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Abstract—Permanently increasing penetration of converter-
interfaced generation and renewable energy sources (RESs)
makes modern electrical power systems more vulnerable to low
probability and high impact events, such as extreme weather,
which could lead to severe contingencies, even blackouts. These
contingencies can be further propagated to neighboring energy
systems over coupling components/technologies and consequently
negatively influence the entire multi-energy system (MES) (such
as gas, heating and electricity) operation and its resilience. In
recent years, machine learning-based techniques (MLBTs) have
been intensively applied to solve various power system problems,
including system planning, or security and reliability assessment.
This paper aims to review MES resilience quantification methods
and the application of MLBTs to assess the resilience level of fu-
ture sustainable energy systems. The open research questions are
identified and discussed, whereas the future research directions
are identified.

Index Terms—Extreme events, machine learning, multi-energy
systems, resilience, sustainable energy systems

I. INTRODUCTION

DUE to an increased number of extreme events, as well
as the increased penetration of converter-interfaced gen-

eration and renewable energy sources (RESs), modern elec-
trical power systems became more vulnerable and technically
observed weaker. In other words, without undertaking some
preventive/corrective measures, modern power systems will be
more fragile to different types of power system perturbations,
which could lead to increased number of cascading events
and undesirable blackouts. Power systems have been recently
experiencing different operational challenges around the globe.
For example, the power outage in the UK in August 2019 [1]
was initiated by a lightning strike, whereas a severe windstorm
in combination with stressed system conditions resulted in a
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blackout of South Australia in September 2016 [2]. In both
cases the impact of RESs played an important role in the
severity of the disturbance and the cascading propagation.
Such contingencies can be further propagated to other energy
sectors (e.g., heating, gas, or transportation) over the system
assets coupling energy sectors together, such as combined heat
and power (CHP) plants, or gas turbines. More recently, the
2021 winter blackout in Texas [3] has clearly highlighted a
need for better understanding of the future sustainable energy
system resilience, but also actions in developing and apply-
ing effective measures to mitigate the impacts of large-scale
disturbances. Here the system resilience is directly related
to low probability and high impact events, e.g., earthquakes,
hurricanes, and extremely cold weather conditions. In this
context, quantification of the multi-energy system (MES)
resilience, where different energy sectors like gas, heating and
electricity are mutually coupled, is of utmost importance and
is not trivial. Resilience quantification of such a MES should
take into account all individual energy sectors’ resilience levels
and their specific dynamics expressed through time constants
describing the speed of the dynamic processes.

Machine learning-based techniques (MLBTs) are advanced
mathematical tools having the ability of self-learning from
measurement data sets obtained from the physical process
observed. MLBTs also offer a significant number of benefits,
compared to traditional and classical approaches, for example:
(i) quickly reaching decisions, especially for large-scale non-
convex physical models requiring very demanding compu-
tational efforts for problem solving, (ii) achieving highly
accurate decisions, compared to those traditional approaches,
e.g., based on model order reduction, or linearization, (iii)
utilizing massive historical data sets collected by a large
number of sensors described by a high reporting rate, (iv)
simulation of a broad range of scenarios taking into account
different sources of uncertainties, (v) forecasting future system
conditions, or states, (vi) improved forecasting accuracy by
physics-informed machine learning methods which integrate
the historical data and physical laws of systems, and (vii)
automatically controlling the grid and ensuring system stable
operation in cases of human errors, or delay in human reac-
tions. Resulting from the increased complexity of some of pro-
tection functions, particularly those related to System Integrity
Protection Schemes (SIPS), e.g. underfrequency/undervoltage
load shedding [4], intentional controlled system islanding [5],
[6], or monitoring of power system attributes required by
novel and smart technology solutions, approaches based on
ultimately data-driven solutions supported by MLBTs, become
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the solutions applicable today [7].
In the past, MLBTs have been applied to power systems

for various purposes, including reliability management [8],
system stability assessment and control [9], frequency analysis
and control [10], and contingency analysis [11]. In addition,
MLBTs were also used for solving economic dispatch of a
MES during normal operation [12]. MLBTs have also been
utilized for short-term system status prediction/assessment,
system stability control and long-term system planning. As
a type of supervised learning, tree-based methods such as
decision trees were applied to transient stability [13] and
voltage stability assessment [14]. Neural networks such as
extreme learning machine (ELM) [15] and convolutional neu-
ral networks (CNNs) [16] were used for frequency stability
assessment. In [14] and [7] artificial neural networks (ANNs)
were used for voltage stability and system inertia prediction.
Support vector machines (SVMs) were applied to frequency
and voltage stability assessment in [17] [14], and transient
stability control in [18]. The long short term memory (LSTM)
approach was applied to distributed energy resource (DER)
sizing in [19]. In [20] unsupervised learning, such as clus-
tering method, was adopted for DER allocation. Reinforce-
ment learning methods, such as deep reinforcement learning
(DRL), were applied to frequency stability control [21] and
DER sizing [22]. The Q-learning method was used in grid
hardening problem in [23]. A review paper [9] focuses on
the MLBTs applied to power system resilience enhancement
considering four aspects, power outage forecasting, stability
assessment, stability control and system restoration. However,
these issues are directly related mainly to electrical power
systems, but not explicitly on MESs. Furthermore, there is
a gap of understanding the resilience quantification methods
for both power systems and MESs. Review paper [24] focuses
on the MLBTs applied to power system security and stability,
especially the cyberattack detection, power quality disturbance
studies and dynamic security assessment. Compared to the two
review papers [9] and [24], we focus on MESs and resilience
concepts, going further and addressing the following issues:
(i) the concept of MES resilience and its relationship with
security and stability, (ii) modeling and quantification methods
of MES resilience, (iii) MLBTs applied to MES resilience
assessment. In particular, the applications to MES network
characteristics determination, prediction of system operation
performance, and load curtailment prediction, (iv) MLBTs
applied in academic and industrial projects, (v) future research
directions on MES resilience quantification and assessment.

Therefore, in this paper, the existing quantification methods
and MLBTs supporting future sustainable and resilient energy
systems will be systematically reviewed. Building on this
thorough review, our goal was to investigate and discuss what
are the uncovered and important research questions related
to (i) the quantification methods of MES resilience, and (ii)
MLBTs applied to MES resilience assessment. Future direc-
tions on these two aspects are further identified to effectively
contribute to the whole system resilience assessment agenda in
the presence of extreme events. Such a review aims to derive
condensed and digested conclusions from existing references
published in the open literature, and also to propose an outlook

for future directions in the field by identifying existing gaps,
future needs and feasible solutions.

