators and is for the worst case
given with 1

2 .

5) Mean Median Algorithm
In an adversarial environment, the high robustness of
the median is desirable, however, often protection of
privacy is also of concern. Therefore, the Mean Median
Algorithm was designed to have an algorithm that esti-
mates an agreed upon dataset in a robust and privacy-
preserving way. It must be said that it is a compromise
and this algorithm is not as robust as the median and
not as privacy-preserving as the mean, when compared
individually.

Explaining the algorithm, the first step is to randomly
assign every agent to a group in such a way that there
are g groups with at least s agents each. The way the
parameters g and s are chosen determine the anonymity
and robustness properties of the algorithm and will
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be discussed in the simulation section VII-C. The next
step is to calculate the mean within each group. The
resulting mean is at least of k-anonymity with k = s�1.
As there are g groups, there are g ways in which the
median is chosen. This gives a breakdown point given
in equation 9.

Breakdown point of meanmedian(x) =
g

2n
(9)

The relationship between s, g and the number of agents
n, is given with the inequality (10).

n � s · g (10)

D. STAGE 4: ACCESS CONTROL MECHANISM TO THE
DATA MARKET
The previous stages of verification, voting and data
consensus run simultaneously in numerous rounds, as
vehicles sense data and form coalitions to provide an
agreed up value for a given location quadrant. By the
time they reach the access control, there is an excess of
datapoints for different locations and these datapoints
are on a queue to enter and be sold on the datamarket.

This section outlines the access control mechanism
to sell this oversupply of datapoints on the market,
and in what order these should be prioritised to enter
the datamarket. This access control mechanism can
be considered to have two intermiediary steps: firstly,
all datapoints are assigned a priority; and secondly,
proportionally to this priority, the coalition owning that
datapoint must perform an adaptive, useful proof of
work.

1) Contribution ranking: Shapley Value
At a given time t, a new set of datapoints will be sub-
mitted to a queue, to ultimately enter the datamarket.
Let this set be Dt = {Dq1, Dq2, Dq3...} where each item
of the set is the datapoint computed by a coalition Cq,
of a given location quadrant, where {q1, q2, q3...} 2 L.
For each element in Dt, the Shapley value  (Cq) is
calculated. Note that each element in Dt is a datapoint
that corresponds to a spatial coalition Cq. The grand
coalition in this case is considered to be the union of
all coalitions that have datapoints already for sale on
the datamarket, denoted as S. Each datapoint in Dt

is assessed using the Shapley value, which determines
what datapoints would increase the overall value of the
datamarket, with respect to the defined value function,
should they be added to the grand coalition S. In other
words, the datapoints that receive a higher Shapley
value, would contribute more towards increasing the
combined value of the data already for sale on the
market. In this manner, the Shapley value is used as
a metric to rank the most valuable datapoints with
respect to a value function.

2) Useful, adaptive proof of work
Subsequently, once the datapoints in Dt have each
received a Shapley value, they are then assigned a proof
of work they must complete. This proof of work is
inversely proportional to the Shapley value. The more
valuable a datapoint is deemed for the datamarket,
the less proof of work the coalition owning it should
complete, to enter the market. This assigned proof of
work, in fact, is computing the Shapley Value of the
next set of datapoints, Dt+1.

3) A contextual example
In the context of agents measuring different levels of
pollution, we illustrate an example of how the Shapley
value would be used to rank the datapoints in terms
of value, and allocate a proportional proof of work
correspondingly.

We use the data on pollution levels of a range of
different contaminants, taken from a number of cities
in India. The data has been made publicly available
by the Central Pollution Control Board: 12 which is
the official portal of Government of India. The cleaned
and processed data was accessed from 13. We illustrate
an example wherein a public authority is interested in
purchasing data on pollution levels of different contam-
inants in order to predict the Air Quality Index (AQI) of
a given location. We generate a linear regression model
to predict AQI, which has been previously done in [61],
although other options for models to predict AQI have
been explored in alternative works such as [4] and [38].
We note that it is up to the buyer to select a model that
best defines the objective they wish to achieve.

