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Abstract

Wind power forecasting is essential to power system operation and electricity markets. As
abundant data became available thanks to the deployment of measurement infrastructures
and the democratization of meteorological modeling, extensive data-driven approaches have
been developed within both point and probabilistic forecasting frameworks. These models
usually assume that the dataset at hand is complete and overlook missing value issues that
often occur in practice. In contrast to that common approach, we rigorously consider here
the wind power forecasting problem in the presence of missing values, by jointly accommo-
dating imputation and forecasting tasks. Our approach allows inferring the joint distribution
of input features and target variables at the model estimation stage based on incomplete
observations only. We place emphasis on a fully conditional specification method owing to
its desirable properties, e.g., being assumption-free when it comes to these joint distribu-
tions. Then, at the operational forecasting stage, with available features at hand, one can
issue forecasts by implicitly imputing all missing entries. The approach is applicable to both
point and probabilistic forecasting, while yielding competitive forecast quality within both
simulation and real-world case studies. It confirms that by using a powerful universal impu-
tation method based on fully conditional specification, the proposed universal imputation
approach is superior to the common impute-then-predict approach, especially in the context
of probabilistic forecasting.

Keywords: Wind power, Probabilistic forecasting, Missing values, Multiple imputation

1. Introduction

1.1. Background

As a cornerstone to achieve net-zero emissions in the energy sector, wind power has
proliferated over recent decades. However, the stochastic nature of wind power generation
challenges power system operation and electricity markets, which has therefore motivated
wind power forecasting (WPF) research. WPF is usually classified into short-term fore-
casting (hours to a few days) which takes numerical weather predictions as input features
and very short-term forecasting (minutes to a few hours) which utilizes recent observations
as input features. Recently WPF has achieved several advances by employing cutting-edge
statistical and machine learning approaches, e.g. deep learning (Goodfellow et al., 2016)
and lightGBM (Ke et al., 2017), as well as the modeling of underlying stochastic processes
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through the investigation of its spatial-temporal dynamics (Cavalcante et al., 2017; Messner
and Pinson, 2019).

Meanwhile, the interest of the WPF community has shifted from point forecasting to
probabilistic forecasting; see recent review by Hong et al. (2020). Probabilistic wind power
forecasting (PWPF) communicates the probability distribution of wind power generation at
a future time based on gathered information up to the issue time, usually in the form of quan-
tiles, prediction intervals, and densities. It has attracted increasing attention in the power
industry, especially after the 2014 Global Energy Forecasting Competition (GEFCom 2014)
(Hong et al., 2016). In general, two approaches, namely parametric and non-parametric have
been proposed for PWPF. The parametric approach is based on a distributional assumption,
such as Gaussian, Beta, etc., the shape parameters of which are determined through statis-
tical learning. In contrast, the non-parametric approach is free of such an assumption. One
of the most popular non-parametric approaches relies on quantile regression (QR) (Koenker
and Hallock, 2001), which involves a pinball loss function to guide the learning of conditional
quantile functions. It is therefore easy to employ QR in advanced statistical learning models
(for instance gradient boosting machine (Landry et al., 2016) and extreme learning machine
(Wan et al., 2016)) by using the pinball loss as loss function at the model estimation phase.
Besides, with the aim to characterize the whole distribution in a distribution-free manner,
methods that simultaneously estimate several quantiles (Sangnier et al., 2016) and directly
estimate the distribution based on conditional normalizing flow(s) (Wen et al., 2022) have
been proposed.

Although several works have contributed forecasting methods and products to the WPF
community, most of them assume that the dataset at hand is complete and overlook the
widespread missing value problems, due to sensor failures and communication errors for
instance. Intuitively, missing value issues pose problems at both model estimation and
operational forecasting stages, ultimately compromising forecast quality. Obviously, for
models estimated through gradient-based optimization, the training datasets cannot contain
missing values, otherwise, the gradients of the parameters cannot be calculated at the model
estimation stage. Therefore, rows of the learning set containing both missing values and
observations are often deleted, even if the missing information is minimal. It means that
valuable information is also discarded in the process of removing the missing values. In
addition, even with estimated models at hand, missing value problems still affect operational
forecasting, possibly obliging forecasters to revert to naive models such as climatology (i.e.,
long-term averages) as surrogates. Therefore, it remains an open issue to investigate the
influence of missing values and develop WPF approaches that accommodate missing values.

1.2. Related works

An intuitive and popular approach to the problem (though, not used by the WPF com-
munity) is to impute these missing values before training models and issuing operational
forecasts (Liu et al., 2018). It is referred to as “impute, then predict” (ITP) approach in
this paper. For example, the classic forecasting package “forecast” (Hyndman and Khan-
dakar, 2008) provides an option that uses linear interpolation to impute missing values.
Obviously, a spectrum of imputation methods can be employed; see a thorough review by
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Van Buuren (2018). Then, an associated question is how to choose the imputation method.
The recent study by Tawn et al. (2020) suggests that the influence of imputation on model
estimation and operational forecasting stages is ambiguous. Concretely, they concluded that
advanced imputation methods are beneficial to model estimation. However, at the opera-
tional forecasting, it turns out that retraining models without missing features results in
better performance. In fact, it is natural to consider the retraining approach, as it only
uses actual observations to estimate parameters, and hence prevents using the aforemen-
tioned imputation procedure. However, the learning then only relies on a subset of the data
available, while the information potentially contained in the discarded part is lost. In addi-
tion, this approach may suffer the curse of dimensionality since having to train models for
all combinations of input features. This may yield a substantial increase in computational
costs.

In addition to the aforementioned approaches, several works have focused on adapting
forecasting methods to be used in the presence of missing values. A classic approach is
based on state-space modeling, where the Kalman filter is modified to allow accommodating
incomplete observations. For example, autoregressive moving average models (Jones, 1980)
and autoregressive integrated moving average models (Kohn and Ansley, 1986) have been
represented in state-space form and adapted to tackle missing value problems. Although
these works have shed light on forecasting in the presence of missing values, they are only
applicable to point forecasting and restricted to linear models. Recent advanced models
such as GRU-D (Che et al., 2018) and BRITS (Cao et al., 2018) have been proposed based
on the long-short term memory model (Hochreiter and Schmidhuber, 1997), by using the
intermediate results (which can be also interpreted as latent states) of the neural network
model to impute missing values. This idea has been successfully applied in the recent popular
package DeepAR (Salinas et al., 2020). However, they still require imputing missing values
via the recurrent neural network structure before performing the forecasting task.

1.3. Proposed method and contributions

There is no such a clearly defined boundary between imputation and forecasting, as ex-
plained by Golyandina and Osipov (2007). Indeed, a forecasting problem can be considered
as an imputation problem in the situation where missing values are systematically located
at the end of a sequence. Furthermore, both imputation and forecasting tasks assume the
continuation of the underlying structure within the data, and consequently leverage obser-
vations to predict unknown values. That is, it is feasible to develop a model that can infer
the structure based on observations and seamlessly perform the imputation and forecasting
tasks, which is referred to as “universal imputation” (UI) approach in this paper. As a result,
in what follows, we may interchangeably use the terms “impute” and “forecast”. With this
idea in mind, You et al. (2020) considered the point forecasting problem and proposed to
model the correlation structure between input features and targets via a graph neural net-
work, where imputation of missing features and prediction of targets can be simultaneously
performed. In contrast here, we place ourselves within a probabilistic setting directly, for
which it is then also possible to derive point forecasts. Unlike the usual probabilistic fore-
casting approaches that model conditional probability distributions (for the target variable)
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directly, in this work we model the joint multivariate probability distribution of input fea-
tures and targets. As discussed by Stone (1991), with the estimated multivariate probability
distribution at hand, one can obtain conditional distributions via marginalization, although
it is computationally inefficient compared to the usual conditional probability distribution
modeling. This approach is appealing in the presence of missing values. That is, with the
estimated multivariate probability distribution, one can marginalize over missing variables
to obtain probabilistic forecasts. Then, the goal at the model estimation stage is to estimate
the parameters of such a distribution based on incomplete observations. At the operational
forecasting stage, targets to be predicted are treated as missing values and imputed via
the estimated distribution. The focus is on a very-short-term wind power forecasting ap-
plications, where missing value issues often occur, though the method is generic and could
be then used by others for different applications where challenges accommodating missing
values are also present.

