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A B S T R A C T

This paper proposes a regression market for wind agents to monetize data traded among themselves for
wind power forecasting. Existing literature on data markets often treats data disclosure as a binary choice
or modulates the data quality based on the mismatch between the offer and bid prices. As a result, the market
disadvantages either the data sellers due to the overestimation of their willingness to disclose data, or the
data buyers due to the lack of useful data being provided. Our proposed regression market determines the
data payment based on the least absolute shrinkage and selection operator (lasso), which not only provides
the data buyer with a means for selecting useful features, but also enables each data seller to individualize the
threshold for data payment. Using both synthetic data and real-world wind data, the case studies demonstrate
a reduction in the overall losses for wind agents who buy data, as well as additional financial benefits to those
who sell data.
1. Introduction

As the complexity and uncertainty of modern energy systems grow,
the value of data for improving system and market operations has
become a focus of academic research in recent years [1]. One important
usage of data is to inform the forecast of loads and generation [2].
Focusing on wind power forecasting, this paper investigates how the
value of external data can be quantified and monetized.

The added value of data for wind power forecasting has been well
examined under the assumption that data from external sources is a
free and highly accessible commodity [3–5]. However, this assumption
becomes unrealistic in applications where data privacy is highly val-
ued [6] or where a conflict of interest exists between the data owners
and the data users [7].

To incentivize data exchange, recent literature has been exploring
the idea of a data market, in which the data owners (sellers) receive
financial compensation from the data users (buyers) for their disclosure
of data [8]. In general, these market frameworks can be put into two
categories: buyer-centric markets and seller-centric markets. In a buyer-
centric market, the data buyer has full control over the data price, while
each data seller is either assumed to always accept the offer [9], or
given a binary choice on the offer while suffering a privacy loss [10,11].
By contrast, a seller-centric market gives the data sellers the authority
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to directly add noise to the data [12], or has a third party set the price
based on the added value of previously traded data [13]. In the latter,
noise is also added to the data if the offering price from the data buyer
is lower than the set price. As these market frameworks are often based
on game theory, it is often computationally intensive to find the market
equilibrium in a noncooperative game setting [10–12] or to derive the
market payoffs in a cooperative game setting [13].

In the context of wind power forecasting, it has been shown in the
literature that data from surrounding sites, such as other wind farms,
can help improve forecast accuracy substantially due to the significant
spatio-temporal correlations [4,14]. A wind agent’s losses from forecast
errors are commonly measured by the mean squared error (MSE) of the
forecast compared to the target values of power generation [15,16].
Using the reduction of MSE as the measurement for a wind agent’s
profit as a data buyer, [7,9] adopt the ordinary least squares (OLS)
regression to estimate the forecasting parameters, and construct data
markets to incentivize wind agents as market competitors to trade data
among themselves. The framework in [7] adopts the pricing scheme
from [13]. where the price of data in each trade is determined by the
added value of the sellers’ data to the previous buyers. As a result,
the market outcomes are dependent on the ordering of the buyers,
leading to potential large suboptimality gaps and unfairness. Instead of
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pricing the data prior to each trade, the framework in [9] quantifies the
reduction of the losses for each data buyer and allocates the resulting
savings to the sellers based on their contribution to the buyer’s task.
The caveat of this market is the assumption that the sellers have no
revenue requirements, when in reality this might not hold true.

OLS regression is known to be highly sensitive to outliers and prone
to overfitting when the supporting features, sets of data that are fitted
to the target variable in the regression, are highly correlated [17].
Since wind power data for closely located wind farms are likely highly
correlated, feature selection methods such as the least absolute shrink-
age and selection operator (lasso) [18] have been widely adopted for
parameter estimation in wind power forecasting [16,19,20]. It helps
eliminate the impact of less correlated data in the forecasting task
through adding to the loss function the product of a positive regular-
ization parameter and the absolute value of the coefficient for each
feature, referred to as the lasso term.

We observe that not only is the lasso term effective in preventing
overfitting, but it can also provide a tool for thresholding the selection
of features through customizing their corresponding regularization pa-
rameters: the higher the regularization parameter, the more correlated
a feature has to be to the target to be selected. This observation serves
as the inspiration for our proposed market framework.

The main contribution of this paper is the design of a lasso regression
market for wind power forecasting, in which the lasso term is exploited
as a measure for direct payments from data buyers to data sellers. This
market framework has three main advantages: (1) compared to the
seller-centric model, the lasso provides the buyers with better quality
data through selecting from the sellers’ data the features that are most
likely to improve the forecast without additional noise; (2) compared
to the buyer-centric model, sellers are given the authority to threshold
their financial reward through individualizing the lasso regularization
parameter; and (3) compared to data markets that are set up based on
game theory, the computation of the market outcomes is simpler as
the lasso term as an output from the regression directly represents the
payment.

The paper is structured as follows: Section 2 introduces the market
participants. Section 3 describes the OLS regression and the lasso
regression for the data buyer’s analytics task. Section 4 formulates the
lasso regression market for wind agents and proves its financial viabil-
ity for both data buyers and data sellers. Section 5 uses synthetic data
and measured data from Nord Pool1 to demonstrate the effectiveness of
the proposed market. Section 6 concludes the paper with discussions on
the key findings and future work.

