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Abstract—Owing to the fast deployment of distributed en-
ergy resources and the further development of demand-side
management, small agents in electricity markets are becoming
more proactive. This may boost the development of peer-to-
peer (P2P) market mechanisms. Meanwhile, since actual load
and power generation may substantially deviate from schedules
obtained at the day-ahead (forward) market stage, it is needed to
rapidly reschedule the trades among agents to maintain power
balance through a real-time market mechanism, also in a P2P
framework. However, it is technically challenging to develop and
operate such P2P market mechanisms in real-time, since they
most often involve a heavy computational burden (e.g., based
on iterative distributed optimization approaches), while real-time
trading demands fast calculation. Our core contribution is hence
to describe and analyse a novel real-time P2P market mechanism
within on online optimization framework. It relies on online social
welfare maximization using a novel online consensus alternating
direction method of multipliers (OC-ADMM) algorithm. The
computational complexity is then heavily reduced in order
to satisfy real-time requirements. We derive a sublinear non-
stationary regret upper bound for our algorithm, which implies
that social welfare will be maximized in the long run. Simulations
based on a number of case studies show that our algorithm
has good convergence performance, tracking ability, and high
computational efficiency.

Index Terms—Peer-to-peer electricity market, real-time mar-
ket, online consensus ADMM, primal-dual alternate update, non-
stationary regret.

NOMENCLATURE
Functions
R(-)  Non-stationary regret.
C(-)  Production cost or utility function.
R(:)  Stationary regret.

Numbers and Indexes

k Index for iterations.

l Index for iterations.

N Cardinal number of agents.
n,m  Indices for agents.

N,

w Cardinal number of neighboring agents.
T Cardinal number of time steps.
t Indices for time steps.
Parameters
X Nomalized cost deviation
€ Allowed maximal violation of constraint (1).
Xl Penalty factors.

Boundaries of energy.

A Allowed maximal violation of trade between agents.
a,b Coefficients of the quadractic fucntions.

G,D,P,L,A Positive upper bounded constants in assumptions
Sets and Vectors

E Vector of whole energy transactions.

Q Set of agents.

w Set of neighboring agents.

Qp, Qc, €y, Set of producers and consumers.

Variables

E The final trade quantity after projection.

EProi The projected total energy power.

A Energy prices.

A Energy prices.

) Average value of the dual variables § between neigh-
boring agents.

A Average value of the prices between neighboring
agents.

F Average value of the consensus variable between
neighboring agents.

5,6 Corresponding dual variables for constraint (3).

u, . Corresponding dual variables for constraint (2).

E Power injection or traded quantity.

E* Optimal energy injection or traded quantity.

F Consensus variable of trades.

I. INTRODUCTION

The ever-increasing distributed energy resources and en-
ergy system management are changing the way of power
system operation. Participants are becoming more proactive
in the market, who prefer determining the trading outcomes
by themselves. Therefore, electricity markets are evolving
towards more decentralized mechanisms. However, current
electricity markets still perform resource allocation and pricing
based on the conventional hierarchical and top-down approach
[1], which makes participants behave as passive receivers.
Recently, a novel design of electricity markets has emerged:
these so-called peer-to-peer (P2P) electricity markets rely on
multi-bilateral trades between each pair of participants [2]-
[11]. Employing a P2P market mechanism can yield plenty of
advantages, e.g., empowerment of participants, increasing the
reliability of power system and protection of privacy [2], [5].

Existing works about P2P markets mainly focus on the
following issues: reallocation of the costs [3], product differ-
ences [4], [9], dispatch fairness [8], flexibility of battery [10],
[11], communication properties [6] and costs [7]. Technically,
different decentralized methods are devised to realize market
mechanism, for instance, primal-dual gradient [4], relaxed
consensus+innovation [6], [9], standard alternating direction
method of multipliers (ADMM) [8], stochastic programming
[11] and consensus ADMM [3], [12].

Meanwhile, in actual operation, due to changes in the
weather, potential power system incidents, renewable power
generation uncertainty, demand-side load variations, and other



contingencies, the actual load and power generation may have
a large deviation from the schedule obtained at the day-ahead
(or more generally forward) market stage — power balance
hence ought to be restored. Thus, it is required to rapidly
reschedule the trades among market participants to keep power
balance in response to these changes — hence calling for
real-time markets [13]-[16]. Compared with day-ahead and
intraday markets, the time-scale for the real-time market for
settlement before operation is usually 5 min or even shorter.
Besides, for energy imbalance ancillary services, there exist
different kinds of reserve products in real-time, which are
classified referring to their responding time scales from 30
min to 15 sec [17]. Thus, the real-time market trading demands
fast calculation. However, A P2P market mechanism requires
a very large amount of information to be exchanged, much
greater than that required for a centralized market [7], [18],
[19]. In a real-time market context, such exchanges run a
risk of not having enough time enough to succeed if the
deadline is reached before the end of the negotiation process.
Eventually, the main challenge and requirement for a P2P
real-time electricity market is to lower the computational
complexity of the P2P mechanism so that it can be deployed
in a real-time architecture.

