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Abstract—Marginal utility functions (MUFs) encapsulate the
prosumer willingness to trade energy with other market agents.
In large-scale distributed optimization schemes scalability and
convergence are crucial, and the assumption of linear MUFs
is common. In this work, instead of assuming the shape and
coefficients of those functions, a method is proposed to derive
them based on the optimization of a prosumer’s energy pro-
curement problem. We formulate a rolling-horizon optimization
problem that considers asset characteristics and network tariffs,
and we utilize forecasts to capture the effects of uncertainty.
We use this formulation to calculate the true prosumer MUF. A
test case with real data is used to investigate the shape of these
functions. Our results reveal that they present a non-linear shape
under certain conditions, they cannot be a priori derived, and
their form is sensitive to a variety of factors. This indicates that
MUFs should be constructed based on an approach similar to
the one proposed in this paper to more accurately capture the
prosumer’s true willingness to trade. A linearized version of these
functions, which is computationally attractive and scalable, can
be determined using a least-squares estimator that achieves the
best fit to the prosumer’s preferences under a linearity constraint.

Index Terms—Energy management system, marginal utility
function, peer-to-peer market, prosumer, stochastic optimization.

I. INTRODUCTION

A. Background and motivation

The decentralization of energy trading and asset coordina-
tion [1] are not new concepts in the field of power systems.
They have been applied to a broad range of applications
[2], from microgrid control [3] to ancillary service provision
[4], collaborative demand response [5] and electricity market
design [6]–[8]. Out of those applications, peer-to-peer (P2P)
energy trading in particular has gained traction as a framework
that is able to promote a more bottom-up operation of power
systems through a more active role of small-scale prosumers
at a residential level [9]. Prosumers are consumers who can
also produce electricity, and are often enhanced with storage
capabilities [10]. Current electricity markets have little room
for active prosumers because existing regulation compels them
to only procure energy from certified retailers [11]. Such
market rules hinder the proactive behavior of prosumers,
whereas P2P trading can empower them with a higher degree
of freedom on how they procure energy [12].

Different approaches can be followed to express a pro-
sumer’s willingness to engage in energy trading, depending
on the application. The first is to solve a global optimization
problem using all market participants’ subproblems, usually
via a distributed scheme to preserve privacy. The second is

via bids of price/quantity, where a continuous double auction
scheme optimally matches buyers and sellers [13]. The third,
which is the focus of this work, is by replacing each pro-
sumer’s optimization problem with a marginal utility function
(MUF) [14], [15]. This simplifies the representation of each
market participant, providing a more suitable groundwork for
both centralized and distributed trading schemes.

The first approach is more commonly found in small-scale
applications, e.g., microgrids or energy trading in communities
of limited size. The requirements of energy trading involving
large numbers of participants pose limitations on the use of
privacy-preserving negotiation processes based on each pro-
sumer’s optimization problem. For instance, each prosumer’s
problem may have a different structure and can involve integer
variables or even be non-linear. In this case negotiation algo-
rithms may fail to converge within a reasonable time frame
(if they converge at all) when the number of participants is
in the order of thousands, even if issues related to high-speed
and reliable communication links are resolved.

These issues call for a simplified interface that can express
the willingness of each prosumer to trade energy in a manner
that is scalable and computationally manageable. As we show
in the literature review, many works adopt linear MUFs [14],
[15] because of their attractive properties for market clearing
through distributed optimization algorithms (e.g., consensus
alternating direction method of multipliers). Additionally, un-
certainties, look-ahead actions, asset characteristics and end
user constraints are most often neglected when deriving MUFs,
and the parameters of those functions are arbitrarily chosen.

However, this generic approach may result in non-
representative MUFs because the prosumer’s decision-making
process is neglected. The authors of [16] recognize that several
researchers focus on studying energy trading methods by
relaxing, or even avoiding, the nature and characteristics of
the participating assets. Adopting a simplistic approach in
incorporating the physical dynamics of prosumers may lead
to inefficient representation of their actual utility. We believe
that a prosumer’s true cost/benefit per procured energy unit
must be calculated by considering the prosumer’s operation,
asset characteristics, future actions, the involved uncertainties
and a proper forecast model. Further, those utility functions
still have to retain certain properties, mainly that of convexity,
to be applicable in various proposed P2P market frameworks
[17], [18]. It is thus interesting to see how realistic MUFs
can be derived, if these satisfy these properties, and if an
approximation is required to guarantee their convex shape.
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Fig. 1: Quadratic utility function (top) and linear MUF (bot-
tom) for a prosumer.