A description of how AQI is calculated can be found
in 14. Following from this calculation, it is reasonable
to observe how the variables PM2.5 (Particulate Mat-
ter 2.5-micrometer in µg/m3) and PM10 (Particulate
Matter 10-micrometer in µg/m3) are highly correlated
with AQI. It can be seen from Figure 5 that these are the
two variables with the highest correlation to AQI. We
include them as well as NO, NO2, NOx, NH3, CO, SO2
and O3 as training features for the linear regression
model.

Agents collecting measurements of different pollu-
tants have their dataset evaluated by a preceding set
of agents that must calculate some proof of work. They
receive the seller’s objective value function, which in
this case is the linear regression model, and access to
another agent’s dataset. We show the results of calculat-
ing the Shapley value of individual datapoints within a
given dataset in Figure 6. We simulate this using the
SHAP library, presented in [42]. Following from the
SHAP documentation: "Features pushing the prediction

12https://cpcb.nic.in/
13https://www.kaggle.com/datasets/rohanrao/

air-quality-data-in-india
14https://app.cpcbccr.com/ccr_docs/How_AQI_Calculated.pdf
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Figure 5. Correlation Matrix of the different pollutants measured with AQI

higher are shown in red, those pushing the prediction
lower are in blue. The plot below sorts features by
the sum of SHAP value magnitudes over all samples,
and uses SHAP values to show the distribution of the
impacts each feature has on the model output. The color
represents the feature value (red high, blue low)" [41].
This reveals that high PM2.5 and PM10 concentration
increases the predicted AQI.

We also show the mean absolute value of the SHAP
values for each pollution contaminant in Figure 7. From
this we can deduce that any measurement belonging to
the highest SHAP value classes will be deemed more
worthy and thus the agent submitting it will have to
perform less proof of work to sell it. Every spatial
coalition Cq would have their own total Shapley value,
which is the aggregate of the Shapley values shown in
Figure 7.

4) Privacy Concerns
The reader may rightly question the privacy risks of an
agent accessing another one’s dataset to compute the
Shapley value. What is to incentive them to compute
the Shapley value honestly, and what is to prevent them
from stealing or duplicating another agent’s data if they
realise it has a high Shapley value?

To address the first concern, a Shapley value calcu-
lation is only accepted and considered complete once
enough agents have agreed on the same outcome. With
the assumption that the system is Byzantine, we assume
that at least 2/3 of agents are honest, and thus once a
consensus is agreed on the value, it must be true.

Secondly, in the market there is no protection against
agents duplicating data, but they cannot monetise this
copied data unless they go through the verification,
consensus and then access control stages again. Because
we are in an environment with an oversupply of data
and that is crowd-sourced, the data is unlikely to be
highly sensitive and thus the incentive to go through
these steps is very small.

Finally, we address the concern of having a public
value function. We note that the value function is not
the same as the buyer’s predictive task, but rather
the mathematical representation of the market’s utility
function. This information should be public, as it is the
way the market agrees to assign value to data. Given
that we propose this work in the context of a collective
environment where the value function should dictate
the entire market’s objective, this should be public
knowledge and not sensitive Intellectual Property. Fur-
thermore, malicious buyers could attempt to propose an
objective function that penalise data they are interested
in, but that would not ensure that they would pay
a lower price for their desired data, it would only
delay the access of said data into the market. The price
would be dictated by the bidding mechanism, which
is something that can be agreed upon by the entire
collective to prevent issues like the aforementioned one.

VII. ADVERSARIAL ATTACKS
In an environment like decentralised networks or data
markets one must take into account the possibility of
attacks on the system. we proceed to describe their
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Figure 6. SHAP Values of the samples of each feature

Figure 7. Feature ranking

nature and how these are mitigated by the functional
components of the data market architecture.