2. Market participants

The use case for the proposed regression market is data trading
among wind agents. The data buyer is called a central agent who has an
analytics task to estimate parameters for forecasting wind power. The
other wind agents are data sellers, referred to as support agents, hold
ata that could potentially improve the central agent’s forecast, and
xpect to be remunerated for sharing those data. We focus on a single-
uyer setup, but it can be easily extended to multiple buyers since the
gents’ analytics tasks are independent of each other in the sense that
he outcome of a central agent’s forecasting task does not affect any
oncurrent task of another agent.

1 https://www.nordpoolgroup.com/Market-data1/Power-system-
ata/Production1/Wind-Power/ALL/Hourly1/.
2

2.1. Agents and the analytics task

We denote the full set of wind agents by  = {1, 2,… , 𝑁}, indexed
by 𝑖, so 𝑖 ∈  . The data buyer, or the central agent 𝑐 ∈  , has an
analytics task to estimate parameters for forecasting wind power as a
time series target variable, denoted by vector 𝐲𝑐 =

[

𝑦𝑐,1 𝑦𝑐,2 … 𝑦𝑐,𝑇
]⊤,

here 𝑇 is the total number of time steps of concern. The support
gents are gathered in set −𝑐 =  ⧵ {𝑐} = {𝑖 ∈  |𝑖 ≠ 𝑐}, and the
ata owned by each agent 𝑖 are in set 𝑖 = {𝐱𝑑𝑖 |𝑑 ∈ [1, 𝐷𝑖→𝑐 ]}, where
𝑖→𝑐 is the total number of relevant features from agent 𝑖 for the central
gent’s analytics task, and vector 𝐱𝑑𝑖 represents agent 𝑖’s 𝑑th feature
e.g., 𝑙-hour-ahead wind power data: 𝐱𝑑𝑖 = [𝑥𝑑𝑖,1−𝑙 𝑥

𝑑
𝑖,2−𝑙 … 𝑥𝑑𝑖,𝑇−𝑙]

⊤). The
nalytics task with all agents’ data is given by

̂ = 𝐹
(

 , 𝐲𝑐
)

, (1)

here  = ∪𝑖∈𝑖 gathers the relevant input features of the central
gent and support agents, and ̂ is the set of estimated parameter
alues for the analytics task. If the analytics task follows a linear
egression framework, ̂ = {𝛽𝑑𝑖 |𝑖 ∈  , 𝑑 = 1,… , 𝐷𝑖→𝑐} ∪ {𝛽0 } is the
et of linear coefficients, with each element corresponding to a feature
f an agent and 𝛽0 representing the intercept term.

Similarly, if the central agent only relies on their own data for the
nalytics task, it solves

̂𝑐 = 𝐹
(

𝑐 , 𝐲𝑐
)

, (2)

where ̂𝑐 = {𝛽𝑑𝑐 |𝑑 = 0, 1,… , 𝐷𝑐→𝑐} gathers the linear coefficients corre-
ponding to the features owned by the central agent, with 𝛽0𝑐 being the

intercept. Using results from (1) and (2), the central agent can forecast
the target variable as 𝐲̂𝑐

(

 , ̂
)

and 𝐲̂𝑐
(

𝑐 , ̂𝑐
)

, respectively. Details
n linear regression for the analytics task and forecasting are explained
n Section 3.

.2. Support agents and reservation to sell data

Note that the support agents and the central agent can be com-
etitors in the same energy market, which may discourage the support
gents from disclosing their data. We measure this barrier in the form
f a payment threshold denoted by

𝑑
𝑖
(

𝑢𝑑𝑖 , 𝛽
𝑑
𝑖
)

= |

|

|

𝑢𝑑𝑖 𝛽
𝑑
𝑖
|

|

|

, (3)

epresenting the payment required by support agent 𝑖 ∈ −𝑐 for
disclosing data associated with their 𝑑th feature. It is a function of
𝑢𝑑𝑖 and 𝛽𝑑𝑖 , measuring, respectively, the reservation of agent 𝑖 to sell
heir 𝑑th feature, and how correlated this feature is to the central
gent’s target variable. Therefore, the higher 𝑢𝑑𝑖 and 𝛽𝑑𝑖 are, the higher
he payment needs to be for agent 𝑖 to disclose their 𝑑th feature to
he central agent. In other words, the payment threshold increases as
he support agent becomes less willing to sell their data, and as the
orrelation between the support agent’s data and the central agent’s
arget variable becomes stronger.

Some factors that a support agent may take into account when
etermining their revenue threshold includes the valuation of their loss
f privacy, the valuation of their losses due to an increase in their
ompetitor’s profit, the cost of collecting data and offering into the re-
ression market, etc. In our proposed framework, the revenue threshold
s non-negative. In practice, however, there could be scenarios where
he support agent is able to benefit directly from the improvement of
he central agent’s analytics task (e.g., an overall improvement of the
orecast of renewable generation in the energy market can lead to a
ecrease in the imbalance price that is eventually passed down to all the
enewable agents), and is thus willing to receive a negative payment in
he regression market. We choose to leave the latter scenario for future
ork.

https://www.nordpoolgroup.com/Market-data1/Power-system-data/Production1/Wind-Power/ALL/Hourly1/
https://www.nordpoolgroup.com/Market-data1/Power-system-data/Production1/Wind-Power/ALL/Hourly1/
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2.3. Central agent and willingness to buy data

