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Abstract

District heating systems become more distributed with the integration of prosumers, including excess
heat producers and active consumers. This calls for suitable heat market mechanisms that optimally
integrate these actors, while minimizing and allocating operational costs. We argue for the inclusion
of network constraints to ensure network feasibility and incentivize loss reductions. We propose a
network-aware heat market as a Quadratic Program (QP), which determines the optimal dispatch and
a set of nodal marginal prices. While heat network dynamics are generally represented by non-convex
constraints, we convexify this formulation by fixing temperature variables and neglecting pumping
power. The resulting variable flow heating network model leaves the sign and size of the nodal heat
injections flexible, which is important for the integration of prosumers. The market is based on peer-
to-peer trades to which we add explicit loss terms. This allows us to trace network losses back to
the producer and consumer of these losses. Through a dual analysis we reveal loss components of
nodal prices, as well as relations between nodal prices and between seller and buyer prices. A case
study illustrates the advantages of the network-aware market by comparison to our proposed loss-
agnostic benchmark. We show that the network-aware market mechanism effectively promotes local
heat consumption and thereby reduces losses and total cost. We conclude that the proposed loss-
aware market mechanism can help reduce operating costs in district heating networks while integrating

prosumers.
Keywords— District heating; peer-to-peer market; loss allocation; prosumers; convex optimiza-

tion.

Nomenclature

Super- and subscripts

DHW Domestic Hot Water

E Electricity

g Index for the grid agent
H Heat

L Loss

N Nodal

R Return side

SH Space Heating



S Supply side

i, Indices for prosumers

n Index for a heat node

n; Index for heat node of prosumer i

P Index for a DHN pipe

p(n1,ng) Index for a DHN pipe from node ny to no
t Time index

Parameters

« Binary, 1 for DLG, 0 for CLG

COP; Coefficient of Performance of heat pump of agent i [-]
L Forecasted load [W]

i Utility function scaling factor [-]

Wy Loss factor from i to j [-]

c Cost per energy unit [EUR/Wh]

ce Heat carrier specific heat capacity [Jkg=! K~!]
f Space heating flexibility factor [-]

Ty Temperature at node n [°C]

Sets

r Set of optimization variables

T Set of prosumers

T, Set of prosumers at heat node n

N Set of heat nodes

P Set of DHN pipelines

T Set of time indices

S:[/_ Set of pipelines starting/ending at node n
Variables

Yy by T Symbols used for dual variables

m Mass flow rate [kg/s]

™ Price [EUR / MWHh]

Tij Trade from i to j [W]

bij Heat bought by 4 from j [W]

C Total cost [EUR]

G Power generated [W]

L Power consumed [W]

P Net heat power injection [W]
R Revenue [EUR]

Sij Heat sold by i to j [W]
U Prosumer utility function
W;j Loss caused by sale s;; [W]

1 Introduction

1.1 Context

District heating is expected to play an important role in future carbon neutral energy systems, espe-
cially in urban areas [1]. Through a district heating network, excess heat from industrial processes
can be distributed to households, thereby facilitating the decarbonisation of heat generation. Example
sources of excess heat include supermarkets and data centers that produce heat as a by-product of



their refrigeration or cooling system. Excess heat generation is usually less flexible than conventional
generation, as only limited deviation from a reference production profile is possible. In order to com-
pensate for a less flexible supply, flexibility on the demand side is needed. Studies show that households
can provide such flexibility, among others using the virtual heat storage of buildings [2]. The presence
of excess heat producers and active consumers marks the rise of the prosumer in heating systems, a
new market participant that has already gained interest in power systems. Prosumers are defined as
proactive consumers that may possess assets for local energy generation, conversion and/or storage [3].
Heat prosumer assets include, for instance, heat accumulators, heat pumps, and solar collectors.

The structure and operation of district heating systems will change significantly with the rise of
distributed (excess) heat sources and heat prosumers. It remains an open question how heat markets
should adapt to this new paradigm. Existing heat pricing methods do not succeed in providing con-
sumers and generators with the right incentives to exploit their flexibility [4]-[6], nor do they deal with
challenges related to the operation of a more distributed system. There is thus a need for the design
of heat markets that exploit the benefits prosumers can bring to the heating system, while facilitating
the integration of more distributed generation from a network operator’s perspective. For the latter,
markets should help ensuring network feasibility and minimizing operational costs, including the cost
of heat loss.

To this end, we aim to design a network-aware market mechanism suitable for district heating
systems with distributed generators and prosumers. In a more distributed system, it becomes more
challenging to ensure network feasibility and operate the system efficiently. In this context, studies
have pointed to the advantage of network-aware markets, which include explicit network constraints
[7], [8]. Such markets guarantee network feasibility and economic efficiency of operation in a system with
high penetration of distributed generators. If managed and integrated properly, it has been shown that
prosumers can facilitate network operation and reduce system costs [9]. In order to optimally coordinate
prosumers while exploiting their value, the concept of consumer-centric markets has attracted attention.
In the next Section, we review the literature on network-aware market design for heating as well as
electricity systems, including works involving consumer-centric network-aware market design.

1.2 Status quo of network-aware operations and markets

The need for network-aware optimal dispatch has long been recognized for electrical power systems, in
order to minimize operating costs while meeting system and security constraints [10], [11]. Optimal
energy flow for the heating and gas sector has also been a topic of interest, see e.g. the literature review
in [12]. Possibly due to the liberalisation of electricity markets, as well as increased decentralization,
optimal flow problems for electricity have been researched most extensively. Solving Optimal Power
Flow (OPF) problems in systems with many agents (e.g., producers and consumers) has become more
complex [13]. A standard OPF-based electricity market minimizes generation costs subject to power
flow equations and operational constraints. The Alternating Current (AC) OPF considers the full
non-linear power flow equations in its constraints, and thus represents the power flows most accurately.
However, the non-convexity of this formulation has many drawbacks, such as a general lack of optimality
guarantees on solver solutions and intractability of larger problems. Much research has therefore focused
on approximation and convexification of the AC OPF.

A similar problem arises when designing network-aware heat market mechanisms, due to the highly
complex, non-linear nature of district heating network dynamics. In the most general and most accurate
variable-flow-variable-temperature (VFVT) formulation, the flow, pressure, and temperature of the heat
carrier are variable. In the control literature, the resulting Mixed Integer Non-Linear Problem (MINLP)
is solved using iterative methods, such as in [14]-[16]. However, convex formulations are preferred in
many applications, including market design. One may apply convex relaxations and retrieve a solution



to the original problem after solving, as done in e.g. [17] and [18]. However, there are no guarantees
on the magnitude of the optimality gap, and the nonlinear problems can quickly become intractable
for larger number of nodes. We therefore consider such methods unsuitable for our purpose. A sec-
ond convexification method is to fix flow variables to arrive at the constant-flow-variable-temperature
(CFVT) formulation, e.g. applied in [19]-[22]. The fluid temperature is variable at injection points and
throughout the network, so that the network can be used as a heat storage. As a drawback, due to
fixed nodal flows, a node must be marked as a net producer or net consumer before market clearing.
Nodal temperature constraints even enforce minimal injections and extractions of these pre-appointed
producers and consumers, which limits the exploitation of prosumer flexibility considerably. Finally,
the variable-flow-constant-temperature (VFCT) formulation convexifies the problem by fixing nodal
temperatures, leaving the flow of the heat carrier variable. The heat loss in each pipeline is now a fixed
share of the transported heat, i.e. loss is multiplicative. VFCT is applied in an optimal dispatch setting
in [23]. The authors of [24] apply the VFCT to prevent congestion in a distribution network with a
single point of heat injection and several flexible consumers.

