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Abstract—Compared with large-scale physical batteries, aggregated
and coordinated generic energy storage (GES) resources provide low-
cost, but uncertain flexibility for power grid operations. While GES can
be characterized by different types of uncertainty, the literature mostly
focuses on decision-independent uncertainties (DIUs), such as exoge-
nous stochastic disturbances caused by weather conditions. Instead,
this manuscript focuses on newly-introduced decision-dependent uncer-
tainties (DDUs) and considers an optimal GES dispatch that accounts
for uncertain available state-of-charge (SoC) bounds that are affected
by incentive signals and discomfort levels. To incorporate DDUs, we
present a novel chance-constrained optimization (CCO) approach for
the day-ahead economic dispatch of GES units. Two tractable methods
are presented to solve the proposed CCO problem with DDUs: (1) a
robust reformulation for general but incomplete distribution of DDUs
and (2) an iterative algorithm for specific and known distribution of
DDUs. Furthermore, reliability indices are introduced to verify the
applicability of the proposed approach with respect to the reliability
of GES units’ response. Simulation-based analysis shows that the pro-
posed methods yield conservative, but credible GES dispatch strategies
and reduced penalty cost by incorporating DDUs in the constraints
and leveraging data-driven parameter identification. This results in
improved availability and performance of coordinated GES units.

Index Terms—generic energy storage, chance-constrained
optimization, decision-dependent uncertainty, response reliability

I. INTRODUCTION

The high penetration of renewable energy resources (RES) gives
rise to challenges associated with frequency and voltage regulation,
power system stability, and reliability [1]. Deterministic dispatchable
resources, such as conventional power plants (CPP) and physical
energy storage (ES), have been widely used to overcome these chal-
lenges. However, relying on these deterministic resources may not
be viable in the future. First, the number of fossil fuel power plants
will decrease dramatically due to carbon dioxide emission reduction
targets [2], [3]. Second, direct control of a myriad of ES assets within
different sectors (e.g., industrial, residential, etc.) will be costly and
unlikely. Thus, demand response (DR) and other forms of dispatch-
able distributed resources represent a less costly alternative and can
support reliable power system operations. Such flexibility may be
leveraged and controlled via price-based [4] or incentive-based [5]
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mechanisms. Significant effects on risk hedging and economic oper-
ation have been reported [4]–[6], via optimal control of energy usage
of thermostatically controlled load (TCL), electric vehicle (EV), and
battery energy storage (BES). Most of distributed energy resources
have the attributes and abilities of ES devices, hence motivating the
term “virtual energy storage” (VES) [7]. In this paper, ES and VES
are considered under a common framework called generic energy
storage (GES) to unify modeling and uncertainty descriptions of
both an individual GES unit and a portfolio of GES units.

The literature related to the modeling and economic dispatch (ED)
of GES is vast. Early research mainly focused on modeling and
dispatching the flexibility of GES from diverse, responsive loads [7]–
[9]. Among these works, a virtual battery model is introduced
in [9] and describes how to obtain the GES parameters from TCL
assets by using first-order energy dynamics, but without considering
time-varying and stochastic features. However, the main difference
between GES and conventional ES is the inherent exogenous and en-
dogenous uncertainties of the former [10]. Exogenous uncertainties
are uncertainties triggered by factors external to the system and are
also called decision-independent uncertainties (DIUs), as they are
independent of the operation and control strategy (e.g., uncertainties
related to the outputs of RES). Probabilistic optimization of GES
under diverse DIUs have been widely investigated in past works
and generally considers uncertainty around power and energy
capacities and response probability of GES, which is derived
from a combination of the following: (i) forecast error of ambient
space (temperature) [11], (ii) DR duration [12] and customers’
comfort [13], (iii) economic effect driven by incentive or price [4],
and (iv) model reduction error [14] and SoC estimation error [15].
For these studies, the structure of DIUs can be fully determined in
advance with complete information of uncertainties. However, some
stochastic properties may practically be affected by decision vari-
ables/control strategies and thus be denoted as decision-dependent
uncertainties (DDUs). For instance, the response probability of
a GES unit will likely decrease with increased DR frequency,
magnitude, and duration [10]. And the magnitude and duration
of discomfort can beget manual overrides and result in reduced
capacity of a GES [16]. These relations are generally overlooked or
simplified away as static and known probability distributions.

Technically speaking, DDUs are divided into two distinct types,
which we will refer to as Type 1 and Type 2 [17]. For Type 1-
DDUs, decisions influence the parameter realizations by altering
the underlying probability distributions for the uncertain parameters.
In contrast, for Type 2-DDUs, decisions influence the parameter
realizations by affecting the timing or content of the information we
observe. Type 2-DDUs have been addressed in long time-scale plan-
ning problems using, e.g., multi-stage stochastic optimization with
adequately defined scenario trees [18]. For fast time-scale GES op-
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erations described herein, DDUs can be simplified as Type 1-DDUs.
Though DDUs are rarely discussed in the literature, the following
relevant methods exist today for DDUs: (i) robust optimization
(RO) and (ii) stochastic optimization (SO). The assumption of linear
decision-dependency of polyhedral uncertainty sets on decision vari-
ables is considered in [19], [20], rendering a static RO-DDUs model.
Adaptive RO-DDUs models that incorporate wait-and-see decisions
and endogenous uncertainties are studied in [21], [22], where an
iterative algorithms was employed to handle the computational
challenge raised by the coupling relationship between uncertainties
and decisions in two stages. Ref. [23] reformulates the problem into
multi-stage SO based on a scenario tree. The related works indicate
that the key to the optimization under DDUs is to decouple decisions
and uncertainty description through iterative algorithms. However,
these methods are subject to simplified linear modeling of DDUs
that guarantee convergence. To ensure accurate characterization of
GES performance [24] and consideration for complex decision-
dependent customer behavior dynamics [16], it becomes necessary
to incorporate DDUs with nonlinear (but convex) structure. Further-
more, to satisfy decision-makers with different risk preferences and
assess the reliability performance of GES units, chance-constrained
optimization (CCO) may be preferred relative to SO and RO. To
the best our knowledge, no research work has concurrently modeled
DDUs of GES in the CCO framework and provided a feasible
approach to optimization under non-linear (convex) structure of
DDUs with possibly unknown underlying probability distributions.