B. Literature review

MUFs have a long history in power system applications
[19] and their goal is to monetize the amount of energy
consumed or produced by a prosumer [20]. In this section we
focus on how such functions have been used in the context of
energy trading and coordination, and how they are derived. An
MUF expresses the maximum price per kWh of energy that
a buyer is willing to pay and the minimum price value that
a seller is willing to accept. The way that such functions are
expressed and the used sign are often a matter of convention.
We define utility as the revenue of a prosumer, making it
positive (negative) when the prosumer sells (buys) an amount
of energy. By convention, we define the energy bought by the
prosumer as positive. In Fig. 1 an illustrative example based
on [21] is shown. It depicts a quadratic utility function and the
resulting linear MUF, which is the most commonly used form
in the literature. This means that the prosumer is willing to buy
emax even for lower prices than the corresponding endpoint; we
have the reverse behavior for selling energy. In the remainder
of the paper we will refer to linearity of the MUF in the range
of −emax and emax.

Paudel et al. [22] propose a Stackelberg game for P2P
trading, where participants are split into buyers and sellers,
and quadratic functions are used to represent customer utility.
Quadratic utility functions are also used in [21] for distributed
multi-agent coordination in a microgrid. In both works the
coefficients of the functions are arbitrarily chosen. In a similar
fashion, Sorin et al. [17] introduce a P2P market structure
based on a multi-bilateral economic dispatch formulation and
also use quadratic utility functions with arbitrarily chosen
parameters. Finally, Moret et al. [15] present a market structure
for energy collectives where a non-profit virtual node (called
the community manager) coordinates a set of prosumers. The
prosumers’ preferences, or else the coefficients of the used
quadratic functions, are chosen in an arbitrary manner based
on historical system prices and random sampling. Similar to

these works, the authors of [23] use a piece-wise quadratic
utility function for consumers and a quadratic function for
producers, again with some set parameters. In [4] a P2P setup
for providing ancillary services by distributed energy resources
is proposed, where the units’ bids are also formulated with a
linear MUF using fixed parameters.

The authors of [24] propose a Stackelberg game to capture
the interactions between residential customers with renewable
production and without individual storage and a shared facility
controller. They express the utility of each customer by adding
the natural logarithm of energy consumption (based on [25])
to the revenue from selling excess energy. Based on micro-
economic theory, the authors of [25] proposed to use the
natural logarithm of consumption (multiplied by a reference
parameter) to express the utility of a prosumer. Similar to
[24], the authors of [26] also propose a Stackelberg game to
facilitate P2P trading of prosumers belonging to a microgrid,
and model prosumer utility in the same manner. In [25] the
preference parameters are arbitrarily set, and in [24] they are
drawn from a uniform distribution.

C. Research gap and contributions

Our literature review shows that prosumer MUFs are most
often modelled by assuming a type of function with desirable
properties and then parameters are chosen in a largely arbitrary
manner. For example, convexity is a necessary requirement
[15], [27]. Sorin et al. require that prosumer functions must
be convex and with a bijective gradient [17]. Baroche et
al. (who also use quadratic cost functions) state that they
must be closed, proper, and convex [18]. In general, quadratic
utility functions, and thus linear MUFs, are commonly used,
largely because of their attractive properties [28]. Thus, the
derived MUFs may not properly encapsulate the true marginal
cost/benefit of the prosumer.

We believe that an optimization approach based on the
prosumer’s overall energy management problem is a more
appropriate way of expressing utility when engaging in energy
trading and for revealing the true marginal cost/benefit for the
prosumer. Given the emergence of prosumer P2P trading [29],
[30] and the support they receive from legislators, at least in
the EU [12], in this work we focus on prosumers engaging
in P2P trading. However, our approach of deriving MUFs is
general and can be applied to other energy trading schemes as
well. To this end, the contributions of this paper are threefold.