Over recent years, consumer-centric electricity markets have been proposed in order to accommodate
prosumers. The authors of [7] review approaches for integration of distributed energy sources into
power systems, and in this context discuss peer-to-peer mechanisms, as well as network considerations.
Network-agnostic peer-to-peer markets based on bilateral trades are formulated in e.g. [25], [26]. More
recently, several works have considered network effects within decentralized market frameworks. In [27],
the cost for infrastructure usage is allocated to agents using several types of exogenous network charges,
without considering explicit grid constraints. The authors of [28] propose a peer-centric market where
distribution locational marginal prices reflect network usage charges that peers must pay to the utility.
A peer-to-peer market with distribution and transmission grid constraints is formulated in [8], where
the authors study the effect of different loss allocation policies as well. The prosumer has also gained
interest in the context of district heating, not least because many types of excess heat providers classify
as prosumers. The authors of e.g. [29] foresee the presence of prosumers in future heating systems, and
highlight the importance of integrating them optimally. It has been shown that prosumers can be a cost-
efficient solution to bottleneck problems in heating networks [30]. The literature on consumer-centric
heat markets is however limited. From a market perspective, the authors of [31] develop a community-
based combined heat and electricity market for a group of prosumers, consisting of an optimal dispatch
and different allocation mechanisms, while disregarding network constraints. The aforementioned work
[24] proposes a mechanism for exploiting flexible prosumer demands while considering the network. In
this work however, there is a single point of heat injection, and prosumers cannot export heat.

1.3 Contributions

The state-of-the-art literature lacks a convex, network-aware heat market that integrates distributed
generators and prosumers, while minimizing operational costs. In this work, we propose a VFCT based
network-aware market mechanism to fill this gap. The market is network- and loss-aware, minimizing
total production cost including the cost of generated losses. The choice for VFCT representation of the
heating network is motivated by the need for a convex model as well as variable sign of nodal injections.
This comes at the cost of fixing nodal temperatures, so that the storage capacity of the heating network
itself is not exploited, and market participants must inject at a fixed temperature. We furthermore
neglect pressure and pumping power constraints, so that we can include distributed heat injections.
The market mechanism is suitable for any radial network with unidirectional pipeline flows. Nodal
flows may be bidirectional, so that prosumer flexibility can be harnessed. Our choice for unidirectional
network flow matches current practice in the operation of district heating networks. Bidirectional
network flow is envisioned to be realized in fifth generation district heating, but this concept is in an



early stages of research and development [32]. Due to the unidirectionality in the pipelines, prosumers
cannot sell heat to agents located upstream. In other words, prosumers can only sell heat to agents at
their own node, or downstream nodes. For prosumers at the end node, this implies that they can only
sell heat to other prosumers at the same node.

We explore several questions related to network heat losses. Who causes them? Which generator
compensates for the losses? And finally, who pays for losses? The answers to these questions help use to
account for heat loss in both dispatch and pricing. Our market formulation includes peer-to-peer trades.
In this work, the main purpose of introducing peer-to-peer trades is to reveal the agents that cause a
certain network loss. We link network losses to a particular trade, which allows us to identify which
seller and buyer caused a certain amount of heat loss in certain parts of the network. We present two
variations of the dispatch mechanism, in which either the distributed generators or the grid connection
compensate for heat losses. Furthermore, we propose two allocation mechanisms for the costs of energy
and losses. We provide insights in our proposed formulation through detailed analysis, including a
derivation of the loss components of nodal prices, and a dual analysis revealing relations between nodal
prices and between seller and buyer prices. For fair evaluation of the proposed market mechanism we
formulate a network-aware but loss-agnostic benchmark. By comparison to this benchmark, we can
show the effects of loss-aware dispatch in our case study. The comparison shows that the proposed
network- and loss-aware mechanism effectively promotes a more local heat consumption and thereby
reduces losses and total costs. Finally, we compare the effect of individual and socialized loss allocation
on consumer payments.

To the best of our knowledge, we are the first to engage in a detailed analysis of VFCT-based
heat markets, and thereby to provide deeper insights in this formulation. In fact, explicit market
considerations apart from optimal dispatch are rarely addressed in the literature. In addition, we
consider explicit allocation of loss generation costs, which has not been done for the heat case. Our
network and peer-to-peer formulations are partly inspired by the work in [24], but differ from it in several
ways. Firstly, we add constraints to prevent arbitrage, ensuring a unique solution. We furthermore allow
for multiple points of heat injection. As a result we need to omit the pumping power constraint.

The remainder of this article is organized as follows. We describe the components of the system
under consideration in Section 2, including the district heating network model and agent representation.
Section 3 presents the proposed market mechanisms, as well as the benchmark. The price of energy
and loss are discussed in Section 4, including two different loss allocation policies. Next, the properties
of the proposed market are illustrated in a case study in Section 5. We draw conclusions and discuss
future work in Section 6.

2 System description

This Section describes the dynamics of the considered heating system, as well as the representation of
agents present in this system. First, the general district heating system setup is introduced in Section
2.1. Sections 2.2 and 2.3 respectively present the heating system model and the agent model that are
used in our market formulation. Temporal coupling is introduced through the load flexibility model in
the latter Section. Therefore, we need to use a time index ¢t € 7.

2.1 District heating system representation

Figure 1 provides a graphical representation of the district heating system setup. The district heating
network consists of a supply and a return side. Heat generators extract cold fluid from the return
side and inject hot fluid on the supply side. Supply-side pipelines then transport the hot fluid to heat
consumers, which extract the hot fluid from the supply side and inject cold fluid in the return side.



The network is a directed graph (N, P), where N is a set of nodes connected by pipes P C N x N.
Each node and pipe consists of a supply and a return side, which are indicated by superscripts S and
R. Any pipe p € P is defined by its supply-side start and end node, i.e., if p = (n1,n2), then the flow
in the supply side of pipe p goes from node n; to node mns. The system state is described by nodal
supply 79 and return temperatures 7%, nodal mass flow rates 7L, (here positive towards the return
side), and unidirectional pipeline mass flow rates mgt. Due to mass conservation, the mass flow rates in
the supply and return side of a pipe are equal, so that it suffices to consider only the supply-side flow.

We consider a unidirectional district heating network on the distribution level. More specifically,
pipeline flow is unidirectional, while nodal flow may be from the supply to the return side or vice versa,
so that nodes are free to be net generators or net loads. This allows for prosumer nodes, which do not
have to fix the sign of their injection before market clearing. The local system is connected to a larger
grid,that may supply heat energy at import price cf'. Due to the unidirectionality, no heat export to the
larger network is possible. As this work focuses on the heating system, we simplify the connection to the
electricity system. It is assumed that all agents are subject to the same known electricity import price
cf for each period. The imported heat and electricity from the grid are denoted Gg and Gg. These
quantities are not upper bounded, so that the grid agent can in principle supply unlimited amounts of
heat and electricity. However, due to grid constraints introduced in the next Section, these quantities
are limited indirectly.
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Figure 1: Representation of district heating network with prosumers and connection to greater heating
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grid. The supply side is colored red, the return side blue. Nodal temperatures and flows, as well as
pipeline flows are indicated.

2.2 Model of district heating network dynamics

We will now continue to present our VFCT heating network model. The network-related variables are
the nodal flows 7}, and the pipeline flows mﬁt. The temperature at the supply and return side of each
node are model parameters, and they are constant over time. This way, time delays can be neglected.
The temperature loss in each pipeline is determined by those fixed values. The supply-side temperature
at a node must necessarily be greater than its return-side temperature for the node to be able to extract
heat from the system. In addition, temperatures must be non-increasing along pipelines in the direction
of the flow. It is important to emphasize that losses are multiplicative in this formulation. That is, a
fixed share of the heat injected in a certain pipeline is lost while the heat carrier flows to the next node.
This share does not depend on flow or temperatures. However, total system losses are not fixed, as the
amount of heat injected in each pipeline is variable. For the VFCT model, fixed nodal temperature
values are needed. These may be obtained from measurements, as in [24]. Another option is to estimate
temperature losses as in [33] (Equations 7 and 8), or using an average mass flow and temperature loss
equations as in [14] (Equation 6).