The rest of this paper is organized as follows. In Section II,
literature review on resilience basics, including its definition
and other relevant concepts, is presented. The section is used
as the basis for discussions in Section III and other Sections.
The MES resilience modeling and quantification methods
are presented in Section III. Literature review on MLBTs
applied to MES resilience assessment is discussed in Section
IV. Section V is addressing future research agenda on MES
resilience quantification and MLBTs applied to MES resilience
assessment. Finally, conclusions are summarized in Section
VI.

II. MES RESILIENCE

A. Power system resilience definition

According to the IEEE Task Force [25], power system
resilience is defined as “the system ability to withstand and
reduce the magnitude and/or duration of disruptive events,
which includes the capability to anticipate, absorb, adapt
to, and/or rapidly recover from such an event.” The term
disruptive events refers to high impact and low probability
unexpected perturbation, including extreme natural disasters,
or man-made attacks. Typical examples are snow storms, or
cyber attacks [26], [27]. With the development of coupling
technologies, concepts of digital substation and high speed
communication, or distributed power systems, the interdepen-
dence of different energy sectors is stronger than before and
the risk of unexpected disruptive, or cascading events is much
higher [28]. Doors for propagation of disturbances from one
to another energy sector are opened, which is making the case
for MES resilience assessment. Therefore, the existing power
system related resilience definition is necessary to be extended
to MES resilience. This can be done by considering the
MES operating states and understanding dynamic processes
in individual energy sectors, but also network characteristics
of different energy sectors under extreme events.

B. Conceptual relationship

The definitions of other relevant concepts, such as power
system reliability, security and stability are known and can be
found in e.g. [29], [30]. We briefly discuss here the relationship
between the mentioned concepts, which is expected to more
precisely define the paper scope. Reliability focuses on the
system ability of uninterruptedly supplying customers, also
during highly probable contingencies treated as N-1 or N-2
events. On the contrary, disruptive, extreme events are relevant
for resilience assessment [31]. Security can be seen as a part of
the reliability requirements. The following two major aspects,
relating resilience and security to each other, can be identified:
• States: preventive, emergency and restorative states are used

in power system security to describe different operating
states [32]. In addition, normal, alert, emergency, extreme
and restorative states are used to describe power system
conditions [33]. Different resilience levels also correspond
to these power system states [34]. Understanding the con-
cept of resilience has to do with transitions of the power
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system through different states, in which some of security
constraints are satisfied, or not.

• Contingencies: power system security is the ability of a
power system to withstand contingencies/perturbations and
remain in its secure state, or to operate within its acceptable
limits [33]. On the other hand, power system resilience is
an expression of the degree of the system capability to
withstand a massive contingency, leading to simultaneous,
or sequential outages, of a larger number of system compo-
nents.
Stability is also a time-varying attribute. A system can be

stable in a new operating equilibrium after a disturbance,
but at the same time insecure [29]. A power system with
vulnerabilities in the fuel supply can have fuel security prob-
lem [35]. Regarding flexibility, these are different definitions
for a MES [36] and for power systems [37]. Both definitions
focus on the ability to optimally manage the variability and
uncertainty originating from the renewable power generation
and loads. In [38], flexibility, together with resilience and
connectivity, are perceived as the fundamental attributes of
future sustainable power systems.

III. MODELING AND QUANTIFICATION OF MES
RESILIENCE

To assess the degree or the status of MES resilience,
modeling and quantification methods of the MES resilience are
essential to be understood. There has been a comprehensive
literature review on power system resilience quantification
metrics [39]. However, a review of the MES resilience quan-
tification methods has not yet been fully addressed. MES
resilience quantification methods can be classified into three
groups: 1) temporal aspect and resilience level/degree time
variations, 2) risk analysis of consequences of disruptive
events, and 3) spatial information of the MES networks and
disruptive events. Advantages and disadvantages of each group
are also discussed.

A. Multi-temporal resilience metrics

The resilience quantification framework of a typical critical
infrastructure, the resilience triangle, was proposed in [40] to
represent the loss of functionality from disruptive events, and
the resilience varying over time. However, this metric cannot
quantify for how long the system states have lasted before
the restoration phase started and how quickly the resilience
level degraded. To address these challenges, the resilience
trapezoid, in [41] was proposed and applied to power system
resilience assessment. This framework is characterized by
describing the time-dependent resilience level in the following
three phases: 1) disturbance progress, 2) post-disturbance state
and 3) restorative state.

According to [25], resilience aims to take into account
the impact of large disruptions to the system infrastructure,
customers and control room staff. Therefore, the existing
literature on power system and MES resilience, r, modeling
is grouped by the performance of networks [42], system
operation [43], and loads [44]–[46].

In [42], resilience r is modeled as the MES network
efficiency by summing up the distances dij of the shortest
path between nodes i, j in the network, i.e.

r =
1

N(N − 1)

∑
i ̸=j

1

dij
, (1)

where N is the total number of nodes in a network including
different energy sectors. The quantification method can indi-
cate the effectiveness of energy flow influenced by the failure
propagation between energy sectors through coupling system
components. In [43] the system resilience r is modeled as the
exponential of negative ratio of the increase in MES operation
costs γ due to disruptive events, i.e.

r = exp

(
− (γ − γ0)

M

)
, (2)

where γ0 is the operation cost during the normal operation, and
M is the total energy resource. However, both models ignore
the time window covering all three phases of resilience. To
address the temporal variation of the resilience, it is important
to consider the time of the system spent in each phase. In [44],
the temporal variation of the resilience r is addressed by
different diurnal and seasonal periods of the year. Resilience
is quantified by the system cost caused by the loss of service,
i.e. undelivered electricity, heat, or gas, as a result of the
disruption. However, the quantification methods mentioned
above use deterministic-based modeling of disruptive events,
not addressing the stochastic nature, e.g. probability, of the
large-scale contingencies. In [45], the duration of phases II
and III is modeled through the Monte Carlo Simulation (MCS)
method, introducing the stochastic nature of the problem. In
addition, for the purpose of MES modeling, the information
about the disconnected load (load shedding) in all individual
energy sectors, was used.