Definition VII.1 (Sybil Attack). Sybil Attacks are a type

of attack in which an attacker creates a large number of

pseudonymous identities which they use to exert power in

and influence the network [25]

Sybil attacks are mitigated in the verification stage, as
agents must present a valid proof of identity. This proof
is granted to them through a centralised authority but

all other agents can verify that it exists and therefore
that it must be valid. Generating multiple identities is
made expensive in this proposed architecture, because
agents must provide a valid license plate to enter the
market and collect data. Unless the attacker purchases
a real vehicle with a valid license plate, they cannot
succeed in creating another identity, and therefore sell
data in the market.

Definition VII.2 (Wormhole Attack). A Wormhole At-

tack involves a user maliciously reporting they are in a

location that is not the one they are truly in [34].

An attack can be mounted by a series of malicious
actors claiming to measure data from a location they
are not truly in, and wishing to monetise this fraudu-
lent data. To mitigate against this attack, agents must
present a valid proof of position in the verification stage
(defined in V.14). This proof is assumed to be correct
and sound, and by definition, agents are only able to
present one valid proof.

Definition VII.3 (Data Poisoning). Data Poisoning is an

attack where malicious agents collude to report fake data

in order to influence the agreed upon state of a system

[64].

Malicious agents wishing to report fake data must
influence enough agents in their spacial coalition to
ensure that sufficient agents in the data consensus stage
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will compute a fake data point. Probabilistic voting
schemes make the cost of this coercion significantly
high. Furthermore, to sell the uploaded data point,
the agent must perform a useful proof of work that is
proportional to how valuable the data point is deemed.
The more useful the data point the less work the agent
must carry out to sell it. Selling spam data will therefore
be very time consuming for an attacker.

A. EVALUATION
In this chapter the data market as well as individual
parts of it are analysed to assess the robustness against
the earlier introduced attacks. Simulations of the trust
and truth consensus mechanism are carried out to gain
deeper insights.

As previously discussed in section VII, there are four
types of unwanted instances that this work focus on,
namely Sybil Attacks, Wormhole Attacks, Data Poison-
ing, and Faulty Data.

Data poisoning and faulty data are both similar in
the sense that untrue measurements are submitted for
different reasons. In the case of Faulty data this happens
unintentionally while data poisoning is intentional. Fur-
ther, due to the (assumed) random nature of faulty
data, where untrue measurements happen to be on all
sides of the ground truth, it can be said that it rather
cancels each other out, when the agreed upon data is
estimated. In contrast, when multiple agents build a
malevolent coalition to influence the vote by submit-
ting the same untrue measurement, their influence is
greater. Therefore, data poisoning can be seen as the
worst case scenario among the two and by investigating
it, a bound for both can be found. Note that the case of
Faulty data with the same systematic error on multiple
sensors results in the same outcome as data poisoning,
with the difference that the bias is chosen randomly.
To further investigate data poisoning, simulations have
been carried out.

B. SIMULATION SETUP
A class of agents was created and a ground truth
established from which the honest agents measure their
data point. To account for imperfect sensors and other
sources of errors, the process of taking a measurement
is represented by sampling from a Gaussian distribution
with µ and �. Additionally, a set of agents was cre-
ated which have the same untrue measurement µadv

to represent the group of dishonest agents forming a
malevolent coalition to mount a data poisoning attack.

Further, a base reputation of 1 is assigned to all
agents, and in a second step, every honest agent has
a probability to have a high reputation assigned. This
is modeled by a weighted coin toss deciding if the agent
is assigned a high reputation, and if yes, the reputation
is sampled from a Gaussian with µrep and �rep.

To simulate the governance and consensus mecha-
nisms, models of the different data consensus algo-
rithms and the voting mechanism were built and ap-
plied to the created agents. It is important to note that
the mean-median algorithm was implemented twice
with different parameters, namely triplets and square-
root. The former means that the minimum number of
agents per group is s = 3, while for the squareroot
implementation it is chosen dynamically depending on
the number of agents N , with

p
N = s. In return, the

triplets algorithm has a higher number of groups g than
the squareroots implementation, and therefore a higher
robustness can be expected, as discussed in section VI-C.