FDHN

The set of heating system variables is given by = {mY,, mls,t} Mass is preserved at each node,



which means that the difference between incoming and outflowing mass at a node must equal the nodal
flow. This translates to

§ : - S § : .S _ N
Myt — Mpp = My - (1)
PES peS

Each node contains a heat exchanger that ensures locally produced heat is injected into the network.
The nodal power injection and nodal flow are related as

> Pl =iy, (T3 =T, (2)
i€Tn

where ¢ is the heat capacity of water. The nodal flow 7}, is considered positive when the direction is
from supply to return side. Note that the temperature of the injected fluid on the supply and return
side of node n must equal the fixed temperatures 75 and T, respectively. Finally, the flow variables
are subject to limits. The flow in pipelines is unidirectional, and upper bounded:

- (3)
The nodal flows are bidirectional, but bounded in size:

— iy < rivgy < - (4)

2.3 Consumption model

A set of agents Z is present in the system. Agent 7 is located at a node n; in the district heating
network. The set of agents at node n is denoted Z,,; multiple agents may thus be located at a single
node. The agents have an hourly heat load LY and generation G, resulting in a total heat injection

P given by
P =G~ Lyt (5)

The heat load consists of an inflexible domestic hot water load LPHW and a partially flexible space

heating load L5H,
Lip = L+ L™ (6)
It is assumed that the heat is generated using heat pumps (HPs), which have an electric load L;-Et’hp.

The electric load and heat production are related by the heat pump Coefficient of Performance (COP)
as

GH = cop, LB (7)

The COP can in principle vary in time, but is considered fixed in this work. All agent variables are
collected in the set T2gent = {PH [H [SH GH [Ehp1  The generation is upper and lower bounded as

follows
0<Gl <Gl 8

Flexibility in prosumer consumption is represented as follows. First, the space heating profile of agent
i may at most deviate from this agent’s reference profile LZSH by a maximum flexibility f, at each time:

max{ﬁistH - ?'N 0} < Lz'StH < i/zStH + ?7, . 9)



Note that if ﬁftH — f; <0, the lower bound on the space heating consumption is zero. In addition, the
total heat consumption for space heating has to equal the total in the profile, i.e.

Z Lz'StH = Z IA/zStH ) (10)
teT teT

which means that space heating load may be shifted but has to be consumed eventually.

The utility is inversely proportional to the squared deviation from this profile. This relation is scaled
by a time and agent dependent factor #;; representing the importance of following the space heating
profile. The resulting utility as a function of the space heating demand is

Uit(LzStH) = —Uj (ListH - ﬁ?tH)2 . (11)

Heat generation costs for agent i are given by

GH

CH CE LE’hP CE 1t
it tit t .
& & COP;

3 Optimal dispatch strategies

We will now define the three different dispatch strategies we consider in our market designs. An overview
of the proposed dispatch strategies is first provided in Section 3.1. Next, we present our formulation
of peer-to-peer trades in Section 3.2. This formulation allows us to derive the losses each agent is
causing, which we do in the following Section 3.3. The objective functions used for loss-aware and for
loss-agnostic dispatch are provided in Section 3.4. Finally, we summarize the full optimization problem
in Section 3.5.

3.1 Overview

We design three optimal dispatch strategies, that differ from eachother in one or two aspects. The
first option that can be switched is loss-awareness versus loss-agnosticism. This setting is discussed
in Section 3.4. Our aim in this work is to show the benefits of loss-aware dispatch compared to the
status quo in heat markets. We use the loss-agnostic dispatch as our benchmark for showing these
benefits. This benchmark is intended to resemble current practices in heat markets, which usually do
not consider the network nor operational costs. However, for a fair comparison to our network-aware
and loss-aware market, the benchmark needs to respect network constraints.

The second setting is centralized loss generation (CLG) versus decentralized loss generation (DLG),
which determines the generator that compensates for losses, as we will discuss in Section 3.2. Combining
these options gives four different dispatch strategies, illustrated in Table 1. However, as indicated, we
exclude the loss-agnostic DLG variant, as it is unlikely to be applicable in reality, nor does it mimic
any existing market setups. Moreover, it results in counter-intuitive dispatch and prices, as the loss
generation is competing with energy generation for the limited capacity local generators. In all cases,
we assume non-strategic and regulation-agnostic agents. By the latter we mean that agents are not able
to anticipate hindsight payments, which implies they do not change behavior in the dispatch because
of the hindsight payments.

Reasons for including network constraints in the optimal dispatch are twofold. Firstly, for all three
proposed dispatch strategies, the resulting dispatch will be feasible. This means that the physical
limitations posed by the network are respected by any resulting dispatch. Second, the network model
implicitly models heat loss, so that the cost of loss related to a certain unit of consumed energy is
directly included in the market. This cost will influence the choices of heat consumers when buying



heat: it may happen that a generator close to a certain consumer is preferred over a cheaper but far
away generator, when the latter trade becomes more expensive due to loss costs. This effect can be
observed in our loss-aware dispatch. In the loss-agnostic dispatch, we artificially remove the loss costs
from the objective function, as we will formalize in Section 3.4. The loss-agnostic dispatch is agnostic
to the cost of loss only: the losses are still produced and transported, and the dispatch remains feasible
in the network.

| DLG | CLG
loss-aware loss-aware DLG loss-aware CLG
loss-agnostic | loss-agnostic DLG | loss-agnostic CLG

Table 1: Overview of dispatch strategies considered.

In our proposed markets, generator bids are of price-quantity format. That is, they bid a maximum
quantity étH for each time step, as well as their generation costs per unit for each time. The consumer
bids are more complex: they bid a fixed load ﬁDHW, a minimum and maximum quantity for flexible
load L5, and the total to consume flexible load over the entire day. In addition, the price component
of the consumer bid comes as a quadratic utility function uit(ﬁSH, fJDHW). If the market were to be
decomposed, and agents would engage in bilateral trades in a decentralized system, the consumers
would not need to hand all this information to the market operator. Instead, the information would be

used in their local optimization problem.

3.2 Peer-to-peer trades

The market includes peer-to-peer trades, which enable agents to negotiate directly with one another
and agree on bilateral heat trades. Our formulation is an extension of a common peer-to-peer setup, as
described in for example [34]. The extension consists of constraints that prevent arbitrage, as well as an
explicit loss representation. We define a trade 7;; between agent ¢ and j, which is positive if ¢ sells and
negative if ¢ buys heat. The grid agent is denoted using the index g. Trades define an amount of energy
that is received by the buyer, not including any losses on the way. This means that, besides the traded
heat 7;;, the losses w;; associated with the trade need to be generated by some agent. We introduce a
binary parameter a;; € {0,1} to indicate whether the seller of trade 7;; will be responsible for producing
the losses caused by this trade (a;; = 1) or whether grid import will be used to compensate for losses
(a;; = 0). We will refer to these respective cases as distributed loss generation (DLG) and centralized
loss generation (CLG). An illustration of peer-to-peer trading variables is given in Figure 2.
A trade 7;; can be decomposed into sales s;; > 0 and buys b;; > 0 as

Tijt = Sijt — ije - (13)
Trade reciprocity is ensured by the constraint
Sijt = bjit - (14)
Do
ity ()
ij
T(l — i )wf; Sij TTaijwij lbﬁ
grid seller ¢ buyer j
Figure 2: Visualisation of peer-to-peer variables related to the trade 7;; = s;5 = by = —75. If o =1,

the seller generates the losses, while this is done by the grid in case a =0



The variable b;; = s;; represents energy bought from own production, used for self-consumption. This
self-consumption variable b;; is used to prevent arbitrage and ensure a unique solution, using the fol-
lowing constraints. Agents can buy no more and no less than the energy they need for consumption,

> by =Ly, (15)
JjE€T
which prevents reselling of bought energy and thus prevents arbitrage. Note that the sum in this
Equation includes the self-consumption b;;. Among others, this constraint ensures that for any 4, j, no
agent is both buying from and selling to a single other agent, i.e. b;; =0V b;; = 0.
An agent must generate an amount equal to the total sale of heat plus the associated loss generation
allocated to this agent,

Z Sijt T QWi = Gﬁ . (16)

J

The losses w;; will be quantified in the next Section. The grid agent must produce

S (U —aijwh, + > (sgjt + ijweir) = Gy » (17)
ij J
where wfj is the amount the grid agent must inject to compensate for the losses in the trade 7;;, which
is quantified in the next Section.
The primal variables related to the peer-to-peer trading are T'P?P = {¢, b, s, w, w®}.