Note that some works already considered P2P mechanisms
for real-time electricity markets [20]-[23]. For instance, [20]
proposed bilateral contract networks as a new market design
for P2P energy trading in real-time markets, but it did not
consider how one could take advantage of previous negotia-
tions to make current negotiation faster (also knowing that the
agents update their information and preferences). Ref. [21]
proposed a P2P local electricity market model incorporating
both energy trading and uncertainty trading simultaneously,
also based on a contract matching mechanism, though at the
day-ahead stage only. Another two works [22], [23] employed
blockchain-based approaches within a P2P real-time market,
but from the communication network level, prices and pay-
ments are still centrally determined by the central coordinator,
and not via a P2P structure. However, these works ignored the
computational efficiency trouble of a P2P real-time market.

As it may be too expensive to optimally solve a P2P
market at each and every time step, one needs to think of
appropriate and computationally cheaper approaches. On the
basis of the models in these previous related works [3], [5],
[9], [24], [25], we innovatively design a real-time P2P market
within an online optimization framework. To be specific,
instead of solving a complete optimization problem at each
and every time, we concentrate on an alternative paradigm
aiming to maximize social welfare in the long run — this is
computationally lighter and more tractable. The number of
operations and communications among agents can be heavily
reduced, and the complexity of our approach is less than other
approaches for a given setup since we only perform one iter-
ation of the distributed optimization at each time step. Online
optimization is a suitable and efficient approach to solve this
type of problem where agents’ characteristics are time-varying
[26]-[28]. Despite many large-scale applications of online
optimization, such as network resource allocation [29], [30],
demand response [31], [32], and energy management [33],

our work is the first application for P2P electricity market.
The goal of this paper is to design an online decentralized
optimization approach with high computational efficiency for
the real-time P2P electricity market. To this end, an online
consensus ADMM (OC-ADMM) algorithm is proposed, which
blends the decentralization property of the consensus method
with the superior convergence property of online ADMM.

Moreover, the proposed algorithm can be further improved
in three aspects: 1) the local optimization problem can be
reduced to analytical formulations by using a primal-dual
variable alternate update process, which can greatly improve
the computational speed; 2) the traded energy between each
pair of two agents can be balanced using a projection-based
energy update process. 3) the network constraints can be
satisfied by adding a system operator (SO) who behaves as
a single agent and helps to complete the calculation of power
flows and voltage angles. Then for the improved OC-ADMM,
the sublinear regret upper bound is also proved, which implies
that social welfare is maximized the long run. In simulations,
a simple case is given to illustrate the trading process. Then,
real wind power data is employed to show the convergence
performance and tracking ability of our algorithm. Finally,
the comparison between our algorithm and other methods
demonstrates our high computational speed. Our contributions
mainly lie as follows.

o« We propose a novel real-time P2P electricity market,
which enables the energy trading of multiple proactive
dynamic agents. To reduce the computational complexity,
an online optimization framework is designed to maxi-
mize social welfare in the long run.

o We further improve the online algorithm by devising
some techniques: a primal-dual variable alternate update
process to improve the computational speed, a projection-
based energy update process to guarantee the energy
trading balance, and adding a SO who behaves as a single
agent to complete the calculation of power flows and
voltage angles.

o The sublinear non-stationary regret upper bound for our
online algorithm is proved, which implies that social
welfare will be maximized in the long run.

The rest of the paper is organized as follows: Section II
presents the real-time P2P electricity market model. Section
IIT proposes the OC-ADMM algorithm and improvements for
it, followed by the regret and market properties analysis in
Section IV. Numerical results and comparisons are presented
in Section V. Finally, conclusions are drawn in Section VI.

II. REAL-TIME PEER-TO-PEER ELECTRICITY MARKET

We consider a real-time P2P electricity market with a set €2
of N dynamic and proactive agents who can be traditional
generators, consumers with flexible loads, and renewable
generators (wind and PV) over a time horizon 7. The term
“dynamic” means the characteristics of agents, e.g., the cost
or utility function coefficients, energy demand, and renewable
power generation are changing with time. The term “proactive”
means the agents are very willing to participate in the market
to trade and negotiate with others to determine the electricity



price and quantity. We suppose all agents are rational and
truthful as in [34], which means they always make strategic
decisions to maximize individual profit.

A. Peer-to-Peer Trading

A P2P mechanism for electricity markets is much more
decentralized compared with existing centralized markets,
which consists of synchronous negotiations over the price and
quantity between each pair of two agents. To model the trading
process, the net energy power injection FE, ; of each agent
n € () at time step ¢ is split into a sum of bilaterally traded
quantities with a set of neighboring agents m € w,, as

En,t = Z En'm,7t7 Vn S Q, t= 1,...,T.

meEwn

(D

A positive value of E,,,; corresponds to a sale/production
and a negative value to a purchase/consumption. To lighten
notations, E,, ; = {En1.4, ..., Enm,¢} is used to represent the
whole energy transactions of agent n at time step ¢. The power
set-point of an agent n is constrained as

En,t S En,t S En,ta V’I’L S Q, t= ]., 7T‘ (2)