First, we review and discuss how MUFs are used in the liter-
ature to express the willingness of prosumers to trade energy.
Second, we propose a methodology to derive a prosumer’s
MUF for an upcoming trading period by solving a stochastic
optimization (SO) problem in a rolling horizon fashion, while
considering uncertainties, future trades, prosumer constraints
and asset characteristics, and incorporating a forecast model.
It should be noted that the proposed methodology can also be
used to derive price/quantity bids if the trading setup operates
on such terms. Given that our derived MUFs can be non-
linear, the least-squares estimator is then used to retrieve a
linear function, which is suitable for distributed optimization
algorithms used in decentralized energy trading. The linearized
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function achieves a trade-off between employing each pro-
sumer’s full optimization problem, which is impractical for
large-scale applications, and using a simplistic linear function
that is arbitrarily parameterized. Third, we present a realistic
test case and derive the respective MUFs, while providing a
comprehensive analysis of how various factors such as tariffs,
forecasting properties, and time of day affect those functions.

D. Paper organization

The remainder of this paper is organized as follows. After
this introductory section, section II describes the prosumer’s
operation and interactions with the P2P market and explains
how our methodology can be applied to derive MUFs. Section
III describes our test case. Section IV presents the derived
MUFs under various conditions, discusses their properties and
shows how they can be linearized. Section V concludes the
paper.

II. PROBLEM FORMULATION

A. Prosumer operation in a P2P market

We consider prosumers who can procure energy via their
retailers or via other prosumers through P2P trading. Each
prosumer can buy energy from the retailer at a price λb

t and
sell at a price λs

t at each time step t ∈ T , where T is the set
for all time steps and has a cardinality of |T | = nT. These
prices differ from the spot prices to allow the retailer to make
a profit. A fee ct is charged for energy imports, which relates
to fees, network tariffs and taxes. The difference between the
selling and buying prices results in a considerable price gap
[31], especially due to the aforementioned fees [32].

The prosumer has an inflexible consumption pl
t, which is

expressed in energy terms. The duration of each time step ∆T
is hourly-normalized, i.e., a 15 min step results in ∆T = 0.25.
The prosumer is equipped with a non-controllable photovoltaic
(PV) unit whose energy output is denoted by pg

t . Additionally,
the prosumer owns a battery system with an energy capacity
C (in kWh), power capacity PN (in kW) and efficiency η. It
is straightforward to consider more flexible resources, such as
electric vehicles (EVs) or thermal loads, without any funda-
mental modifications in our proposed methodology. However,
for a clearer interpretation of our results we limit ourselves
to one flexible resource. An overview of the data flows and
interactions for the participation of the prosumer in the P2P
market is shown in Fig. 2.

The prosumer has the option to trade energy in a P2P
fashion, instead of relying solely on the retailer for energy pro-
curement. We consider a P2P market where prosumers trade
energy close to real-time solely for the upcoming time slot
t0, and not for multiple time steps. Each prosumer constructs
an MUF for t0 that is forwarded to the P2P market. After the
market is cleared, each prosumer receives the market outcome.
The prosumer settles any possible mismatches between the
traded energy in the P2P market and the physical power flows
by procuring energy from the retailer ex-post.

Once the market outcome is communicated to the prosumer,
an energy management system (EMS) controls the household’s
battery system. In practice, consumption and PV generation
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Marginal utility
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control

Retailer price
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Scenarios
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Fig. 2: Prosumer interactions in the P2P market.

vary within the trading block period and the EMS could
change the battery system’s output within the trading interval.
However, we consider only the exchange of energy and issues
related to real-time control in faster time scales are out of the
scope of this work.

These assumptions originate from the most commonly
found framework in commercial P2P energy trading platforms,
see [29], [30], as well as research proposals, see [33], [34].
According to current energy market regulations, prosumers do
not fulfil the requirements for acting as a balance responsible
party. For this reason they have to be associated with a retailer
who takes that responsibility on their behalf. The alternative,
where each prosumer assumes balance responsibility, would
lead to an incompatible with the current regulations setup.