3.3 Explicit loss formulation

Pipeline losses occur both on the supply and return side in the network. These losses are implicit in
(1) and (5). In order to provide more insight in the losses, and to be able to allocate losses to market
participants, we turn to a more explicit loss formulation.

Suppose without loss of generality that trade 7;; > 0, so agent 7 is the seller of the nonzero trade
with agent j. In the VFCT formulation, the loss associated to trade 7;; is a fixed share of this trade,
depending on the nodal temperatures at n; and n;. To derive this share, suppose s;; = bj; > 0. Then
the change in power injection (and thus flow) at the receiving node n; equals

AP = —ALY = —bj; = —cpAiny,, (T —TR) (18)

by (2). By continuity of flow, Ar,; = —Ar,,. Assuming the losses are supplied by the seller i, the
change in power injection at node n; is
AP} = AGY = —cp Ay, (T3, —TX)
= cy Ay, (Thy, — T). (19)

The lost energy is equal to the difference between generated and consumed energy in this trade, as
given by (19) and (18) respectively. The total loss associated to the trade 7;; thus equals

wij = cgAriv, (T, = T) — cg iy, (T, = T)Y)

g nj
= ct At (T, — TR) — bj; . (20)

Thus, we derive the constant relationship w;; between w;; and bj; as
wij _ AGEl — bji B TSL — T}:

bji b T3 -T%

nj

~1. (21)

wij =

10



An important observation is that, as a result of assuming constant nodal temperatures, the losses
become multiplicative, i.e. a fixed share of the energy transported through a pipeline. Note furthermore
that the factor w;; is only non-negative if the temperature gradient between supply and return side
at m; is at least as large as the gradient at n;. This is the case as long as n; is downstream of n;, or
n; =n;j.

Loss component for Decentralized Loss Generation (o;; = 1)

We define w;; as the loss associated with the trade 7;; in case that the seller of this trade is also
producing the loss, i.e. «a;; = 1. If 7;; < 0, so ¢ is the buyer of this trade, then w;; = 0 while now
wj; > 0 represents the loss associated with this trade. In other words, s;; > 0 = w;; > 0,w;; = 0,
whereas b;; > 0 = w;; = 0,w;; > 0. The explicit computation of the losses caused by a certain trade
is

Wijt = Wij Sijt

where it is important to note this holds under the assumption that the seller produces these losses.
Furthermore, losses must be positive, i.e. w;;; > 0. Combining this with the nonnegativity of s, we
enforce that s;;; = 0 if w;; < 0. The interpretation of this is that j cannot buy from i if j is upstream
of i, so these constraints exclude physically impossible trades.

Loss component for Decentralized Loss Generation («;; = 0)

In this case, the grid agent has to inject an amount of energy that results in an amount of w;;; arriving
at the node of the seller of trade 7;;:. If w;;¢ > 0, 7 is the seller of the trade 7;;:. Therefore, an amount
of w;;; must arrive at node 7. This means that the grid agent must produce

TS — TR TS — TR

ng ng ~

ijt S _ TR ijt — S R 1] 21t
TS — IR TS — TR

Again, the loss must be positive, i.e. wfﬁ > 0.

3.4 Loss-aware and loss-agnostic objective functions

The difference between our loss-aware and loss-agnostic dispatch lies in the objective function f°PI of
the respective optimization problems. The objective of both markets is to maximize some form of social
welfare (or equivalently, minimize negative social welfare). In the loss-aware dispatch, total production
cost is included, which consists of the costs of energy sold to a consumer and the cost of producing
losses:

TRR(EHEDY (Ct Gt Z(‘ ' COP )) ' #2)

teT €T

In the loss-agnostic benchmark, the objective function of the market is adapted to minimize only
the production cost of consumed load, while disregarding the cost of losses:

G wig) =Y ot | Gl = Jwge— Y (1—ag)uwl, | +

teT JET i,j€EL
DD | i+ gop: | Git = 2 cuwae | | - (23)
teT i€l JjET

11



After a loss-agnostic dispatch, the cost of losses may be computed and allocated a posteriori as discussed
in Section 4.2. The total cost of losses is therefore in general different when using these two objective
functions. Note that without appointment of an agent responsible for loss generation, there will in
general not be a unique solution in the loss-agnostic case.

3.5 Resulting overall market optimization problem

To arrive at a complete market formulation, we combine the constraints defined over Sections 2 and
3 in a single optimization problem in (24). Dual variables are indicated for each constraint, where we
use u for equality constraints and «y for lower and upper bounds. These dual variables are used in our
derivation of energy and loss prices in Section 4.1 and Appendices A.1-A 4.

The objective function f°PJ is either f2V2 for loss-aware dispatch, or f28" for loss-agnostic dispatch.
The optimization variables are I" = {PgH, Gg} U PPHN | ragents | TP2P . We list network constraints in
(24b)-(24e), and the agents’ own constraints in (24g)-(241). To synchronize notations between the grid
agent and prosumers, we add a power injection constraint for the grid agent in (24f). Trade related
constraints are in (24m)-(24q), and loss related constraints in (24r)-(24u). In the absence of preferences
with respect to trading partners, as in this work, the same dispatch as the one resulting from our
peer-to-peer market can be obtained from an equivalent pool formulation as well.

min fobi (24a)

Z m;t - Z mit = mgt D g (24b)

pES, pES;T

> Pl = —corp, (T3 = TY) g (24c)

i€Ly,

0 < S, <im, P,y (244)
— 1l <, <, Ly (24c)

Py =Gl — L gy (24f)

Pl =Gl - Li} : iy (24g)

Lij = L+ L™V N (24h)

G = cop, L L psop (24i)

0< Gl <G, 11575 (24))

maX{‘tZStH — [0} < Lz‘StH < i/zStH +fi : L-StH77iStH (24k)
Z LiStH = Z f/zStH : Nfb (241)

teT teT

Tijt = Sijt — bijt : H?;t (24m)

Sij¢ = bjst : M%t (24n)
Z biji = LI cub (240)
J

D siji+ agwig = Gy 0 (24p)
J

Z(l — g )wi, + Z(ngt + wejt) = th : ﬂgt (24q)
13 J
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— 7 .. .. . w
Wijt = Wij Sijt P gt (24r)

wije > 0 P (24s)
s R
wh. — To, = T, Fis S C e (24t)
ijt = TS — TR ij Sijt - Mg
w;, >0 : l:;% (24u)

4 Pricing and loss allocation mechanisms

After the optimal schedule is determined using one of the three dispatch strategies presented in Section
3.1, payments and revenues have to be determined for all market participants using an allocation
mechanism. In this Section we propose different allocation mechanisms. First, the allocation of energy
and loss cost is discussed in Section 4.1. Then, Section 4.2 presents different loss allocation mechanisms.