B. Risk-based metrics

On the other hand, the risk-based resilience quantifica-
tion methods are investigated to address the low probability
characteristics of the disruptive events. Here, the resilience
is represented by the probability-based risk. The catastrophe
model was used as the basis of the risk assessment of the
natural hazard, including the components of hazard, inventory
(e.g. locations of power lines), vulnerability, and loss [47].

Risk-based quantification methods have been traditionally
applied in power system studies. In [48] the information
about the vulnerability of electrical overhead transmission
lines, modeled by fragility curves, was used to quantify the
power system resilience. In this approach, locations of faults,
probability of the severity of faults and event occurrences, are
considered. In [49] and [50], risk assessment frameworks for
classifying the risk of failures in distribution and transmission
networks were respectively proposed. In particular, the risk
considered in [49] varies over time, outage locations and
type of the disruptive event. It is expressed as a conditional
probability p(f |X) ·CTOTAL, where p(f |X) is the probability
of line outages depending on external conditions such as
extreme wind speed, or lightning, and CTOTAL is the energy
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supply interruption costs. Further risk mitigation through con-
trol actions of demand response to increase the power system
resilience is discussed in [51]. However, in these studies the
risk assessment methods applied to MES resilience problem
are ignored.

In [52], a conceptual framework for developing resilience
metrics of a MES is given. More specifically, a tail-oriented
statistic such as Conditional Value-at-Risk (CVaR) was de-
ployed to minimize the risk of economic losses under low
probability and high impact disruptive events. To quantify
MES resilience, the resilience of individual energy sectors
needs to be normalized. Such a normalization method can
make the resilience of different energy sectors characterized
by different rated power and operating states comparable.
Moreover, a trade-off between different objective functions in
risk assessment, e.g. minimum economic losses versus recov-
ery costs, is needed to take into account different disruptive
consequences. The correlation of the tail-oriented statistics and
the dimension reduction of scenarios from different sectors
should also be considered.

C. Spatial resilience metrics
In the two quantification metrics mentioned above, the tem-

poral variations and the resilience level uncertainty are mainly
addressed. However, the network topology and contingency
locations were ignored in the quantification process, which
is particularly important for large-scale and interdependent
networks, such as those belonging to a single MES.

Graph-theoretical approaches have been used to describe
the topological properties of networks by vertices/nodes and
edges/links. The Laplacian matrix of a graph was used in [53]
to describe the electrical and graphical features of a power
system. A mathematical theory based on the matrix was
proposed to localize failures in a cascading process of line
outages. Therefore, both topological features and power flow
can be further used to model failures in the process of the
MES resilience quantification. In [54], [55], the presented
simulation results indicate that interdependent networks are
more vulnerable to cascading failures than the individual
network. In addition, an interdependent network with more
inter-edges (edges connecting nodes belonging to different
networks of a single MES) per node has higher resilience
against cascading failures.

Other than topology, the spatial characteristics of extreme
weather and coupling units are considered in the resilience
quantification of an integrated power and gas system [56].
The results indicate the system coupling amplifies the load
curtailment caused by hurricanes. Furthermore, [57] considers
spatial characteristics of the distribution system (locations of
sources and loads) and the transportation system (electric
buses traveling distance as generation resources) in resilience
quantification.

A detailed review of the power system and MES resilience
quantification methods is shown in Table I.

IV. MLBTS APPLIED TO MES RESILIENCE ASSESSMENT

In recent decades, applications of MLBTs suitable for
assessing MES resilience and related problems have been

studied. As discussed in Section II, the concepts of power
system security and reliability are relevant for understanding
and quantifying resilience. In particular, the system operating
states after disruptive events are the same for the security and
resilience assessment. Therefore, MLBTs applied to power
system security assessment under N-1 or N-2 contingencies
can be extended to resilience assessment under extreme events.
Recent progress in application of MLBTs to power system
reliability management has been comprehensively reviewed
in [8]. Lots of attention has been put on static and dynamic
security assessment and approaches for determining stability
limits.

There are several terms from MLBTs [58] are used in the
following discussion. The term training data set is used in the
MLBTs to build a prediction model (a learner) to predict the
outcome, such as MES resilience, given the input measure-
ments (features). When the outcome is a class variable (e.g.
system secure/insecure, resilience level high/medium/low), the
learning problem is a classification problem. The outcome
classes can be seen as labels. When the outcome is quan-
titative, the learning problem is a regression problem. Both
problems are called supervised learning problems. When the
data set has no outcome measurement, the learning problem
is a clustering problem to describe how the data are organized
or clustered. This is called an unsupervised learning problem.
In reinforcement learning, the learner is an agent that take
actions to change states for maximum rewards in an environ-
ment. Reinforcement learning is neither a supervised learning
nor an unsupervised learning problem.

In this section, MLBT applications related to MES resilience
assessment are discussed and more specifically related to the
following power system and MES applications: (i) network
characteristics determination, (ii) prediction of the system
operation performance, and (iii) load curtailment prediction.
Methods for resilience levels modeling and quantification are
pre-discussed in Section III.

A. Network characteristics determination

MLBTs can be used to automatically, fast, robustly and
accurately identify the geographical and topological infor-
mation of a large and complex power/heating/gas network.
It can help to quickly assess the resilience of the system
based on the topological features, especially an interdependent
network such as a MES. Here the resilience could be quantified
by the topological features and graph-theoretical approaches
discussed in Section III.C.

In [59], a strong linear interdependence between power
system resilience and network topological features, e.g. degree,
path length and order of the networks, was validated by
the Pearson correlation. Other than the topological features,
line parameters can also influence the system resilience. The
two features were embedded through the graph convolution
neural network (GCNN) to reduce the feature dimension for
the K-means based clustering of the gas network resilience
in [60]. A case study on a large-scale gas pipeline network
then verified that pipelines with similar embedded features
have similar risk levels. However, the data set for clustering
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TABLE I
COMPARISON OF SELECTED QUANTIFICATION METHODS FOR POWER SYSTEM AND MES RESILIENCE

SYSTEM TYPE: ELECTRICITY SECTOR (E), HEATING SECTOR (H) AND GAS SECTOR (G)

Ref. System type Event type Resilience
phase Quantification metrics

Temporal/Spatial
variations of resilience
level

Resilience level model

[41] E, transmission
network

Windstorm, transmission
line and tower failure I - III Resilience trapezoid Temporal Percentage of operational

grid, generation and load

[42] E, G, distribu-
tion network Gas supply outage I - III Resilience trapezoid

Temporal/MES topology,
contingency propagation
between networks

Network efficiency

[43] E, H, G, MES
microgrid

Cyber threat, distribution
line outage II III Resilience trapezoid and

encryption cost Temporal Operation cost

[44] E, H, G, distri-
bution network

Boiler, compressor, gas
and power grid failure I - III

Resilience trapezoid,
(three-dimension of time,
failure mode and system
functional service)