To fill in the research gap in both modeling and solution
methodologies, this manuscript addresses the day-ahead chance-
constrained economic dispatch of GES with a modified baseline
model within which both DIUs and DDUs can be considered,
thus, providing a general framework for optimization of GES.
Specifically, the main contributions of this manuscript are threefold:

i) Modeling: We propose a modified baseline model and detailed
uncertainty description with DIUs and DDUs of GES. Compared
with the model from [9], the proposed GES model incorporates
time-varying and rate-limited properties and considers four common
device types where parameters can be obtained by a data-driven ap-
proach [14]. For the uncertainty description, we consider three types
of DIUs (on-off state probability, parameter identification errors and
uncertain baseline consumption) and two types of DDUs (available
SoC bounds affected by incentive price and response discomfort).

ii) Methodology: Two tractable reformulations are proposed to
effectively solve the CCO with DDUs by decoupling decisions and
uncertainties. For DDUs with general but incomplete knowledge of
distribution, a robust approximation approach is introduced to obtain
conservative results based on the maximum value of the unknown
inversed CDF, by different versions of Cantelli’s inequality. For
specific distribution of DDUs, an iterative algorithm allows reducing
the optimality gap, while using the robust approximation value as a
starting point. The iterative algorithm is also guaranteed to converge
to the optimum within a nonlinear (convex) DDU framework.

iii) Numerical study: We introduce two reliability indices,
loss-of-response probability and expected response energy not
served to assess the effectiveness and practicality of different
strategies and the consequence of overlooking various types of DIUs
and DDUs from literature. The case study shows that the proposed
models and methods substantially outperform previous approaches
in terms of the response reliability due to (1) reduced incomplete

knowledge of DIUs via data-driven parameter identification, (2)
incorporating DDUs in constraints, which effectively reduces
the penalty cost of response losses and improves availability and
performance of coordinated GES units.

The remainder of the paper is organized as follows. The modified
baseline model of GES is proposed in Section II. Uncertainty
modeling with DIUs and DDUs is presented in Section III. CCO
under DIUs and DDUs, as well as two reformulation methods, are
proposed in Section IV. Numerical studies based on real-world data
are provided in Section V to illustrate comparative performance.
Extensions of the proposed model are discussed in Section VI.
Finally, conclusions are summarized in Section VII.

II. BASELINE MODEL OF GENERIC ENERGY STORAGE

The basic model of GES initially presented in [9] is extended
herein for four types of commonly used energy resources, i.e., BES,
inverter air-conditioner (IVA), and fixed-frequency air-conditioner
(FFA), and EV. This manuscript extends the basic GES model
to incorporate time-varying and ramp-rate properties as shown
in (1a)-(1f). Constraint (1a) defines the relationship between
charging and discharging actions, SoC, and additional energy
input terms from baseline consumption. The newly-introduced
constraint (1b) limits the charging/discharging ramp rates on
changes in SoC while constraint (1c) represents time-varying upper
and lower bounds on SoC. Constraint (1d) ensures a sustainable
energy state for the GES over time. Constraints (1e) - (1f) limit the
upper and lower charging and discharging actions. Since sufficient
conditions are satisfied (i.e., charging price (“-”) is lower than
discharging price (“+”), the complementary constraint for charging
and discharging is relaxed and has been removed from model [25].
GES Constraints: ∀t∈ΩT , ∀i∈ΩS

SoCi,t+1=(1−εi)SoCi,t+ηc,iPc,i,t∆t/Si (1a)
−Pd,i,t∆t/(ηd,iSi)+αi,t

−SoCi,RD≤SoCi,t+1−SoCi,t≤SoCi,RU (1b)

SoCi,t≤SoCi,t≤SoCi,t (1c)

SoCi,T =SoCi,0 (1d)

0≤Pc,i,t≤P c,i,t (1e)

0≤Pd,i,t≤P d,i,t (1f)

In the above, ΩT and ΩS are sets of time periods and GES units,
respectively. Subscripts i and t define GES unit and time period,
respectively. Decision variables Pc,i,t and Pd,i,t are the charge,
discharge power, which are the additional power actions besides
the baseline consumption PB

i,t. Variables SoCi,t and ∆t define
SoC and time-step. Parameters P c,i,t and P d,i,t are the maximum
charge and discharge ratings, respectively, while SoCi,t and SoCi,t

are the upper and lower SoC bounds, respectively. Up and down
ramp rate for changes in SoC are given by SoCi,RU and SoCi,RD.
Parameters ηc,i and ηd,i are the charge and discharge efficiency,
while εi and Si are the self-discharge rate and energy capacity.
The newly introduced αi,t are specialized for TCL and EV as the
additional SoC changes from baseline consumption.

The relationship between modeling parameters and physical
parameters of each energy resource type is summarized in Table I.
Thermal capacity, thermal resistance, and conversion efficiency
of TCL are given by C, R, and η, while T in and T out define
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the indoor and outdoor temperature. These parameters can be
obtained by data-driven methods (i.e., load decomposition and
parameter identification) [14]. The transformation of TCLs into
GES begins with the thermodynamics of a 1st order equivalent
thermal parameter (ETP) model, and the difference between IVA
and FFA lies in the control mode and power property The proof
of the transformation of a TCL and EV to a GES is provided
in [26]. Note that the different device types can beget different GES
parameters. For instance, the self-discharge rate ε is usually ignored
for BES, but is not negligible for other GES types. In addition, most
of the parameters are constant for a BES, but time-varying for other
GES types, e.g., power and SoC bounds, addition SoC changes:
εSoCB

t for TCLs and ∆SoCB
t for EVs.

TABLE I
MAPPING GES MODEL PARAMETERS TO PHYSICAL RESOURCES

GES model Physical Physical Physical
parameters BES TCL (IVA/FFA) EV

SoCt SoCt
T

in−T in
t

T
in−T in

SoCt

P c,t P c P−PB
t P c−PB

c,t

P d,t P d PB
t −P P d−PB

d,t

SoCt SoC
T

in−T
in
t

T
in−T in

SoCt

SoCt SoC
T

in−T in
t

T
in−T in

SoCt

ε ε 1−e−∆t/RC ε

S S
∆t(T

in−T in)

ηRε
S

ηc/d ηc/d 1 ηc/d

αt 0 εSoCB
t ∆SoCB

t

III. UNCERTAINTIES IN GES OPERATIONS

To capture the effect of exogenous and endogenous uncertainties,
this section defines three types of DIUs and two type of DDUs in
operations of GES. While the results are general, we use TCL to
guide discussions.