Here, the energy boundaries of conventional generators and
users are usually fixed, while for renewable generators, the
upper bound E,, ; is set to the actual power generation. Each
agent is can be either producer/consumer (En’tEn}t > 0) or
prosumer (Emtfw < 0). Hence, the decision variables E,,,,, ;
are constrained as

Eni> Epm: >0, Y(n,m)e (Qpuwy,), t=1,..,T
Ent <Epmi <0, VY(n,m)e (Qe,wy), t=1,...,T,
E, <Ewmi<En:,¥(n,m) e (Qps,wn), t=1,..,T,

3
where €, {1 and €2, are the sets of producers, consumérg
and prosumers, respectively. Finally, the market equilibrium
between energy production and consumption is represented
by a set of reciprocity balance constraints defined as

Enmi+ Emnte =0, Y(n,m) e (Quwy), t=1,...,T. 4)

For the aim of better formulation, the generator production
cost and consumer utility C,, (E, ;) (positive for producers
while negative for consumers) are assumed to be quadratic
functions [3], [9], though our mechanism is still applicable
for any general convex functions.

®)

Remark 1. The time-coupling constraints, e.g., the ramp rate
limits for conventional generators and total demand require-
ment for consumers, can also be included. To be specific, since
the market is running in an online fashion, the agents do
not know future information, they can only make decisions
based on current or past information. Then, the time-coupling
constraints, e.g., ramping limit or total demand requirement,
at time step t for agent n can be formulated as

En,t - En,tfl S AEna
En,t—l - En,t § AE’!H

1
Cn,t(En,t) = ian,tEgyt + bn,tEn,t~

Yne, t=1,..
VneQ, t=1,..

7T7
T,

(6a)
(6b)

-1
Eni+Y Eni<Dpy, Wn€Q, t=1,..

t=1

I, (6¢)
where E,, ;1 is the decision variable determined at last time
step, AFE, is the ramp limit for conventional generator n;
D, 1 is the minimal total required demand for consumer n in
the first t steps. (6a) and (6b) enforce the ramping up/down
constraints for conventional generators, and (6¢) implies the
total required demand is bounded (remember E,, ; is negative
for consumer). Above constraints can be reformulated as

En,tfl - AEn S En,t S En,tfl +AEn> Vn € va (78.)
-1
Ent < Dpy— ZEn,la Vn € (..
t=1
It is noted that above time-coupling constraints for producers
and consumers can be combined with the power level con-
straints (2) as

maX{En,tfl - AEn»Emt}’ S Enﬁt S

min{E, ;1 + AE,,En:}, VneQ,
-1

En,t < En,t Smin{Dn,t_Z En,laEn,t}v Vn € Qc~ (Sb)
t=1

(7b)

(8a)

Therefore, including the time-coupling constraints will not
break the model, and the problem is still solvable by using
our algorithm.

B. Social Welfare Maximization Problem

Since the agents do not know the information from the
future, they can only make decisions based on current updated
and past information. Thus the market has to be running step
by step instead of solving the problem for all 7. To be more
specific, at the beginning of time step ¢, each agent will be
aware of the current updated information, including cost or
utility function coefficients, power bounds, demand bounds,
and renewable generation. After obtaining these information,
the agents will make decisions for the time step ¢. All agents
negotiate with each other to reach a consensus on their en-
ergy trades while maximizing social welfare. Mathematically
speaking, this is seen as a minimization problem formulated

as -
(n 2 <Z O’L’t<E”’t)>

t=1 \neQ

s.t. (1) = (4).
If the problem (9) is solved exactly at every time step in a
decentralized manner, a double loop algorithm is needed where
the function C),; changes in the outer loop, while the inner
loop runs iteratively until the balance constraint (4) is satisfied.
However, in a P2P market, the number of communication
times will increase with the square of the number of agents [7].
Thus, for the problem (9), if we want to obtain the optimal
solution at each time step, all the agents have to complete
many iterations and cause very heavy communication and
computational burden. Thus, one needs to think of appropriate
and computationally cheaper approaches. To this end, we
propose an online optimization framework for the real-time

P2P market, which is more practicable and applicable.

€))



ITI. REAL-TIME P2P ELECTRICITY MARKET MECHANISM

Since the market is running in an online manner, problem
(9) is decomposed into each single time step. The social
welfare maximization problem (written in a cost-minimization
form) for time step ¢ is

min Z <Cn,t(En)+ Z g(Enm,tfl _Enm)2>

E
{ HEQ} ne) MEWn,

st (1) — (4), o

where ) is the penalty factor and the term I (Ey,p, 11 —Enm)?
is appended to make the results close to previous value
Eym,—1 1n order to speed up the convergence process [35],
[36].