We assume that the central agent uses the MSE to measure the
average losses from the forecast for each time step:

𝑆MSE
𝑐

(

𝐲̂𝑐
)

= 1
𝑇

𝑇
∑

𝑡=1

(

𝑦𝑐,𝑡 − 𝑦̂𝑐,𝑡
)2 , (4)

here 𝐲̂𝑐 =
[

𝑦̂𝑐,1 𝑦̂𝑐,2 … 𝑦̂𝑐,𝑇
]⊤. In practice, the central agent may assign

scaling factor to the MSE to represent their actual losses in monetary
erms, but we assume this scaling factor to be ‘‘1’’ in this paper for
implicity. Therefore, 𝑆MSE

𝑐 can be considered to directly represent the
entral agent’s mean financial losses at each time step.

Given the payment threshold 𝐻𝑑
𝑖 to obtain agent 𝑖’s 𝑑th feature, in

rder for the central agent to financially benefit from purchasing data
n the regression market, it requires
MSE
𝑐

(

𝐲̂𝑐
(

𝑐 , ̂𝑐
))

− 𝑆MSE
𝑐

(

𝐲̂𝑐
(

 , ̂
))

≥
∑

𝑖∈−𝑐

𝐷𝑖→𝑐
∑

𝑑=1
𝐻𝑑

𝑖 . (5)

. Analytics task under linear regression

Given (5), we anticipate there to be an opportunity for the central
gent to purchase data from the support agents while making sure
he total payment is lower than the reduced losses for the forecast. In
his section, we define the analytics tasks in different forms of linear
egression for both the case with only the central agent’s own data and
he case with additional data from the support agents.

.1. Forecast with linear coefficients

In the case where the central agent 𝑐 only considers their own
eatures, the forecast of their target based on the coefficients from a
inear regression can be written as

̂𝑐,𝑡 = 𝛽0𝑐 +
𝐷𝑐→𝑐
∑

𝑑=1
𝛽𝑑𝑐 𝑥

𝑑
𝑐,𝑡 , (6)

In contrast, if the features of the support agents were also considered,
the forecast would become

̂𝑐,𝑡 = 𝛽0𝑐 +
𝐷𝑐→𝑐
∑

𝑑=1
𝛽𝑑𝑐 𝑥

𝑑
𝑐,𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
central agent

+
∑

𝑖∈−𝑐

(

𝛽0𝑖 +
𝐷𝑖→𝑐
∑

𝑑=1
𝛽𝑑𝑖 𝑥

𝑑
𝑖,𝑡

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
support agents

= 𝛽0 +
∑

𝑖∈

𝐷𝑖→𝑐
∑

𝑑=1
𝛽𝑑𝑖 𝑥

𝑑
𝑖,𝑡 , (7)

where 𝛽0 =
∑

𝑖∈ 𝛽𝑖,0 is the sum of the intercept terms of all agents,
and thus the overall intercept.

In the rest of the paper we assume that the dependencies of the
target variable on the features are stationary, and thus the true linear
coefficients do not vary with time. For ease of notation, we define
vector 𝐱𝑖,𝑡 = [𝑥1𝑖,𝑡 𝑥

2
𝑖,𝑡 … 𝑥𝐷𝑖→𝑐

𝑖,𝑡 ]⊤,∀𝑖 ∈  as the values of all of agent 𝑖’s
features used for the forecast of the central agent’s target variable at
time step 𝑡.

3.2. Baseline losses using OLS regression on own features

Without a data market, the central agent can only rely on their
own data for the analytics task and forecasting. We construct the
central agent’s own regressor vector 𝐱{𝑐},𝑡 = [1 𝐱⊤𝑐,𝑡]

⊤, and use 𝜷∗
𝑐 =

[𝛽0𝑐
∗ 𝛽1𝑐

∗ … 𝛽𝐷𝑐→𝑐
𝑐

∗
]⊤ to denote the vector of linear coefficients for the

regressors. Using OLS regression, the analytics task in (2) becomes

𝜷∗
𝑐 = argmin

𝑇
∑

(

𝑦𝑐,𝑡 − 𝑦̂𝑐,𝑡
)2 (8)
3

𝜷∈R1+𝐷𝑐→𝑐 𝑡=1 n
(6)
= argmin

𝜷∈R1+𝐷𝑐→𝑐

𝑇
∑

𝑡=1

(

𝑦𝑐,𝑡 − 𝐱⊤{𝑐},𝑡𝜷
)2

. (9)

Comparing (4) and (8), since the constant 1
𝑇 does not affect the

‘‘argmin’’ function, we can rewrite (8) as

𝜷∗
𝑐 = argmin

𝜷∈R1+𝐷𝑐→𝑐
𝑆MSE
𝑐

(

𝐲̂𝑐
(

𝑐 , 𝜷
))

. (10)

Since the MSE measures the central agent’s financial losses from the
orecast (Section 2.3), we can consider 𝑆MSE

𝑐
(

𝐲̂𝑐
(

𝑐 , 𝜷∗
𝑐
))

the baseline
osses of the central agent without access to data from other agents.