A. Three types of decision-independent uncertainties

(a) On-off State Probability (DIU, Single Time)
GES units usually only respond to DR commands when in

on-state. Under conventional operations, local control logic defines
the on-off transitions, which means that a GES unit is not always
responsive to DR commands. Thus, the probability distribution of
on-off state ωi,t can be modeled as a Bernoulli distribution:

f(ωi,t)=

{
pi,t ωi,t=1

1−pi,t ωi,t=0
,∀t∈ΩT ,∀i∈ΩS (2)

i.e., with the on-state probability pi,t (for unit i and time t) obtained
from historical data. This DIU clearly affects the reliability of the
response of GES units.
(b) Parameter Identification Errors (DIU, Single Time)

Identification errors of GES parameters (e.g., R, C, T
in

, T in, T set
0 ,

P , P for TCL assets)are inherent to the process since we employ a
simple low-order, lumped model that ignores higher-order realities.
As shown in [14], the identification errors depend strongly on the
quality of data used but are generally within±10%. Parameter iden-
tification errors can be modeled with a truncated normal distribution:

ξi∼N (µξi,σξi,aξi,bξi),∀ξi∈ΩE, (3)

where ξi is a random parameter, e.g., for a TCL model, and the TCL
parameters are given by ΩE = {Ri,Ci,T

in
i ,T

in
i ,T

set
i,0,P i,P i},∀i∈

ΩS. The mean and standard deviation of parameters are given by
µξi and σξi , and ξi lies within interval [aξi,bξi]. This DIU mainly
affects GES power and SoC bounds shown in Table I.
(c) Uncertain baseline consumption (DIU, Single Time)

The distribution of GES baseline consumption can be determined
from historical data and modeled with a lognormal distribution:

PB
i,t∼LN (µPB

i,t
,σPB

i,t
),∀t∈ΩT ,∀i∈ΩS. (4)

The mean and standard deviation of baseline consumption are
denoted by µPB

i,t
and σPB

i,t
, while the baseline SoC is denoted by

SoCB
i,t and related with baseline consumption. This DIU mainly

affects the power bounds of GES units.
As shown, DIU(a)-(c) can capture different exogeneous

uncertainties, however, to characterize endogenous uncertainties
we present two types of DDUs next.

B. Two types of decision-dependent uncertainties

(a) Available SoC bounds Expansion Effect Driven by Incentive
Price (DDU, Single Time) and (b) Contraction Effect Driven
by Response Discomfort (DDU, Across Time)

The ability of a GES to actively deliver grid services with
sufficient capacity levels is another important uncertainty to
consider. Physically, SoC is bounded by known limits that satisfy
SoCt ∈ [0,1] as marked with blue lines in Fig. 1. In addition, the
available bounds of SoC are strictly contained within the interval
(0,1) and time-varying, due to the uncertain baseline consumption
(i.e., DIU (b-c)). This is illustrated in Fig. 1 in green rainbow lines.

However, incentives and discomfort will further affect the avail-
able SoC bounds, which comes as a trade-off between discomfort
(i.e., disutility sustained during grid services) and expected earnings
(i.e., incentives or prices) from managing a GES. Thus, the available
SoC bounds are dependent on (past) grid service commands. Specif-
ically, the decision-dependent bounds will expand and contract
based on incentive payments and discomfort, respectively, as shown
with red rainbow lines in Fig. 1. In particular, the response of a GES
to a specific incentive or discomfort is uncertain and begets DDUs.

Thus, a general structure that characterizes these two opposing
DDUs (i.e., expansion and contraction) is presented next in (5):

SoC
DDU
i,t =h(g(SoC

DIU
i,t ,cS

c,i,t), β
U
i RDi,t) (5a)

SoCDDU
i,t =h(g(SoCDIU

i,t ,cS
d,i,t), β

L
i RDi,t) (5b)

RDi,t=λ

t∑
τ=1

(
Pc,i,τ/P c,i+Pd,i,τ/P d,i

)
/T (5c)

+(1−λ)max{|SoCi,t−SoCB,av
i,t |−SoC

DB
i,t /2,0},

where g is a non-decreasing function of the GES incentive payment
(charging/discharging prices, cS

c/d,i,t) and represents the expanded
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SoC bounds without contraction effects. Functionh is monotonically
decreasing in response discomfort RDi,t associated with different
discomfort-aversion factors, βL

i ≥ βiU ≥ 0. The GES discomfort
is modeled in (5c) as a weighted normalized function of disutility
and discomfort. The right part of equation represents the relative
response intensity affecting disutility, while the right-most part
describes the absolute deviation of actual SoC from average baseline
SoC, which is inspired by the symmetric thermostat of a TCL cen-
tered by the comfortable status. This function can be generalized by
incorporating a discomfort deadband, SoCDB

i,t , around the average
baseline SoC, SoCB,av

i,t within which no discomfort is accumulated.
The bounds of deadband is named as comfortable SoC bounds
(i.e., SoCB,av

i,t ±SoCDB
i,t /2 ). Finally, the total response intensity and

discomfort are combined as a convex combination with parameterλ.
The comparison of the physical, DIUs, DDUs, and comfortable

SoC bounds (SoC
C
i,t and SoCC

i,t) are shown in Fig.1. Since the
focus herein is CCO, the uncertain SoC bounds are illustrated with
rainbow color to represent the different probability levels. Remarks
on DDU intuition, structure, probability distributions follow next:

Remark (Intuition on incentives and discomfort). During the
expansion stage, the effects of the incentive outweighs the
discomfort, however, discomfort levels are increasing. Thus, the
mode of the upper available DDU bound, SoC

DDU
i,t , shifts from

g(SoC
DIU
i,t ,cS

c,i,t) to upper available DIU bound SoC
DIU
i,t . Similarly

holds for the lower available DDU bound, SoCDDU
i,t , and lower

available DIU bound, SoCDIU
i,t . During the contraction stage, when

incentive effects are dominated by discomfort effects, discomfort
levels are decreasing, i.e., the mode continues to decline from
SoC

DIU
i,t and SoCDIU

i,t to SoC
C
i,t and SoCC

i,t, respectively.