Temporal
Operation cost and
penalty cost due to energy
service loss

[45] E, H, G, distri-
bution network

Windstorm, overhead
line, underground cable
and electrical substation
failure

I - III

Resilience trapezoid, total
load curtailment, collapse
ratio and recovery ratio of
resilience level

Temporal

Total load curtailment per-
centage weighted by ini-
tial load of each energy
sector

[48] E, transmission
network

Windstorm, overhead line
outage II Risk assessment – /Fault location

Vulnerability by fragility
curve, probability of fault
severity and windstorm
occurrence

[49] E, distribution
network

Thunderstorm, lightning,
windstorm, line outage II Risk assessment Temporal/Network

geographical information

Classification of risk,
probability of failure and
impact cost

[51] E, distribution
network

Lightening, distribution
line outage II III Risk assessment Temporal/Network

geographical information

Classification of risk,
probability of failure and
impact cost

[52] G, transmission
network

Earthquake, gas pipeline
and gas storage outage II Risk assessment – /Fault location CVaR

[56] E, G, transmis-
sion network

Hurricane, transmission
tower and conductor
failure

II III
Resilience trapezoid, total
cost of gas and power load
shedding, asset damage

Temporal/Failure
probability varying in
hurricane location

Power and gas demand not
supplied

[57]

E, transport
sector,
distribution
network

Hurricane, power source
and line failure III Resilience trapezoid and

allocation cost
Temporal/Power system
restoration path

Total power supply
weighted by load priority

has no outcome measurements for resilience (labels). The
resilience of all networks needs to be pre- or post-calculated
by the quantification metrics. Reference [61] deployed a CNN
method for classifying a power and natural gas interdependent
network topology into a “scale-free network” (a network can
be described by power law distributions), a “small-world
network” (high clustering nodes with a small diameter) and
a “random network” [62] through the adjacency matrices. The
resilience assessment of different types of network topology
and coupling characteristics (coupling degree and order based
on [63]) was then performed based on the energy supply for
loads. However, the network topology and resilience variations
in the propagation of contingencies were ignored.

Reference [64] further determined the sequence of the worst
impact zones in the IEEE 123-node distribution network by
the Q-learning algorithm. The propagation of line outage and
generation loss caused by a hurricane was modeled, where the
topological information of the network represents states, the
propagation of events to another zone stands for actions and
the impact is seen as rewards. Such a study can help to assess
the system resilience and schedule restoration actions based on
the sequence of failures. The method could be further applied
to a MES and a larger scale transmission system, and temporal
features during the propagation should be considered.

B. Prediction of the system operation performance

In this subsection, MLBTs applied to the system resilience
assessment, based on the operation performance, are discussed.
In particular, MLBTs applied to power system security and
reliability assessment are scrutinized. The system performance
like operating state, power flow, power outputs of the commit-
ted generators and voltage magnitudes are predicted as a part
of the static security assessment.

Traditionally, the security constrained optimal power flow
(SCOPF) model is applied to meet the N-1 contingency crite-
rion with the minimum cost. However, the high computational
requirements of the SCOPF simulation under each contingency
based on the MCS make the security assessment not tractable.
In [65], extreme randomized trees and Feedforward Neural
Network (FFNN) method were used to build a proxy yp, which
is a component that can predict the real-time operation cost y,
based on the system performance ξnd. Such a proxy can greatly
reduce the simulation time. Results of a N-1 contingency of
a transmission system verified that the computational time is
reduced by a factor of 9-16 times without jeopardizing the
prediction accuracy, compared to the MCS-based method. In
fact, the bias and variance of the prediction error obtained
when using the FFNN method are respectively 0.43% and
50.7% less, leading to better model generalization to unseen
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scenarios. In [66], the security assessment is also predicted
by the FFNN, while the security level is quantified through a
hyper-ellipse box by the normalized margin between the secu-
rity limit and the system performance, power flow and voltage
magnitudes. The security levels are then classified and ranked
based on the margin through a created rule-based method. The
two proposed FFNNs have high accuracy of mean square error
of 3.6 × 10−6 and 11.3 × 10−10, respectively. On the other
hand, as presented in [67], using two FFNNs the security
margin under large variations of the wind power is predicted
by the joint cumulative distribution functions of the multiple
security margins. Such a model requires no assumptions on the
distribution of the margins. The test results verified that the
model outperforms the multivariate kernel density estimation
and the copula based models, with maximum 94.7% more
accurate prediction of the security margin distribution.

The performance of the abovementioned FFNN-based meth-
ods is evaluated based on the training and test data set. It was
found that that they are sensitive to adversarial perturbations,
in the context that they can lead to incorrect classification [68].
Reference [69] proposed a framework to obtain the guarantees
of neural network behaviors, wherein the input regions with-
out adversarial examples are determined. Such a framework
enables a better understanding of the neural network and how
to apply it in real-time operation in practice.

On the other hand, the security rules of security state
classification have been integrated in the machine learning
training process but not been fully interpreted. In [70], the
decision tree depth approach was used as the intepretability of
decision tree methods applied to the classification. A tradeoff
between the predictive accuracy and the intepretability is also
presented through the optimal tree and greedy optimization-
based tree learning approaches. Such a work can further
increase the trust about the security rules learned from the
MLBTs.

Other than supervised learning methods, the unsupervised
learning methods are also applied to predict the system oper-
ation performance. The association rule learning, an unsuper-
vised learning method, can identify the frequent patterns in
data sets where joint values of features appear. The method
was adopted in [71] to find the association rules between dif-
ferent types of faults in distribution systems and the conditions
leading to the faults. The association rules generated by the
Apriori algorithm are qualified and ranked by the measures of
support, confidence and lift. The top-ranked rules with high
lift values are selected in [71], as frequent patterns of different
faults occurring in distribution systems. The association rule
learning method is also applied to a MES of heating, gas and
electricity in [72], to predict the risks of transmission line
faults considering different periods, locations, weather, voltage
levels, etc.