In this paper we focus on the MUF calculation func-
tionality of the prosumer. The first block in Fig. 2 takes
recent household consumption and PV production values and
creates scenarios based on a forecasting model trained on
past meter data. The second block creates an MUF by taking
these scenarios, the battery’s state and the retailer prices into
account.

B. Derivation of the MUF

The MUF is generically formulated as g(pp2p) =̇ λ and
expresses the amount of energy pp2p that the prosumer is
willing to trade in the P2P market for different price values
λ. The literature often assumes a convex shape for g(·).
Alternatively, our paper presents a stochastic approach to
reveal the shape of g(·) for an upcoming trading time step.

The MUF is derived through a set of pairs of values
(pp2p,∗

n , λn), with n ∈ N . We treat λn as a parameter which
lies between the retailer selling price λs

t0 and buying price λb
t0 .

We define P(λ) as a set of optimization problems, parameter-
ized by λ, where P formulates the prosumer’s decision-making
process. Then, pp2p,∗

n := argmin P(λn) reveals the amount of
energy that the prosumer would trade for a price λn. The MUF
is derived by repeating the process for all relevant λn values.
P(λn) can be formulated as a multi-period optimization

problem under uncertainty. Using a deterministic formulation
instead has a significant effect on the shape of the MUF,
as we show later in section IV. Different options, such as
robust, chance-constrained or SO exist. A robust optimization
formulation would be suitable in the case where it is necessary
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to satisfy some specific constraints even under the worst-case
uncertainty realization. For example, those could be associated
with guaranteeing a prosumer’s thermal comfort if flexible
thermal units are considered, or guaranteeing that a prosumer’s
EV is sufficiently charged by a given point in time. Other
examples could include a power network constraint imposed
on the prosumer which could limit the energy imports/exports.
A chance-constrained formulation could be used to relax the
above mentioned constraints if a low probability of violation is
acceptable, thus making the prosumer’s strategy less conserva-
tive. In our case a two-stage SO formulation is chosen because
of the nature of the decision-making process. In the presented
setup the prosumer has no need to satisfy any constraints as
the ones described above, since we only consider a PV and a
battery system and no network constraints exist. Our interest
is to minimize the expected value of the prosumer’s cost and
SO is in most cases the most appropriate choice to do so.

At the first stage the optimal decision for the amount of
energy that the prosumer is willing to trade for a set price λn
in the P2P market is taken. At the second stage all the recourse
decisions are taken depending on the uncertainty realization,
with the goal of minimizing the expected prosumer costs. In
this context, the objective function can be formulated as

min
D

f(pp2p
n , λn)︸ ︷︷ ︸

first stage
cost

+ Ew

[
Q(pp2p

n , ξ)
]
,︸ ︷︷ ︸

recourse actions
cost

(1)

subject to prosumer constraints which we describe later. D
denotes the set of decision variables and ξ the data of the
second-stage problem. By solving this optimization problem
the optimal value of traded energy pp2p,∗

n for λn is obtained,
resulting in a pair of values of the MUF. The idea here is that
we bring all potential recourse costs to the first-stage decision
through the objective function.

Constraints

After describing our methodology to derive the MUF,
below we formulate the SO problem in more detail. Both the
inflexible load and the PV output are subject to uncertainty,
which is expressed through scenarios w ∈ W . Instead of
separating the uncertainty of consumption and PV generation
we express the uncertain net demand punc

t,w = pl
t,w − p

g
t,w as a

single and time-dependent variable. The recourse actions are
the scenario-dependent battery setpoints (pc

t,w for charging and
pd
t,w for discharging), the exchanges with the retailer (pb

t,w for
buying and ps

t,w for selling energy), and the future trades in the
P2P market pp2p

t,w. To enforce that pc
t,w and pd

t,w are mutually
exclusive, a binary variable dt,w is introduced, such that

0 ≤ pc
t,w ≤ dt,wPN∆T, ∀t ≥ t0,∀w (2)

0 ≤ pd
t,w ≤ (1− dt,w)PN∆T, ∀t ≥ t0,∀w. (3)