Remark (Structure). The functions g and h can be generalized
via learning from test data. More generally, g could be an affine
function based on price elasticity [4] and h can be a polynomial
function. In Section V, we present a convex structure for DDUs.

Remark (Probability distributions). Function g and h are associated
with probability distribution that can be determined by the
Kolmogorov-Smirnov test from real-world actions. Specially,
truncated normal distribution can be used to describe the expansion
associated with incentive payment, and unimodal distribution can be
used to describe the contraction associated with response discomfort.

Fig. 1. Visualization of DIUs and DDUs in SoC bounds.

The scope of the uncertainties in the proposed ED problem are
limited to the options presented above with DIU(a-c) and DDU(a-b).
That is, other uncertainties, such as annualized capacity degradation,

is deemed outside of scope and is not included in this paper. Next,
we incorporate DIU(b-c) and DDU(a-b) into ED formulation, while
DIU(a) is the focus of Section VI.

IV. CHANCE-CONSTRAINED OPTIMIZATION
UNDER DIUS AND DDUS

A. Original Problem Formulation

In this paper, we consider DA-ED problem for a microgrid. The
microgrid system operator aggregates GESs assets (e.g., TCL-GES
and BES-GES), RES assets (e.g., wind and solar generation), and
conventional loads. The goal of the system operator of the microgrid
is to supply a DA dispatch of the assets to minimize operational
costs while maintaining the power balance and considering various
DIUs and DDUs. The full formulation is detailed next. First,
consider the objective function:

min
y

G(y,z)=
∑
t∈ΩT

(CS
t +CG

t ) (6)

CS
t =

∑
i∈ΩG

(cS
d,i,tPd,i,t+cS

c,i,tPc,i,t)∆t (7a)

CG
t =cG

t P
G
t ∆t. (7b)

The operational cost includes the incentive cost of GESs CS
t and the

cost of power bought from the grid CG
t . The power imported from

the grid is denoted as PG
t . DA time of use (ToU) price is given by

cG
t . The marginal costs of PV and WT assets are zero. Set of random

parameters described in Section III is given by z, set of decision
variables is given by y :=

{
Pd,i,t,Pc,i,t,P

G
t ,SoCi,t,RDi,t

}
. Next,

we will present the constraints of the ED optimization formulation.
GES chance constraints: ∀t∈ΩT , ∀i∈ΩG

P(Pc,i,t≤P c,i,t)≥1−γ (8a)

P(Pd,i,t≤P d,i,t)≥1−γ (8b)
P(SoCi,t≤SoCi,t)≥1−γ (8c)

P(SoCi,t≤SoCi,t)≥1−γ, (8d)

Where 1−γ ensures a probability of violation smaller than γ.
Chance constrained power balance: ∀t∈ΩT

P

(∑
i∈ΩR

PR
i,t+

∑
i∈ΩS

(Pd,i,t−Pc,i,t)+PG
t ≥PL

t

)
≥1−γ, (9)

where PR
i,t and PL

t are the stochastic RES and load powers, while
RES includes wind and solar generation from RES set ΩR.
Other constraint: ∀t∈ΩT

0≤PG
t ≤P

G
, (10)

where P
G

is the maximum power import from the grid. Next, we
present the complete DIU and DDU formulations.

Complete CCO-DIUs & CCO-DDUs formulations:
The overall problem with DIUs and DDUs can be formulated as:

min
y

G(y,z)

s.t. (1a-1f), (8a-8d), (9-10), (CCO-DIUs) (11)
(5a-5c) (CCO-DDUs)
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The difference mainly lies in the consideration of DDUs (5a) - (5c)),
besides traditionally considered DIUs. The CCO-DIU is a convex
optimization formulation, however, the CCO-DDU is only
guaranteed to be convex for specific structure of DDUs and certain
conditions. This proof is developed in Appendix A.

B. Problem Reformulation

(a) Chance-constrained reformulation under DIUs:
Without using scenario-based methods, chance constraints (8a)-

(8d), (9) admit a deterministic and tractable reformulation. We
employ the standard reformulation from [11], and yields:

Pc,i,t≤µP c,i,t
−F−1

P c,i,t
(1−γ)σP c,i,t

(12a)

Pd,i,t≤µP d,i,t
−F−1

P d,i,t
(1−γ)σP d,i,t

(12b)

SoCi,t≤µSoCi,t
−F−1

SoCi,t
(1−γ)σSoCi,t

(12c)

SoCi,t≥µSoCi,t
+F−1

SoCi,t
(1−γ)σSoCi,t

(12d)∑
i∈ΩR

(µPR
i,t
−F−1

PR
i,t
(1−γ)σPR

i,t
)+PG

t +
∑
i∈ΩS

(Pd,i,t−Pc,i,t)

≥µPL
t
+F−1

PL
t
(1−γ)σPL

t
. (12e)

Where normalized inverse cumulative distribution function F−1

can be obtained by Monte Carlo sampling (MCS) [27] of any kind
of distribution (e.g., normal distribution, beta distribution).
(b) Chance-constrained reformulation under DDUs:

(R1) Robust Approximation: For reformulation under DDUs,
the value of F−1(1 − γ, y) is unknown before optimization.
Thus, generalizations of the Cantelli’s inequality can be used to
estimate the best probability bound (i.e., the maximum value of
F−1(1−γ,y)) according to different general information about the
distribution, with both mean and variance. The maximum values
of F−1(1 − γ,y) for six widely used distributions are derived
and listed in Table II and these can be readily employed in any
CCO-DDUs problems without complete knowledge of DDUs
distribution. The supporting proofs are provided in Appendix B.
The value is decreased with increasing security levels. Besides,
the upper listed in Table II are with less available information of
distribution but with higher and more robust value, which will
further lead to higher security levels and tighter bounds. Since we
do not know the exact distribution of DDUs in advance, but at
least we can obtain the approximate shape of the distribution (e.g.,
unimodal or symmetric, etc.) through some live measurements
or prior knowledge. For instance, if the unknown distribution is a
Beta-like distribution, the unimodal function (Type 3) can be used
to yield a robust reformulation that is less conservative than types 1
and 2. Robust approximation can guarantee a more conservative
but credible solution to CCO-DDUs, which is specialized for
high-security requirement and initial state of operations without
sufficient historical data. To optimize with specific g,h distributions
for DDUs, we next present an iterative algorithm.