4.1 Marginal price of energy and loss

Different choices of consumed energy and loss prices are possible. In this work, we consider nodal
marginal pricing. In the Appendix, we derive dual relations for the different markets, and determine
the nodal prices. It is derived that the price per unit of loss and price per unit of energy are equal.
However, the amount of loss per unit of consumed energy depends on where the energy is imported from,
and therefore the loss cost per unit of energy consumed increases with distance from the generator. We

denote nodal marginal prices as 7N

e, and seller ¢ and buyer j marginal price as 7, and W;)t respectively.

In Appendix A.2, we show that the unit price received by seller i is given by 5 + Mirtlja whereas the
price per unit consumed for buyer j is —u}, + 1y . We further derive that for loss-aware DLG, these
prices relate as

mh =~y + pl = (1 + 1) (/J‘ist + ﬂi:?j) = (14 wi;)my, - (25)
As a result, the cost of loss connected to energy sale s;;; on the DLG loss-aware market is given by
CoPte = wij (26)

In the loss-aware CLG market the prices relate as

S TR N
T = gy gy = H g+ s i (g + gy
T, —Tn
= Tr?t + TT{; . Tyli wUTth (27)

as derived in Appendix A.3. So, losses are paid for at the nodal price of the node of grid connection.
Therefore, in the CLG loss-aware market the cost of loss connected to sale s;;; is given by

Crte = wg,ms, . (28)
Finally, for the loss-agnostic CLG, we show in Appendix A.4 that the buyer and seller marginal
price are always equal, i.e. 7§, = W;?t, regardless of whether the agents are at different nodes (as long as
there is no congestion). This implies that the losses are not paid by the buyer directly, which is what
was intended with this formulation. The costs of losses are not optimized and therefore the cost of loss
cannot be obtained from any dual variable. Instead, the cost of loss has to be computed in hindsight.

As in the loss-aware markets, we choose to price the loss in hindsight at the nodal price of the generator
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of the loss, in this case the grid node. Thus, the cost of loss connected to sale s;;; is computed in
hindsight in the same way as in CLG loss-aware market as given in (28), .
Note that we price the loss w;; at the nodal price of generator 7 in all three market formulations.

4.2 Allocation mechanisms for loss costs

Once the generation cost of losses are known, these costs have to be allocated to market participants.
A loss allocation policy is a system for distributing loss costs over generators and loads. It is desirable
that such a policy is budget balanced, i.e. the loss payments add up to the cost of loss, so that the
network operator does not suffer a loss or earn a profit.

In this work, two budget balanced loss allocation policies are investigated:

1. individual: the buyer of heat pays for the generation of the losses associated with this trade.

2. socialized: losses are paid for collectively a posteriori. Each consumed unit is charged the average
cost of loss per unit consumed, so that the loss costs are distributed proportionally to prosumer
total consumption.

In the individual loss allocation policy, losses are paid by the individual that is causing them, while the
cost of losses are shared evenly using the socialized loss allocation policy. In particular, the socialized
loss cost per unit consumed is taken as an average over the entire time period considered, so that
the unit price of loss is equal for any time t. This is intended to mimic current network and loss
charges, which are usually a fixed price per unit, where the network and loss costs for the whole year
are socialized in a grid tariff. The socialized loss allocation is a pro rata method, as described in [35] for
the allocation of electrical loss costs. In our case, we allocate 100% of the loss costs to the consumers.
Pro rata procedures are network-agnostic, i.e. loads near generating nodes pay the same loss price per
unit consumed as loads far away from generating nodes [35].

It should be noted that the individual loss allocation policy suits our loss-aware markets naturally.
In other words, in the loss-aware markets the agents are dispatched optimally, given that the losses are
allocated according to the individual loss allocation policy. For these loss-aware markets, the dispatch
would be different if the agents would be able to anticipate the socialized loss allocation. For the
loss-agnostic market, this is the case for both the individual and the socialized loss allocation. In this
work, we however assume that the agents are not able to anticipate the loss allocation post-processing,
i.e. they are regulation-agnostic. To summarize, the socialized loss allocation is an ex post step for all
market types, while the individual loss allocation is integrated in the market clearing for the loss-aware
markets.

For the loss-aware DLG, the revenue R;; of generator i at time ¢ is computed as

Rip = (sije+wijt) Ty = Y SitTn, + Y WijeTh, (29)

jeT jeT jeT
so that every generated unit costs the nodal price at n;. In the rightmost expression the cost is split into
cost of consumed energy and cost of loss. When using the individual loss allocation policy, consumer j

is paying wl-jtw,lit to make up for the cost of loss. In the socialized loss allocation policy, the costs of
loss are shared over all consumed units, so that the cost of loss per unit consumed 7% in DLG becomes

. N
ﬂ,L,DLG o Zi,j,t letTrnit

VA (30)
and in CLG becomes
N
L,CLG __ Zi’j»t wigjtﬂ-"gt (31)
T = —Z 7 .
i,t it
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5 Numerical results

Through an illustrative case study we show the benefits of loss-aware dispatch, and the drawbacks of
not considering the cost of loss. We look at total scheduled generation volumes, total amount of losses,
total cost and cost of loss, and agent payments and revenues. In addition, we visualize the effect of loss-
and network-awareness on nodal (locational) marginal prices. The aim of this case study is to illustrate
the properties of the proposed market mechanisms, rather than to mimic a specific real system as closely
as possible. All case study inputs, as well as an implementation of the three market variations in Julia,
and example analysis of the outcomes can be found in our GitHub repository’.

5.1 Case study setup

We simulate an hourly day-ahead market for 24 hours. We consider a simple network topology without
branches, see Figure 3, even though the market mechanisms are also suitable for other types of radial
systems. The system consists of 11 nodes. The supply temperature at the most upstream node n; is
90°C, and the return side temperature of the most downstream node ni; is set to 40°C. Precise ways of
determining constant nodal temperatures are beyond the scope of this work. For illustrative purposes,
we will assume a temperature loss of 0.1Km~" on the supply side, and a loss of 0.05Km™! in return
side pipelines. A total of 28 prosumers are present in the system, of which 6 generate excess heat
using heat pumps, while the remaining 22 cannot generate heat. The used reference DHW and space
heating load profiles are measurements from the Nordhavn neighbourhood in Copenhagen, collected in
the EnergyLab Nordhavn project [36]. The excess heat generators are located at all even nodes and
node 1, i.e. node 1,2,4,6,8,10, which are marked as HP in Figure 3. The remaining agents without
production are distributed over the remaining nodes, so that nodes 3,5, and 7 contain 4 agents each, and
node 9 and 11 contain 5 agents each. The excess heat generators have identical maximum generation
capacity, while their heat pump COPs differ. The six heat pump COP values range linearly from 3.27
to 3.46.

The agents are subject to a variable electricity price, whereas the heat import price is constant.
This is a situation that currently can be the case for consumers in for example Denmark: consumers
can opt-in on variable electricity prices, whereas heat prices are always constant (apart from possible
seasonal differences). The price curves used in this case study are plotted in Figure 4. The electricity
price profile is a series of day-ahead prices from Nord Pool Elspot on January 8" 2021. This price only
includes the energy price, so the real price paid by consumer is higher, especially in Denmark where the
price of energy is around 20% of the total price 2. To be more realistic, we multiply the price signal by

lgithub.com/linde-fr/network-aware-heat-market
2yuw.forsyningstilsynet.dk/tal-fakta/priser/elpriser/prisstatistik-1-kv-2021

AR AAA
| \ / i | :
ni no n3 n10 nii
7\ |
CEO

mey  HP: A A

Figure 3: Overview of case study district heating system. Each of the nodes 1,2,4,6,8,10 contains a
single prosumer with a heat pump (marked with HP). Nodes 3,5, 7 each contain 4 flexible consumers,
while nodes 9,11 contain 5 each. The grid agent injects heat at node 1. The flow is unidirectional from
the supply side of node 1 to 11. The return side is equal to the displayed supply network, with reversed
flow directions.
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Figure 4: Heat and electricity import prices used in case study.