A. Online Consensus ADMM

Plain ADMM is an algorithm that blends the decomposabil-
ity of dual ascent with the superior convergence properties of
the method of multipliers, but there is a central coordinator for
updating the dual variable [37]. Thus the plain ADMM is suit-
able for a distributed market where there is a market operator
help to decide the price. To get rid of the central coordinator,
[37] proposed the consensus ADMM method. In this method,
all agents can reach a consensus value by only communicating
with neighboring agents. Then, [3] proposed a decentralized
P2P market based on the consensus ADMM, where each pair
of agents will reach a consensus value of the trade quantities.
For the plain ADMM, the objective functions are fixed and do
not change with time. However, in some practical applications,
the objection functions usually change with time. To improve
the practicability of the ADMM method, [35] proposed the
online ADMM, which is an efficient technique that combines
plain ADMM with online learning theory. Compared with
plain ADMM, the objective functions are changing with time,
and the target is to minimize the objective value over a long
period of time. Combining the above approaches, we propose
the novel OC-ADMM algorithm to implement a real-time P2P
market, which produces the following updates:

o Energy Updates: Each agent n updates their energy
transactions with neighboring agents by solving indi-
vidual optimization problem with constraints (1)-(3) as

below:

En,t = argmin Cn,t(E'n) + Z )\nm,t—l (Frbm,t—l _Enm)
E"} MmeEwn

+ g(an,tfl_Enm)2 + g(Enm - Enm,t71)2a

1D
where p is the penalty factor and A, ¢—1 is the dual
variable of the reciprocity constraint (4), which also
defines the price for the traded energy Fpnpm ¢—1. Apt—1 =
{M1t=1s s Anmt—1} is used to represent the whole
energy prices of agent n to neighboring agents m € w,, at
time step ¢t —1. F},,, 41 is the consensus variable defined
as Enm’t_I;Emn)t_l and Fn,t—l = Zméwn an,t—l-
Then, each agent broadcasts E,, ; to neighboring agents.

o Price Updates All agents update their energy prices to
neighboring agents m € w,, as:

)\nm,t = )\nm,tfl - p(Enm,t + Emn,t)/2 (12)

The OC-ADMM algorithm is much more efficient since
the agents only need to complete one iteration at each time
step. However, the algorithm can be further improved. First,
the update (11) is still an optimization problem, which can
speed up by transforming into analytical expressions; sec-
ond, since we only run one iteration at each time step, the
energy balance between two agents may not be balanced,
ie., Enmet + Emne # 0, and it is important for a market
mechanism to keep the trading balance; third, the network
constraints are important in power system and should be
considered in the market.

B. Improvements for OC-ADMM

To address the above disadvantages, we make three further
improvements, which are 1) a primal-dual variables alter-
nate update process to increase the computational speed, 2)
a projection-based energy update process to guarantee the
energy balance, and 3) adding a SO who behaves as a
single agent to complete the calculation of power flows and
voltage angles. The procedures of the improved OC-ADMM
are summarized in Algorithm 1.

Algorithm 1 Improved OC-ADMM for real-time P2P market

1: Initialization: t = 1, {E,,,Vn € Q}, p = VT, n =T
and {\,,Vn € Q}.
2. fort=1—1T do

3 Step 1 : Primal — dual alternate update
4 for n € Q2 do

5: Reveal C), ; and renewable generation Fn’t.

6: Initial k& = 1, Apl =0 and AJ! = 0.

7 while £ , — > Ey,,>edo

8 Update E/}! and EF}!, by (16) (18-19);
9: Update Apft! and Ak by (21) (22);

10: k=k+1.

11: end while

12: end for

13: Step 2 : Prices update

14: Broadcasts E,, ; to neighboring agents;
15: Update Ay i, m € wy by (12).

16: Step 3 : Projection — based energy update
17: Initial [ =1, B}, , = EF_ ,, Y(n,m) € (Q,w,).

18: while 3(n,m) € (Q,w,), EAflmyt + EAfnm > ¢ do

19: Update EAf,tnlt by (23) (24) and (25);

20: Broadcasts Eﬁ:ftl to neighboring agents;

21 l=1+1

22: end while

23: Step 4 : Extension to DC power flow model

24: Collect B, n € Q, and calculate {P;,8;} by (27).
25: end for

1) Primal-Dual Variables Alternate Update: Since the in-
dividual problem (11) is a convex optimization problem,
we can obtain the optimal solution by equivalently solving



its Karush-Kuhn-Tucker (KKT) conditions [38], which is a
nonlinear problem with primal {E,]’:;l, Eﬁtl} and dual vari-
ables {p .7, }, {3,,m>Onm} for the constraints (2) (3). This
problem can be solved in a primal-dual variables alternate
update manner. Since the update processes are all analytical
expressions, the computational speed can be greatly increased.
In this process, iterations are indexed with k.

Primal Updates: Relaxing the constraint (1) and based on

the KKT conditions of (11) for a trade with m € w,,, we have
aCn,t(En,t) - )\nm,tfl + p(Enm,t - an,tfl)
+ n(Enm,t - Enm,t—l) - Hn + ﬁn - énm + Snm =0.
(13)
Summing up (13) for all m € w,,, we have

Nw (an,tEn,t + bn,t)

n

= Z )\nm,t—l_(p+’r/)En,t+pFn,t—1+77En,t—1
mew, (14)

MEWn

For simplicity, 4 —7 and 6—6 are denoted by Ay and AS,

respectively. Given the results from last iteration £, E,’f{l is
updated as

B =V, + aii" (15)

where yn,t = (~5\n,t71 j_ pﬁ‘n,tfl +Z7En,t71 - bn,t)/(an,t +
]pv"'T”), Ant—1> Fnt—1, By -1 and Aéﬁ are the average values.