(R2) Iterative Algorithm: We propose an iterative algorithm in
Algorithm 1 for more precise structure (known function and distri-
bution of g and h), if sufficient live measurement/data about GES
are provided. Robust reformulation (R1) is used as starting point of
F−1(1−γ,yk) and it will be updated with updated strategy yk−1

via MCS. The convergence of the iterative algorithm is determined
by the convexity of CCO-DDUs, also shown in Appendix A.

TABLE II
APPROXIMATION OF WIDELY USED NORMALIZED INVERSE CUMULATIVE

DISTRIBUTION

Type & Shape F−1(1−γ,y)max γ

1) No distribution assumption
√

(1−γ)/γ 0<γ≤1

2) Symmetric distribution
√

1/2γ 0<γ≤1/2

0 1/2<γ≤1

3) Unimodal distribution
√

(4−9γ)/9γ 0<γ≤1/6√
(3−3γ)/(1+3γ) 1/6<γ≤1

4) Symmetric & unimodal
distribution

√
2/9γ 0<γ≤1/6

√
3(1−2γ) 1/6<γ≤1/2

0 1/2<γ≤1

5) Student’s t distribution t−1
ν,σ(1−γ) 0<γ≤1

6) Normal distribution Φ−1(1−γ) 0<γ≤1

Algorithm 1 Iterative algorithm for CCO-DDUs

Input: Probability level γ, convergence criterion δ, deterministic
and reformulated random parameters under DIUs.
Output: Decision variables y and cost function F(y,z).
Step 1 - Initialization:
Set k=0, and F−1(1−γ,y0) with robust reformulation value
referred to Table II. Compute CCO-DDUs with F−1(1−γ,y0)
to obtain initial value of y0. Use y0 to update F−1(1−γ,y1) via
MCS. Calculate ϵk=

∣∣F−1(1−γ,y1)−F−1(1−γ,y0)
∣∣.

Step 2 - Iteration:
While ϵk>δ do

k←k+1
Compute CCO-DDUs with F−1(1−γ,yk) to obtain yk.
Use yk to update F−1(1−γ,yk+1) via MCS.
Calculate ϵk=

∣∣F−1(1−γ,yk+1)−F−1(1−γ,yk)
∣∣.

end
Step 3 - Return: y=yk, G(y,z)=G(yk,z)

V. NUMERICAL ANALYSIS

The system is set up with ground truth data obtained from
the Pecan Street dataset and used for the data-driven analysis of
100 TCL units as GES units. Historical data of RES u nit and
demand are collected from the urban distribution area of Jiangsu
province, China in 2020. The tiered electricity price of Jiangsu
province, China, is used for day-ahead electricity price. All the
data used in this paper are publically available [26]. Optimization
problems are coded in MATLAB with YALMIP interface and
solved by GUROBI 9.5 solver. The programming environment is
Core i7-1165G7 @ 2.80GHz laptop with 16GB RAM.

A. Baseline Results Compared with Different Models

We next compute and compare the solutions of three test models
(M1-M3) that differ in how they incorporate uncertainty in the
optimization formulation:
(M1) Deterministic LP: this deterministic baseline model of GES
was proposed in [9] and considers no uncertainties and no time-
varying parameters (i.e., assumes large SoC bounds and averaged
exogenous conditions), rendering an LP with constant parameters.
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(M2) CCO-DIUs: this stochastic baseline model uses CCO with
DIUs, which is common in the literature [11], [15], and yields a
decision-independent CCO problem with varying, stochastic SoC
bounds.
(M3) CCO-DDUs: this CCO model illustrates the novel convex
DDU structure along with different DIUs. The formulation then
reflects a decision-dependent CCO problem.

We first adopt a linear structure, as shown in (13) below,

g=

{
(SoC

PY
i,t−SoC

DIU
i,t )N (µgU,σg)+SoC

DIU
i,t

(SoCPY
i,t−SoC

DIU
i,t )N (µgL,σg)+SoCDIU

i,t

(13a)

h=

{
(SoC

C
i,t−QgU)LN (µhU,σh)+QgU

(SoCC
i,t−QgL)LN (µhL,σh)+QgL

(13b)

µgU/L =cS
c/d,i,t/c

S, µhU/L =βU/L
i RDi,t, (13c)

Where normal distribution g and lognormal distribution h describe
the DDUs. The quantile function of g is defined as Qg. We set
cS =1.5, cS

c,i,t=0.3, cS
d,i,t=0.6, βU

i =3, βL
i =6, σg =0.5, σh=0.1,

λ=0.7. The different sets of prices and discomfort aversion factors
beget trade-off between charging and discharging actions. The ToU
pricing is set to be 0.5-0.9-1.4 (CNY/kWh) while the security level
for CCO is set to be 95%.

Comparisons of M1-M3 are shown in Fig. 2 while Table III
summarizes the results. Great difference has been observed between
M1-M3 concerning the SoC distribution and charge/discharge power.
GES units discharge for most of the time and maintain the lowest
SoC during peak load in M1, while the discharge response is reduced
evidently after 16 h in M2 & M3 to guarantee the available lower
SoC bound, which results in a charging action at the end of dispatch.
In terms of optimality, M3 operations represent the highest costs,
because a trade-off is exacted between comfort and revenue. The
other optimization results mainly focus on the difference in SoC
bounds shown in Fig. 3 (a). It is observed that SoC bounds are
reduced in M2 because of compressed temperature preference (i.e.,
customers’ behavior), while SoC is limited within [0,1] in M1 and
significantly over-estimate the capability of GES. Additionally, the
difference between SoC bounds are shown in Fig. 3(b). Compared
with DIU bounds, the expansion effect is witnessed in M3 before
11 am and then followed with contraction effects. And the average
expansion and contraction percentage for (Upper and lower) bounds
are ([9,37]%,[-6,-42]%). It’s observed that the accumulated discharg-
ing actions increase the discomfort and reduce the expansion effect
in the morning, then the increased contraction effect mainly results
from the SoC-based discomfort in the afternoon. The recovery of
SoC to the comfortable bounds causes the reduced contraction effect
in the evening. But the deviation from comfortable bounds increases
contraction effect at night peak load period.