Besides the system security states, the operation cost is also
quantified for resilience assessment, which has been modeled
and used to quantify the MES resilience in Section III.A.
In [73], the restoration actions of dispatching the restoring
power are determined by a proposed DRL method. To over-
come the scalability issue of the standard DRL, where the
action space is proportional to the number of units and power

output levels, the proposed method decomposes the collective
actions into sequential Markov decision process to make
fast real-time decisions. Similarly, [74] predicts the operation
costs including generation redispatch cost, load shedding cost
and wind power curtailment cost under the N-1 contingency
through a proposed proxy. The proxy is a real-time decision
making simulator with built-in MLBTs, which utilizes the K-
means clustering and MCS methods to assess the next-day
operation cost.

In the context of the MES resilience assessment, as far as we
know, there have not been studies investigating the application
of the MLBTs to direct prediction of the system performance
under contingencies from the system operation perspective.
In [75], a FFNN is applied to predict power/gas output for
the fast economic dispatch in an integrated electricity and gas
system under normal operation. Compared to the second-order
cone programming (SOCP) model of the non-convex energy
flow, here the proposed method has 99% higher prediction
accuracy both referred to the piece-wise linear benchmark
method. The computational time is also 104−105 times faster
than the model-driven piecewise linearization method and the
SOCP. It is noted that the MES operating states, such as nodal
pressures and gas flows, are then recovered after the FFNN.
These states are not the outcome of the FFNN and need to be
resolved through the physical model with the outcome.

C. Load curtailment prediction

In this subsection, the system security assessment is focused
on the performance of the demand side, particularly the load
curtailment provoked by contingencies. The modeling of the
loss of load to quantify the MES resilience has been discussed
in Section III.A. Here, the load shedding can be used as the
emergency control action following extreme contingencies that
lead to massive power imbalances and a system frequency
decline. In the text below, the MLBTs applied to the load
curtailment prediction are discussed.

In [76], a decision tree classifier was deployed to predict
the system security status, safe/unsafe. The status represents
whether or not load curtailment exists after contingencies.
A novel deep autoencoder feature extraction framework was
applied to extract efficient representative features for the
decision tree classifier. The training features are firstly ex-
tracted through a novel deep autoencoder feature extraction
framework for the classification. Reference [77] demonstrated
a classifier of different preventive actions (e.g. number of
islands to be created by the operators to stop cascading
events and to prevent the collapse of the entire power system)
with the SVM method. Based on the features of the event
parameters, the SVM method was applied to predict effective
preventive actions leading to a minimum number of customers
not supplied by the electricity. Case studies indicated that the
performance of the proposed SVM has a close accuracy with
the ideal classifier, but with significantly shorter computational
time.

In addition, due to the low probability of extreme events,
there is a challenge of imbalanced classes, safe/unsafe labels,
in the data set. The safe class (majority class) has a much
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TABLE II
REVIEW OF THE MLBTS FOR POWER SYSTEM AND MES RESILIENCE ASSESSMENT

Application groups MLBT MLBT applications Ref.

Network characteristics
determinination

K-means clustering Natural gas pipeline grouping [60]

CNN Reduce feature dimensions and measure similarities among nodes [60]
Classification of integrated power and gas networks [61]

Reinforcement learning Determine the sequence of outage propagation [64]
Linear regression Relations between electrical network features and system resilience [59]

Prediction of system
operation performance

FFNN

Operation costs [65]
Line flow and bus voltage [66]
Power system security margin [67]
Classification of safe/unsafe operation (violation of generator and line
limits) [69]

Energy flow of power and gas [75]

Decision trees Classification of safe/unsafe operation (violation of phase angles and
internal voltage of generators limits) [70]

Association rule learning Identify and rank frequent patterns of different faults occurring in
systems and fault conditions [71], [72]

Load curtailment
prediction

Autoencoders Feature extraction for better classification by a classifier [76]
Decision trees Classification of safe/unsafe operation (load curtailment) [76]

SVM Decision making of preventive actions for minimum expected load
not supplied [77]

higher number of observations than the unsafe class (minority
class) has. This challenge could further lead to inaccurate
classification such as classifying unsafe status as the safe one.
In [76], a data pre-processing method based on bi-variate R-
vine copulas sampling was proposed to enrich the historical
data of uncertainties from loads and wind power generation.
With the enriched observations of uncertainties, the training set
with the label of insecure operating state is enriched leading
to more effective classification procedure later.

In Table II, a review of MLBTs applied to power system
and MES resilience assessment related problems is presented.

D. MES resilience enhancement

The resilience enhancement can be achieved through en-
hancement actions in the three phases mentioned in Section
III.A, disturbance progress, post-disturbance state and restora-
tive state. The MLBTs applied to phase III, restorative state,
through restoration actions are shown in Table III. Reinforce-
ment learning methods are mainly utilized to make fast and
sequential decisions for restoration actions. The resilience
levels are quantified by methods discussed in Section III. The
decision-making of the restoration actions is made through
reinforcement learning, such as transportation routing and
scheduling [78], reconfiguration of switches [79] and DER
control [80]. Furthermore, a coordination of DERs dispatch
and mobile energy storage scheduling was proposed through
DRL in [81]. The coordinated operation can enhance the
distribution system resilience by restoration of critical loads
in the microgrids. In [82], neural networks are modeled to
generate the worst-case conditions of loads and wind power
generation, and the security assessment. The MLBTs can also
be applied to the system in normal operating state by enhanc-
ing the forecasting of extreme events. The relevant literature
is shown in the new Table IV. The forecasting methods are
used to predict the power demand and production, component
outages, and supply interruptions considering extreme weather

conditions. Then the prediction is used for preventive actions
to prepare for the extreme event occurrence in [83], [84].

E. MLBTs applied in academic and industrial projects

A table of MLBTs applied in academic research projects is
shown in Table V. These projects started in recent years or
will be initiated in the near future, and cover the application
to power system resilience assessment [87], MES resilience
enhancement [88], [89] and MES resilience assessment [90].
However, some MLBTs, e.g. deep neural networks, require
a large volume of data for training the model, which is
not always available for a resilience problem dealing with
extreme events. In [87], a combined MLBTs and physics-
based approach is proposed for system operators to detect
and classify faults in those extreme events. The additional
information obtained from mathematical physics models to
the measurement data, i.e. physics-informed machine learning,
can improve the accuracy, training time and generalization of
MLBTs [91]. In these projects, the effectiveness of the MLBTs
is always justified through simulated test systems, due to the
limitation of testing contingencies on real-life systems.