In this work, we focus on situations where observations are missing at random due
to, e.g., sensor failures and communication errors. This means missingness patterns are
independent of the missing values themselves. However, it does not mean that this concept
of missingness at random is restricted to the case of data missing in a pointwise and sporadic
fashion. Even in the case of block missingness (i.e., data missing over time intervals), as
long as the data is missing at random (hence, independently of the values for the process of
interest or relevant exogenous processes), our approach can be employed. The distribution
of missingness can then be left aside when inferring the underlying structure of interest.
As a consequence, the problem boils down to estimating the parameters of a model based
on incomplete observations only. Missing-not-at-random cases could still be handled by the
proposed UI approach, though requiring more sophisticated techniques at both the model
estimation and operational forecasting stages, which is left for future work. Specifically, it
requires modeling the missingness explicitly when calculating the likelihood at the model
estimation stage. At the operational forecasting stage, the targets to be predicted are treated
as missing, and thus independent of the missingness distribution of the contextual features.
It also requires taking into account the missingness distribution of contextual features when
calculating the conditional distribution of missing variables given the observed variables.
Particularly, we implement this idea based on the multiple imputation method (Dempster
et al., 1977), which allows us to impute missing values with several equally likely realizations
from the distribution and thus provides probabilistic forecasts for the targets. Instead of
assuming a special family of distributions and inferring its parameters, we adopt the fully
conditional specification (FCS) approach (Van Buuren et al., 2006), which implicitly specifies
the multivariate distribution as a collection of conditional distributions on a variable-by-
variable basis. At the model estimation stage, parameters for each conditional distribution
are iteratively estimated through a Gibbs sampling procedure. At the operational forecasting
stage, missing values are also iteratively imputed on a variable-by-variable basis.

The proposed method is validated based on a simulation study and real-world case studies
with wind power data from the USA. The simulation study is based on synthetic data (for
both AR and VAR processes) and Monte-Carlo simulations, to illustrate and underline the
salient features of our approach. It also allows analyzing the impact of certain characteristics
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e.g. rate of missingness on the performance of the approach, while remaining in a controlled
environment within which the results are due to changes in the design, and not to some
spurious effects often observed with real-world data. Real-world data from the US are
used for benchmarking instead, and to investigate various aspects of the applicability of the
approach in an operational context, e.g., with a focus on pointwise vs. block missingness,
various rates of missingness, univariate and multivariate setups, etc. The results show that
the proposed approach is superior to existing ITP approaches. The main contributions of
this paper are two-fold. One of them is the proposal of a universal imputation approach,
which is general, though inspired by the problem of wind power forecasting in the presence
of missing values. Such a universal imputation approach jointly accommodates imputation
and forecasting tasks within the universal multiple imputation framework. By design, this
approach allows to generate both point and probabilistic forecasts. The other contribution
is to show its applicability to wind power forecasting with missing values, where different
types and rates of missingness are present.

The remaining parts of this paper are organized as follows. Section 2 formulates the
problem, whereas Section 3 describes the proposed approach for forecasting in the presence
of missing values. Next, the simulation study to show the applicability of the proposed ap-
proach is elaborated in Section 4. Section 5 presents case studies with results and discussion.
Section 6 concludes the paper.

Notations: In general, we use uppercase letters to denote random variables and lowercase
letters to denote the realizations of these random variables. For instance, Y1 denotes a
random variable and y1 its realization. A collection of random variables are represented as
a tuple, which is bracketed with parentheses, such as (Y1, Y2) and (Y1, · · · , Y10). Boldface
lowercase and uppercase letters respectively indicate vectors and matrices. Particularly, we
use row and column slices to represent parts of a matrix. For instance, let Z represent a
matrix, I, and J denote row indices and column indices. Then, Z[I;J ] represents a part of
matrix Z indexed by I and J . And, (·)⊤ denotes the transpose of matrices. A time series
is represented as {yt, t = 1, 2, · · · } indexed by time t, which is a realization of a stochastic
process {Yt, t = 1, 2, · · · }. We also write them as {yt} and {Yt} for short.

2. Preliminaries

We first describe the framework for very-short term wind power forecasting, for both
point and probabilistic forecasting cases. Subsequently, we detail the challenges induced by
missing values at both model estimation and operational forecasting stages.

2.1. Problem Formulation

Assume we have p wind farms in a region that can share information to improve forecast-
ing accuracy as suggested by Cavalcante et al. (2017). When p equals to 1, it reduces to the
common single wind farm case. At wind farm n, let yn,t ∈ [0, Pn] (where Pn is its capacity) de-
note the wind power generation value at time t, which is a realization of the random variable
Yn,t. Let Ωn,t denote the information tuple of wind farm n up to time t, which would contain
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values over previous time steps and possibly other relevant information such as weather
observations and numerical weather forecasts. And let Ωt represent the tuple that contains
information of all sites up to time t, i.e., Ωt = (Ω1,t, · · · ,Ωp,t). Generally, the aim is to issue
forecasts with lead time h, i.e., the characteristics of Y1,t+1, · · · , Y1,t+h, · · · , Yp,t+1, · · · , Yp,t+h,
given information Ωt. The forecasting task can be decoupled into several sub-problems, each
of which focuses on a specific site and time, for instance forecasting the characteristics of
Yn,t+h based on the whole information pool Ωt. Then the point forecast for Yn,t+h given by

a model M with parameters Θ̂t is usually defined as

ŷn,t+h|t = E[Yn,t+h|M, Θ̂t,Ωt], (1)

where E[·] denotes the expectation of random variables, and Θ̂t changes with time t. In
this paper, let us assume the stochastic process {Y1,t, Y2,t, · · · , Yp,t} is stationary. Then, the
density function fY1,t,··· ,Yp,t+h

is invariant for changes in time (De Gooijer et al., 2017), which

means parameters Θ̂t do not vary with time and are denoted as Θ̂. Then, one can estimate
the parameters based on collected data via statistical learning methods. We rewrite (1) as

ŷn,t+h|t = E[Yn,t+h|M, Θ̂,Ωt]. (2)

The probabilistic forecast for time t+h given by M is communicated as a density function,
i.e.,

f̂n,t+h|t(y) = fYn,t+h
(y|M, Θ̂,Ωt). (3)

Indeed, with the estimated density function at hand, one can easily obtain point forecast
via:

ŷn,t+h|t =

∫
y

y f̂n,t+h|t(y) dy. (4)

For simplicity of notations, let us focus on the predictive density f̂n,t+h|t given the information
set Ωt at time t. We denote the input features as xt and the realization of target Yn,t+h as
yt. The information one has access to N sample pairs (x1, y1), · · · , (xN , yN) serves as a basis
for training. They can be written in the form of a matrix, i.e., X = [x1, · · · ,xN ]

⊤ as well
as Y = [y1, · · · , yN ]⊤. The matrix X has dimensions N × pk, whereas Y is a vector with
N elements. Now the density forecast described in (3) boils down to conditional probability
density function estimation, which is performed via statistical learning. In very-short term
WPF, one commonly uses past wind power generation values of length k as input features,
i.e., a vector [yn,t−k+1, · · · , yn,t]⊤ ∈ [0, Pn]

k for the nth site. Therefore, considering all sites
together, the vector of input features is given by

xt = [y1,t−k+1, · · · , y1,t, · · · , yp,t−k+1, · · · , yp,t]⊤ ∈ [0, P1]
k × [0, P2]

k × · · · × [0, Pp]
k.

Obviously, features in xt have some form of dependency, which breaks down the classical
i.i.d assumption in statistical learning. However, it is still common to place oneself in a
regression framework for estimation and overlook this dependency issue, as for instance
done recently also for global/local model estimation (Montero-Manso and Hyndman, 2021)
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and estimation in deep learning models (Benidis et al., 2022). The consequences are actually
fairly mild in practice, since the fact that input features are not independent mainly affects
the interpretability of regression coefficients and the ability to perform hypothesis testing
(to assess whether coefficients are significantly different from 0). This is while the fact
that observation samples used as a basis for estimation are not i.i.d. mainly yields higher
variance in coefficient estimates – an issue if dealing with small datasets, which is rarely
the case today for most statistical and machine learning applications, including wind energy
forecasting.

Based on a stationarity assumption, the sample pairs (x1, y1), · · · , (xN , yN) can be re-
garded as identically distributed. For simplicity, we introduce two random variables X and
Y for these samples. It allows us to model the joint distribution fX,Y (x, y) via M with

estimated parameters Θ̂, i.e., fX,Y (x, y;M, Θ̂), and derive fY |X(y|x) via the conditional
probability formula. It is described as

fY |X(y|x;M, Θ̂) =
fX,Y (x, y;M, Θ̂)

fX(x;M, Θ̂)
=

fX,Y (x, y;M, Θ̂)∫
y
fX,Y (x, y;M, Θ̂)dy

. (5)

With the estimated joint distribution fX,Y (x, y;M, Θ̂) at hand, at any time t, given con-

textual information xt, one can issue the forecast f̂Y |X(yt|xt;M, Θ̂) via (5). In this paper,
M is set as an imputation model and implicitly defined by a collection of conditional dis-
tributions. Each conditional distribution is implemented by predictive mean matching that
relies on a function, for instance gj parameterized by θ̂j. As we are considering the joint
distribution now, we can concatenate xt and yt as zt, i.e., zt = [x⊤

t , yt]
⊤. Accordingly, the

dataset is concatenated as the matrix Z of shape N × (pk + 1), i.e.,

Z =


x⊤
1 y1

x⊤
2 y2
...