The simulations have been done with S number of
samples using Monte Carlo methods, varying numbers
of agents N , and differently sized malevolent coalitions.
Note that this setup assumes the honest actors to be in-
dependently, identically distributed, which implies that
measurement errors are not systematical or correlated.
It can be translated to a world where every agent
takes their measurements independently with the same
unbiased sensor system and spatio-temporal effects do
not occur (within a spatial coalition).

Remark: We note that the purpose of the simulations
in Figures 8 and 9 is to characterise the robustness of
the data consensus algorithms against data poisoning

attacks. Therefore, the absolute value of the data that
each agent submits is not of importance. Rather, our
objective is to understand how resilient the algorithm
is when a series of malevolent agents collude to send
the same, malicious value, that differs highly from the
ground truth.

C. EVALUATION OF RESULTS
Figure 8 shows a simulation of the different data
consensus algorithms which can be used to find the
agreed upon dataset. The simulation has been repeated
S = 15 times with N = 1000 agents. The behaviour
of the system with a high number of agents can be
considered to reflect the upper limit scenario of the
system, and scaling effects can be observed when the
number of agents are lower. It is important to examine
this scaling effect because in practise, varying numbers
of agents will occur. To do so, the behaviour in the limit
is examined to establish the baseline.

Generally, it can be seen that the more adversaries
are present, the higher is the deviation of the agreed
upon dataset from the ground truth.

For the median algorithm, in green, and the triplets
algorithm, in blue, discrete steps can be seen, where
at defined percentages of adversaries, the deviation of
the agreed upon dataset changes drastically. For the
median algorithm, this happens once at 50% which
is the theoretical breakdown point. For the triplets
algorithm this happens three times, which reflects the
fact that there are three agents per group. It can be
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Figure 8. Characterisation of data consensus algorithms’ behaviour under different degrees of coordinated data poisoning attacks

Figure 9. Breakdown analysis of data consensus algorithms, with a coordinated data poisoning attack
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interpreted that for up to 20% of adversaries, there are
high chances of all three agents in the median group
being honest. Further, between 20% and 50% it is likely
that one out of three is malevolent. This continues up
to where from 80 % onwards, there are high chances
of all agents in the median group being malevolent.

Between the jumps it can be observed that there is
an upwards trend. This can be explained with the fact
that the honest actors sample their data from a Gaussian
distribution with non zero �. Due to the fact that more
and more adversaries are distorting the data, honest
agents further away from the µ are selected.

Lastly, the squareroots algorithm shows a fairly con-
tinuous, almost linear, reaction to adversaries. This is a
result of the bigger groups, with s =

p
N and N = 1000,

which allows finer blends of honest and malevolent
agents in the median group. In theory, there should
be also a discrete step-wise increase similar to the
triplets algorithm because of the discrete number of
agents s underpinning the process. However, due to
the smaller step size and the inherent randomness to
the simulation, this can only be observed in the region
between 80% and 100% of adversaries.

To conclude, it can be said that at the baseline, the
median algorithm is the most robust with a practical
breakdown point at 50%, after which comes the mean
median triplets with 20%, and the mean median square-
root with a breakdown point of about 2%. When using
equation (9) to calculate the theoretical breakdown
points for the mean median algorithm of 16.65% and
1.55%, it is easy to see, at least for the triplets imple-
mentation, that in the practical breakdown points are
higher.

To investigate the scaling effect and behaviour of
the algorithm when smaller numbers of agents are
present, the same simulation was carried out but with
N = 20 agents, see Figure 9, and presented as boxplot
instead. This results in bigger steps in which the percent
of adversaries is increased. For N = 20, adding one
adversary translates to an increase in 5%. The number
of repeated sampling S = 100 was increased to compen-
sate the increased uncertainty due to the lower agent
count. The boxplot shows the three algorithms for 9
different shares of adversaries, namely 0, 5, 10, 20, 25,
45, 50, and 55.