In addition, there are also real-life projects implemented by
industry. A table of MLBTs applied in real life by industry is
shown in Table VI. Here the main applications include the
prediction/assessment of the system performance in real-life
low-voltage power systems, such as fault detection through
neural networks [92] and classification [93]. In addition,
network characteristics determination is applied to identify
the geographical information of the fault for fault manage-
ment [93]. For transmission systems, classification, regression
and clustering methods are used to automatically detect and
prioritize the large volume data for notifying control rooms.
Such methods can support the decision-making of correction
actions at source [94]. The methods are validated against
historical data provided by the control room. However, it is
still under investigation to implement the resilience enhance-
ment actions in real-life large-scale transmission systems. The
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TABLE III
MLBTS APPLIED TO RESTORATION ACTIONS FOR RESILIENCE ENHANCEMENT

Learning type Energy system Resilience level model Enhancement action Ref.

Reinforcement
learning

Multi-agent
reinforcement learning

Transportation and
power systems,
distribution level

Loss of load and electricity
import cost from main grid

Routing and scheduling electric
vehicles for power system restoration [78]

Reinforcement
learning DRL Power systems,

distribution level
System performance
and loss of load

Decision-making of restoration action:
reconfiguration of distribution switches,
transformer tap-changer operation, and
interconnection of a microgrid with the
main grid

[79]

Reinforcement
learning Q-learning Power systems,

microgrids
System performance at the
point of common coupling

Dispatchable DER control and
interconnection to microgrids [80]

Reinforcement
learning Q-learning

Power systems,
transport systems,
distribution level

System operation cost DERs dispatch and mobile energy storage
scheduling [81]

Neural
networks CNN Power systems,

transmission level Load recovery level Decision-making of load restoration under
worst case scenario [82]

TABLE IV
MLBTS APPLIED TO FORECASTING FOR RESILIENCE ENHANCEMENT

Learning type Forecasting extreme event Enhancement action Ref.
Unsupervised
learning Clustering Probability of power system interruption based on the

prediction of microgrid load demand, solar production
and supply interruption probability considering weather
conditions

Day-ahead generating
units rescheduling [83]

Supervised
learning

Random Forest,
Light Gradient
Boosting Machine

Supervised
learning

CNN
LSTM

PV production considering historical power output, power
consumption and weather conditions — [85]

Supervised
learning Bayes Classifier Power system component outages in extreme weather

events
Preventive actions, rescheduling
of generating units [84]

Supervised
learning

Linear regression,
SVM, Neural Networks Electricity demand considering extreme weather conditions — [86]

TABLE V
MLBTS APPLICATION IN ACADEMIC PROJECTS RELATED TO MES RESILIENCE

Project name/Country Resilience quantification/
assessment/enhancement MLBTs Simulation system/Demonstration

Detection, characterization, and
mitigation of disruptive events
by combining machine learning/
artificial intelligence on synchrophasors
and physics-based analysis, US [87]

Detect and classify faults, oscillations,
impending instability, and other events
that may lead to system emergencies

Supervised and unsupervised
learning; Combined MLBTs
and physics-based solutions

Upcoming project

NetworkPlus - A green, connected
and prosperous Britain, UK [88]

Power system and 5G telecommunication
network recovery with real-time control of
electric vehicles as mobile energy storage

DRL
Demonstration of MLBTs
applied to 5G telecommunication
link routing

Technology Transformation to
Support Flexible and Resilient Local
Energy Systems, UK [89]

Local control of electric vehicles and DERs
to provide resilience to component failures
in power systems

DRL Test MES of electricity and
transport

Disaster REsilience Assessment,
Modeling, and INnovation, Singapore [90]

Resilience prediction of an urban MES
of power, water and transport. Correlation
identification between different system
features and the resilience levels

Interpretable machine learning methods City MES in Southeast Asia
against weather-related disasters

French transmission system operator RTE with Electric Power
Research Institute (EPRI) initiated the L2RPN (Learning to
Run a Power Network) Challenge platform to build trust
between the decision-making by MLBTs and the operator in
a control center [95]. In the platform, reinforcement learning
methods were proposed by [96] to overcome the computation
and scalability concerns of resilience enhancement in trans-
mission systems and tested in IEEE test systems.

V. FUTURE RESEARCH AGENDA

In this section, the most relevant research questions related
to (i) modeling and quantification of MES resilience and

(ii) application of MLBTs to MES resilience assessment,
are identified. Furthermore, insights and guidelines for future
research directions on these two groups of identified research
questions are provided.

A. Future directions in MES resilience quantification

From the review of the MES resilience quantification meth-
ods in Section III, the following unresolved research questions
can be identified:

1) How can resilience from different energy sectors be com-
bined to assess the overall system resilience?
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TABLE VI
MLBTS APPLICATION IN INDUSTRIAL PROJECTS RELATED TO MES RESILIENCE

Company/Utility Real-world application MLBTs Effectiveness of MLBTs
Fundamentals, power system
technology specialist, UK [92]

Detection, classification and location
of low-voltage fault Physics-based deep learning Test fault in low voltage underground cables at the

Power Network Demonstration Center, UK
EA Technology, power system
asset specialist, UK [93] Detect, localize and locate low-voltage fault Classification On site verification of accurate fault location and

fault management

Harmonic Analytics, data science
company, New Zealand [94]

A visual tool for transmission system alarm
management: identify, analyze and prioritize
control room alarm data

Classification, regression and
clustering

Reduction in alarm volumes, improved operational
efficiency and proactive asset management

RTE, French transmission system
operator and EPRI, US research
institute [95]

Secure operation of power systems at low
cost conducted on IEEE-118 test network Reinforcement learning

Continuously and safely control a power grid to
maximize available transfer capabilities
without operator’s intervention [96]

6 European Transmission system
operators, Innovative Tools for
Electrical System Security within
Large Areas (ITESLA) project [97]

ITESLA toolbox for online security assessment Principal component analysis
and decision trees

Simulation tests on French transmission network to
validate the security rules

General Electric (GE) Digital [98]
STORM software tool for real-time outage
detection and decision support for reliable
operation during extreme events

MLBTs embedded in digital twins Pilot tests for grid operation during wildfire seasons
in California

2) How can the MES resilience be quantified when component
failures occurring in different energy sectors are correlated
to each other?

3) How can the MES risk analysis be undertaken based on
tail-oriented statistics and correlation between the proba-
bility distribution of consequences to each energy sector?

