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Abstract

Current bid formats in pool-based electricity markets are ill-equipped to accommodate the broad
range of non-conventional sources of flexibility, such as demand response and interconnected heat-
ing, natural gas and water infrastructure networks. To address this issue, this paper introduces the
novel price-region bid format to be used in both forward electricity markets and financial right auc-
tions. We show that price-region bids are able to accommodate a broad range of techno-economic
characteristics, including complex spatial and temporal couplings, and facilitate market access to
non-conventional flexibility providers. We then show that this new bid format is compatible with
existing market structures, and satisfies desirable market properties under common assumptions.
Three numerical studies are provided: two motivating examples based on a district heating utility
and a cascaded hydro power plant, and a case study based on an integrated power and heat system.
These studies illustrate the inability of existing bid formats to accommodate flexible resources, and
show how price-region bids overcome this shortcoming.
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1. Introduction

Growing concerns about climate change, as well as energy independence, have supported the
sustained deployment of large shares of renewable sources of electricity such as wind and solar power
(Chu and Majumbar 2012), whose inherent variability call for additional flexibility in the operation
of power systems. In many countries, pool-based competitive markets play a central role in power
system operation. As these platforms were initially conceived for systems with large shares of fuel-
based power plants, traditional offering and bidding formats, such as price-quantity and block bids,
may prevent unconventional sources of flexibility from being correctly valued in the market. For
instance, cascaded hydropower plants represent a network of spatially- and temporally-correlated
flexible electricity production and storage (Piekutowski et al. 1993, Shen et al. 2015). Other energy
infrastructures connected to the power system at multiple nodes, such as district heating (Chen
et al. 2015, Mitridati and Taylor 2018), water (Zamzam et al. 2018, Stuhlmacher and Mathieu 2020,
Santhosh et al. 2014), and natural gas (Byeon and Van Hentenryck 2020, Ordoudis et al. 2020)
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networks provide a source of untapped flexibility and virtual energy storage. Distributed energy
resources, large-scale virtual power plants (Naughton et al. 2020), and electricity end-users, such
as networks of data centers (Zhang et al. 2020), and residential consumers (Callaway and Hiskens
2011, Anjos and Gómez 2017), are playing a central role as flexibility providers. Yet, current bid
formats are unable to accurately aggregate and represent the spatial and temporal correlations
of the flexibility of these market participants. Indeed, De Vivero-Serrano et al. (2019) show that
simple price-quantity bids may reduce the profitability of energy storage systems participating in
electricity markets, while Sioshansi et al. (2009) find out that battery storage in the PJM operating
region could be under-utilized by up to 15%. Acknowledging these issues, Ahlstrom (2018) argues
for the need for a new market participation model, allowing a wider range of resources to represent
their techno-economic characteristics. To that end, this paper aims to propose a novel bid format
which expands the range of flexible resources that can be accommodated in pool-based electricity
markets.

Several authors have proposed bid formats for better representing specific flexible resources.
For example, De Vivero-Serrano et al. (2019) propose linked charging-discharging bid formats
for energy storage systems, which are shown to facilitate their participation and increase their
profitability in electricity markets. Su and Kirschen (2009) propose a multi-time-period demand
bid which allows for flexible time of consumption. Liu et al. (2015) propose additional bid types for
deferrable, adjustable and storage-like loads, and show that a spot market which clears these bids
retains efficiency and incentive compatibility. These bid formats are linear. In contrast, O’Connell
et al. (2016) propose a discrete bid format in the form of asymmetric block offers and discuss its
application to aggregations of thermostatically controlled loads. Other authors have suggested to
treat storage aggregations as a system asset, similar to how transmission lines are treated in spot
markets (Taylor 2015, Muñoz-Álvarez and Bitar 2017). In this case, the operational constraints of
storage assets are directly incorporated into the spot market operator’s market-clearing program.