TABLE III
OPTIMIZATION RESULTS WITH DIFFERENT MODELS AND UNCERTAINTIES

Metric M1 M2 M3

CostOC (CNY) 2034.60 2727.55 2799.71∑
Pd,i,t∆t (kWh) 750.59 337.85 164.93∑
Pc,i,t∆t (kWh) 35.70 60.50 40.33∑
PG
t ∆t (kWh) 1495.11 2288.84 2443.24

Fig. 2. Comparison between model (1) & (2): (a) SoC distribution, boxplot:
distribution of individual GES units, thick line: mean value of GES portfolio, (b)
aggregated charge or discharge power, (c) power from grid.

Fig. 3. (a) Comparison between different SoC bounds, (b) expansion or contraction
effect compared with DIU bounds

Moreover, it is observed that SoC changes are not consistent with
grid response because different power actions exist (e.g., grid net
charge, energy losses from self discharge, additional energy input
from baseline consumption). Different power actions of M3 are illus-
trated in Fig. 4, where self discharge changes with SoC and is always
negative. Additional energy input is always positive and calculated
based on baseline SoC. And it is clear that the residual flexibility
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and capacity for grid response is quite limited compared with other
energy actions, which has been overlooked in prior work [9].

Fig. 4. Comparison between different parts of power actions of M3.

B. Benefit from considering DDUs

At first glance, the results of M1 and M2 appear superior to M3.
This is due to M1 and M2 having greedy utilization of flexibility and
low operational costs. However, the predicted results of M1 and M2
are unlikely to be realized in practice due to a lack of reliability of dis-
patch and the unavailability of GES units [10], [24]. To capture these
practical shortcomings of M1 and M2, we introduce two reliability
indices in this paper to assess the difference between predicted strate-
gies and real actions: i) loss of response power probability (LORP)
and ii) expected response energy not served (ERNS). The basic
idea is to compare the difference between practical SoC bounds
(calculated with DDUs effect) and predicted SoC bounds from the
different models. The indices are defined in (14), where Xk|y,z rep-
resents the reliability loss events under strategy y and uncertainty z.
R(.|.) is the function of response energy losses and can be calculated
by the deviation of SoC strategy from the practical SoC bounds.

LORP=
∑
k

P(Xk|y,z) (14a)

ERNS=
∑
k

P(Xk|y,z)R(Xk|y,z). (14b)

Fig. 5 shows the reliability performance comparison between
M1-M3 with respect to SoC bounds and reliability indices. Practical
SoC bounds are illustrated by gradient colors to represent uncertain
bounds with different probability level (darker for higher probability
level). Compared with theoretical SoC bounds, the practical ones
contracted gradually in M1-M2 and end with few flexibility to
response. This provides a convincing explanation of the response
unavailability of DR, especially during the peak load period using
previous greedy strategies. While theoretical bounds are a little more
conservative than practical ones in M3 using robust approximation
method. In terms of reliability indices, lower reliability (i.e., higher
LORP & ERNS) are revealed in M1-M2 due to the overestimation
of the feasible region. The negative value of ERNS represents the
under-response of GES units during the expansion stage, while the
positive one represents the over-response of GES units during the
contraction stage. Moreover, the expected reliability results shown
in Table IV indicate that the reliability indices are constant for M1
regardless of the security level, while the reliability performance
of M2 and M3 worsen for operations with a lower security level.
And the reliability indices using M1/M2 are far beyond the security
level 1−γ, while results of M3 are maintained within the security
level. In practice, decision-makers would determine γ according

to their risk preference, which is a trade-off between costs and risks.
Additionally, the penalty cost (PC) and total cost (TC) are compared
under 0.8 times of ToU price for over-response and 1.5 times of
ToU price for under-response. The higher (actual) penalty and total
cost from M1/M2 are compared with the theoretical operational
costs (OC) listed in Table IV. Clearly, the improved reliability and
overall economic performance illustrates how optimization under
DDUs can provide an admissible strategy, improve the availability
of delivery of grid services and reduce the penalty cost.

Fig. 5. Reliability performance comparison with respect to (a) practical and
theoretical SoC bounds (95%) and (b) ERNS.

TABLE IV
RELIABILITY AND ECONOMIC PERFORMANCE OF DIFFERENT MODELS AND

PROBABILITY LEVEL

γ Indices M1 M2 M3

0.05
LORP / ERNS 0.34 / 11.97 0.00 / 0.00

CostPC / CostTC LORP 0.64 429.24 / 3156.80 0.00 / 2799.71

0.25
LORP / ERNS ERNS 30.62 0.41 / 14.01 0.13 / 3.02

CostPC / CostTC CostPC 1246.65 517.31 / 3244.87 0.00 / 2799.71

0.45
LORP / ERNS CostTC 3281.25 0.44 / 15.24 0.18 / 3.62

CostPC / CostTC 573.23 / 3300.78 0.01 / 2799.72

C. Flexibility with Different Dispatch Modes and DDUs Structure

The increasing contraction effect on SoC bounds shown in Fig. 3
indicates that it is not suitable for the system operator to fully
leverage the flexibility of GES units throughout the day, but it may
be better to use GES for short-time period to reduce the contraction
effect. Thus, in this subsection, we consider additional dispatch
modes: (D1) all-day dispatch, and (D2) peak-time dispatch (7
pm-10 pm). In addition, different RD structures are investigated for
different GESs types. For example, BES owners wish to maximize
unit lifetime, which emphasizes the disutility function (F1), while
TCL and EV units employ both the disutility and SoC-based
discomfort. TCL units may have symmetric levels of SoC-based
discomfort, which can be modeled with absolute value or dead-band
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function (F2). However, EV units just need to meet a minimum
SoC threshold and discomfort can, thus, be modelled linearly (F3).