Based on the complementary condition, Eﬁl can be obtained
in another equivalent form as

EFM1 — max{min{V +A75§E E
n,t n,t ant+m7 n,t (rEHnt( -

s N,
(16)
According to (13), the trade to m € w,, is updated as
k E k+1
BEL =W, ¢ S A B )

p+n
where an,t = ()\nm,tf1+pan,t71+nEn7n,t71_bn,t)/(p+

7). Similarly, we can obtain Efj:;:t, for a producer, in another
form as
Apk —a, EF
max { min an,tﬁL—un b nt ,Efb"t'l ,0 5.
pt+n '
(18)
If agent n is a consumer, the Efj,‘,lt is updated as
A k —a Ek‘-{—l
max { min W,Lm,t—l——un bt ,0 ,Eﬁtl .
p+n '
19)

Ek+1

If agent n is a prosumer, the .t

max { min {Wn,m,t +
(20)

Dual Updates: From (15), the dual variables p®+! is
updated as

_|_ ~
Apktt = (am + pN ”) (EFY = Vv,,) —ASE. 1)

is updated as

From (17), the average dual variable 55“ is updated as
AFEHL = (ptn) (Eﬁjhwm) — AP a, BREL (22)

After updating the dual variables {ApF+! A§F+1Y, we go
back to update the primal variables {Eﬁ}'l, Efﬁ;l} This
process repeats until ’Eﬁt =D mew, E,’“Lm,t| < ¢, where €
is the allowed maximal violation.

In conclusion, instead of solving the optimization problem
(11), the primal and dual variables are updated in an alternate
iteration process, which is more fast since they are all simple
analytical calculations.

2) Projection-based Energy Update: In the electricity mar-
ket, the energy balance for trade between agents is necessary.
To this end, we design a projection-based energy update
process to determine the final quantity by projecting the
consensus value Fyp, ¢ = (Epmt — Emnye)/2 into feasible
region (2). In this process, iterations are indexed with [.

First, we set the trade EAf;rl,t to be the consensus value of

m
the trade between agents n and m from last iteration as

2 - A ol

Enm7t - an,t - (Enm,t - Emn7t)/2
m,¢ 18 obtained after the primal-dual
alternate update process, i.e., E}Lm’tﬂ = E,’im)tﬂ. Then the
total energy power is obtained as Efftl = Zmewﬂ Eff;llt
After projecting into the feasible region (2), the projected total
energy power E}" I+ s updated as

EProiitl — max {min {EH'I Fn,t} E } .

n,t n,t » Ent

(23)

Here, the initial value £

(24)

Then the trade EAflfnlt to neighboring agent m is updated as

i Ethoj’l-i_l
= E"m’tiﬁf:f . (25)
Finally, all agents send the new trade quantities Eﬁ;;llt to
its neighboring agents, and check if the balance equation
EAﬁnl’t—&-Eﬁnl,t < e is satisfied, where € is the allowed maximal
violation; if not, repeat the processes (23)-(25) until all trades
are balanced.

3) Extension to DC Power Flow Model: For simplicity, the
power flow model and network constraint are not considered,
but our P2P market mechanism can be extended to include the
DC power flow model by adding a system operator (SO), who
behaves as a single agent and helps to complete the calculation
of power flows and voltage angles.

Let the power network consist of a set N/ of buses and
a set £ of lines. We consider the DC power flow model to
characterize the line limits and the generation-load balance,
which is widely used in market studies [39], [40]. Let P;; ; be
the real power flow in the line connecting bus ¢ and j, Y;; is
the susceptance of the line, 60; ; is the voltage angle at bus ¢,
and P{}?i", P are the line thermal limit. Without the loss
of generality, let bus 1 be the slack bus, i.e., 6+ = 0. Then,
the network constraint and power balance can be represented
as follows,

PIim < Py = Y (0,0 — 0i0) < P (i, j) € L (260)



Vi e N (26b)

> EBui= Y Pyu

neN; (1,7)EL

In transmission networks, the real power flows Pj;; are
proportional to the difference of voltage angles between the
two ends of the line. To avoid any damage to transmission
lines, the power flows are bounded by thermal capacity
related to the heat they can dissipate. Moreover, the power
balance (26b) must be kept at each bus of the grid between
line flows and power injections of agents connected to it.
P, = {Pj, (i,j) € L} and 0; = {0, i € N} are used
to represent all the power flows in lines and voltage angles of
buses at time step t.

The SO will be added as a single agent to complete the
power flows and voltage angles calculation. The network
constraints (26a)-(26b) can be converted into an optimization
problem as

2

> Py

(i,j)eL 2

(27a)
j)eL

(27b)
At each iteration, the SO will collect the total power injection
El + n € ( from all agents located at different buses, then
determines the power flow P, and voltage angles 6; by solving
above problem (27).