Xt denotes the battery’s state of charge (SOC) in kWh.
The following constraints describe the SOC evolution, enforce
boundary conditions (starting and ending values Cs and Ce,
respectively), and limit the SOC in an interval between 10%

and 100% of the energy capacity

Xt,w = Xt−1,w + pc
t,wη − pd

t,w/η, ∀t ≥ t0,∀w (4)

Xt0−1,w = Cs, XnT,w = Ce, ∀w (5)
0.1 C ≤ Xt,w ≤ C, ∀t ≥ t0,∀w. (6)

The balance between the traded energy and the physical
energy flows must be respected for each scenario w. This
balance is expressed as

pp2p
n + pb

t0,w − p
s
t0,w = punc

t0,w + pc
t0,w − p

d
t0,w, ∀w. (7)

pp2p
t,w + pb

t,w − ps
t,w = punc

t,w + pc
t,w − pd

t,w, ∀t > t0,∀w. (8)

Note that in (7) the P2P traded energy pp2p
n at t0 is the

first-stage decision variable and thus not scenario-dependent.
Conversely, future participation in the P2P market for t > t0
is expressed via recourse actions pp2p

t,w (see (8)). Variables pb
t,w

and ps
t,w are mutually exclusive because the retailer buying

price is strictly greater than the selling price, which avoids
the inclusion of a binary variable. It is sufficient to constrain
those variables in non-negative values as

pb
t,w ≥ 0, ∀t ≥ t0,∀w (9)

ps
t,w ≥ 0, ∀t ≥ t0,∀w. (10)

Since only energy imports are subjected to tariff/tax pay-
ment, we introduce binary variables gt,w, and the following
constraints to distinguish the imported x+t,w from the exported
x−t,w energy per scenario for each t. Using the big M technique
[35], this yields

punc
t,w + pc

t,w − pd
t,w = x+t,w − x−t,w, ∀t ≥ t0,∀w (11)

0 ≤ x+t,w ≤ gt,wM, ∀t ≥ t0,∀w (12)

0 ≤ x−t,w ≤ (1− gt,w)M, ∀t ≥ t0,∀w. (13)

A last set of constraints needs to be introduced to limit the
energy that can be traded with the retailer to values within
the range of possible physical energy flows. We made this
assumption to avoid arbitrage by the prosumer between trades
with other peers in the P2P market and the retailer. In this way
the prosumer uses the retailer only to settle any mismatches
between the actual energy flows and the P2P trades. This yields

pb
t,w ≤ x+t,w, ∀t ≥t0,∀w (14)

ps
t,w ≤ x−t,w, ∀t ≥t0,∀w. (15)

Objective function

The objective function consists of two terms and for a
given λn the prosumer’s optimization problem is formulated
as follows:

min
D

λn p
p2p
n + Ew

[∑
t∈T

(pb
t,wλ

b
t − ps

t,wλ
s
t + ctx

+
t,w)

]

+Ew

 ∑
t∈T \t0

pp2p
t,w λ̃t,w

 , (16)

with the following set of decision variables D =
{(pp2p

n , pp2p
t,w ∈ R), (pc

t,w, p
d
t,w, p

b
t,w, p

s
t,w, Xt,w, x

+
t,w, x

−
t,w) ∈
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Fig. 3: Left plot: QQ plot of the residuals. Right plot: auto-
correlation of the residuals.

R≥0, (dt,w, gt,w ∈ {0, 1}}n∈N , and subject to constraints (2)-
(15). The first term corresponds to the prosumer’s cost from
P2P trading in the upcoming period t0. The other two terms
express the expectation of the scenario-dependent costs, or
else the recourse actions cost. More specifically, the second
term includes the cost from procuring energy from the retailer
and possible tariff payments for energy imports. The final term
includes the cost from trading in the P2P market for time steps
t > t0. Prices λ̃t,w are the future unknown cleared prices in
the P2P market.

III. CASE STUDY DESCRIPTION

We use a real dataset from households in Australia which is
shared as open data [36]. Households have their PV production
and both their flexible and inflexible load metered separately.
The resolution is equal to 30 minutes and thus ∆T = 0.5. In
the original dataset most households have a larger consumption
than generation. It is more interesting to study customers who
have an accumulated net demand that is close to zero over
a day, so that they are largely self-sufficient and have more
degrees of freedom when they utilize their flexibility. To this
end, we chose a random customer for whom we neglect the
flexible load and double the PV output. Various forecasting
techniques can be used to obtain scenarios for a prosumer’s
future net demand. The goal of this paper is not to propose
a new forecasting technique, but rather show how forecasting
can be incorporated in the prosumer’s derivation of the MUF.
For the purpose of the paper we use a generic method without
external regressors.