4) How is the MES resilience level changed with the contin-
gency propagation through different energy sectors? What
is the impact of the contingency location?

5) What would be the impact of novel smart grid technologies
and solutions to MES resilience? How SIPSs supported
by Phasor Measurement Units (PMUs) and fast and cyber
secure communication [99] infrastructure could contribute
to the system resilience?

6) What would be the cost of the design of advanced SIPS
for boosting system resilience?

The resilience of each energy sector is traditionally moni-
tored and quantified within the sector in question. Resulting
from the mutual coupling, the resilience levels of individ-
ual sectors are correlated to each other in terms of time,
contingency location and intensity. The awareness of other
sectors’ network topology, operating states and risks under
contingencies can contribute to the whole MES resilience
quantification. The quantified MES resilience can further help
to schedule preventive and restoration actions for resilience
enhancement. Such quantification should in particular address
the characteristics of the low probability and high impact
events, and correlation between these events and their impacts.

Therefore, the following research directions for exploring
the above research questions can be identified:

1) Development of new normalization methods of resilience
of individual energy sectors for quantification of the overall
MES resilience.

2) Modeling of joint probability distribution of two simulta-
neous outages occurring in different energy sectors as a
result of a single disruptive event.

3) Risk analysis of a MES based on tail-oriented statistics
and correlation between the probability distribution of
consequences to each energy sector.

4) Consideration of different speeds of the propagation of
cascading failures in different energy sectors.

5) Assessment of communication networks and data analytics
for resilient MES [100]. The variety of a broad spectrum
of sensors for data acquisition, as well as communication
network speeds, but also the requirement for time syn-
chronization of different sensors might be challenging in
practical implementation questions.

6) Related to extensive implementation of communication
infrastructure, consider its impact to the resilience, but from
the perspective that it can also be negatively affected by the
extreme events.

To partly demonstrate the research questions and research
directions identified above, in Figs. 1 and 2 an illustration
of the MES resilience is shown. In Fig. 1, the electricity,
gas/hydrogen and heating sectors are integrated into a single
MES through the coupling technologies/units, such as gas
compressors, electric heating units and CHP plants. Mean-
while in Fig. 2, the resilience trapezoid in [41] is extended with
the resilience level varying in the location in the network (e.g.
nodes) as well as energy sectors. The resilience level of each
energy sector is influenced by the cascading failures triggered
by disruptive events, which is a recursive process of failures
within a single network and between different networks. Due
to different topologies and nature of individual energy sectors
and different time constants, describing the speed of transient
processes, the MES resilience varies in time and depends on
the perturbation location.

B. Future directions of MLBTs applied to MES resilience
assessment

From the state-of-the-art analysis about MLBTs for MES
resilience assessment mentioned in Section IV, it can be
concluded that there has not been sufficient focus on 1)
MES network characteristics determination, 2) MES system
operation performance prediction and 3) MES load curtailment
prediction. Therefore, the following research questions can be
identified:
1) What is the relationship between MES topology character-

istics and the system resilience?
2) In the context of the increased level of uncertainties, can

large quantities of data about operating states from all
energy systems contribute to the trust and efficiency of the
MES resilience assessment?
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3) In the context of enhancing MES resilience, how to
increase the trust and efficacy of the MLBT obtained
sequences and plans for load shedding in different energy
systems?

4) How can the control room staff more efficiently learn
from the historical data about the low probability and high
impact events?

The usage of MLBTs could contribute to automatically,
accurately and efficiently assess the MES resilience. In par-
ticular, the large-scale network characteristics, the non-convex
optimization considering network constraints, and manual sim-
ulations by operators, could lead to the resilience assessment
slowly and with bias. Supervised learning methods such as
FFNN and K-nearest neighbor methods can be used for
resilience level prediction, classification and ranking. The
training data set has the features of network topology, network
parameters, operation costs, operating states, and labels of
resilience levels or resilience classes quantified by the quantifi-
cation methods. On the other hand, unsupervised learning such
as the K-means clustering method can be used to assess and
group the MES resilience by their network similarities. It could
be applied to data sets that have no labels related to resilience
but only features of network topology and parameters, on
condition that the resilience levels are proved to be related
to the network types. Furthermore, DRL can be used for
fast and accurate decision-making to enhance the resilience.
For example, DRL is used to determine the restoration and
preventive action sequences, and to identify the cascading
failure sequence with the worst impact.

There are also some challenges with implementing MLBTs
in MES resilience assessment and enhancement:

1) High dimensional features from all energy sectors. There-
fore, feature extraction or selection techniques need to be
adopted for further resilience prediction and classification.

2) Not enough historical operational data of the system under
extreme events, due to their low probability nature. In
addition, due to the high integration of converter-interfaced
generation and RESs, the uncertainty of power generation
requires a much larger data to cover the uncertain scenarios
and the corresponding resilience level. These data are

Electric Heating 

Heating pipes 
Heat nodes

Combined heat 
and power plants 
Electric lines

Electric Bus
Gas nodes

Gas processing 
Gas compressors 
Gas pipelines

Electrolyser

Electricity

Heating

Gas/Hydrogen

Fig. 1. A MES of electricity, heating and gas/hydrogen sectors integrated
with coupling technologies

required to train some machine learning models, e.g. neural
networks.

3) Lack of data can lead to imbalance data/classes and in-
accurate classification prediction. Therefore, new sampling
and data augmentation methods are needed to enrich the
minority class and eventually improve prediction accuracy.

4) Large-scale MES with many possible actions such as load
shedding of different energy sectors could make the DRL
not efficient.

5) Verification of machine learning model. It is difficult for
the user (e.g. a system operator) to trust the MLBTs, to
apply them to assess the MES resilience, and finally to
take actions to enhance the resilience.

6) Demonstration of machine learning models in real life is
still limited, especially the application to MESs. Though
there are several relevant projects shown in Tables V and
VI, the MLBTs applied to MES resilience are not yet
demonstrated in a large-scale energy system.

There are also some opportunities with the MLBTs applied
to MES resilience:
1) The MLBTs have the advantages of detecting outliers

from a large data set automatically and fast, which do not
follow the patterns of normal operation. They can explore
millions of system contingencies and operating states to
train machine learning methods offline. The methods are
then used to identify the system resilience level and distill
the results in security rules applied in real time [101].