.3. Losses using lasso regression with support features

When data from the support agents are made available to the
entral agent, there is a potential for the central agent to improve
heir forecasting accuracy. An OLS regression can again be applied
o fit the available features, but a well known drawback of OLS re-
ression is its sensitivity to outliers and highly correlated features,
hich tends to result in overfitting the data and compromising the

orecast accuracy [17]. Additionally, if the data collected from the
upport agents are of low quality (e.g., containing missing values,
oluntarily flawed, etc.), OLS regression is not capable of eliminating
hese corrupted features. One way to mitigate such risks is to apply
ross-validation of the support features, but it can be computationally
xpensive and complicates the market set up (i.e., how to reward the
upport agents for the portion of their data that are only used for
ross-validation). Another way is to use feature selection methods,
ncluding 𝐿𝑝 regularization methods that have been proposed to reduce
he impact of less correlated features on the forecast performance.
mong these, the lasso is a popular regularization method that yields
parse coefficient matrices, which helps prevent overfitting [18]. The
asso term is an 𝐿1-norm penalty applied to the coefficients of a linear
egression problem.

To implement the lasso regression on the features of all agents, we
onstruct the all-agents regressor vector 𝐱 ,𝑡 = [1 𝐱⊤1,𝑡 … 𝐱⊤𝑁,𝑡]

⊤. We
hen denote the vector of the corresponding linear coefficients using
asso regression by 𝜷𝐿1

 = [𝛽0
𝐿1 𝜷𝐿1

 ,1

⊤
… 𝜷𝐿1

 ,𝑁

⊤
]⊤, where 𝜷𝐿1

 ,𝑖
=

𝛽1𝑖
𝐿1 𝛽2𝑖

𝐿1 … 𝛽𝐷𝑖→𝑐
𝑖

𝐿1 ]⊤,∀𝑖 ∈  . Applying the generic lasso estimator,
he analytics task in (1) becomes

𝐿1
 = argmin

𝜷∈R1+
∑

𝑖∈ 𝐷𝑖→𝑐

[

1
2

𝑇
∑

𝑡=1

(

𝑦𝑐,𝑡 − 𝐱⊤ ,𝑡𝜷
)2

+ 𝜆 ‖𝜷‖1

]

, (11)

where 𝜆 is the lasso regularization parameter. The lasso term 𝜆 ‖𝜷‖1
shrinks some coefficients and sets some of them to zero. As a result,
it reduces or even eliminates the influence of the features that are less
likely to contribute to the improvement of the forecast. The greater 𝜆
is, the more shrinkage is applied to the regression coefficients.

We apply a constant factor of 2
𝑇 within the ‘‘argmin’’ function in

(11) and rewrite it based on (4) and (7) as

𝜷𝐿1
 = argmin

𝜷∈R1+
∑

𝑖∈ 𝐷𝑖→𝑐

[

𝑆MSE
𝑐

(

𝐲̂𝑐
(

 , 𝜷
))

+ 2𝜆
𝑇

‖𝜷‖1
]

. (12)

Similarly, 𝑆MSE
𝑐

(

𝐲̂𝑐
(

 , 𝜷𝐿1


))

represents the financial losses of the
central agent if the forecast is based on a lasso regression given all
support agents’ features.

4. Regression market with the lasso

In this section, we introduce the concept of the lag in time series
ata as a way to define the number of relevant features from recent
ime steps from each agent. For wind power forecasting, the lag not
nly captures the temporal correlations of the wind generation at a
pecific site, it also indirectly captures the spatial correlations between

eighboring sites as a result of the natural development of wind [14].
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Using the lasso term to define the payment, we then construct a re-
gression market for wind agents, which is proved to meet the payment
requirement of support agents while guaranteeing profit for the central
agent. We note that only in-sample market outcomes are analyzed in
this paper, meaning 𝑇 can also be interpreted as the total number of
ime steps for training the model.

.1. Linear regression on features with a fixed maximum lag

Recall from Sections 2 and 3 that 𝐷𝑖→𝑐 represents the number of
elevant features from each agent. Here, since we are dealing with time
eries data, we equate 𝐷𝑖→𝑐 to agent 𝑖’s maximum lag, which is the
umber of recent time steps that are considered relevant for the target
ariable. This means that each feature from a support agent represents
heir data of a certain lag to the target variable. Assuming features from
ll agents are available up to one time step before the target variable
𝑐,𝑡 is revealed, and that a fixed maximum lag  applies to all agents,
.e., 𝐷𝑖→𝑐 = ,∀𝑖 ∈  , the relevant features for 𝑦𝑐,𝑡 from any agent 𝑖 can

be gathered in the vector 𝐱𝑖,𝑡 ∈ R = [𝑥𝑖,𝑡− 𝑥𝑖,𝑡−+1 … 𝑥𝑖,𝑡−1]⊤,∀𝑖 ∈  .
Applying the fixed maximum lag  to the regressions in Sections 3.2
and 3.3, we have |𝜷∗

𝑐 | = 1 +, and |𝜷∗
 | = 1 +𝑁.