We use ten weeks as a training dataset and we perform
a transformation because of the non-stationarity of the data.
First, data is split into 48 sub-time series, one for each
time step. Second, differencing is applied to remove any
underlying trends. Third, the cumulative distribution function
(CDF) of each sub-time series is calculated and data points
are mapped to an interval between zero and one. Fourth,
we apply a transformation of those data points by applying
the inverse standard normal CDF. Finally, the sub-time series
are assembled to one time series and an ARMA model is
fitted. Note that simulations will produce scenarios for the
transformed data and the inverse procedure must be followed
to obtain scenarios for the actual values.
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Fig. 4: Upper plot: Net demand forecast and 95% prediction
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Fig. 5: Spot prices used for the case study.

An ARMA(3,4) model was chosen based on the AIC
criterion and fitted on the transformed training dataset. In
Fig. 3 the QQ plot of the residuals shows that these are
normally distributed, without any significant autocorrelation.
An example of such a forecast is shown in Fig. 4 for a horizon
of 48 time steps (one day). The proposed method is studied
for a single prosumer, where we use typical spot prices of the
danish power system, a flat tariff c = 0.2 C/kWh and battery
parameters η = 0.95, C = 5 kWh, PN = 3 kW. The spot
prices used in this case study are shown in Fig. 5. Uncertainty
set W consists of 100 equiprobable scenarios, generated at
each required time step via the described ARMA model.

The future prices λ̃t,w in the P2P market are in principle
unknown and subject to uncertainty. Since we have no histori-
cal data regarding the operation of the market, we set all λ̃t,w
for t > t0 equal to the spot prices. If historical prices exist, a
forecasting model can be used to create scenario-dependent
λ̃t,w. It should also be noted that retailer prices and P2P
prices λ̃t,w can be tweaked to express user preferences. This
can be done by adjusting these prices depending on certain
features (proximity, CO2 emissions etc.), which would result
in different prices perceived by the prosumer. However, doing
so would again require historical and behavioral data from the
operation of the prosumer in a P2P market under such terms.
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values when tariffs are neglected.

IV. RESULTS

A. Effect of time step and initial SOC

The prosumer constructs an MUF at each time step to
trade energy in the upcoming trading period, which is then
forwarded to the market. The shape of the function depends
on the exact time step t0 that it is constructed and the initial
SOC of the battery (Xt0−1). Even though an MUF is created
at each time step, this incorporates all future prosumer actions
(future P2P trades, exchanges with the retailer and use of the
battery system) with the goal of minimizing energy costs on
expectation. The MUFs for four different time steps and three
varying levels of initial SOC are shown in Fig. 6 and Fig. 7,
when tariffs are neglected and applied, respectively. The initial
SOC plays an important role in the derived functions. Starting
with Fig. 6, the prosumer is willing to buy less (or sell more)
energy for a given price as the initial SOC value increases.
This is an expected behavior, but the exact effect on the MUF
is not always the same.

The existence of tariffs has a profound effect on the shape of
the MUFs. By comparing Fig. 6 and Fig. 7, it can be seen that
the prosumer is less willing to buy energy in the P2P market
when tariffs are included because arbitrage is less profitable.
In the considered cases the prosumer is not willing to sell
energy at any price, even when the battery is fully charged.
This happens because if there is insufficient PV production at
a later period the prosumer would need to import energy at a
very high cost. This leads to a different overall trading strategy,
where the prosumer is willing to buy only small amounts of
energy, unless the price is significantly lower than the spot
price or the SOC is at low levels (e.g. at t0 = 2 or t0 = 36).
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values when tariffs are applied.