Although extending the P2P real-time market to include the
DC power flow model requires the SO to solve the optimiza-
tion problem (27), it is easy to solve, and the computational
efficiency will not be highly reduced as demonstrated in the
simulations.

(P! gl = argmlnz Z
{P.6} ien ||nen:

st P < Py =Yi(0; - 0:) < Pt (i

IV. MARKET ANALYSIS

In this section, we will first analyze the convergence per-
formance for our proposed online algorithm, which is usually
measured by the regret. Regret is the accumulated gap between
the online solution and the best solution in hindsight [35],
[41]-[43]. Under some standard assumptions, the sublinear
regret upper bound for our algorithm is proved, which implies
that social welfare will be maximized in the long run. Then, the
four desirable properties of our proposed market mechanisms
are analyzed.

A. Non-Stationary Regret Analysis

The stationary regret is commonly adopted, which compares
with the cost induced by the best and fixed decisions in
hindsight:

7)Y (T Cutfnn)3

t=1 \neQ

> (Z Coi(E) ) , (28)

t=1 \neQ

where E7 is the best and fixed decisions. Several sublinear
regret upper bounds measured by stationary regret have been
established in early works [35], [41], [42]. However, the
stationary regret requires the decisions to remain unchanged
throughout the period, which is not possible for the real-time

electricity market, since the renewable energy generation is
usually changing with time, and the power balance will not
be satisfied with fixed decisions. Recently, a new performance
metric known as the non-stationary regret was proposed by
[43]. The non-stationary regret compares the cumulative gap
between the online decisions and the best solutions at each
time step as defined below

3 (z cnﬁt@n,t))

T
X (Teus).
nef t=1 \neQ
(29)
where E7 , is the optimal solution of agent n at time step ?.
Before presenting the results, we introduce the some stan-
dard assumptions to derive the sublinear regret upper bound

as presented later in Theorem 1.

Assumption 1.

(a) Functions Cy, 4 are convex with bounded subgradients, i.e.,
0Cy t(Ent) < G, Vn € Q, with G being a positive
constant.

(b) The initial values are set to zero, i.e.,
Enmi =0, V(n,m) € (,wy,).

(c) For any t, we assume the gap between the optimal and
initial solutions are bounded, i.e., (Ey,, ,—Enm1)? < Dy

and (F,, ;= Fnm,1)? < Do, V(n,m) € (Q,wy), with D,
and Dy bemg positive constants.

(d) Path variation is defined as the temporal change
of the optlmal solutions sequence, i.e., Pp,r =
Zt A Efms = Ejmoas1|- We assume that the optimal
solutions do not change dramatically, in other words, the
path variation is bounded as Py, < P, Y(n,m) €
(Q, wy), with P being a positive constant called variation
budget.

(e) The electricity prices do not change dramatically, or in
mathematical sense, the price variation between two time
steps is bounded as |Npm 141 — Anm,t| < A, with A being
a positive constant.

Anm,1 = 0 and

In Assumption 1, (a)-(c) are generally required in the online
optimization setting. For Assumption 1(d), [43] proved that if
there is no restriction on the path variation, the non-stationary
regret is linear in 7 regardless of the strategies. Thus we
assume that the path variation is bounded, which is also
proposed in early works [43]-[45]. Finally, for Assumption
1(e), it is reasonable that the electricity price cannot be infinite
in the electricity market background.

Bearing all above in mind, the following theorem establishes
the regret bound for our online algorithm.

Theorem 1. OC-ADMM algorithm has the following sublin-
ear non-stationary regret upper bound by setting p = /T and

n=VT

2 2
R(T) < N(N —1) <D1 +D2;FA G +LP) VT,
(30)

where I = max,cq 2 * (E, — E,).

Proof. See Appendix A. O



According to the above theorem, since the regret has
O(VT) upper bound, we have limz_, % = 0, which
indicates the gap of the social welfare (seen as a cost) between
the optimal solutions are approaching to zero in the long run
on time average. In the next subsection, we will analyze the
desirable properties for a market-clearing mechanism based on

Theorem 1.

B. Desirable Properties of Market Mechanism

It is necessary and important to evaluate the quality
of a market-clearing mechanism by checking the four de-
sirable properties, which are market efficiency', incentive
compatibility?, cost recovery® and revenue adequacy* [46].
Based on the Hurwicz theorem [46], no mechanism is capable
of achieving all those properties at the same time.

1) Market efficiency: For our real-time P2P market, regret
can be regarded as the cumulative total cost gap between our
online algorithm and the optimal solution. From the Theorem
1, we have limp_, @ = 0, which implies the cost is
minimized or that social welfare and market efficiency are
maximized in the long run.

2) Incentive compatibility: A market participant may gain
profit by not trustfully offering in terms of price or quantity,
but we assume that they are all truthful in this work.

3) Cost recovery: The individual profit for a producer at
time ¢ is

Z Anm,tEnm,t - Cn,t<En,t)~

meEwn

€1V

Since the quadratic cost function (5) is convex, monotonically
increasing, and passing through the origin, the agent can
always set E,, ; = E,, = 0 to avoid a negative profit. Thus
the cost recovery is satisfied.