The features of any agent 𝑖 can then be expressed in 𝐗𝑖,𝑇 ∈ R𝑇× ∶=
[

𝐱𝑖,1 𝐱𝑖,2 … 𝐱𝑖,𝑇
]⊤. To prepare for the regression, we gather the data

from the central agent alone in 𝐗{𝑐},𝑇 ∈ R𝑇×(1+) ∶=
[

𝟏𝑇 𝐗𝑐,𝑇
]

and
ata from all agents in 𝐗 ,𝑇 ∈ R𝑇×(1+𝑁) ∶=

[

𝟏𝑇 𝐗1,𝑇 … 𝐗𝑁,𝑇
]

, where
𝟏𝑇 = [1 … 1

⏟⏟⏟
𝑇

]⊤. Therefore, (9) and (11) can be rewritten as

𝜷∗
𝑐 = argmin

𝜷∈R1+

‖

‖

‖

𝐲𝑐 − 𝐗{𝑐},𝑇 𝜷
‖

‖

‖

2

2
, (13)

and

𝜷𝐿1
 = argmin

𝜷∈R1+𝑁

{1
2
‖

‖

𝐲𝑐 − 𝐗 ,𝑇 𝜷‖‖
2
2 + 𝜆 ‖𝜷‖1

}

. (14)

For clarity, we expand the following matrix operation from (14) as

𝐲𝑐 − 𝐗 ,𝑇 𝜷 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦𝑐,1
𝑦𝑐,2
⋮

𝑦𝑐,𝑇

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 ⋯ 1
𝑥1,1− 𝑥1,2− ⋯ 𝑥1,𝑇−
𝑥1,1−+1 𝑥1,2−+1 ⋯ 𝑥1,𝑇−+1

⋮ ⋮ ⋱ ⋮
𝑥1,0 𝑥1,1 ⋯ 𝑥1,𝑇−2
⋮ ⋮ ⋱ ⋮

𝑥𝑁,1− 𝑥𝑁,2− ⋯ 𝑥𝑁,𝑇−
𝑥𝑁,1−+1 𝑥𝑁,2−+1 ⋯ 𝑥𝑁,𝑇−+1

⋮ ⋮ ⋱ ⋮
𝑥𝑁,0 𝑥𝑁,1 ⋯ 𝑥𝑁,𝑇−2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⊤
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽0
𝛽11
𝛽21
⋮
𝛽1
⋮
𝛽1𝑁
𝛽2𝑁
⋮
𝛽𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

4.2. Regression market with the lasso term as payment

Considering all 𝑇 time steps, we rewrite the average financial losses
of the central agent as a function of the regressor matrix 𝐗 and a given
vector of linear coefficients 𝜷 as

𝑆MSE
𝑐

(

𝐗 ∈ R𝑇×|𝜷|, 𝜷
)

= 1
𝑇

‖

‖

𝐲𝑐 − 𝐗𝜷‖
‖

2
2 , (15)

here |𝜷| equals the number of features available for the regression
ncluding the intercept.

In the generic lasso estimator in (14), a single 𝜆 is applied to all
he coefficients, whereas in practice we can assign different 𝜆’s to dif-
erent coefficients without compromising the computation efficiency.
herefore we can construct a lasso regularization scalar matrix 𝝀 ∈

R1+𝑁
≥0 = diag(𝜆0 𝜆11 … 𝜆1 𝜆12 … 𝜆2 … 𝜆1𝑁 … 𝜆𝑁 ), where we set

𝜆0 = 0 to ensure no shrinkage is applied to the intercept term. We then
define the lasso loss function as

𝑆𝐿1
𝑐

(

𝐗 ,𝑇 ,𝝀 , 𝜷
)

= 1
𝑇

‖

‖

𝐲𝑐 − 𝐗 ,𝑇 𝜷‖‖
2
2 +

‖

‖

‖

‖

2
𝑇
𝝀 𝜷

‖

‖

‖

‖1

= 𝑆MSE (𝐗 ,𝑇 , 𝜷
)

+
‖

‖

2 𝝀 𝜷
‖

‖ . (16)
4

𝑐 ‖

‖
𝑇  ‖

‖1
So (14) can be modified as

𝜷𝐿1


(

𝐗 ,𝑇 ,𝝀
)

= argmin
𝜷∈R1+𝑁

𝑆𝐿1
𝑐

(

𝐗 ,𝑇 ,𝝀 , 𝜷
)

. (17)

Here, we propose to use (17) as the basis for the regression market
for wind agents. Relying on their own data, the central agent has
the baseline financial losses of 𝑆MSE

𝑐
(

𝐗{𝑐},𝑇 , 𝜷∗
𝑐
)

. When support agent
𝑖 ∈ −𝑐 offers feature 𝑥𝑑𝑖,𝑡 into the market, they also have the freedom
to set 𝜆𝑑𝑖 based on 𝑢𝑑𝑖 , their reservation to sell (Section 2.2). After the
market operator conducts the market using (17), 𝛽𝑑𝑖

𝐿1 is computed. If
𝛽𝑑𝑖

𝐿1 = 0, feature 𝑥𝑑𝑖,𝑡 is not selected to be used for the central agent’s
forecast, and no payment is needed. Otherwise the central agent has
to pay agent 𝑖 in the amount of |

|

|

2
𝑇 𝜆

𝑑
𝑖 𝛽

𝑑
𝑖
𝐿1 |
|

|

for using feature 𝑥𝑑𝑖,𝑡 for
he forecast. Therefore, the lasso term ‖

‖

‖

2
𝑇 𝝀


 𝜷‖‖

‖1
in (16) represents the

entral agent’s total payment, and 𝑆𝐿1
𝑐

(

𝐗 ,𝑇 ,𝝀 , 𝜷
)

represents the
entral agent’s sum of financial losses and payments in the regression
arket.

roposition 1. If no shrinkage is applied to the central agent’s own
eatures (𝜆𝑑𝑐 = 0,∀𝑑), and each support agent sets 𝜆𝑑𝑖 = 𝑇

2 𝑢
𝑑
𝑖 , then the

central agent’s sum of financial losses and data payments in the regression
market is no greater than the central agent’s financial losses without the
regression market.