Herein, we only change the dispatch time duration and discomfort
function while the other factors remain unchanged from the
baseline case study. The comparison of flexibility and DDUs
expansion/contraction effects are shown in Table V. Specifically,
deviated from the SoC bounds under DIUs, the average expansion
(EP) and contraction (CT) of the upper and lower SoC bounds are
denoted as EP, CT and EP, CT, respectively. It is observed that BES
units outperform other GES units in terms of flexibility and cost due
to BES units being relatively unaffected by DDUs. And the symmet-
rical effect of SoC-based discomfort inherently limits the flexibility
utilization of TCL units and makes TCL units least economic in
dispatch. More importantly, for typical days with night peak time,
discharge quantity and contraction effect are two decisive factors,
while charge actions and expansion effect are not relatively impor-
tant because they rarely contribute to the dispatch. And operations
with more discharge actions (e.g., operations in F1) and less contrac-
tion effect (e.g., operations in D2) tend to perform more optimized.
Finally, GESs with asymmetric DDUs structure and short-time
period dispatch are more suggested to improve the DR performance.

TABLE V
OPERATIONS WITH DISPATCH MODES AND DDUS STRUCTURE

DDUs
Structure

Dispatch
Mode

CostTC

(CNY)

∑
Pd,i,t∆t
(kWh)

∑
Pc,i,t∆t
(kWh)

EP
(%)

EP
(%)

CT
(%)

CT
(%)

F1 D1 2772.38 187.80 31.65 9.40 37.92 -4.15 -26.67
D2 2749.17 174.29 0.83 0.00 7.51 -0.40 -0.71

F2 D1 2799.71 164.93 40.33 8.61 36.95 -5.92 -41.95
D2 2766.54 152.67 0.88 2.55 28.83 -3.08 -13.32

F3 D1 2785.35 171.20 32.10 9.39 39.83 -4.75 -31.20
D2 2755.77 167.14 1.35 0.19 13.17 -1.80 -5.41

D. Computational performance of the convex reformulation

In this subsection, the convergence of reformulated methods to
optimality is shown in Fig. 6 with two common types of distributions
(Beta and Lognormal) applied to h. It can be seen that the iterative
algorithm converges within 4 iterations. Moreover, the optimization
results compared with two reformulated methods are shown in
Table VI, where both distributions adopt the robust value of the
unimodal type. The solution time depends on the complexity of
function of response discomfort and distribution of DDUs (more
time for Beta distribution and absolute function of TCL). And it is
obvious that R1 outperforms R2 in terms of computational efficiency,
but it will produce more conservative results, while R2 achieves a
lower cost. The optimality gap between two methods is within 1%
which indicates that R1 can be used extensively even if the distribu-
tion of DDUs is unknown. Note that to improve the computational
efficiency of the two reformulation methods, one can consider the
following approaches: (i) employ a quadratic or polynomial approxi-
mation of the absolute function, which makes it more; (ii) reduce the
number of DDU constraints by replacing the DDUs constraints of
each individual GES unit with that of the entire GES portfolio; and
(iii) reduce the convergence criterion for the iterative algorithms,
which may not affect optimality gap significantly as shown in Fig. 6
achieving near-optimal performance after just 2 (two) iterations.

Fig. 6. Convergence performance under Beta and Lognormal distribution (95%)

TABLE VI
OPERATIONS COMPARED WITH DIFFERENT REFORMULATION METHODS

DDUs
Structure

Distribution
Type

R1 R2

CostTC Time CostTC Time
(CNY) (s) (CNY) (s)

F1
Beta

Distribution

2772.38 24.60 2750.02 2751.01
F2 2799.71 310.86 2779.13 6406.70
F3 2785.35 28.01 2764.27 3032.21

F1
Lognormal
Distribution

2772.38 24.60 2752.26 132.08
F2 2799.71 310.86 2781.87 1562.88
F3 2785.35 28.01 2766.63 103.86

Finally, sensitivity analysis is performed to compare the
optimality gap with different standard deviations and probability
level of DDUs (only for the Lognormal distribution). The results
shown in Fig. 7 indicates that the sensitivity of gap errors will
decline at first and then increase when decreasing the security level.
Moreover, it is found that that the relationship between optimality
gap and the distributions’ standard deviation is almost linear, which
helps decision-makers map levels to optimality.

Fig. 7. Sensitivity of gap with probability level and standard deviations

VI. DISCUSSION OF EXTENDED PROBLEMS

Compared with deterministic ES, the key challenges to overcome
for broad adoption of stochastic GES in power system operations
include: (1) non-trivial energy losses due to self-discharge and
uncertain baseline consumption; (2) time-varying parameters and
flexibility; (3) DIUs and DDUs in SoC bounds; (4) on-off state
probability due to customers’ behavior. The prior case studies
accurately mitigates effects of challenges (1-3), so in this subsection,
we further propose two approaches to mitigate challenge (4).

(S1) - Portfolio with Deterministic Reserve
The on-state probability tends to be quite low especially for

night-time and working hours in the residential sector, so system
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operators could participate in DA reserve market to enhance the
security level under the support of deterministic reserve, such as
ES and CPP. For those units below the security level, deterministic
reserves will replace the unavailable response of GES as PRS

i,t , and
the constraints for deterministic reserves are added as (15):

PRS
i,t≤PRS

i,t ≤P
RS
i,t (15a)

−PRS
i,RD≤PRS

i,t+1−PRS
i,t ≤PRS

i,RU (15b)

PRS
i,t =Pd,i,t−Pc,i,t, (15c)

where upper and lower power reserve bounds are denoted PRS
i,t and

P
RS
i,t , respectively. The ramp rates are given by PRS

i,RD and PRS
i,RU.

(S2) - Portfolio with Probabilistic Reserve
It can be costly to use 100% reliable reserve for normal

grid operations, so here we explore probabilistic reserves
as an alternative [28]. The reliability requirement of combined
probabilistic reserve, and its cost are shown in (16), whereRRS

i,t is the
reliability of probabilistic reserve and cRS

i,t is the corresponding price:

(1−pi,t)(1−RRS
i,t)=γ, cRS

i,t=aRS(RRS
i,t)

bRS

. (16)

First, the on-state probability of 100 TCL-GESs is analyzed
and the maximum and minimum average on-state probability are
0.999 and 0.830, respectively. The corresponding time periods are
7 pm and 9 am, respectively. Thus, the real-time security level for
DR produced by TCL-GES units can be described as pi,t(1−γ),
so system operators should rely on other reserves to guarantee
the system security requirement (1−γ). For reserve price, we set
aRS=1 (100% reliability), bRS=2, and we compute the modified
results with different solution methods. Results for S1 and S2
shown in Table VII are more credible but less economic than just
considering challenges (1-3). It is observed that the power demand
of GESs is reduced and transferred to demand of reserve instead,
and the demand of reserve is gradually reduced with the decrease
of security level. Moreover, portfolio with probabilistic reserves
outperforms the deterministic ones in terms of overall cost.