It can be seen that in general, the algorithms act
similarly as in Figure 8 with two major differences.
First, the boxplot clearly shows that given a share
of adversaries, the spread of the deviation is higher.
This is a direct result of the lower number of agents,
where chances of fluctuations are higher. Secondly, the
practical breakdown point is shifted to 10% and 15%
for squareroot and triplets, respectively. Given equation
(9), the theoretical breakdown points for the mean me-
dian implementation are 10% and 15% which confirms
the observation.

For the squareroot implementation, this is a great im-
provement which can be explained by the low number
of agents. This results in four groups g = 4 which is
in proportion to the number of agents N = 20 higher
than for N = 1000 with g = 31 groups. This shifts
the theoretical breakdown point and therefore also the
practical one. The explanation behind the shifting of
the practical breakdown point of the triplets implemen-
tation lies less in a shift of the theoretical breakdown
point (although there is a slight one) and more in the
random nature of the allocation of the agents to the
groups. Specifically, it is more likely to end up with
two or more malevolent agents per group with higher
numbers of agents. Equation (11) gives the probability
that the breakdown occurs at the theoretical breakdown
point, given the share of adversaries of the theoretical
breakdown point. The chances are higher for the case
of triplets with N = 20, r = 6 and a = 3, than for
triplets with N = 1000, r = 333 and a = 167.

BPth =
(g � 1)!

ga�1(g � a)!
(11)

where BPth is the probability of the breakdown of the
Mean Median Algorithm at the theoretical breakdown
point, g is the number of groups, and a is the number
of adversaries at the theoretical breakdown point.

Figure 10 represents the entire consensus mecha-
nism, whereby the main purpose is to demonstrate
that the reputation system can increase the robustness,
given a functional reputation system exists. The way
this simulation works it that the voting scheme (MEV)
outputs a set of agents, the committee, which then
compute the agreed upon dataset of a given location.
Given the context of this data market, where anonymity
is not demanded, the use of the median algorithm as
a data aggregation algorithm can be justified. The size
of the committee was chosen with K = 3 to be able to
make use of the proposed reduction in computational
complexity, described in section VI-B.

Figure 10 shows two simulations plotted which
present the share of adversaries at which the practical
breakdown point occurs (y-axis) as function of the share
of highly reputational agents among the honest ones (x-
axis). The latter resembles the weight of the weighted
coinflip mentioned above. The plot in blue has N = 15
and S = 10, and the one in orange, N = 10 and S = 15.
For both simulations the same Gaussian was used to
sample the reputation for the high-reputation honest
actors, µadv = 100 and �adv = 30.

For both simulations, a clear trend can be observed
that with higher shares of reputational agents among
the honest ones, the practical breakdown point is at
higher shares of adversaries, with some outliers having
a breakdown point of more than 80%. Precisely, this
means that two out of the three committee members
are honest. At the same time it is visible that a great
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Figure 10. Characterisation of breakdown of MEV combined with Median Algorithm

spread is introduced by adding the voting consensus
mechanism. This is due to the fact that the voting
mechanism is probabilistic. This makes it very expensive
for an attacker to have certainty that their attack will
be successful.

To conclude the analysis on the robustness against
data poisoning, it can be said that with both, the
Maximum Entropy Voting and the median in place, the
system offers protection against data poisoning by intro-
ducing a spread in the breakdown point of the system,
as well as increasing the number of adversaries needed
on average to reach the breakdown point. In order to be
have a probability to succeed in subverting the network,
the malevolent coalition has to be in control from 40%
to 80% of the network, depending on the reputation
system and the honesty of the other agents. Under the
security assumptions used in Byzantine environments,
where it is assumed to have 2/3 honest actors, on
average the breakdown point in percent of adversaries
increases to 60% to 70%.

D. CONCLUSION
Fairness, decentralisation and verifiability are funda-
mental to the body of this work. The novelties of this
work include: ranking data in terms of how valuable it
is to the market using the Shapley value, and propor-
tionally adapting the proof of work to it. Furthermore,

the proof of work is itself useful and necessary for the
functioning of the market, and thus not wasteful. We
also propose consensus through a voting scheme that
satisfies desirable properties of fairness, and introduce
an optimisation to make its computational complexity
significantly lower for the context of this work. Most
importantly, this voting scheme favours agents that can
prove their honesty, as this is how reputation is earned
in the system.