2.5. The constant heat import price signal is set to 524 DKK/MWh or 69.87 EUR/MWh, which equals
the consumer heat price set by the Danish heat provider HOFOR 3.

We consider two variants of this case study: case I and case II. The cases differ only in the marginal
costs of the local heat pumps, which allows us to illustrate different properties of our mechanism, and
to distinguish between general outcomes and case-dependent outcomes. In case I, the heat pumps are
placed so that marginal production costs decrease (i.e. COPs increase) with distance from the heating
grid connection. This means that the excess heat producer at node 1 will have the highest marginal
cost, followed by the producer at node 2, then node 4, etc. In case I, the heat pump order is reversed, so
that the marginal production cost increases and COP decreases with distance from the grid connection.
Now the marginal costs of the producer at node 1 will be lowest. In the next Section, we use case
studies I and II to compare the different market mechanisms, and illustrate relevant properties.

5.2 Results

First, it should be noted that a network-agnostic dispatch in a unidirectional network with multiple
producers may be infeasible. The main reason for this is the lack of directional awareness, i.e. down-
stream producers can be scheduled for an amount greater than the loads they are able to reach. An
important benefit of the considered market mechanisms (including the loss-agnostic benchmark) is that
the resulting dispatch is guaranteed to be feasible, as opposed to network-agnostic markets. In addition,
the loss-aware dispatch is optimal under the assumption that grid temperature cannot be varied. When
projecting network-agnostic market outcomes in the feasible space, as is common practice in current
district heat dispatch, such optimality guarantees do not exist.

Scheduled generators

We compare the dispatch of local generators in the loss-aware markets, both DLG and CLG, to our
loss-agnostic CLG benchmark. In the loss-aware markets, the cost of loss is taken into account in
the dispatch, while the loss-agnostic benchmark minimizes production cost of consumed heat only. It
is expected that distant generators have an advantage in the loss-aware markets, as their loss costs
are lower. This effect is indeed seen in the dispatch shown for case study I in Figure 5a and case
study II in Figure 5b, where the generation over the entire time horizon is shown per node. In both

Syww.hofor. dk/privat/priser-paa-forsyninger-privatkunder/prisen-paa-fjernvarme-2021-for-privatkunder/
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loss-aware markets (blue and orange bars), distant heat producers are scheduled to generate a greater
amount of energy than in the loss-agnostic benchmark (green bars). This shows that loss-aware dispatch
promotes more local heat consumption. We note that for case II, the DLG has a far more widely varying
generation between nodes 6-10. This observation is most certainly case-study specific, and would not
be there if focusing on a different case-study application.

In case I, the loss-aware markets’ generation schedules are equal except for the loss generation,
which is shifted from the local generators to the grid agent in the CLG dispatch. This similarity of
schedules is not a general result, as we see for case Il in Figure 5b. In case II, the loss-aware DLG and
CLG dispatches are not equal for node 6, 8, and 10. Compared to DLG, loss-aware CLG increases
the generated heat at the most distant generation nodes 8 and 10, while reducing the generated heat
at node 6. This is due to the higher cost of loss for these generators in the CLG market compared to
the DLG market, as the losses have to be imported from the grid node that is far from node 6 — 10.

In other words, distant nodes have a greater incentive to minimize losses in loss-aware CLG than in
loss-aware DLG.
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(a) Case I: decreasing marginal costs (b) Case II: increasing marginal costs

Figure 5: Total scheduled nodal generation. The shaded part represents the generated heat that is lost
on the way to the consumer.

Total heat loss and total generation costs

Table 2 gives an overview of the total heat loss over 24 hours for each market mechanism and each
case. Note that the heat loss in all three markets is considerably higher in case II than in case I,
because in case II the cheaper generators are located far from the distant consumers. As expected,
the loss-agnostic market results in the largest heat loss in both case I and II. The table also shows the
percentage decrease in heat loss relative to the loss-agnostic case for the other two markets. In case II,
this decrease is most dramatic: the heat loss is almost halved in the two loss-aware markets, compared
to the loss-agnostic case. These results show that loss-aware dispatch leads to a decrease in network
heat loss.

One may expect that the losses of loss-aware DLG must always be lower than loss-aware CLG.
Interestingly however, the results of case II in Table 2 show loss-aware CLG may lead to lower total
losses than loss-aware DLG. The explanation for this is that in loss-aware CLG, losses are more expensive
as they have to be imported from the grid, so that local production is stimulated even more than in

17



loss-aware DLG. This may result in more frequent scheduling of the distant generators, and thereby a

reduction in total heat loss.

loss-agnostic CLG

loss-aware CLG

loss-aware DLG

case I Total heat loss kW] 68.63 57.32 56.71
% decrease - 16.48 % 1737 %

case II Total heat loss [kW] 137.34 64.48 72.99
% decrease - 53.05 % 46.85 %

Table 2: Total heat loss for the three different market mechanisms in case I and II. Percentage decrease
with respect to the loss-agnostic CLG market is provided for the other two market mechanisms.

Table 3 summarizes total generation costs for all three market mechanisms, for both case I and II.
In addition, the cost reductions in percentages compared to loss-agnostic CLG are given. Loss-agnostic
dispatch is expected to increase the cost of loss, and thereby the total cost. Furthermore, it is expected
that CLG leads to higher generation costs than DLG, because the feasible space is restricted by forcing
the grid agent to produce all losses, rather than leaving it to the cheapest generator. These effects are
indeed observed for both case I and case II, as seen in Table 3. In case II, the total costs are lower
for loss-aware DLG than loss-aware CLG, despite the observed higher heat loss. The cost differences
between the different market types are largest in case II, whereas they are minimal in case I. The reason
for this is that in case I, the different market mechanisms lead to rather similar generator schedules. In
all, we show here that loss-aware dispatch decreases operational costs resulting from heat loss.

loss-agnostic CLG | loss-aware CLG | loss-aware DLG
case I Total generation cost [M€] 198.24 197.85 197.54
% decrease - 0.19 % 0.35 %
case II Total generation cost [M€] 201.76 199.54 199.2
% decrease - 1.10 % 1.27 %

Table 3: Total generation costs for the three different market mechanisms in case I and II. Percentage
decrease with respect to the loss-agnostic CLG market is provided for the other two market mechanisms.

Locational marginal prices

The Locational Marginal Prices (LMPs) as a function of time for case I are shown in Figure 6, and
for case II in Figure 7. These prices depend on the choice of loss allocation policy as well. For the
loss-aware markets, we use the individual loss allocation that suits these markets naturally. For the
loss-agnostic benchmark, we use the socialized loss allocation that is most suitable to this market.
effects on the nodal prices can be distinguished: the effect of losses and the effect of (unidirectional)
flow constraints. The effect of losses is only present in the loss-aware markets, most clearly in case II
in Figure 7a and 7b, but also in, for example, hour 10 of the loss-aware markets in case I. The LMP
at node 1 equals the import price, and as one moves away from the grid node the LMP increases by
a (known) factor. The effect of unidirectional flow can be seen in both loss-aware and loss-agnostic
markets of case I in hour 14 to 17. It occurs when a cheap marginal generator is located downstream, so

Two

that it cannot supply some upstream nodes. As a result, marginal prices may be lower at distant nodes.
The effect is not seen in case II, as the cheaper marginal generator is always upstream. Concluding,
in the loss-aware markets the LMPs may differ per node for two reasons, namely due to losses and/or
due to heat flow restrictions. In the loss-agnostic case, the LMPs only differ between nodes due to heat
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flow restrictions, and downstream LMPs will always be lower than or equal to upstream LMPs.