B. Effect of the used uncertainty set

In the previously derived functions 100 scenarios were used
to represent W . In this subsection the effect of different
representations of uncertainty is examined by deriving an MUF
while using 5, 10, 25 and 50 randomly chosen scenarios. Since
the result is affected by the choice of those scenarios, the
process is repeated 100 times for each case and the results
are then described with probabilistic terms. We compare these
results with the functions derived by using 100 scenarios and
a deterministic case where one scenario with the expected net
demand is used. The results for t0 = 2, an initial SOC value of
0.5 C and without employing tariffs and are shown in Fig. 8.
The blue curves are derived by using the median values from
the 100 simulations. The light blue area indicates the ±2σ of
the resulting energy values. Three interesting observations can
be made.

First, as the number of used scenarios increases, on expec-
tation the prosumer is willing to sell less energy in the market
for the same λn. In other words, as the number of scenarios
increases the prosumer tends to become more conservative
and trades less energy pp2p

n . This difference is most evident
when the deterministic MUF and the one obtained with 100
scenarios are compared. This can be explained by looking
at (7)-(8) and (14)-(15). Including more scenarios, especially
those on the tail of the distribution of the uncertainty set W ,
restricts the feasible region of pp2p

n . Thus, the prosumer trades
less energy in the P2P market, so that it is still possible to
cover any mismatch (see balance constraint (7)) due to the
realization of the uncertain net demand.

Second, the variance of the resulting MUF decreases as the
number of scenarios becomes larger. This is attributed to the
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Fig. 8: MUFs for different uncertainty representations.

significant impact that few extreme scenarios can have in the
optimization problem when the total number of scenarios is
small. Such an effect can be seen when we consider only
5 scenarios, where the probability of each scenario w will
be equal to 0.2. As a result, when the number of scenarios
increases from 5 to 50, the variance of the MUF reduces
approximately threefold.

Third, the variance is significantly larger for selling energy
pp2p
n , compared to buying. This is mainly attributed to the point

in time when the MUF is derived. During the night (which is
the case for t0 = 2), the prosumer needs to consume energy.
Therefore, it is always beneficial to purchase energy in the
P2P market when prices are very low. This is not necessarily
the case when the prosumer decides to sell energy at this same
time step t0 = 2. Doing so at this point in time may translate
in extra benefits only if the realized accumulated demand until
the time where the PV system starts producing energy is not
very high. In the opposite situation when the realized demand
is relatively high, the prosumer will need to buy energy at
higher retailer prices later on. This uncertainty in the economic
performance leads to the significantly larger variance in selling
energy in the P2P market.

C. Comparison with benchmark

The most common approach in the literature is to assume
quadratic utility functions, as in [15], [21], resulting in linear
MUFs. In these works each asset class (i.e., inflexible load,
PVs or batteries) is assumed to interact independently with the
market and has its own function. However, in the majority of
cases it is hard to assume an MUF per asset due to technical
and regulatory issues, e.g., a consumer has a single connection
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Fig. 9: Comparison between the derived functions with a linear
MUF for t0 = 9 and various initial SOC values.

agreement and a certified smart meter per asset usually does
not exist. In this work we construct one function per prosumer,
considering the total exchanged energy in the P2P market and
using the same convention as previously (positive refers to
import of energy from the prosumer’s perspective).

We construct linear MUFs which we will refer to as
the benchmark in the following manner. First, the expected
net demand punc

t,w for the upcoming trading period t = t0
is calculated. Second, the allowed range of energy imports
and exports is calculated by adding the maximum possible
charging/discharging energy (pc

t,w, p
d
t,w) to the expected net

demand, taking the initial SOC into consideration. Third,
a linear function is derived by considering two points: the
maximum imported energy for the retailer sell price λs

t0 , and
the maximum exported energy for the retailer buy price λb

t0 .
A comparison between these benchmark linear functions and
the ones calculated by the proposed methodology for t0 = 9
are shown in Fig. 9.