Indeed, at time of writing, Algorand just announced
that they are aware of the critique towards their voting
algorithm. Passive agents with more wealth have more
voting power than the active agents that are enabling
the functioning of the network. Algorand have stated
they agree with this critique and will be rolling out
changes in June 2022 to reward active network users
15. We hope the work here presented can be a first step
in enabling the shift towards this direction.

For future work, we wish to explore how our voting
scheme can be implemented in an End-to-end verifiable
manner, and how the computation of the Shapley value
for each agent’s dataset can be done in a privacy
preserving way. Achieving the latter may enable us to
relax security assumptions of the honesty of agents

15https://algorand.foundation/news/
governance-voting-update-g3
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computing the Shapley value.
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.

A. CONIC OPTIMISATION AND LAGRANGIAN RELAXATIONS
Relative entropy programs (REPs) and second-order cone programs (SOCPs) are conic optimisation problems in the
relative entropy cones and second-order cones, possibly subject to other linear constraints. They could be solved
via interior-point methods.

Let ⇡, �,1 be |T |-dimensional vectors. The elements of ⇡ are ⇡(t), t 2 T , and 1 is an all-ones vector 1 of compatible
size. A relative entropy cone (⇡,1, �) 2 RE is defined as:

RE :=
n
(⇡,1, �) 2 R|T |

�0 ⇥ R|T |
�0 ⇥ R|T |

| ⇡(t) log(⇡(t)/1)  �t, 8t 2 T

o
, (12)

The objective function in (5) can be reformatted into (12). The relative entropy cone (⇡,1, �) 2 RE induces that
�
P

t2T ⇡(t) log ⇡(t) � �
P

t2T �t and we can just minimise
P

t2T �t to obtain a maximum entropy solution. Hence,
the Problem 5 is re-formulated as

max
⇡,�

X

t2T
�t

s.t.
X

t2T
⇡(t) · S(t) = S(A),

X

t2T
⇡(t) = 1

⇡(t) � 0 8t 2 T , (⇡,1, �) 2 RE .

(13)

If T is the set of combinations, the constraint
P

t2T ⇡(t) · S(t) = S(A) in Problem 5 or 13 cannot always be
satisfied. Correspondingly, we lift up this constraint to the objective function, with a multiplier � > 0. Let

Sdiff :=
X

t2T
⇡(t) · S(t)� S(A) (14)

According to the definitions of S(A), S(t), Sdiff is an N ⇥ N symmetric matrix, with its diagonal being all zeros.
On the other hand, Sdiff implies the distortion of solution ⇡ from Representative Probability property III.3. Further,
a second-order cone (Sdiff, ⌘) 2 SO is defined as (15).

SO :=

8
<

:(Sdiff, ⌘) 2 RN⇥N
�0 ⇥ R�0

������

s X

i,j2A,i<j

2
�
Sdiff
i,j

�2
 ⌘

9
=

; , (15)

where Sdiff
i,j denotes the element of Sdiff in row i and column j. The Lagrangian relaxation of Problem 13, using

second-order cone, reads

max
⇡,�,⌘

X

t2T
�t + � ⌘

s.t.
X

t2T
⇡(t) · S(t)� S(A) = Sdiff,

X

t2T
⇡(t) = 1

⇡(t) � 0 8t 2 T , (⇡,1, �) 2 RE , (Sdiff, ⌘) 2 SO.

(16)

B. DATA GENERATION
Algorithm ?? indicates that the input S(A) for Problems 5, 13 and 16, is obtained from xi, ri!j . The generation of
measurements xi and reputation ri!j , could be divided into the honest-agent and the adversarial-agent cases. For
the former case, the measurement is sampled from a Gaussian distribution N (µ, �) while an untrue measurement
µadv is assigned to all adversarial agents directly, as in (17).