2) There are not yet sufficient applications of MLBTs to
resilience assessment in other energy sectors, e.g. district
heating and natural gas. There is existing literature on
heat load prediction at critical nodes (nodes furthest from
the heating supply), and uncertainty propagation in gas
networks through gas pressure variance [102]. However, the
MLBTs applied in these energy sectors in extreme events
are not fully explored.

3) The digital twin concept, a virtual replica of a physical
MES, enables testing and experimenting the impact of inte-
gration of new technology and strategy [103]. The MLBTs
can be embedded in the digital twin to simulate the MES
operation in various extreme events, and to develop and
verify the resilience assessment and enhancement methods.
The methods can support the real-time operation of the
MES.

Consequently, the following research directions are identi-
fied:
1) Application of MLBTs, e.g. DRL, for determining failure

propagation sequences in a MES. Here topological MES
features can be used to ensure reliable results.

2) MES resilience, or resilience class prediction using super-
vised learning. Here the resilience quantification can be
based on the assessment of the system performance judged
by a selected set of the system attributes.

3) Design of DRL-based approaches for the prediction of the
MES load shedding plans/sequences. It is expected that this
will significantly enhance the overall MES resilience.

4) Development of feature selection/extraction methods for
reducing the space/dimension of MES features, for im-
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Fig. 2. Resilience trapezoids of individual energy sectors (electricity (E), heating (H) and gas/hydrogen (G/Hy)) under disruptive events

proving computational efficacy of resilience assessment. It
is expected that features like operation performance and
network topology could be of particular use.

5) Development of methods for enriching available data sets
in the process of e.g. deep learning-based MES resilience
assessment. It is known that for example the R-vine copula-
based model can be used to sample historical data and gen-
erate large populations of anticipated system states needed
for training purposes. Such methods can help generating a
higher quality data sets that can make MLBTs to be more
robust and accurate.

6) Design of advanced SIPS based on MLBTs for enhancing
MES resilience.

7) Development of physics-informed machine learning meth-
ods which integrate the historical data and physical laws of
a MES. This can make the MES resilience level prediction
more accurate while requiring fewer training data.

8) Development of methodologies to verify the performance
of MLBTs and to quantify their trustworthiness and robust-
ness against uncertain extreme events.

9) Implementation of hardware-in-the-loop tests for validating
and demonstrating new MLBTs-based concepts for enhanc-
ing MES resilience in real time.

10) Simulation of a large number of scenarios through digital
twins embedded with MLBTs. Such a digital twin can make
more informed decisions in MES resilience assessment and
enhancement under different extreme events.

11) Consideration of the information and communication tech-
nology (ICT) infrastructure connected to the MES dur-
ing extreme events. The ICT infrastructure couples the
information/data/control signals and the physical units in a
MES. Outages of power systems can lead to the outages of
ICT infrastructure, e.g. base stations, leading to the loss of
telecommunication networks. Mobile energy storage such
as electric vehicles can contribute to the recovery of ICT
infrastructure therefore enhance the whole MES resilience.

VI. CONCLUSIONS

In this paper, power system and MES resilience definitions,
as well as the relevant concepts are presented in Section II.

Here, the differences between power system resilience and
security, which are two concepts closely related to each other,
are identified. In Section III, the recent state-of-the-art on
MES and power system resilience modeling approaches and
quantification methods, e.g. 1) multi-temporal resilience met-
rics, 2) risk-based metrics, and 3) spatial resilience metrics, is
reviewed. Each of these methods has their own characteristics
and angle for resilience quantification. Group 1) focuses on
temporal variations of the resilience, split into the follow-
ing three phases: a) resilience disturbance progress, b) post-
disturbance degraded and c) restorative states. The resilience
indicators are represented by network efficiency, operation
costs and load curtailment. Group 2) quantifies the resilience
by the risk level of the system and considers the probability
distribution of consequences of the disruptive events. The tail-
oriented statistics is deployed to address the consequences
of low probability and high impact events on the probability
distribution. Group 3) focuses on spatial information of the
system and disruptive events, which are directly related to
the resilience level. Such information includes topological and
network properties of the network, and the location of the
events and contingencies.

In Section IV, MLBTs applied to MES resilience assessment
were discussed. The basic machine learning terms commonly
used in the resilience assessment literature are firstly intro-
duced. Then the existing literature is grouped by applications
into 1) network characteristics determination, 2) prediction of
the system operation performance, and 3) load curtailment
prediction. Each group utilizes different MLBTs and different
data features to predict resilience levels/classes, to determine
the failure sequences, or to determine the optimal restoration
sequence. In particular, in Group 1), the graph theory was
applied to determine the network characteristics necessary
for resilience prediction. In addition, in Group 2), the power
system security assessment was comprehensively reviewed
and the potential of those MLBTs extended to resilience
assessment was further discussed. In Group 3), in addition
to the prediction of resilience, the preventive actions and data
set enrichment using MLBTs were introduced. In the last two
sections, the MLBTs applied to MES resilience enhancement,
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academic and industrial projects on this topic are discussed.
In Section V, based on the above discussed literature on

MES resilience quantification and MLBTs applied to MES re-
silience assessment, unresolved research questions and future
research directions are identified. These questions are raised
from each group of approaches for resilience quantification.
For example, Group 1): the normalization methods of the
resilience levels/indicators of individual energy sectors are
needed, Group 2): the probability distributions of the conse-
quences on each energy sector from the same event are always
correlated, and Group 3) the spatial information of different
energy sectors needs to be addressed to model the contingency
propagation. An illustration of the MES resilience trapezoid
was then proposed to better demonstrate the identified future
research directions.

Furthermore, from each group of the MLBTs applied to
MES resilience assessment, the unsolved research questions
and future research directions are identified. For example,
Group 1) utilization of topological features of a MES us-
ing MLBTs to determine the failure propagation sequence.
Group 2) development of supervised learning methods to
predict/classify the MES resilience levels/classes. Group 3)
determination of the load shedding plans using DRL, and
enrichment of the minority class of low resilience levels in
training data set for a better classification.

This paper brings the awareness of this timely and important
research area. It also identifies the unsolved and relevant prob-
lems and proposes an outlook for future research directions.
These future directions can also be seen as a control room
decision supporting tool for effective, precise and fast MES
resilience assessment based on MLBTs. In advanced cases
decisions can be undertaken autonomously, without control
room man power engagement. Here the concepts based on
SIPSs are good candidates for this kind of fast and effective
actions. These must be however based on advanced smart
grid technologies, e.g. synchronized measurement technology
supported by cyber secure communication infrastructure.
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