...
x⊤
N yN

 =


z⊤
1

z⊤
2
...

z⊤
N

.
We refer to the i-th row, j-th column, and (i, j)-th entry of Z as zi, Zj, and zi,j respectively.
And we introduce a random variable Z = (X, Y ) that concatenates X and Y , which contains
pk + 1 variables (recall that X has pk variables, as it represents information from p sites),
i.e., Z = (Z1, Z2, · · · , Zpk+1). Then, the distribution of Z is modeled by fZ(z;M, Θ̂). In
particular, let Z−j denote the collection of random variables in Z except Zj, i.e., Z−j =
(Z1, · · · , Zj−1, Zj+1, · · · , Zpk+1). Accordingly, let z−j denote the realization of Z−j.

We assume values are missing at random. This is to be understood in a way that is more
general than data missing sporadically and at random times. More formally, missingness
at random means that the fact a data entry is missing or not is independent of the process
itself, or of some exogenous process. For the wind power application, data missing not
at random could be for the case there are systematic sensor failures for power generation
values below a given threshold, or systematic communication failures when wind comes for
a given direction. In addition, missingness at random is not restricted to the case data is

7



missing at single times. It can also be for the case of data missing over time intervals (i.e.,
block missingness). This assumption of missingness at random is expected to be sound for
wind power applications, though this should be confirmed on a case-by-case basis based on
advanced data analysis.

Missing values are likely to occur in every element of zt. Let us introduce a vector mt

to indicate the missingness of zt. Concretely, mt,j = 1 indicates that zt,j is missing, whereas
mt,j = 0 indicates that zt,j is observed. Accordingly, the matrix M indicates the missingness
of Z. Let Jzt,M denote the indices of missingness of zt, i.e., Jzt,M = {j | mt,j = 1},
and Jzt,O denote the indices of observations, i.e., Jzt,O = {j | mt,j = 0}. Therefore,
the observed and missing parts of zt are represented by zt[Jzt,O] and zt[Jzt,M ], which are
written as zobs

t and zmis
t for simplicity. The corresponding random variables for zobs

t and

zmis
t are denoted as Zobs and Zmis. When yt is missing, zmis

t = [xmis
t

⊤
, yt]

⊤ where xmis
t

is the missing part of xt. The corresponding random variables for xmis
t are denoted as

Xmis. For example, Figure 1 presents the matrix Z = [zi,j]4×4, where blue blocks indicate
observations and yellow blocks indicate missing values. As shown, the first row of Z is
denoted as z1, the second entry of which, i.e., z1,2 is missing. Then, the indices of missing
values and observations of z1 are Jz1,M = {2} and Jz1,O = {1, 3, 4}. Accordingly, we
have zobs

1 = [z1,1, z1,3, z1,4]
⊤, zmis

1 = [z1,2]. The corresponding random variables for zobs
1

and zmis
1 are denoted as Zobs = (Z1, Z3, Z4) and Zmis = Z2. Also, let IZj ,M denote the

indices of missing values in Zj, i.e., IZj ,M = {i | mi,j = 1}, and IZj ,O denote the indices
of observations in Zj, i.e., IZj ,O = {i | mi,j = 0}. Then the missing and observed parts

of Zj are Z[IZj ,M ; j] and Z[IZj ,O; j], which are respectively written as Zmis
j and Zobs

j for
simplicity. In Figure 1, Z1 represents the first column of Z, the second entry of which is
missing. Accordingly, we have IZ1,M = {2}, IZ1,O = {1, 3, 4}, Zobs

1 = [z1,1, z3,1, z4,1]
⊤, and

Zmis
1 = [z2,1].

✞☛✁�✞☛✁☛ ✞☛✁✂✞☛✁✄

☎�✁� ☎�✁✄ ☎�✁✂☎�✁☛

✞✆✝✟ ✞✆✝✠ ✞✆✝✆ ✞✆✝✡

☎✂✁☛ ☎✂✁✂☎✂✁� ☎✂✁✄

Figure 1: Illustration of a dataset Z. Here we take p = 1, k = 3, h = 1 as an example. Blue blocks indicate
observations, whereas yellow blocks indicate missing values.

Therefore, at the model estimation phase, we concatenate features and targets to form a
training dataset Ztr with some missing values, based on which an imputation model M is
trained. At the operational forecasting phase, the input vector xt at time t is available, part
of which may be missing, and we focus on target yt. Together, they form zt = [x⊤

t , yt]
⊤.

Then zt is imputed via the estimated model. For illustration, we present the training and
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Figure 2: Illustration of training and test datasets. Here we take p = 1, k = 3, h = 1 as an example. Blue
blocks indicate observations, whereas yellow blocks indicate missing values.

test datasets for the single wind farm case in Figure 2. In the training dataset, missingness
occurs in both input features and targets. In the test dataset, all targets are systematically
missing.

2.2. Challenge at the model estimation stage

Usually, the learning process of parameters in density estimation problems is based on
maximum likelihood, which involves the computation of likelihood. However, in the presence
of missing values, the likelihood is blended with missingness indicators. With the assump-
tion that values are missing at random, the parameters of underlying distributions can be
estimated based on observations only. Let Θ denote the true parameters of M. Consider
the likelihood of a sample zt. It is described as

fZ(zt,mt;M,Θ) = fZ(z
obs
t , zmis

t ,mt;M,Θ), (6)

where zmis
t is missing. The likelihood function can be marginalized with respect to zmis

t ,
i.e.,

fZobs(zobs
t ;M,Θ) =

∫
fZobs,Zmis(zobs

t , zmis
t ,mt;M,Θ)dzmis

t

=

∫
fZobs,Zmis(zobs

t , zmis
t ;M,Θ)dzmis

t .

(7)

Therefore, to learn the parameters Θ, it is required to maximize the likelihood of observations
only, i.e., fZobs(zobs

i ;M,Θ). The estimate of Θ is denoted as Θ̂.

2.3. Challenge at the operational forecasting stage

In this section, we assume that we already have distribution fZ(z;M, Θ̂) with estimated
parameters Θ̂ at hand, and show how to issue forecasts at the operational forecasting stage.
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If xt is fully observed, then xt is the observed part of zt, i.e., z
obs
t = xt, whereas the missing

part of zt is yt. The forecast for yt can be expressed as

fY |X(yt|xt;M, Θ̂) = fZmis|Zobs(zmis
t |zobs

t ;M, Θ̂) =
fZ(z

obs
t , zmis

t ;M, Θ̂)∫
zmis
t

fZ(zobs
t , zmis

t ;M, Θ̂)dzmis
t

. (8)

In the presence of missing values, the forecasting task is to issue fY |Zobs(y|zobs
t ) by utilizing

the distribution fZ(z;M, Θ̂). Indeed, zmis
t can be decomposed into xmis

t and yt, i.e.,

fZmis|Zobs(zmis
t |zobs

t ;M, Θ̂) = fY,Xmis|Zobs(yt,x
mis
t |zobs

t ;M, Θ̂). (9)

Then the desired fY |Zobs(yt|zobs
t ;M, Θ̂) is derived by marginalizing fZmis|Zobs(zmis

t |zobs
t ;M, Θ̂)

with respect to xmis
t , i.e.,

fY |Zobs(yt|zobs
t ;M, Θ̂) =

∫
fY,Xmis|Zobs(yt,x

mis
t |zobs

t ;M, Θ̂)dxmis
t . (10)

3. Forecasting with missing values via FCS

In this section, we develop a forecasting approach based on the proposed universal im-
putation strategy. For that, we employ the fully conditional specification approach, which
in practice will be based on Gibbs sampling. It is described in the first part of the Section.
This FCS approach requires a method to derive conditional distributions, which we describe
in the second part. Eventually, it also relies on the choice for a regression model (random
forests here), covered in the third part of the section. Finally, we will describe how the
overall approach can be readily used for genuine forecasting with missing data.

3.1. Fully conditional specification method

Instead of defining a multivariate distribution fZ(z;M, Θ̂) by assuming a specific distri-
bution family, the FCS specifies a separate conditional distribution for each Zj, just like a
Gibbs sampler. Concretely, the conditional distribution for Zj is modeled by gj with param-

eters θ̂j, and is denoted as fZj |Z−j
(zj|z−j; gj, θ̂j). Therefore, the model M is implemented via

a bunch of models {gj}, whereas Θ̂ is composed of all parameters {θ̂j}. These parameters are
estimated at the model estimation phase based on the training dataset Ztr. For simplicity of
notations, we still use Z in what follows to show how to estimate the parameters. Intuitively,
before estimating θ̂j, one needs to impute the missing values of Z−j. Then, parameters are
estimated based on the imputed Z−j and Zobs

j . With the estimated conditional distribution

fZj |Z−j
(zj|z−j; gj, θ̂j), one can impute Zmis

j based on the corresponding conditionals in Z−j.