4) Revenue adequacy: From (12), the prices between
agents are identical, i.e., Aymt = Amns, and after the
projection, the energy between agents are balanced, i.e.,
Enm,t + EAmn,t = 0. Thus, the revenue adequacy is satisfied.

Summing up the above, our real-time P2P market mecha-
nism satisfies most of the desirable properties.

V. SIMULATION RESULTS

As a basis for illustration and discussion, we first consider
a simple case to show the trading prices and quantities. Then
our algorithm is tested on a dataset that is taken every five
minutes of wind power generation from 20 wind farms in
Australia [47] for 30 days, to show the convergence and
tracking performance. Finally, the computational efficiency is
demonstrated by comparing with other methods in terms of
computational time. To better show the performance, uniform
distribution stochastic parameter settings are applied. We per-
form simulations using Matlab R2017b on a PC with 1.6 GHz
Intel Core 4 Duo CPU and 8 GB memory, and the convex
optimization problem is solved by CVX Sedumi solver [48].

"Market efficiency is maximized when outcomes maximize social welfare.

2A mechanism is called incentive-compatible if every participant can
maximize its objective just by acting according to its true preferences.

3Cost recovery implies that individual profit is non-negative.

4Revenue adequacy implies that there is no financial deficit in the market.
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Fig. 1: The prices and quantities between agents.

A. Illustrative Case Study

We first take a simple case with only one conventional
generator, one wind generator, and one user, to show the
trading process in terms of prices and quantities under the
changing wind power generation and utility function. The
initial parameters of agents are summarized in Table I. We
set the utility function of user and wind power generation are
changing with time, and the values are shown in Table. II.
We also include the time-coupling constraints into the case,
i.e., the ramp rate limit for conventional generator and total
demand requirement for user. The ramp rate limit is set to 0.5
kW, and the total demand is set to 20 kW for 10 time steps.

The final traded prices and quantities between agents in 10
time steps are shown in Fig. 1. The values are changing with
time due to the varying user’s characteristics and wind power
generation. We give a comparison of the total cost between
our online P2P mechanism with the centralized mechanism,
and the price between with pool-based mechanism. As seen
in Fig. 2, the total cost of the online P2P mechanism is higher
than the centralized mechanism at some time steps, but the
gap is very small. While for the price, in the pool-based
market, the price is identical for all agents, while in our online
P2P mechanism, the prices are different between each pair of
agents, and changing with time.

B. Application to Real Data

We build a large market composed of 20 conventional
generators, 20 flexible residential users, and 20 wind power
generators with the real wind generation data in Australia for
30 days. The convergence performance and tracking ability of
our algorithm are tested.

1) Convergence Performance: Fig. 3 shows the conver-
gence performance of our online algorithm before and after
the projection. We can see R(T)/T decreases quite fast both
before and after projection, and the former one is lower. The
reason for that is before projection, the balance constraint is
relaxed and the solution is not feasible, thus the cost may be
lower than that of the optimal solution. While after projection,
since the solution is feasible, it will always exist a small
positive gap from the optimal solution. It is shown that after



TABLE I: Agents’ initial characteristics of simple case study

Agent Qn,t [$/kW2]
Generator 0.0210

User 0.0144

Wind 0.0100

bn,t [$/kW] En En
15.0413 0 49014
6.4149 -5.3252  -2.4533
5 1.3021 1.3021

TABLE II: Agents’ changing characteristics of simple case study

Parameter t=1 t=2 t=3 t=4 t=5 t=6 =7 =8 =9 t=10
ap ¢ 0.0144 0.0177 0.0119 0.0145 0.0171 0.0128 0.0166 0.0112 0.0196  0.0159
by, ¢ 6.9078 89760 7.4488 82316 8.7734 83985 5.8131 74918 6.7019 6.1191
Ey, 1.3021 13067 1.3067 1.2739 1.2985 1.2748 13012 1.2758 1.3018 1.3018
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Fig. 2: The comparison of cost/price between P2P mechanism
with centralized/pool-based mechanism.
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Fig. 3: Average regret R(T) /T before and after projection.

about 2000 time steps, the average regret decreases much
slower but still keeps going down.

2) Tracking Ability: Then we focus on the ability of track-
ing the optimal solution, a normalized index is proposed to
measure the cost deviation

2 Zneﬂ |Cnt n t) - On t(E:L,t)|
>nea |Cne (B )] ’

Xt (32)

Fig. 4: The normalized cost deviation.

The value of the index ranges from O to infinity, and the
smaller value denotes better tracking ability. For better presen-
tation, we only show the first 1000 time steps. Fig. 4 shows
that the cost deviation keeps at a low level mostly under 0.08
before projection and 0.04 after projection, which implies our
algorithm can track the optimal solution well.