TABLE VII
MODIFIED RESULTS WITH TWO TYPES OF RESERVE

γ

S1 S2

Cost
∑

Pc/d,i,t∆t
∑

PRS
i,t∆t Cost

∑
Pc/d,i,t∆t

∑
PRS
i,t∆t

(CNY) (kWh) (kWh) (CNY) (kWh) (kWh)

0.05 2835.41 63.79 119.06 2839.30 51.01 120.98
0.30 2519.22 25.44 190.58 2511.38 37.30 184.93
0.55 2351.82 10.34 216.66 2347.15 15.38 213.89
0.80 2174.02 0.00 232.23 2174.02 0.00 232.23

VII. CONCLUSION

In this paper, we proposed a novel CCO formulation for the
day-ahead economic dispatch of uncertain GES units, which fully
incorporates dynamic properties and various types of DIUs and
DDUs. Specially, we modelled the human behavior of GES units as
the endogenous uncertain SoC bounds affected by incentive signals
and discomfort levels. The numerical results show that the dynamic
flexibility of GES units is reduced and limited by DDUs effect
and time-varying user preferences. And by considering DDUs, we
enable decision-makers to systematically trade-off between overall

profit and customers’ (dis)comfort ranges. This produces more
conservative, but more credible strategies. These results illustrate
how improved availability and economic performance of uncertain
GES units can benefit practical DR programs. In addition, we
proposed two tractable solution methods for CCO-DDUs while
the computational performance shows that a robust approximation
outperforms the iteration algorithm in computational efficiency
(by a few minutes) while maintaining a good performance (within
1% optimality gap). And the major attraction is that robust
approximation can be applicable in any CCO problem without
complete knowledge of DDUs, which is more applicable to be used
as the black start of DR programs.

Future work will focus on reducing the risk of GES units
and achieving a trade-off between expected profit and risk by
considering investment portfolio optimization in multiple markets.
In addition, measurements/data from GES units should be further
analyzed to possibly infer and learn the structure of DDUs.

APPENDIX

A. Convexity and Convergence Conditions

According to the convexity condition of CCO and reformulation
(13c-13d), CCO-DDUs problem (11) is only guaranteed to be con-
vex under the condition (i)-(ii). The convergence of the iterative al-
gorithm is guaranteed when the convexity condition is satisfied [29].

(i) µSoCi,t
and F−1

SoCi,t
(1− γ)σSoCi,t

are convex function of
decision variables y.

(ii)−µSoCi,t
and F−1

SoCi,t
(1−γ)σSoCi,t

are convex function of
decision variables y.

For DDUs designed in (13), the inside functions are given:

µSoCi,t
=(SoC

B
i,t−QgU)βU

i RDi,t+QgU (17a)

µSoCi,t
=(SoCB

i,t−QgD)βD
i RDi,t+QgD (17b)

F−1

SoCi,t
(1−γ)σSoCi,t

=(QgU−SoCB
i,t)F

−1
hU (1−γ,y)σhU (17c)

F−1
SoCi,t

(1−γ)σSoCi,t
=(QgD−SoCB

i,t)F
−1
hD (1−γ,y)σhD (17d)

Thus, the convexity conditions are further simplified as:
(a) RDi,t is a convex function of y.
(b) F−1

h (1−γ,y) is a convex function of y.

The convex function described in (5c) guarantees the convexity
condition (a). And since we fix the variance of the distribution,
the convexity of F−1

h (1 − γ,y) is equivalent to the convexity
of F−1

h (1− γ,µ). For lognormal distributions, F−1
h (1− γ,µ) =

exp(µ+
√
2σ2erf−1(1−2γ)), which guarantees the convexity con-

dition (b). While, for other complex distributions (e.g., Beta), there
is no explicit expression for the inverse CDF, and numerical simu-
lations in Fig. 8 shows that it can not guarantee convexity overall.
There exists, however, a convex region which contains the iterations
using Beta distribution. Thus, global optimality can be verified for
this convex region and corresponding constraints can be added to
limit response discomfort (µ) of GES units within that region.

B. Proof of the value of Robust Approximation

We write F the CDF function, P the PDF function, k ≥ 0 a
constant, and ξ as the probabilistic parameter with zero mean and
unit variance under the chosen distribution. Different versions of
Cantelli’s inequality [30] are used to obtain the following results.
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Fig. 8. Numerical test of convexity

1) Classical Cantelli inequality can be used without distribution
assumption of DDUs and infers the following conclusion.

F(k)=1− sup
P∈NA

P[ξ≥k]=k2/1+k2 (18a)

F−1(1−γ)=
√
(1−γ)/γ (18b)

2) Chebyshev’s inequality can be used with symmetric
distribution of DDUs and infers the following conclusion.

F(k)=1−sup
P∈S

P[ξ≥k]=1− 1

2
sup
P∈S

P[|ξ|≥k]=1− 1

2k2
(19a)

F−1(1−γ)=
√
1/2γ (19b)

3) VySoChanskij–Petunin inequality can be used with unimodal
distribution of DDUs and infers the following conclusion.

F(k)=1− sup
P∈U

P[ξ≥k]

=

{
1−4/(9k2+9) k≥

√
5/3

1−(3−k2)/(3+3k2) 0≤k≤
√
5/3

(20a)

F−1(1−γ)=

{ √
2/9γ 0<γ≤1/6

√
3(1−2γ) 1/6<γ≤1/2 (20b)

4) Gauss’s inequality can be used for symmetric & unimodal
distribution of DDUs and infers the following conclusion.

F(k)=1− sup
P∈SU

P[ξ≥k]=1− 1

2
sup
P∈U

P[|ξ|≥k]

=

{
1−2/9k2 k≥2/

√
3

1/2+k/2
√
3 0≤k≤2/

√
3

(21a)

F−1(1−γ)=

{ √
2/9γ 0<γ≤1/6

√
3(1−2γ) 1/6<γ≤1/2 (21b)

5-6) For student’s t and normal distribution of DDUs, the
normalized CDFs t−1

ν,σ(1−γ) and Φ−1(1−γ) can be used without
introducing approximation errors.
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