Proof. In order to avoid shrinkage of the central agent’s own features,
we construct scalar matrix 𝝀 = diag(0 𝜆11 … 𝜆1 𝜆12 … 𝜆2 … 𝜆1𝑁 …
𝜆𝑁 ), while

𝜆𝑑𝑐 = 0, 𝑑 = 1, 2,… , . (18)

Let us construct a vector of regression parameters 𝜷̂ ∈ R1+𝑁 ∶=
[𝛽0 𝜷̂⊤

1 … 𝜷̂⊤
𝑁 ]⊤, where 𝜷̂𝑖 = [𝛽1𝑖 𝛽2𝑖 … 𝛽𝑖 ]⊤,∀𝑖 ∈  . We set

𝜷̂𝑖 = 𝟎 = [0 … 0
⏟⏟⏟



]⊤,∀𝑖 ≠ 𝑐 . (19)

e further set

𝛽0 𝜷̂⊤
𝑐 ]

⊤ = 𝜷∗
𝑐

(13)
= argmin

𝜷∈R1+

‖

‖

‖

𝐲𝑐 − 𝐗{𝑐},𝑇 𝜷
‖

‖

‖

2

2
. (20)

herefore, the central agent’s average financial losses per time step
sing their own features are given by

MSE
𝑐

(

𝐗{𝑐},𝑇 , 𝜷∗
𝑐
)

= 1
𝑇

‖

‖

‖

𝐲𝑐 −
[

𝟏𝑇 𝐗𝑐,𝑇
]

[𝛽0 𝜷̂⊤
𝑐 ]

⊤‖
‖

‖

2

2
. (21)

Applying 𝜷̂ to the lasso loss function of the central agent using all
gents’ features, we have

𝑆𝐿1
𝑐

(

𝐗 ,𝑇 ,𝝀 , 𝜷̂
)

(22)
16)
= 1

𝑇
‖

‖

‖

𝐲𝑐 − 𝐗 ,𝑇 𝜷̂
‖

‖

‖

2

2
+
‖

‖

‖

‖

2
𝑇
𝝀 𝜷̂

‖

‖

‖

‖1
(23)

19)
= 1

𝑇
‖

‖

‖

𝐲𝑐 −
[

𝟏𝑇 𝐗𝑐,𝑇
]

[𝛽0 𝜷̂⊤
𝑐 ]

⊤‖
‖

‖

2

2

+
‖

‖

‖

‖

2
𝑇

diag(0 𝜆1𝑐 … 𝜆𝑐 )[𝛽0 𝜷̂
⊤
𝑐 ]

⊤‖
‖

‖

‖1
(24)

(18)
= 1

𝑇
‖

‖

‖

𝐲𝑐 −
[

𝟏𝑇 𝐗𝑐,𝑇
]

[𝛽0 𝜷̂⊤
𝑐 ]

⊤‖
‖

‖

2

2
+ 0 (25)

21)
= 𝑆MSE

𝑐
(

𝐗{𝑐},𝑇 , 𝜷∗
𝑐
)

(26)
22)
≥ min

𝜷∈R1+𝑁
𝑆𝐿1
𝑐

(

𝐗 ,𝑇 ,𝝀 , 𝜷
)

(27)

17)
= 𝑆𝐿1

𝑐

(

𝐗 ,𝑇 ,𝝀 , 𝜷𝐿1


)

(28)
16)
= 𝑆MSE

𝑐

(

𝐗 ,𝑇 , 𝜷
𝐿1


)

+
‖

‖

‖

‖

2
𝑇
𝝀 𝜷𝐿1



‖

‖

‖

‖1
(29)

= 𝑆MSE
𝑐

(

𝐗 ,𝑇 , 𝜷
𝐿1


)

+
∑

𝑖∈−𝑐


∑

𝑑=1

|

|

|

𝑢𝑑𝑖 𝛽
𝑑
𝑖
𝐿1 |
|

|

, (30)
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where we obtain (30) from (29) by setting 𝜆𝑑𝑖 = 𝑇
2 𝑢

𝑑
𝑖 . Since (30)

s the central agent’s sum of financial losses and data payments in
he regression market, and (26) is the central agent’s financial losses
ithout the regression market, we have thus proved Proposition 1. □

Note that with (26) ≥ (30), we also prove that (5) is satisfied, which
eans the central agent is guaranteed to financially benefit from the

egression market.
To further explain this, let us consider a support feature 𝑥𝑑𝑖,𝑡 for

stimating 𝑦𝑐,𝑡. In order for the market operator (17) not to set the
orresponding coefficient 𝛽𝑑𝑖 to zero, it has to contribute to a reduction
n financial losses that is greater than or equal to the payment it incurs.
sing the assumption 𝜆𝑑𝑖 = 𝑇

2 𝑢
𝑑
𝑖 in Proposition 1, the payment to agent

𝑖 for feature 𝑥𝑑𝑖,𝑡 is

|

|

|

|

2
𝑇
𝜆𝑑𝑖 𝛽

𝑑
𝑖
𝐿1 |
|

|

|

= |

|

|

𝑢𝑑𝑖 𝛽
𝑑
𝑖
𝐿1 |
|

|

, (31)

meeting the payment requirement of each support agent 𝑖. In summary,
the proposed regression market guarantees financial viability for both
the support agents and the central agent.