Each one of these approaches focuses on improving the valuation in electricity markets of
a specific type of flexible resources, located at a single node of the network. However, flexible
interconnected infrastructures, such as district heating and natural gas networks, may feature
complex operational constraints that link multiple time periods and locations. These characteristics
are not well represented by the mechanisms found in existing markets and in the literature, which
prevents these resources from being truly valued in the market. To address this issue, we define a
new generic price-region bid format to be used in both forward electricity markets and financial right
auctions. Price-region bids can accommodate a broad range of non-conventional flexible resources
with complex techno-economic characteristics linking multiple time periods and networks locations.

This paper makes several original contributions. Firstly, the proposed price-region concept
provides a general framework for market participants to exactly represent any linearly-constrained
feasible region of operation and convex piecewise linear cost function. These include, but are not
limited to, the representation of complex spatial and temporal couplings. To the best of our knowl-
edge, no existing bid format can cover this range of characteristics. We show, in particular, how
price-region bids overcome the limitations of price-quantity bids in representing complex flexible in-
frastructures. Secondly, we show that price-region bids can straightforwardly be incorporated into
existing pool-based market clearing programs without conflicting with the mechanisms in place.
In particular, in markets which clear special cases of price-region bids (such as price-quantity bids)
and use uniform pricing, we show that price-region bids preserve important market properties: the
market-clearing procedure with price-region bids ensures efficiency of the dispatch, cost recovery
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for the market participants and revenue adequacy for the market operator (as in other markets
based on uniform pricing, incentive compatibility holds under the assumption of perfect compe-
tition). Furthermore, the market-clearing program for price-region bids is linear, which ensures
computational tractability. We further show that price-region bids generalize financial transmis-
sion and storage rights, and that revenue adequacy can be guaranteed for actors involved in both
an auction for rights and a spot market. Finally, two motivating examples and one case study
based on district heating systems and cascaded hydro power plants demonstrate the added value
of price-region bids in a forward electricity market dispatching bids from complex flexible resources.

This paper is organized as follows. Section 2 describes the status quo in electricity markets
and covers some technical preliminaries. Specifically, we describe current bid formats and the
corresponding market clearing. The limitations of existing bid formats are demonstrated through
two motivating examples, respectively based on a district heating network and a cascaded hydro
power system. Section 3 introduces the new price-region bid format. Here we formulate the
corresponding market clearing as a linear program, and define its theoretical properties. We then
discuss the application of price-region bids to financial right auctions. Section 4 illustrates the
workings of price-region bids through numerical examples. Finally, Section 5 gathers conclusions
and perspectives for future work. The proofs of the propositions and modelling details for the case
study are provided in Appendix A to Appendix C.

2. Status quo in electricity markets

We concentrate on electricity markets where forward mechanisms, e.g., day-ahead, are based
on pools, such as in Europe. This section introduces relevant notations, concepts and properties in
such markets. Two motivating examples then uncover some of their limitations in accommodating
unconventional sources of flexibility.

2.1. Forward electricity market mechanisms

In contrast with power exchange markets, which explicitly model the techno-economic char-
acteristics of market participants in their market-clearing program, pool-based forward electricity
markets take the form of auctions, in which pre-defined bid formats implicitly embed the char-
acteristics of market participants (also referred to as “actors”) in a simplified way. These bids
are defined for a set of time periods and locations, which depend on the market temporal and
spatial resolution. When all bids are collected at gate closure, the market operator clears the
auction, eventually obtaining the dispatch for all market participants. Settlement is then based on
a payment rule.

2.2. From bids to market clearing

We index bids by s ∈ {1, ..., S}, locations by n ∈ {1, ..., N}, and market time periods by
k ∈ {1, ...,K}. We let qsnk ∈ R denote the amount of energy associated with bid s, location n and
time period k. When qsnk is positive, it represents an injection of energy at location n and time
k. When it is negative, it represents a withdrawal of energy from location n at time k.

Definition 1. The injection profile associated with a bid s is defined as a vector qs ∈ RNK
containing variables qsnk, n ∈ {1, ..., N}, k ∈ {1, ...,K}.
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Definition 2. A bid s is characterized by a pair (Fs, Cs). Set Fs describes all injection profiles
qs which are feasible for the actor placing the bid. The function Cs : Fs → R describes the cost
associated with each feasible injection profile qs ∈ Fs.