That is, both the estimation of θ̂j and the imputation of Zmis
j are based on the imputed Z−j.

Obviously, the imputation of any column of Z−j, for instance Zq, relies on its conditional

distribution fZq |Z−q(zq|z−q; gq, θ̂q), which requires Zmis
j to be imputed. In other words, the

estimation of θ̂j and the imputation of Z−j are coupled with each other. If one performs
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✌✍✎
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Figure 3: Illustration of the η-th iteration at the training stage. Light blue blocks indicate observations,
yellow blocks indicate missing values, and dark blue blocks indicate imputation.

the parameter estimation and imputation sequentially for j = 1, 2, · · · , pk + 1, the estima-
tion of θ̂j can only use initial imputation of Zmis

j+1, · · · ,Zmis
pk+1. The updated imputation of

Zmis
j+1, · · · ,Zmis

pk+1 given by their estimated conditional distributions cannot be used for the

estimation of θ̂j. Therefore, we perform the imputation of Zj and the estimation of θ̂j in an
iterative manner. Then, at next iteration, the updated imputation of Zmis

j+1, · · · ,Zmis
pk+1 can

be used for the estimation of θ̂j. For example, denote the estimated parameters θ̂j at the

η-th iteration as θ̂
(η)
j , and the imputed complete column as Z

(η)
j . At the η + 1-th iteration,

Z
(η)
j+1, · · · ,Z

(η)
pk+1 can be used for the estimation of θ̂

(η+1)
j . Before the iterative estimation, all

missing values are initially imputed as 0; therefore each column Zj becomes complete and

is written as Z
(0)
j . After all iterations, the ultimate estimation for θj is denoted as θ̂j. Here,

we set the stopping criterion as the round of iteration, as suggested by (Van Buuren et al.,
2006). The caveat is that FCS method cannot guarantee the existence of joint distribution.
Luckily, it is a relatively minor problem in practice, especially when missing rate is modest.
We illustrate the steps of the η-th iteration in Figure 3.

Concretely, at the η-th iteration, before estimating θ̂
(η)
j , we haveZ

(η)
1 ,· · · ,Z(η)

j−1,Z
(η−1)
j+1 ,· · · ,

Z
(η−1)
pk+1 at hand, which are written compactly as Z

(η)
−j in the form of a matrix, i.e.,

Z
(η)
−j = [Z

(η)
1 , · · · ,Z(η)

j−1,Z
(η−1)
j+1 , · · · ,Z(η−1)

pk+1 ]. (11)

Then θ̂
(η)
j is estimated based on Z

(η)
−j and Zobs

j via maximum likelihood:

θ̂
(η)
j = argmax

θj

∑
i∈Ij,obs

log fZj |Z−j
(zi,j|z(η)

i,−j; gj, θj). (12)

Thus we derive the estimated conditional distribution fZj |Z−j
(zj|z−j; gj, θ̂

(η)
j ), based on which

11



we can impute Zmis
j . For instance, to impute the value zi,j in Zmis

j , we sample from

fZj |Z−j
(zj|zi,−j; gj, θ̂

(η)
j ), which is described as:

z
(η)
i,j ∼ fZj |Z−j

(zj|z−j; gj, θ̂
(η)
j ), i ∈ Ij,mis. (13)

As Zobs
j is observed, we do not change the values, i.e.,

z
(η)
i,j = z

(η−1)
i,j , i ∈ Ij,obs. (14)

Then we write all z
(η)
i,j in the form of a vector, which is denoted as Z

(η)
j i.e.,

Z
(η)
j = [z

(η)
1,j , · · · , z

(η)
N,j]

⊤. (15)

This procedure goes sequentially for j = 1, · · · , pk + 1. We note that the method can be
executed multiple times in parallel to obtain multiple imputations. Besides, the model gj
for fZj |Z−j

(zj|z−j; gj, θ̂j) needs to be specified, which is described in next section.

Estimated ✌✟�

✁☛�
✂✄

✁�
✂✄

☎✆

(a) Training stage

✟☛�
✁✂ ✌✟�

✁✂

✟☛�
✁✄ ✌✟�

✁✄

☎�, 
✌✆�

Candidates

☎�, 
✌✆�

(b) Candidates prediction

Figure 4: Illustration of key components of predictive mean matching.

3.2. Predictive mean matching

In this paper, fZj |Z−j
(zj|z−j; θ̂j, gj) is specified based on the predictive mean matching

(Little and Rubin, 2019), which is free of distributional assumptions. Specifically, here gj is
not a real distribution model, but specified as a regression model. The distribution is given
by a sampling procedure based on gj. For each missing entry, we form a set of candidates
from complete cases whose predicted values are close to the predicted value for the missing
entry. Now we use parameters θj to specify the regression model gj that maps z−j to zj,
i.e.,

zj = gj(z−j; θj) + ϵj, (16)
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where ϵj represents noise. We illustrate the key operations of this method in Figure 4, i.e.,
the training of the regression model and the prediction of candidates. That is, we estimate
parameters θ̂j based on training datasets Ztr

−j and Ztr
j . With the estimated model, we

respectively predict targets for Ztr
−j and Zte

−j, which are called candidates and written as

Ẑ
tr

j and Ẑ
te

j . Then, for each entry of Ẑ
te

j , we form a set of its d closest candidates in Ẑ
tr

j ,
from which we perform random sampling to obtain imputations.

At the η-th iteration of FCS, the regression model is trained based on Z
(η)
−j [Ij,obs, :] and

Zobs
j by minimizing the loss, i.e.,

θ̂
(η)
j = argmin

θj

∑
i∈Ij,obs

ℓ(zi,j − gj(z
(η)
i,−j; θj)), (17)

where ℓ(·) is the mean squared error function. Then, we predict a candidate value for each

z
(η)
i,−j via the trained regression model, which is denoted as ẑ

(η)
i,j , i.e.,

ẑ
(η)
i,j = gj(z

(η)
i,−j; θ̂

(η)
j ). (18)

Together, they are written in the form of a vector as Ẑ
(η)

j , which is expressed as

Ẑ
(η)

j = [ẑ
(η)
1,j , ẑ

(η)
2,j , · · · , ẑ

(η)
N,j]

⊤. (19)

To impute Zmis
j , let us focus on each missing entry of it, for instance zim,j, im ∈ Ij,mis,

whose candidate is ẑ
(η)
im,j. Then we find d nearest candidates from Ẑ

(η)

j [Ij,obs] for which

|ẑ(η)im,j − ẑ
(η)
i,j |, im ∈ Ij,mis, i ∈ Ij,obs is minimal. Suppose the d candidates are

ẑ
(η)
i1,j

, ẑ
(η)
i2,j

, · · · , ẑ(η)id,j
, i1, i2, · · · , id ∈ Ij,obs,

which can be written in the form of a set as Ci,j, i.e., Ci,j = {ẑ(η)i1,j
, ẑ

(η)
i2,j

, · · · , ẑ(η)id,j
}. Finally,

we obtain imputation for zi,j, i ∈ Ij,mis by sampling from Cim,j and denote it as z
(η)
im,j, i.e.,

z
(η)
im,j ∼ Ci,j, im ∈ Ij,mis. (20)

Indeed, the set Cim,j provides an empirical distribution for zim,j, im ∈ Ij,mis. The operations
described from (17) to (20) correspond the conceptual description in (12) and (13). After all
iterations, the final candidates corresponding to training dataset are denoted as Ẑj, which
are prepared for the use of sampling at the operational forecasting stage. In particular,
missing values can be directly imputed via (18) when only point forecasts are needed.