Observe that a direct relationship is drawn between the linear
coefficients of support features and the payment, without the support
features being standardized in the lasso regression. This means that
a support feature’s mean and variance can influence the linear coef-
ficient, thus the payment as well. Therefore, each support agent, given
a desirable revenue threshold, needs to set their reservation to sell
accordingly to account for the means and variances of their support
features. The reservation to sell can be considered an independent
choice of each support agent with the aim to achieve a certain revenue
threshold rather than a metric to compare laterally support agents’
willingness to disclose their data. An alternative way of designing the
market is to require each support agent to submit standardized data and
the corresponding reservation to sell. We choose the former to provide
the possibility for support agents to encrypt both their data and their
true reservation to sell before submitting features to the market [21].

The linear relationship between the payment and the absolute value
of the coefficient also raises the question of whether other forms of
the payment term (e.g., a quadratic term in 𝛽) could apply to the
regression market. Albeit it not being the focus of the paper, the lasso
regularizer can also enable the regression with support agents’ data to
be conducted in a distributed manner [20], thus providing another level
of privacy protection. Therefore, we apply the lasso payment in our
proposed framework, with the aim to extend it to distributed learning
in the future.

5. Case studies

To verify the performance of the proposed regression market, we de-
sign two case studies in this section. In the first case study, we construct
synthetic datasets for all the agents with fixed linear correlations. This
way we have the ground truth of the correlations between the agents’
data to verify the model results. In the second case study, we use the
hourly wind generation zonal data from Nord Pool to demonstrate the
impact of the support agents’ reservation to sell on the profit of the
market participants.

5.1. Regression market implemented on synthetic data

In this case study, we use an autoregressive process to simulate
the data of 4 independent market players (P2–P5) with first order
autocorrelations, meaning that their data only have a linear correlation
with their own data from the previous time step. Then we use a vector
5

autoregressive process to simulate one market player (P1) that holds
Fig. 1. Comparison of regression coefficients by regression method of P1 that has a
target variable highly correlated with support agents’ data.

Fig. 2. Comparison of regression coefficients by regression method of P2 that has a
target variable uncorrelated with support agents’ data.

data with first order correlations with the other agents. Assuming each
time step is one hour, the synthetic data are generated by

𝐳𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.08 0.18 0.16 0.14 0.12
0 0.9 0 0 0
0 0 0.8 0 0
0 0 0 0.7 0
0 0 0 0 0.6

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐳𝑡−1 + 𝜺𝑡,

where 𝐳𝑡 = [𝑧1,𝑡 𝑧2,𝑡 ⋯ 𝑧5,𝑡]⊤ denote both the target and feature values
of players (P1–P5), and 𝜺𝑡 = [𝜀1,𝑡 𝜀2,𝑡 ⋯ 𝜀5,𝑡]⊤ represent the error terms:
𝜀𝑖,𝑡 ∼  (0, 1).

Focusing on P1 and P2 as central agents, we let the market operator
conduct their analytics tasks using different regression methods and
obtain the estimated coefficients to compare with the known real
coefficients. With a fixed maximum lag of 3 h and a total training time
of 10 days, the market operator returns the results shown in Fig. 1
for P1 and Fig. 2 for P2. Three regression methods are compared: (a)
OLS regression on the central agent’s own data, (b) OLS regression
with all agents’ data, and (c) lasso regression with all agents’ data.
For P1, method (a) cannot capture the correlations with the support
agents, and method (b) overfits the data by estimating non-zero coeffi-
cients on features that are not correlated with the central agent’s data.
Method (c) most successfully identifies the non-zero coefficients, albeit
shrinking their values due to the lasso regularization. For P2, method
(b) overfits the data again, while method (c) yields similar results as
method (a), well capturing the independence as well as the first-order
autocorrelation of P2’s data.
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Fig. 3. Regression coefficients of P1 that has a target variable correlated with support agents’ data, varying by the time scale of regression.
Fig. 4. Regression coefficients of P2 that has a target variable uncorrelated with support agents’ data, varying by the time scale of regression.
Fig. 5. Average profit per time step of all players with P1 and P2 as the central agents,
respectively.

To see how the results from the regression change as the training
time increases, Figs. 3 and 4 provide a visual representation of the
estimated coefficients. For P1, lasso regression demonstrates a clear
advantage over OLS regression for reducing overfitting, and over OLS
self-regression for being able to capture correlations with features from
support agents. For P2, even though the lasso regression cannot provide
much additional benefit to the central agent, it is still effective in
identifying the agent’s independence and reducing overfitting.