On the shape of the LMP curves, it is also visible at which hours nodal heat is generated and when
heat is imported from the grid. The latter is the case in those hours where the LMP curve is at high
level, and horizontal. Here, we see the effect of having a constant heat import price while having a
variable electricity price. Local generators are selling heat at times of low electricity price, i.e until 9 AM
and after 9 PM, no matter if grid heat is actually cheap at that time. Heat is imported between 10 AM
and 20 PM, which includes the evening demand peak. This puts a pressure on the heat transmission
grid, which may be prevented if a variable cost of importing heat is communicated to the consumer.
This illustrates the need for variable heat import prices, or even combined heat and electricity markets.
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Figure 6: Locational marginal prices as a function of time in Case I. We consider individual loss
allocation for the loss-aware markets, and socialized loss allocation for the loss-agnostic benchmark.
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Figure 7: Locational marginal prices as a function of time in Case II. We consider individual loss
allocation for the loss-aware markets, and socialized loss allocation for the loss-agnostic benchmark.

Payments: individual VS socialized loss allocation

In this Section we illustrate how consumers may be affected by loss-aware dispatch under different loss
allocation policies, by looking at the average consumer price per unit consumed. This average price
includes the costs of consumed energy and of loss, where the latter is either socialized or individual,
while the former is individual in all cases. The proposed loss allocation policies affect the payments
made by consumers of heat, whereas the revenues received by generators are equal for the different loss
allocation policies.

The socialized loss allocation policy redistributes the cost of loss, so that an equal loss price is paid
for all consumed units. As a result, nodes with an above average loss costs per unit consumed will pay
a lower price in the socialized case than in the individual case, and vice versa for nodes with below
average loss costs. The redistribution of loss costs is most intuitive in case II, as illustrated in Figure
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8b for the loss-aware DLG market. In case II, where marginal generation costs increase with distance
from the grid node, the cost of loss increases with distance from the grid node. As a result, it can
be seen that the socialized loss allocation generally reduces the unit price for distant nodes, whereas
it increases the price for nodes closer to the grid connection. The socialization of loss cost also pulls
most nodal prices towards the average price, for all nodes except node 6 and 8. This is not a general
result, but it is a result of the fact that most nodes with higher loss costs also have higher energy costs.
For case I in Figure 8a, there is also a trend that the socialized loss allocation redistributes loss costs
from distant nodes to proximal nodes, but it does not hold for all nodes. For instance, node 10 pays
a higher unit price under the socialized loss allocation. For case I, as opposed to case II, most nodes
experience an average unit price further from the average under the socialized loss allocation. In other
words, if energy costs are individualized, the socialization of loss costs may lead to larger differences in
unit prices, which is the opposite of what may be expected from socialization.
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Figure 8: Loss-aware DLG: average consumer price per unit consumed as a function of node for the
different loss allocation policies.

Finally, we compare the average unit price of loss-aware DLG market with individual loss allocation
policy, and of loss-agnostic CLG market with socialized loss allocation policy. The loss-aware DLG
market with individual loss allocation is the one giving optimal incentives to market participants for
reducing losses, but leads to the highest loss price differentiation between them. The loss-agnostic CLG
market with socialized loss allocation is closest to existing practices. The comparison is shown in Figure
9, which shows both the average unit price as a function of node, and the overall average. In both case
I and II, the overall average unit price is higher for the loss-agnostic market. As a result, most nodes
pay a lower unit price in loss-aware DLG with individual loss allocation, even though the loss is paid

by the individual. Only those nodes with the very highest loss costs benefit in the loss-agnostic CLG
with socialized loss costs.
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Figure 9: Average price per unit consumed as a function of node. Comparison between loss-aware DLG
with individual loss allocation policy and loss-agnostic CLG with socialized loss allocation policy

6 Conclusion

District heating systems become more distributed with the integration of prosumers, including excess
heat producers and active consumers. This calls for suitable heat market mechanisms that optimally
integrate these actors while ensuring network feasibility and considering operational costs. To this
end, we have proposed two variants of a network- and loss-aware heat market mechanism, as well as a
network-aware but loss-agnostic benchmark. The markets are formulated as Quadratic Programs. In
our distributed loss generation (DLG) market variant, losses caused by a certain trade are produced
by the seller of that trade, while in the centralized loss generation (CLG) formulation this is done by
a grid agent. In the benchmark, the loss costs are excluded from the objective function. We used
peer-to-peer trades to explicitly link losses to certain market participants. The mechanisms are suitable
for radial, unidirectional district heating systems with bidirectional nodal flow, , and allow for multiple
heat injection points. We have derived dual relations for the proposed markets and the benchmark, and
determined the nodal marginal prices. Based on these nodal prices we formulated allocation mechanisms
for energy and loss production costs. We considered two allocation mechanisms for the cost of loss: an
individual and a socialized policy. In the former, loss costs are allocated to the buyer of the trade causing
the losses, whereas in the latter they are socialized. Through a case study we have illustrated several
properties of the proposed market mechanisms by comparing to our benchmark. Most importantly, we
have shown that the designed loss-aware dispatch may schedule distant generators despite their higher
production costs, in case this reduces the total cost including cost of loss. We have shown that the
total heat loss and cost of heat loss are reduced in a loss-aware dispatch compared to our loss-agnostic
benchmark. In conclusion, we have shown that the loss-aware market mechanisms can help promote
local consumption and reduce operating costs in district heating networks, while integrating distributed
generators and prosumers.

6.1 Discussion

Compared to network-aware mechanisms in the literature, our formulation has the advantage that
it can include multiple distributed generators and flexible loads, while leaving the size and sign of
nodal power injection variable. The latter means that no unit commitment decisions are fixed before
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dispatch, and prosumer nodes are free to either consumer or produce, as opposed to constant-flow
variable-temperature (CFVT) formulations. These advantages come at the price of other desirable
properties. First of all, generators (consumers) must inject water at the respective nodal supply (return)
temperature, while CFVT or full variable-flow variable-temperature (VFEVT) formulations allow for
variable injection temperatures. This may be a problem for some agents in practice. A way to deal
with this would be to have punish deviations from the set temperature. For example, generators would
not be paid for the additional energy in case they inject at a too high temperature, and would pay a
fee in case they inject at a lower temperature than expected. Another challenge is that the fixed nodal
temperatures in our formulation have a large impact on dispatch and prices, and should therefore be
selected carefully. New, fair methods of determining these temperatures are needed.

The main purpose of adding peer-to-peer trades in this work was to trace losses back to certain
producers and consumers. There are other reasons these peer-to-peer trades may appeal in practice. For
one, the formulation allows for including consumer preferences, both based on the source of the heat as
well as on the amount of loss. This would be done by adding weighting factors to the objective function,
as for example in [26]. Moreover, for implementation of a consumer-centric heat market in practice, the
peer-to-peer formulation is appealing because it forms the basis for deriving a decentralized negotiation
mechanism, in which all market participants solve a local optimization problem. The peer-to-peer
market is then cleared using a distributed optimization method, such as the Alternating Direction
Method of Multipliers (ADMM), in which agents would negotiate directly with one another. ADMM is
an iterative method. In every iteration, the market participants all solve a local optimization problem,
and sends trade proposals to each trading partner. For more details on reformulation to distributed
setup, as well as a discussion of the implications of a decentralized peer-to-peer market in practice, refer
to for example [27]. Our individual peer-to-peer dispatch satisfies conditions to be solved by ADMM
as summarized in [37]. Therefore it is possible to solve the dispatch in a distributed, fully decentralized
manner. Note that the socialized loss allocation policy is not readily suitable for use in a distributed
setup.

6.2 Future perspectives

Future research could investigate the inclusion of operating costs and constraints related to water
pumping in the network. This is done in [24] for a system with a single point of heat injection, using a
first order approximation of bilinear expression for pumping energy. This approximation cannot be used
in the presence of multiple injection points, but can perhaps be generalized to the multiple injection
setting. Otherwise, one could respond to approximate pumping costs as a recourse action, after market
clearing. In such a setup, the output of the simplified market clearing without pumping equations may
be seen as the operating point for the system. Then, by adding McCormick relaxations of pumping
equations to the simplified setup, one could see how much it would be beneficial to deviate from these
operating points. Those deviations may eventually be seen as potential recourse actions.