3.3. Random forest

Indeed, the model described in (16) can be specified as any regression model, such as
linear regression, random forest, etc. In this paper, it is specified as a random forest, as tree
models usually perform well in practice (Januschowski et al., 2021). It grows B regression
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trees, each of which is trained on bootstrap samples from training data. Hence, the regression
model that maps variables z−j to zj is described as

gj(z−j; θ̂j) =
1

B

B∑
b=1

gj,b(z−j), (21)

where gj,b(z−j) is a regression tree. The splitting variable and splitting points of regression
trees are often determined by the CART algorithm. Details about the CART algorithm can
be found in (Hastie et al., 2001). Suppose we already have partitioned the variables into
M regions, i.e., R1, R2, · · · , RM . And we model the target as a constant cm in each region.
The regression function is described as

gj,b(z−j) =
M∑

m=1

cmI(z−j ∈ Rm), (22)

where I(·) is the indicator function. In particular, cm is estimated as the average of targets
zj in the region Rm, i.e.,

ĉm =
1

|IRm|
∑

i∈IRm

zi,j, (23)

where IRm = {i | zi,−j ∈ Rm}. The model grows like a binary tree. To begin with, we
consider the space is split at variable Za, a ∈ {1, · · · , j − 1, j + 1, · · · , pk + 1} and point s,
then we obtain two halves:

R1(a, s) = {z−j|za ≤ s}, R2(a, s) = {z−j|za > s}. (24)

It is fulfilled by a greedy algorithm, i.e.,

min
a,s

min
c1

∑
zi,−j∈R1(a,s)

ℓ(zi,j − c1) + min
c2

∑
zi,−j∈R2(a,s)

ℓ(zi,j − c2)

 . (25)

Repeat the splitting process in the generated two regions, and stop only when minimum
node size is reached.

3.4. Forecasting Stage

After training the imputation model, we obtain a collection of estimated random forests
{gj} with parameters {θ̂j} and candidates {Ẑj}. At the operational forecasting stage,
we feed sample zt = [x⊤

t , yt]
⊤ (yt is missing by default) into the estimated imputation

model, and iteratively impute each missing value in zt according to (11), (13)-(15), which
is illustrated in Figure 5. Compared to the training stage, parameters are fixed now; thus
we only conduct iterative imputation here. Particularly, L equally likely imputations for zt

are obtained, which are written as

z̃1
t , z̃

2
t , · · · , z̃L

t .
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targets

Figure 5: Illustration of the η-th iteration at the operational forecasting stage. Light blue blocks indicate
observations, yellow blocks indicate missing values, and dark blue blocks indicate imputation (forecasting).

Indeed, here zobs
t = xobs

t , zmis
t = [xmis

t
⊤
, yt]

⊤. That is, zmis
t is imputed by realizations from

the estimated distribution fXmis,Y |Xobs(zmis
t , yt|xobs

t ;M, Θ̂). To get an empirical distribution

for fY |Xobs(yt|xobs
t ;M, Θ̂), we just fetch the corresponding value for yt in each z̃i

t, i.e., the

last entry of z̃i
t, which is denoted as ỹit, i.e.,

ỹit = z̃it,pk+1, i = 1, · · · , L. (26)

Recall that yt is the realization of the random variable Yn,t+h, i.e., ỹ
i
t is the realization from

fYn,t+h|t(y|xt;M, Θ̂). Thus we rewrite ỹit as ỹ
i
n,t+h|t, all of which form a set, i.e.,

{ỹ1n,t+h|t, ỹ
2
n,t+h|t, · · · , ỹLn,t+h|t}.

Besides, we note that (26) is a surrogate of (10), which serves as marginalization operation
when L is quite large. The point forecast ŷn,t+h|t is given as an average, which is expressed
as

ŷn,t+h|t =
1

L

L∑
i=1

ỹin,t+h|t. (27)

4. Simulation study

Before validating the proposed approach on real data, we illustrate its applicability to
point forecasting based on two related simulated processes, i.e., the autoregressive (AR)
process and vector autoregressive (VAR) process. The results are assessed in terms of root-
mean-square error (RMSE) here. Let Iy,obs denote the indices of observations in the test
set. Then RMSE on the test set is described as

RMSE =

√
1

|Iy,obs|
∑

t∈Iy,obs

(yt − ŷt)2, (28)
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where yt denotes the observation at time t, ŷt denotes the point forecast at time t, and |Iy,obs|
is the number of observed samples in the test set. In each case, we remove parts of generated
data at random to simulate missingness, where the missing rate is varied from 5% to 50%.
Situations where missing rates are larger than 50% are regarded impractical and thus not
included in the study. Then, 80% of data are split as the training set, whereas another
20% of data are split as the test set for genuine forecasting validation. The missingness
simulation and model validation are replicated 100 times for each missing rate.

4.1. AR process

In this case, we model an AR process of order 2, i.e.,

Yt = α0 + α1Yt−1 + α2Yt−2 + ϵt,

where α0 is a constant, α1 and α2 are parameters, and ϵt is a white noise centered on 0.
Let us set α⊤ as [1, 0.33, 0.5]⊤, and ϵt to follow the Gaussian N (0, 0.01). Concretely, we
simulate a time series of length 8760, corresponding to a year of data with 1-hour resolution,
and present it in Figure 6 (a). The input features xt have 2 dimensions, and target yt has
1 dimension. Specifically, the imputation model is trained by 10 iterations, as suggested
by Van Buuren et al. (2006). The RMSE values with respect to different missing rates are
shown in Figure 6 (b). Intuitively, missing values lead to an increase in RMSE, and higher
missing rates lead to larger RMSE.
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(b) Results

Figure 6: (a) Example simulated time-series with an AR process (single replicate); (b) Box plot of 1-step
ahead RMSE in the presence of missing values based on AR simulated data with respect to different missing
rates (based on Monte-Carlo simulations with 100 replicates).

Since experiments at each missing rate are replicated 100 times, we obtain the variance
of RMSE at each missing rate. As the missing rate increases, the variance of RMSE also
increases, because the influence on training varies to a larger extent when the missing rate
is high.
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Figure 7: (a) Simulated time series of the VAR process; (b) Box plot of 1-step ahead RMSE based on VAR
simulated data with respect to different missing rates for series 1 (Monte-Carlo with 100 replications); (c)
Box plot of 1-step ahead RMSE based on series 1 with respect to different missing rates for series 1 (Monte-
Carlo with 100 replications); (d) Box plot of 1-step ahead RMSE based on VAR simulated data with respect
to different missing rates for both series (Monte-Carlo with 100 replications).

4.2. VAR process

We model a VAR process of order 2, i.e.,

Y1,t = α0 + α1,1Y1,t−1 + α1,2Y1,t−2 + α2,1Y2,t−1 + α2,2Y2,t−2 + ϵ1,t,

Y2,t = β0 + β1,1Y1,t−1 + β1,2Y1,t−2 + β2,1Y2,t−1 + β2,2Y2,t−2 + ϵ2,t,

where α⊤
1 = [1, 0.88, −0.1, 0.15, −0.14]⊤, α⊤

2 = [1, 0.69, −0.05, 0.07, −0.23]⊤, ϵ1,t ∼
N (0, 0.01), and ϵ2,t ∼ N (0, 0.01). We still simulate time series of length 8760 and present
them in Figure 7(a). In this case, we focus on forecasting the future value of Y1,t by using
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previous realizations of both series. Now, the input features xt have elements, whereas the
target yt has a dimension of 1 only. We still train the imputation model with 10 iterations.

As a starting point, we assume there are no missing values in series {y2,t} and only vary
the missing rate for {y1,t}. The overall RMSE values are presented in Figure 7(b). As with
the AR case, RMSE and its variance increase as the missing rate increases. For comparison,
we consider two other scenarios, i.e., only using features from {y1,t}, and simulating miss-
ingness for both {y1,t} and {y2,t}, the results of which are respectively shown in Figure 7(c)
and Figure 7(d). Comparing Figure 7(b) and Figure 7(c), we observe that the RMSE in
Figure 7(b) is lower, which translates into saying that forecasting can be improved by using
information from correlated series. However, as shown in Figure 7 (d), the benefit of using
features from {y2,t} is still noticeable when the missing rate of {y2,t} is not too high. When
the missing rate of {y2,t} is higher than 30%, using features of {y2,t} will even hamper the
performance.

5. Case study

Besides the above simulation study, we further validate our approach based on real-world
data from the USA. The case study considers a typical forecasting setup, where some data is
used for estimating model parameters (training set) and the remainder of the data for genuine
out-of-sample forecast verification (test set). Both point and probabilistic forecasting are
considered. Also, since the dataset gathers data for multiple wind farms in a limited area,
we can look at the case of employing univariate approaches (i.e., use of local data only), but
also at a case where data from surrounding wind farms is used to improve forecasts. In that
case, it is intuitively expected that one is further exposed to the likelihood and potential
consequences of missing data. Note that the goal of this case study is not to pick and choose
the best model and forecasting approach, but instead to show the impact of missing values
on forecasting and the effectiveness of the proposed approach to accommodate those. In the
following, we first describe the dataset and our experimental setup, the forecast verification
framework and the benchmark approaches. The results obtained are then described and
discussed. Codes and data1 are publicly available.