Next, we evaluate the impact of the training time on the profits of
the agents. Here, we reiterate that the analyses done in this paper are
in-sample, meaning the central agent’s profit only reflects the forecast
improvement during the training period. As Fig. 5 shows, increasing the
training time 𝑇 eventually reduces the support agents’ average profit
per time step to zero regardless of the correlations between the support
agents and the central agent. This is because the payment term |

|

|

𝑢𝑑𝑖 𝛽
𝑑
𝑖
𝐿1 |
|

|

from (31) does not scale with 𝑇 . In practice, in order to fulfill a certain
revenue threshold per time step, the support agents can take 𝑇 into
account when setting their reservation to sell (e.g., setting the 𝑢 value in
proportion to the length of their offered support features). Meanwhile,
P1 and P2 as central agents have very different profit trajectories as 𝑇
increases. For P1, as their data are highly correlated with the support
agents, more training time improves the estimates of the coefficients,
hence increasing their profit. For P2, as their data are independent of
others, the improvement of their analytics task is limited to having
the lasso shrink the untrue coefficients of their own data, and as the
training time increases, this minor improvement also reduces to zero.
Note that in reality, an agent with data that are completely independent
from others would not have the motivation to participate in a data
market.

5.2. Regression market implemented on real data

To test our proposed regression market on real-world data, we
obtain zonal wind power data for Denmark and Sweden from the open
source Nord Pool data repository. As an illustrative example, these
6

Fig. 6. Support agent profits with varying 𝑢 values (central agent: DK1, training time:
10 days).

data are aggregated in six zones2 (DK1, DK2, SE1, SE2, SE3, and SE4)
to represent six players in the regression market. In practice, since
the clearing of the regression market is decoupled from the energy
market, a central agent with assets in multiple energy market zones
can participate in the regression market by adjusting their loss function
to truthfully reflect their financial situation in the energy market. The
main purpose of this case study is to examine the impact of the support
agents’ reservation to sell on the final market outcomes.

Assigning DK1 as the central agent, and the others as support agents
for the regression market, we use 1 h as the time step, 1 h ahead as the
forecast horizon, 5 h as the maximum lag, and 10 days (240 h) as the
training time. First, we assume all the support agents’ reservation to
sell (𝑢𝑑𝑖 ) for all the features to be the same value 𝑢. Varying its value,
we plot the payments for all the support agents in Fig. 6. In general,
every agents’ profit first increases with the 𝑢 value, then peaks, and then
reduces to zero. To explain this, we recall the payment term |

|

|

𝑢𝑑𝑖 𝛽
𝑑
𝑖
𝐿1 |
|

|

.
When 𝑢𝑑𝑖 = 𝑢 = 0, the payment is zero, but 𝛽𝑑𝑖 is at its peak due to a
lack of shrinkage. As 𝑢 increases, the profit increases, but meanwhile
more shrinkage is applied to 𝛽𝑑𝑖 . A peak appears when the trade-off
between the two opposite forces reaches a balance, but afterwards the
lasso gradually shrinks 𝛽𝑑𝑖 to zero, and the profit becomes zero again.
The position of the peak may have to do with the correlation and the
magnitude of the support agent’s data. This is an interesting topic for
future work.

Lastly, we select from Fig. 6 the two agents whose profits peak the
last to analyze the mutual impact of their reservation to sell on each

2 https://www.nordpoolgroup.com/the-power-market/Bidding-areas/.

https://www.nordpoolgroup.com/the-power-market/Bidding-areas/
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Fig. 7. SE1 and SE2 profits with varying 𝑢 values of SE1 and SE2 (central agent: DK1,
training time: 10 days).

other’s profit. Here, we allow the reservation to sell for SE1 and SE2
to be different while fixing the other agents’ 𝑢 value, and show their
resulting profits in Fig. 7. It is observed that within the demonstrated
range, SE2 benefits from higher 𝑢 values, while SE1 achieves the highest
profit in the middle range. Meanwhile, each player’s profit decreases as
the other player’s reservation to sell increases. So far, the reservation
to sell has been used as a customized parameter by the support agents
to ensure a revenue threshold, but the results from Fig. 7 raise the
question of whether the support agents could instead strategically set
the reservation to sell to maximize their gain in the regression market.
Future research can examine the interplay of the reservation to sell of
more than two players and the corresponding market equilibrium.

6. Conclusion

Adopting the lasso regularizer, we construct a regression market
for wind agents to trade wind power data to improve forecasting.
Each support agent as a data seller has the freedom to determine
their reservation to sell each feature they own, which is incorporated
in the lasso term of the central agent’s analytics task under linear
regression. The product of a support agent’s reservation to sell a feature
and the absolute value of the corresponding estimated coefficient is
directly computed as the payment from the central agent for the sold
feature. This market framework is proved to meet the support agents’
profit requirements while guaranteeing financial benefits for the central
agent.

Some immediate future work includes the incorporation of out-of-
sample analyses, the strategies to set the reservation to sell from the
data sellers’ perspective for maximizing individual gains, and the exten-
sion to an online market. This regression market can be applied to other
use cases, where the data sellers have individual revenue requirements
on the data sold to the data buyer. It can also be readily extended to a
multi-buyer framework since the analytics tasks of multiple agents can
be conducted simultaneously and the outcome of each agent’s task does
not affect the task of another.
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