The value of traded energy pp2p may be constant for a
wide range of prices, but it can change drastically over minor
differences in price λ. This can be observed for example in
the middle subplot, where pp2p is equal to 1.65 kWh for
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Fig. 10: Linearized fit of the MUF for the bottom plot of Fig.
9, when tariffs are excluded.

prices between 1.8 and 2.7 cents, decreasing to 0.15 kWh
for prices between 2.8 and 3 cents, and becoming negative
(−1.28 kWh) for prices above 3.1 cents. This behavior cannot
be captured by the benchmark approach, because even if a
linear fit could be a good approximation, the exact price range
of the approximately linear part (2.7-3.1 cents) can only be
revealed by an optimization-based approach. The benchmark
approach performs significantly worse with the inclusion of
tariffs. This happens because this simple approach does not
have look-ahead considerations and cannot capture the effect
of tariffs on the prosumer’s optimal decisions. In the following
subsection we show how the MUFs calculated by our approach
can be linearized and used in a P2P market.

D. Linear fit of the derived MUFs

In most cases our proposed method reveals non-linear
MUFs. An example of a non-linear MUF is shown with blue
color in Fig.10. However, linear functions have very attractive
mathematical properties when it comes to negotiation pro-
cesses and work well in decentralized or distributed optimiza-
tion frameworks, which are mostly used in P2P markets. It
is thus useful to retrieve a good linear approximation of the
revealed MUF to express prosumer preferences as accurately
as possible. Without the proposed method, which incorporates
a look-ahead strategy and considers all aspects of the prosumer
optimization problem, the MUF is typically constructed based
on an arbitrary methodology. Such a standard method from
the literature was presented in the previous subsection and
most often results in a very different MUF, as shown with
green color in the case of 10 (benchmark function). It is thus
necessary to first reveal the actual MUF (which is generally
non-linear), as done with the proposed approach, and then
linearize it. This can be done by a least-squares fit so that
the resulting function has the shape of Fig. 1. The accuracy
of the approximation depends on the actual MUF, but the
described two-step process will produce a linear MUF which
most closely expresses the true prosumer preferences. In many
cases, as the one in Fig. 10, the fitted function will be very
similar to the revealed one, in contrast to the benchmark
function.

E. Computational time
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Fig. 11: Boxplots of the required computational time per
execution for different numbers of used scenarios.

The computational requirements of the proposed method
are fairly low and can be carried out by a prosumer’s EMS.
For the optimization problems, MATLAB and the YALMIP
frame [37] were used, with Gurobi 9.0 [38] as the solver. In
Fig. 11 the computational times per execution are reported
for an optimization horizon of 48 steps and different numbers
of scenarios. Even when the full uncertainty set W is used, it
takes less than one second per execution and produce one point
in the MUF. 15 points are sufficient to construct a function
with a reasonable granularity, which means that the function
can be constructed in less than 15 seconds.

V. CONCLUSION

The literature commonly adopts linear MUFs for represent-
ing the prosumers’ willingness to trade energy, due to their
attractive properties in distributed optimization frameworks.
In this paper we investigated how actual MUFs look like,
by proposing an SO approach that models the prosumer’s
decision-making process. This allows us to derive such func-
tions without predefining their shape or arbitrarily choosing
their parameters when assuming a linear form. The proposed
method is generic to include any form of tariffs, flexible asset
type or scenario generation technique.

Our results showed that actual MUFs have often non-linear
properties and are primarily influenced by the presence of
tariffs, the initial SOC and time of day. We further showed
that MUFs can be relatively flat or even insensitive to large
price ranges, while they may occasionally present large rates
of change. This results in non-smooth shapes of the MUFs in
certain cases. Even when the actual MUF has a linear shape,
as assumed by the literature, the exact parameters are hard to
tune without an approach that reveals them under conditions
such as the uncertainty distribution, tariffs, and the prosumer’s
energy management strategy.

P2P markets most often require that prosumers use linear
MUFs, especially in cases where distributed optimization
frameworks are applied, for computational reasons and in
order to guarantee convergence to the globally optimal so-
lution. Recognizing this requirement, we further proposed to
apply a least-squares estimator to obtain linearized MUFs
from our proposed method. These approximated functions
guarantee the linear shape while at the same time they are
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a close approximation of the true preferences of the prosumer.
By using MUFs that express true utility, instead of using
an artificial representation, prosumers can interact with other
agents while being aware of the true economic and social
benefits of trading. As future work we plan to analyse the
effect of using the proposed methodology in a large case study
that simulates a realistic P2P negotiation process.
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