5.1. Data description

Data from the USA are generated by the Wind Integration National Dataset (WIND)
Toolkit (Draxl et al., 2015), which are therefore not completely real but capture the dynam-
ics of wind power generation. Indeed, there are no missing values in this dataset. Then,
we randomly remove some values to simulate missingness, based on which all models are
estimated and validated. Concretely, the dataset contains 3 wind farms located in South
Carolina, within a 150 km area. The spatial-temporal dynamics among wind farms sug-
gest that one could use data from nearby wind farms to improve the forecasts. It gathers
data over 7 years, from 2007 to 2013, with an hourly temporal resolution. All wind power
measurements are normalized by their corresponding capacities.

1github link to be added in the final version
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5.2. Experimental setup

5.2.1. Different types of case-studies

Based on the data described above, we concentrate on both point and probabilistic
forecasting in three different types of case studies, representing alternative approaches to
forecasting (local data only, and with data from surrounding wind farms), as well as different
types of missingness, i.e., sporadic and block missingness. We also consider forecasting with
lead times from k = 1 to 6 steps ahead. More precisely these cases can be described as:

Case 1: Forecasting at a single site, using local data only (hence, with an autoregressive
model). Data is missing sporadically and randomly, on a pointwise basis. The rates
of missingness are 10% and 20%, respectively, to investigate the performance of the
approach conditional to how much data is missing.

Case 2: Forecasting at a single site using local data only (hence, with an autoregressive
model). Data is missing over given time intervals (block missingness) though at ran-
dom. The number of blocks with missing data is set to 600. These are randomly
located over the dataset. The length of the block with missing data is random and
uniformly distributed between 5 to 30 time steps.

Case 3: Forecasting at a chosen site, but using data from both that site and the nearby sites
(hence, with a vector autoregressive model). The two types of missingness mentioned
before (pointwise and block missingness) are considered.

In all 3 cases, when issuing a forecast at time t for lead time t + k, lagged observations
are used as input features (since using autoregressive models). As feature selection is not
the focus of this paper, we performed a preliminary study to select lags based on training
data. As a result, we work in the following with autoregressive models with the 6 lagged
observations (so, from t − 5 to t). The generalized logit-normal transform proposed by
Pinson (2012) is further employed as a pre-processing stage to accommodate the double-
bounded nature of wind power generation time-series (i.e., nonlinear and with the variance
of residuals conditional upon the mean level).

5.2.2. Forecast verification: relevant scores and diagnostic tools

The quality of point forecasts is commonly evaluated with an RMSE criterion (consistent
with the use of a quadratic loss in learning and forecast verification), whereas the quality of
probabilistic forecasts is most often assessed by using the Continuous Ranked Probability
Score (CRPS). Given a lead time h, we denote the cumulative density function for wind
power generation Yt+h, predicted at time t for time t+ h, as Ft+h. Then, the CRPS for the
predicted Ft+h and corresponding observation yt+h is defined as

CRPS(Ft+h, yt+h) =

∫
y

(
Ft+h(y)− 1(y − yt+h)

)2
dy, (29)

where 1(·) is a unit step function at the location of the observation yt+h (also known as a
Heaviside function), which can be regarded as the empirical cumulative density function of
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the observation yt+h. Eventually, given the lead time h, we report the average CRPS value
over all forecast-verification pairs, i.e.,

CRPSh =
1

|Iy,obs|
∑

t+h∈Iy,obs

CRPS(Ft+h, yt+h). (30)

Besides the use of a proper skill score like the CRPS, informing about the overall skill and
quality of the probabilistic forecasts (in the form of predictive densities), we will assess the
probabilistic calibration of the predictive densities with reliability diagrams. For an extensive
description of such reliability diagrams and their use in the assessment of probabilistic
calibration, the reader is referred to Pinson et al. (2010). In parallel, in order to see how the
probabilistic forecasts concentrate information, their sharpness is evaluated by calculating
the width of central prediction intervals. I.e., for a given nominal coverage rate 1− β, these
central prediction intervals are bounded by quantiles with nominal levels β/2 and 1− β/2.
For a general overview of probabilistic forecast verification, see Gneiting et al. (2007).

5.2.3. Benchmarks

In general, we use three categories of benchmarks, i.e., the climatology/persistence
method, an ITP approach, and a UI approach with a distributional assumption. For point
forecasting, persistence uses the latest observation as the forecast. To implement the ITP
approach, we respectively use mean imputation and advanced regression-based imputation
namely MissForest (Stekhoven and Bühlmann, 2012) in the pre-processing procedure and
employ a random forest as the backbone regression model, which are abbreviated as RF-M
and RF-R respectively. And, the state-of-the-art model DeepAR (Salinas et al., 2020) is
adopted, which uses intermediate results of the long-short term memory model to impute
missing values at both model estimation and operational stages. The copula-based imputa-
tion model proposed by Zhao and Udell (2020) is adopted to implement the UI approach.
It is also a multiple imputation model, though relying on a distributional assumption. The
retraining approach(Tawn et al., 2020) is used as a benchmark model, which consists in re-
training the model without missing features. Besides, we consider a reference model that is
implemented by a random forest and trained based on the complete dataset, which is abbre-
viated as RF-C. The benchmark models for point forecasting, as well as used abbreviations,
are gathered in Table 1.

As for probabilistic forecasting, climatology is set as a naive benchmark. It utilizes the
empirical distribution of all historical values to communicate the probability distribution of
future wind power generation. To implement the ITP approach, a model with the Gaussian
distributional assumption as well as a QR model are adopted as backbone models. In
particular, the base model chosen for QR is the gradient boosting machine, which supports
QR and ranks highly on leaderboards of recent forecast competitions (Januschowski et al.,
2021), including the GEFCom 2014 (Landry et al., 2016) for instance. For the model with
the Gaussian distributional assumption, we use a neural network to estimate the shape
parameters of Gaussian distributions. The QR model with regression-based imputation as
preprocessing is abbreviated as QR-R, while the Gaussian models with mean and regression-
based imputation are abbreviated as Gauss-M and Gauss-R. Again, the DeepAR model
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Table 1: Abbreviations for point and probabilistic forecasting benchmark models.

Abbreviation Description (point forecasting)

RF-M Random forest with the mean imputation as preprocessing
RF-R Random forest with the regression-based imputation as preprocessing
Copula Copula-based imputation model within universal imputation strategy
DeepAR Deep learning model that uses intermediate results to impute missing values
RF-C Random forest trained based on the complete dataset

Abbreviation Description (probabilistic forecasting)

Gauss-M Gaussian model with the mean imputation as preprocessing
Gauss-R Gaussian model with the regression-based imputation as preprocessing
Copula Copula-based imputation model within universal imputation strategy
DeepAR Deep learning model that uses intermediate results to impute missing values
QR-R QR model with the regression-based imputation as preprocessing
QR-C QR model trained based on the complete dataset

(Salinas et al., 2020) is used as a benchmark, since it is allowed to communicate Gaussian
densities. The UI approach is still implemented via the copula-based model. Besides, we set
the QR model trained based on the complete dataset as a reference, which is abbreviated
as QR-C. The benchmark models for probabilistic forecasting, as well as corresponding
abbreviations, are also collated in Table 1.

5.3. Results and discussion

Results that correspond to the aforementioned three cases are respectively reported in
three different subsections and followed by further discussion.

5.3.1. Case 1

Emphasis is first placed on sporadic missingness, i.e., for the case where single values
are missing, at random times. Let us start by presenting and discussing results for the
most severe rate of missingness, of 20%. In practice, this means that 20% of the values
are missing, at random locations over both training and testing sets. The point forecasting
results in terms of RMSE are collated in Table 2.

Table 2: RMSE values as a function of the lead time (Case 1, missing rate of 20%). RMSE values are
expressed in percentage of normalized capacity.

Lead Time (steps) Persistence RF-M RF-R Copula FCS DeepAR RF-C

1 16.8 17.7 16.1 17.3 15.9 17.0 14.6
2 21.1 20.9 19.8 21.3 19.5 20.6 18.9
3 24.7 23.4 22.5 24.3 22.3 23.3 21.9
6 32.7 28.2 28.0 30.6 27.9 29.3 27.6

Not surprisingly, the RMSE increases with the lead time, and, forecast quality in the
presence of missing values is worse than when there is no missing data. There, missing
values have a negative impact at both model estimation and operational forecasting stages.
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Persistence is a competitive benchmark, as it is easy to implement and the resulting forecast
quality is difficult to outperform for such short lead times. In parallel, RF-M performs
worse than persistence for 1-step ahead forecasts, most likely due to errors in imputation
introduced by this pre-processing procedure. Given training datasets X tr and Y tr, one can
estimate a regression model fP that is equivalent to the reference model, if the imputed
datasets are as same as the real complete datasets X tr,P and Y tr,P . However, the imputed
datasets usually deviate from the real complete datasets. Then, the model estimated based
on X tr,C and Y tr,C , denoted as fC , is different from fP . That is, the closer the imputed
datasets are to the real complete datasets, the closer fC is to fP .