C. Computational Efficiency

In this section, we will show the computational efficiency
of our algorithm, measured by the computational time. Since
our algorithm and OC-ADMM are fully decentralized, the
computational time of one iteration is determined by the
slowest agent. Simulations have been performed 30 times for
the centralized algorithm (CVX Sedumi solver), OC-ADMM,
OC-ADMM with DC and improved OC-ADMM at a different
scale of agents with different setups per iteration. As seen in
Fig. 5, the OC-ADMM is quite efficient whose computational
time is kept lower than 1s, and the improved OC-ADMM
can further highly improve the performance to about 10~%
with a little higher variance. For our proposed decentralized
algorithms, the computational time almost remains unchanged,
however, for the centralized algorithm, e.g., the interior point
method, the computation time is exponentially increasing with
the number of agents.

D. Extension to DC Optimal Power Flow

We first consider a small market with 10 agents on the IEEE
9-bus test system as shown in Fig. 6. The susceptance Y and
line capacity limit C' are setting to 3 and 10 for all lines. Agent
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Fig. 6: IEEE 9-bus test system used for case study.

G1-G3 are conventional generators, agent Ul-U4 are users,
and agent R1-R3 are wind power generators. The power flows
in different lines at the first 12 time steps are shown in Fig.
7. The results indicate that the power flows are also changing
with time, and are always not larger than the maximum line
capacity.

Then we run our online algorithm with the DC power flow
model in a 57-bus system, which is a larger system, to show
the computational efficiency at a different scale of agents. As
shown in Fig. 5, the computational time of OC-ADMM with
DC also almost remains unchanged and below 1 sec. The time
gap between OC-ADMM with and without DC is due to the
time consumed by the SO, who helps to calculate the power
flows and phase angles, and the time is only affected by the
network scale. We further give a simulation to show the impact
of network scale on the computational time. As shown in Fig.
8, the computational time will increase with the number of
buses in network, but the time is still much lower than the
requirement in the real-time market (5 min).

VI. CONCLUSION

P2P markets are considered as an evolution of the future
electricity markets driven by distributed energy resources and
demand response management development. How to design
an efficient real-time P2P electricity market mechanism with
changing environment and agents remains a challenge. To
reduce the computational and communication burden, we turn
to optimize the market in an online mechanism and propose
a novel OC-ADMM algorithm that incorporates the online
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Fig. 7: Power flows in different lines at different time steps.
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Fig. 8: Computational time as a function of network scale.

optimization approach. Besides, some further improvements
are made to increase performance and practicability. Finally,
we give a proof of the sublinear non-stationary regret upper
bound for our algorithm, which indicates that social welfare
will be maximized in the long run on average. Simulation
results show that the improved OC-ADMM has good conver-
gence performance, tracking ability, and high computational
efficiency.

The main limitation of our approach is that the market
mechanism has to be running in a synchronous manner. Each
agent has to wait to receive all bidding prices and quantities
from neighboring agents, and the computational efficiency
of the market is highly restricted by the slowest agents.
To overcome this problem, we are working on designing
an asynchronous mechanism to make it more practical and
applicable in the real world.

APPENDIX A
PROOF OF THE SUBLINEAR REGRET UPPER BOUND
Let 80”57(}5’1*) be the gradient of C), ;(E),) at Ey,,, ;. Since
E,. minimizes (11), combining (12), we have
aCn,t(En,t)
aEnm,t

+ n(Enm,tfl - Enm,t), Ym € wy,.

t+ p(Fnmt—1 t) (33)

Since C,, ¢ is a convex function and its subgradient at F,,,, ;
is given in (33), for optimal solution 7 ;, we have

On,t (En,t) - Cn,t(E:L,t)
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+ 5 2 [(Er*zmt Enmifl) (E;kzmt Enm,t)2
_(Enm,t - Enm,t—l)Q] . (34)

According to the Fenchel-Young’s inequality [49], we have
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from F},, , if the projection update finishes at the first time,
which also means both agents do not touch the bound, the
Enm’t)Q; The worst case is that the final trade reaches at the
initial value F,,, ; or —FE,,, ;, which means at the beginning,
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meEwny
For the penultimate inequality, because Enm’t begins updating
term (Enm,t — Enm.t)? reaches the maximal value (F,, ; —
one of the agents n or m has reached the bound, then the term

(Bt — E,m.+)? reaches the minimal value zero.
Combining (34)-(35), we have
Cr,t(Ent) = Cri(Ey)
< m;” Nt (Enmt = o )+ 5 (Bum = Fom 1)
+ Z nmt 1= F;mt)z_(anJ F’:m t) ]
e 2
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We notice that for the second term

(an7t_1 7F:L<m,t)2 - (an7t 7F:L<m,t)2

(36)

= (an,tfl_F;m,t—l)Q_(an t— F’rtm t)
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Similarly, for the last term
(E:Lm t Enm,t—l)Qf(E:”n’t - Eﬂm t)2
S (Enm t—1 _E;;m,t—l)Q - (Enm,t E:m t)
+L |Enm t—1 E:Lm,t| . (38)

For the first term, using Eypmt — Frm,t = M

bl

Frmt t Frnte =0, Anmt = Amp ¢ and summing up for all
n € Q yields
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Combining (36)-(39) and based on Assumption 1, ]:Z(T) is
bounded as follows
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Setting p = /T and 1 = /T yields sublinear regret R(T).
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