The proposed market design is only suitable for systems with unidirectional pipeline flow. It could
be adapted to accommodate systems with bidirectional flow. For instance, pipelines losses could remain
a fixed share of transported energy, i.e. the losses would still be multiplicative. A loss factor would
have to be determined for each pipeline. It is however not trivial how nodal temperatures and pipeline
flows could remain part of such model, and this should be investigated further.

In this work, we have focused on the heat market, and therefore simplified connections to the
electricity system. Already in this simplified case, it became clear that consumers that are subject to
variable electricity prices but fixed heat import prices may shift their load in a way unfavourable for the
heating system. This highlights the need for variable heat prices in the presence of variable electricity
prices. In future work, the proposed heat market mechanisms can be extended to a combined heat and
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electricity market.
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Appendix

In this Appendix we derive dual variable relations for the three market setups considered in this work.
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A.1 Dual variable relations between nodes

The relations derived in this Section hold for all market formulations in this work. To determine the
relations between the nodal dual variables pHF

nt s we derive the first order conditions for flow in node n
and pipe p = (n1,712)

tiiy - =iy + (T = Ty — ™™ +9™" =0 (32a)
m%t D Hgt — B — TP AP =0. (32b)

Now consider two nodes ny and ny connected by pipe p = (n1,n2). If none of the pipeline flow bounds

are active, it holds that y™P = 0 = 5™P, so that pu)', = pys;. Combined with (32b) and assuming that

n1t
HE HE

none of the nodal flow bounds are active, the following relation between pu,, 3 and p;, ; can be derived

(TS, — TRVE = (TS5, — TR )™
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HE n1 ni1  HE
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A.2 Loss-aware DLG peer-to-peer market

In this Section we derive the dual relations for the DLG loss-aware peer-to-peer market. Consider the
following first order conditions for this case. Those are

1
. df 0ss inj

Gi : acE frp) + I+ Vi — L-C: — 5 =0 (34a)
it
Ly« iy 4 pii® =% — i = 0 (34b)
LSH . dflOSS _|_ eb Ltot —SH SH _ O 34
it ©gpsH T Hi T Hit Vi — %, = (34c)
it
Pii« i + iy’ =0 (34d)
tijt : Mgt = 0 (346)
Wi £+ =7, = 0 (34f)
Sijt t Phge + Hage F G — Dighly — 75, =0 (34g)
bijt :ﬁ;l;(— u})‘it + b — l:')jt =0 (34h)

We can identify that the price each agent perceives for generation is stt + ug‘j. For the perceived price
for loads, we combine (34b) and (34c) to

. dfloss

J SH L B
it A

+ U+ — Vo Y~ Ha = 0. (35)

which shows that the perceived price for load i is —(uZ — u;lt”) =—uB + uirtlj. Note that ug is seen as
a bound on the load.
Next, we derive relations between seller and buyer price of a nonzero trade t;;;. Assume the sale

from agent 7 to j is nonzero, i.e. s;;; = bj;; > 0. For a marginal generator 1,

L dfloss
m) S — ) 36
/J'zt + :u’zt dGit ( )
By (34g), it holds that
:uist = _Hf}t + mij#%‘t (37)
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as 7, = 0. Similarly, by (34h) for bj;; > 0

Hye = gy (38)
Substituting (38) in (37) gives

15, = — by + Wi, (39)

Case 1: i and j are at different nodes, so n; # n;. Still assuming s;;: > 0, the loss must be positive,
so w;5; > 0 and L“.Vj , = 0. Then it follows from (34f) that

Substituting this in (39), we derive that

i = — s — Wiy
(14 i) = — gy - (41)

Combining this with nodal price relations in (33), we derive that

buyer price = _M}St + M}? = —Nj% _ MEJEt
S R
=—ub - MNHE
Jt TEJ _ Tr%- nit
TS _ TR
= (1 + By —
137t TSJ _ T,E n;t
= (1 +wy) (M?ﬁ + Mirt”) = (1 + w;;) - seller price , (42)

where the equality on the third line comes from (41). This relation shows that the buyer price is a fixed
factor greater than the seller price, which implies that the buyer pays more per unit of consumed heat
than the seller is paid per unit of produced heat. This way, the buyer is experiencing the cost of loss.
The price of energy and loss is equal.

Case 2: i and j are at the same node, so n; = nj. Then by (34d) it holds that p2 = ,uijr;j. The loss
must be zero, i.e. w;j; = 0 which implies IZt > 0. From (39) and the fact that @;; = 0 if n; = n;, we
derive

S B
Hig = —Hjt - (43)
This relation is as expected, as there are no losses when ¢ and j are at the same node.

A.3 Loss-aware CLG market

So in this case, a;; = 0 for all agents. This results in several changes in the first order conditions. First
of all, in the derivative with respect to w;j;, now we have ,ugt instead of stt~ This yields

dfloss - .
Giv s g — Hie + B+ Ti = 2 — e = 0 (44a)
it
dfloss L
Gar =i — Hat — 2oy — Higg =0 (44b)
gt ngt g Lot gt
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The price of loss for the trade between agents ¢ and j is a fixed share of the nodal price at the grid
node. We can see that for any time ¢, it holds that ,u;f;% = ugt for all nonzero losses w;j;. Most of the
analysis of previous Section still holds, but we derive a new expression for price of loss in the case that
i and j are at different nodes (Case 1). Assuming that the sale from 7 to j is positive, i.e. s;;; > 0, it

follows from (44h) and (44i) that

TS _ TR
S n, Ng ~
Hit = —Hije T 5 —m Dihiy;
ng Uz
TS _ 7R
n n ~
= —p5+ 75w Wil (45)
which can be rewritten using (44g) to
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P (46)
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In addition, we derive the following relation between nodal prices at n;, n;, and ng using the nodal
price relation in (33) and the definition of w;; in (21):

S R
njt = S R Mnit —
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Using (46) and (48), we can finally establish the following relation between the buyer and seller price
in the loss-aware CLG market:

S _ 7R
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buyer price = —pug + pujp =~y = Hpe = —Hjt — (Mmt + Wi T‘S_T‘R'u”gt>
n;

ng
TS _ TR TS _ TR
= [ + e Wijiley — My — Wij e ot
5 —TR T3 —TR
S R
_os, omi, Ing m Ty g iy
= Mg T My TS _ TR Wi (Mgt + Hgf )
nq Kz
S TR
= seller price + ﬁ W;; - grid node price . (49)
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A.4 Loss-ignorant CLG market

In this case, a;; = 0 for all trades 77, and the objective function does not include the cost of loss, as in
(23). The only difference in the first order conditions compared to loss-aware CLG is in the condition

for wfjt, which now includes a derivative of the objective function:
dfnoloss
g . S wg —
Wi © dwf;, + Hge - Hige — 1:;% =0. (50)

Substituting this relation in (45) while assuming the loss is nonzero gives

TS 7TR
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so that the buyer price can be decomposed into
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By the first order conditions of grid generation in (44a)
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Assuming nonzero loss, we know that lgt = 0, and the buyer price decomposition becomes
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In the second equality we use that déw?t + ifGHt = —¢""™P 4 PP — (0 and in the third equality we
.. ] g
rewrite (1, using the nodal relations in (33).

Combining this result with the nodal price relation in (33) gives the following relation between seller
and buyer price:

inj

buyer price = uj, + 5y = Hyy — fn g
TS — TR

B HE
gt TTSL;J _ Tr% n;t
75 — TR
S ~ HE i i  HE
= — Mgyt Wijlyy — Tg — R Trﬁ Py it
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where the left equality on the last line comes from the definition of #;;. This equality of buyer and
seller price shows that no one is paying for the losses generated by the grid agent.
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