Obviously, RF-R has better performance than RF-M, since the regression-based impu-
tation is superior to the mean imputation. Besides, at the operational forecasting stage,
it is still required to impute input features, which may also accumulate errors. Although
DeepAR is free of any pre-processing stage, the imputed values may still deviate from real
values, introducing errors to both the model training and forecasting stages. As shown in
Table 2, the performance of DeepAR is even worse than the simple benchmark model, i.e.,
RF-R.

The used copula- and FCS- based models fall into the category of UI approach. Compared
to the ITP approach, the UI approach has the advantage that it is free of a pre-processing
procedure, which avoids introducing errors aroused by the pre-processing procedure into the
forecasting task. The FCS-based model outperforms RF-M and RF-R, while the copula-
based model is inferior to them, as revealed in Table 2. Although the copula method allows
to characterize several kinds of distributions, it is required to specify the transform function
here, which means that a specific distributional assumption is implied. This may impede
the performance of the copula-based model when the distributional assumption cannot fit
the underlying distribution well. By contrast, the FCS method is free of such an assumption
and therefore has a better performance than the copula-based model. It suggests that by
using a distribution-free imputation method like FCS, the UI approach is superior to the
ITP approach.

Besides, we compare our proposed approach and the retraining approach discussed by
Tawn et al. (2020) by focusing on a specific missing pattern (i.e., the last feature is missing),
and present the RMSE values in Table 3. It is intuitive that the performance of the retraining
approach is comparable to RF-M and FCS, as the retraining approach is free of a pre-
processing stage and utilizes a complete set of observations to estimate the parameters.
Eventually, the quality of the forecasts is linked to the informative value of the features
retained. However, it also implies that a specific model is needed for each missingness
pattern. Then, a specific training dataset is required for each pattern, which means only
parts of the data are used to estimate a model. Besides, the retraining approach will suffer
the curse of dimensionality. That is, denoting the dimension of features as d, the retraining
approach will independently train 2d models. While the training time for a set of point
forecasting models may be acceptable, the computational costs will steeply increase for
probabilistic forecasting cases. In contrast, the proposed UI approach is not only free of any
pre-processing stage but also applicable to all missingness patterns once trained.

Next, we move on to the results for probabilistic forecasting, with the CRPS values ob-

22



Table 3: RMSE for 1-step ahead forecasts (Case 1, last feature missing). RMSE values are expressed in
percentage of normalized capacity.

Lead Time (steps) Persistence RF-M RF-R Copula FCS DeepAR Retraining

1 15.8 16.2 15.1 15.9 15.0 15.8 15.3

tained collated in Table 4. Here, missing values have nearly no influence on the performance
of climatology, since climatology characterizes uncertainty based on the empirical distribu-
tion of all historical observations. This distribution is not highly modified when a fairly
limited number of samples are missing.

Table 4: CRPS as a function of the lead time (Case 1, missing rate of 20%). CRPS values are expressed in
percentage of normalized capacity.

Lead Time (steps) Climatology Gauss-M Gauss-R QR-R Copula FCS DeepAR QR-C

1 18.6 9.2 7.5 7.8 11.5 6.9 7.8 6.9
2 18.6 11.2 9.9 9.9 14.6 9.1 10.2 9.3
3 18.6 12.7 11.7 11.7 17.0 10.9 12.1 11.2
6 18.6 15.9 15.5 15.4 22.4 14.7 16.5 15.1

Comparing the Gauss-M and Gauss-R, we know that a better imputation method is still
preferred by the ITP strategy in the context of probabilistic forecasting. Both the Gauss-R
and QR-R use the regression-based imputation as preprocessing procedure. But they differ
in backbone models – Gauss-R relies on the Gaussian distributional assumption, whereas
QR-R is distribution-free. Their performance is comparable in this case, which is different
from the usual situation (i.e., complete datasets) where QR is always superior. Obviously,
one needs to estimate the shape parameters of Gaussian distribution in Gauss-R, but the
parameters of several quantile functions in QR-R. The parallel estimation of QR-R models
may result in more errors in the ultimate estimated distribution. Therefore, results are
governed by both models and the influence of missing values on model estimation. The
performance of DeepAR is slightly worse than that of Gauss-R and QR-R, which suggests
handling missing values in forecasting is nontrivial. Values imputed by the intermediate
results of the model may also introduce errors at the model estimation stage. The FCS-
based model outperforms Gauss-R and QR-R, whereas the performance of the copula-based
model is worse than those of Gauss-R and QR-R, which suggests that the distributional
assumption may impede the performance of the UI approach. Besides, the performance of
the FCS-based model is comparable to that of the reference QR model trained based on the
complete dataset, which validates the effectiveness of the FCS-based model.

We present the 90% PIs of 6 days issued by the FCS-based and reference models, respec-
tively, in Figure 8.

Although the FCS-based approach encounters missing values at both model estimation
and operational forecasting stages, its PIs are similar to those of the reference model. Specifi-
cally, at some periods e.g. from 35-h to 45-h, the prediction interval issued by the FCS-based
approach are actually sharper than those of the reference model. A reliability assessment
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(a) FCS-based model
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(b) Reference model

Figure 8: Illustration of 1-step ahead 90% central prediction intervals over a period of 6 days, as issued by
the FCS-based model (a), and the reference model (b).

through the use of reliability diagrams is given in Figure 9(a), while a sharpness assessment
is performed by looking at the width of central prediction intervals (as a function of their
nominal coverage rate), and depicted in Figure 9(b). Models based on an ITP strategy tend
to underestimate lower quantiles, while the reliability of DeepAR and copula-based model
deviates from the ideal case to some extent. The FCS-based model achieves a level of re-
liability and sharpness that is comparable to the reference model. The average of absolute
values of deviations from perfect reliability is shown in Table 5. The deviation of the FCS is
even smaller than that of the reference model, which is likely due to that the FCS is robust
to overfitting.

Table 5: The average of absolute values of deviations from perfect reliability in Case 1 (in percent).

Lead Time (steps) Climatology Gauss-M Gauss-R QR-R Copula FCS DeepAR QR-C

1 9.20 3.37 3.52 4.81 4.81 2.78 10.57 6.04

The RMSE and CRPS values, when considering a missing rate of 10%, are collated in
Table 6 and Table 7, respectively. Compared to the results with a missing rate of 20%,
the quality of the forecasts is improved. For point forecasting, the performance of RF-R is
comparable to that of FCS, which means that the ITP strategy may be more acceptable when
the missing rate is not that high. This is while, in the context of probabilistic forecasting,
FCS still outperforms other models, which suggests that missing values may pose greater
challenges to probabilistic forecasting. Besides, the performance of FCS is even better than
that of QR-C, possibly hinting at the fact that FCS is less prone to overfitting.

5.3.2. Case 2

In contrast to the sporadic missingness of Case 1, we simulate here missing values that
span over time intervals (hence, referred to as block missingness). Remember that 600 blocks
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Figure 9: Assessment of 1-step ahead probabilistic forecasts for all models for Case 1, based on reliability
diagrams (a) and sharpness diagrams (b).

Table 6: RMSE values with different lead times in Case 1 on the condition that missing rate is 10%
(percentage of normalized capacity).

Lead Time (steps) Persistence RF-M RF-R Copula FCS DeepAR RF-C

1 15.9 15.9 15.2 16.6 15.1 16.2 14.6
2 20.6 19.7 19.2 20.8 19.1 20.2 18.9
3 24.4 22.5 22.1 24.1 22.0 23.3 21.9
6 32.5 27.9 27.8 30.5 27.8 29.5 27.6

Table 7: CRPS values with different lead times in Case 1 on the condition that missing rate is 10% (per-
centage of normalized capacity).

Lead Time (steps) Climatology Gauss-M Gauss-R QR-R Copula FCS DeepAR QR-C

1 18.6 8.1 7.2 7.4 11.2 6.6 7.4 6.9
2 18.6 10.5 9.6 9.6 14.3 8.9 9.9 9.3
3 18.6 12.1 11.5 11.5 16.9 11.9 9.7 11.2
6 18.6 15.9 15.3 15.3 22.4 14.7 16.6 15.1

are randomly spread over the whole dataset, with lengths between 5 and 30 time steps. Let
us first analyze and discuss point forecasting results. As a basis, the RMSE values of the
points forecasts obtained with the different approaches are gathered in Table 8.

The performance of RF-M is comparable to that of RF-R, most likely due to the fact
that most samples here are complete. In contrast, the copula-based model performs much
worse than both RF-M and RF-R. Indeed, the estimation stage for the copula-based model is
based on an expectation-maximization algorithm, which is sensitive to samples whose values
are entirely missing. This may suggest that the copula-based model is not applicable to the
situation of block missingness. Certainly, the samples whose values are entirely missing
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Table 8: RMSE values with different lead times in Case 2 (percentage of normalized capacity).