(
xi ⇠ N (µ, �) if ai is honest,
xi = µadv if ai is adversarial.

(17)

For simplicity, we assume the reputation ri!j = ri, for all aj 2 A. For generating ri, ai 2 A, a base reputation
of 1 is assigned to all agents. Further, a Binomial distribution variable rBi ⇠ B(1, p) is used to determine if an
honest-agent is respected: ai is honest and respected if rBi = 1. Further, an honest-and respected-agent would be
added extra reputation rNi sampled from a Gaussian distribution N (µrep, �rep). The procedure is displayed in (18).

ri =

(
1 + rBi · rNi if ai is honest
1 if ai is adversarial

(18)
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Combination Set Tcom Permutation Set Tper

t1 ai > (aj , ak)
⌧1 ai > aj > ak
⌧2 ai > ak > aj

t2 aj > (ai, ak)
⌧3 aj > ai > ak
⌧4 aj > ak > ai

t3 ak > (ai, aj)
⌧5 ak > ai > aj
⌧6 ak > aj > ai

Figure 11. This table displays two ordering sets, i.e., combination set and permutation set, when A = {ai, aj , ak} and M = 1. All orderings, including
combinations and permutations, in the same row are equivalent, in terms of election results.

C. MEASURING ENTROPY
Given a set of agents A and the number of winners needed M , we can build two orderings sets: one of combinations
Tcom and the other one of permutations Tper. Suppose an optimal probability measure is obtained from Problem 5
for each ordering set, denoted as ⇡⇤

com for Tcom and ⇡⇤
per for Tper, with the same input S(A). See Figure 11 for an

example when A = {ai, aj , ak} and M = 1.
Notice that for each element t 2 Tcom, we can find M !(N �M)! elements in Tper that are equivalent to t, in terms

of the election results. We use ⇠ to denote this equivalence relation. For instance, each row of Figure 11 displays a
equivalent tuple of t 2 Tcom and ⌧ 2 Tper. Specifically, t1 2 Tcom is equivalent to ⌧1, ⌧2 2 Tper, because their election
results are the same, i.e., only agent ai gets elected. Then, we have t1 ⇠ ⌧1 ⇠ ⌧2.

To compare the entropy of ⇡⇤
com and ⇡⇤

per, we suggest

Entropy(⇡⇤
com) :=

X

t2Tcom

⇡⇤
com(t) log ⇡

⇤
com(t)

Entropy(⇡⇤
per) :=

X

t2Tcom

0

@
X

⌧2Tper,⌧⇠t

⇡⇤
per(⌧)

1

A log

0

@
X

⌧2Tper,⌧⇠t

⇡⇤
per(⌧)

1

A
(19)

D. NUMERIC ILLUSTRATIONS
With S(A) extracted from data generated in -B, we have the following implementations:

• “Permutation”: solving Problem 13 with input T = Tper, S(t), S(A), and optimal solutions ⇡⇤
per.

• “Combination_Lag”: solving Problem 16 with input T = Tcom,� = 2, S(t), S(A), and optimal solutions ⇡⇤
com.

Both are solved by MOSEK Optimizer API for Python 9.3.20 [8]. Figure 12 displays the results of runtime,
entropy in (19) and RP distortion Sdiff in (14), of optimal solutions ⇡⇤

com and ⇡⇤
per, when the number of agents N

are 6, . . . , 15 for “Combination_Lag” and 6, . . . , 9 for “Permutation”. Note that “Permutation” with larger N is not
implemented due to its spike in runtime. Under each N , both implementations are conducted 6 times (6⇥ 2 runs
in total), with a new S(A) generated every time. The average entropy, runtime and RP distortion of 6 runs are
presented as solid curves for “Permutation” and dashed curves for “Combination_Lag”.
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Figure 12. The average results of entropy, runtime and RP distortion, of implementing “Combination_Lag” and “Permutation” for 6 times, with the number of agents
N being 6, . . . , 15 and 6, . . . , 9 respectively.
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