Lead Time (steps) Persistence RF-M RF-R Copula FCS DeepAR RF-C

1 15.8 14.9 14.8 16.4 14.9 15.9 14.6
2 20.9 19.2 19.2 21.1 19.3 21.0 18.9
3 24.8 22.2 22.2 24.3 22.4 24.1 21.9
6 32.9 27.9 27.9 30.6 28.1 30.9 27.6

contain no information and can be deleted at the model estimation stage. As with Case 1,
the performance of DeepAR is worse than that of RF-R, which reveals a caveat for the
existing DeepAR framework in handling missing values. The performance of the FCS-based
approach is comparable to that of RF-M/RF-R. One may then infer that ITP and UI types of
strategies perform fairly similarly for point forecasting when experiencing block missingness.
However, the picture will look different when extending the study to probabilistic forecasting.
To assess the performance of the various approaches for that probabilistic forecasting case,
we first look at CRPS values, which are gathered in Table 9.

Table 9: CRPS values with different lead times in Case 2 (percentage of normalized capacity).

Lead Time (steps) Climatology Gauss-M Gauss-R QR-R Copula FCS DeepAR QR-C

1 18.6 7.0 6.9 7.2 11.2 6.5 7.1 6.9
2 18.6 9.8 9.6 9.7 14.5 9.0 10.2 9.3
3 18.6 11.8 11.8 11.6 17.1 10.9 12.6 11.2
6 18.6 15.7 15.7 15.6 22.4 14.9 17.9 15.1

Not surprisingly, the performance of Gauss-R is slightly superior to that of Gauss-M.
But their difference is smaller than what was observed in Case 1. It could be inferred that
it is difficult to handle block missingness via imputation techniques. In the context of block
missingness, regression-based imputation will also tend to impute missing values with mean
values. Still, the performance of Gauss-R is comparable to that of QR-R. The FCS-based
model yields the best performance. Combined with the results of Case 1, it indicates that
this approach seems to be superior for different types of missingness, here both sporadic and
block missingness. A clear point is that ITP strategies are highly sensitive to samples whose
values are entirely missing since the rationale of ITP strategies is to utilize observed parts
of samples to infer the missing parts. If a sample is completely unobserved, no information
could be used for learning and eventually forecasting.

Both reliability and sharpness are evaluated in Figure 10, for 1-step ahead probabilistic
forecasts (with reliability diagrams in Figure 10(a) and sharpness diagrams in Figure 10(b).
The FCS-based approach achieves acceptable probabilistic calibration, especially in the case
of lower and higher quantiles. As summary statistics, the average deviation (in absolute
value) for perfect reliability is given in Table 10, for all approaches. There again, one verifies
that the FCS-based approach yields the lowest deviation. In parallel, the prediction interval
width for QR, Gaussian-based and FCS-based approaches are very close, for all nominal
coverage rates. The prediction interval width for DeepAR is somewhat smaller, though at
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the price of poorer probabilistic calibration. This is also reflected by the larger CRPS values
for DeepAR, compared to the FCS-based approach.
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Figure 10: Assessment of 1-step ahead probabilistic forecasts for all models for Case 2, based on reliability
diagrams (a) and sharpness diagrams (b).

Table 10: Average deviation (in absolute value) from perfect reliability in Case 2 (in percent).

Lead Time (steps) Climatology Gauss-M Gauss-R QR-R Copula FCS DeepAR QR-C

1 9.21 4.47 4.27 6.01 8.29 2.69 8.37 6.04

5.3.3. Case 3

In this subsection, we show that forecasting in the presence of missing values can still
be improved by utilizing information on nearby sites as auxiliary features (AFs). Besides
input features of the chosen wind farm, we use previous wind power generation values from
two nearby wind farms as AFs. It is assumed that the missingness of nearby wind farms is
different from the target wind farm, which is practical since missingness is usually caused
by sensor faults or communication errors. We consider both sporadic missingness and block
missingness here. Particularly, we concentrate on 1-step ahead forecasts and investigate
the impacts of different missing rates or missing blocks in AFs. The RMSE values in the
context of sporadic missingness are shown in Figure 11(a) (‘AFs p%m’ means p% of auxiliary
features are missing), where we simulate different missing rates at two nearby wind farms
and set the missing rate at the target wind farm as 20%.

As expected, the accuracy of point forecasting is improved with the assistance of AFs,
which is comparable to RF-C in Table 1. Furthermore, it can be seen that the benefit
of AFs is robust since the performance is relatively consistent as the missing rate of AFs
increases. It might be explained by the fact that the key information for forecasting comes
from the target wind farm itself. So, it may not make a big difference when a few auxiliary
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features are missing. The results of probabilistic forecasting are also shown in Figure 11(a),
which also suggests that AFs provide extra information and thus contribute to improving
probabilistic forecasts. The RMSE and CRPS values in the context of block missingness are
presented in Figure 11(b) (‘AFs c m’ means there are c missing blocks in auxiliary features),
where we simulate 600 missing blocks at the target wind farm. It is seen that auxiliary
features can still improve the quality of the forecasts in that case.
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(a) Sporadic missingness case
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(b) Block missingness case

Figure 11: Assessment of 1-step ahead probabilistic forecasts for Case 3, in context of sporadic missingness
(a) and block missingness (b).

5.3.4. Training time

We note that by using the FCS method, the proposed UI approach is always superior
in the context of probabilistic forecasting. However, it costs much time to perform Gibbs
sampling to provide probabilistic forecasting. The computation will significantly increase
when the dimension of the variable gets larger. We present the training time and operational
time in Table 11 for illustration. As shown, the training time of FCS is larger than that
of QR models, but manageable compared to that of DeepAR. Therefore, it is required
to find computationally efficient methods to implement the proposed approach. As the
fully conditional specification method iteratively estimates several conditional distribution
models, it is hard to further reduce the training time. But it is feasible to directly learn the
joint probability distribution model via a joint modeling approach, which would considerably
reduce the training time.

Table 11: Training time and operational time for 1-step probabilistic forecasting in Case 1.

Gauss-R QR-R Copula FCS DeepAR

Training time (min) 32 1 9 41 67
Operational time (s) ≪ 0.01 ≪ 0.01 ≪ 0.01 0.01 0.01
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6. Conclusions

It is intuitive to want to consider an “impute, then predict” approach to deal with
missing values, as existing forecasting methods can be readily used after the (imputing)
pre-processing procedure. However, while such a pre-processing procedure at the model
estimation stage jointly imputes input features and targets, it only imputes input features
at the operational forecasting stage, possibly in a way that is not consistent with the model
used for forecasting eventually. In this paper instead, we propose a “universal imputation”
approach, motivated by the problem of wind power forecasting in the presence of missing
values. As for many other application areas, it is very common to have missing values within
wind power forecasting. Our proposal approach relies on multiple imputation methods, and
jointly performs the imputation of missing values of input features and the forecasting of
targets. That is, it does not require a pre-processing procedure, while being consistent
through model estimation and operational forecasting stages. Under the assumption that
observations are missing at random, parameters can be estimated based on observations
only, at the model estimation stage. At the operational stage, it treats targets as missing
values and iteratively imputes both the missing values of input features and targets. Par-
ticularly, as multiple imputation provides several realizations from the joint distribution of
input features and targets, the proposed approach naturally allows issuing both point and
probabilistic forecasts. The case studies based on WIND Toolkit (over the USA) confirm
the applicability of this approach. Not surprisingly, forecast quality necessarily decreases
as the missing rate of the dataset increases. The results also suggest that the FCS-based
method performs better than the “impute, then predict” approach; it is especially preferred
in the probabilistic forecasting case. And, the results suggest that the FCS-based approach
may prevent overfitting to some extent. It also further validates the benefits from sharing
information and data among wind farms, even in the presence of missing values.

We note that the modeling approach is quite different from the commonly used fore-
casting approaches in the context of complete datasets. The goal of this paper is not to
replace the existing approaches, but to offer a complementary tool for use in the presence of
missing values. We also expect there are similar ways to generalize commonly used model-
ing and forecasting approaches to the case of missing data. The computational costs of the
introduced FCS-based approach are high and grow significantly as the dimension increases.
Therefore, more efficient methods are still needed. It may be appealing to alternate the
FCS method with distribution-free joint modeling imputation approaches. Our proposal is
based on the “missing-at-random” assumption and thus avoids modeling the distribution
of missingness. The situation where observations are missing not at random should be fur-
ther explored in the future. Besides, emphasis should be placed on relaxing the stationary
assumption in order to deal with non-stationary environments, e.g., with online learning.
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