To streamline our discussion, we use the term “cost” to refer to both positive and negative
values. When positive, Cs(qs) represents the compensation an actor is willing to receive for a
certain profile qs. When negative, −Cs(qs) represents the amount of money an actor is willing to
pay for a certain profile qs.

Based on those definitions, at gate closure the market operator clears the market by solving a
generic social-welfare maximization problem as

min
q

S∑
s=1

Cs(qs)

s.t. qs ∈ Fs , ∀s ∈ {1, ..., S},
S∑
s=1

qsnk = 0 , ∀n ∈ {1, ..., N}, k ∈ {1, ...,K}.

(1a)

(1b)

(1c)

Constraints (1b) ensure that the injection profiles qs are feasible for all bidders. Constraints
(1c) ensure that energy injections and withdrawals are balanced in each price area. The vector q
is a vector of variables whose elements are qsnk for all s, n, k.

Transmission constraints are implicitly represented in (1a)-(1c). The transmission network
is represented by adding a new component to the bid set, where the bid has a feasible region
that consists of all feasible flows. In particular, the transmission network can be modeled as a
feasible region of operation, Fs, and a zero cost function, Cs, with qsnk the net energy flowing from
location n to neighbouring locations during time period k. These locations may refer to nodes in an
electricity network, or to larger zones, depending on the spatial resolution in the market program.
Other system assets, such as storage, can also be represented in (1a)-(1c) as a special case of a bid
(Fs, Cs) with Cs(qs) = 0, ∀qs ∈ Fs. In this paper, we assume that system assets are modeled in
this way for concision.

For an optimal solution to the market-clearing problem to exist, the set of feasible solutions
must be compact and non-empty, and the objective function must be continuous. These conditions
can be guaranteed, for example, by enforcing individual bids to have compact feasible regions
and continuous cost functions, and to admit an empty injection profile as a feasible dispatch, i.e.,
[0, ..., 0]> ∈ Fs, ∀s. Uniqueness of the optimal dispatch and payments to market participants are
also important concerns, which can be guaranteed under conditions on the cost functions; see, e.g.,
Krebs et al. (2018). When the uniqueness conditions are not met, markets implement rules to
choose among multiple solutions; see, e.g., Feng et al. (2012) and Alguacil et al. (2013).

2.3. Settlement and market properties

Let q? denote an optimal dispatch, i.e., an optimal solution to (1a)-(1c). Similarly, q?snk are
the elements of q?, and vectors q?s are the instructions from the market operator to each market
participant based on the optimal dispatch. After solving the market-clearing problem, the market
operator is responsible for the settlement process, i.e., for the determination of payment and rev-
enues for the quantities dispatched. Different market designs rely on different payment rules, e.g.,
uniform pricing, pay-as-bid, or Vickrey-Clarke-Groves. Competitive markets are often designed to
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have the following four properties (Arrow and Debreu 1954, Schweppe et al. 1988, Boucher and
Smeers 2001):

Property 1 (Efficiency). Based on the information from bid parameters:
(i) social welfare is maximized, and

(ii) no market participant has incentives to deviate unilaterally from the optimal dispatch.

Property 2 (Cost recovery). Market participants recover the costs announced in their bids.

Property 3 (Incentive compatibility). Market participants are incentivized to bid truthfully.

Property 4 (Revenue adequacy). All transactions prescribed can be settled without incurring
a shortfall for the market operator.

We remark that with a finite number of market participants, Properties 1-4 cannot be nec-
essarily met altogether without further assumptions (Hurwicz 1972, Myerson and Satterthwaite
1983).

The paper assumes uniform pricing, i.e., prices are determined based on the marginal value of
electricity at each location and time. The injection and withdrawal locations for which each bid
can be placed are referred to as price areas. These price areas may refer to nodes in an electricity
network, or to larger zones, depending on the market’s spatial resolution.1 Markets using uniform
pricing require in particular the assumption of perfect competition, i.e., all market participants are
price-taker, to meet Properties 1 and 3 (Wilson 1977, Hobbs et al. 2004, Bose and Low 2018).

For the remainder of this paper, let λnk denote the Lagrange multiplier of constraint (1c) for
each n, k. Let λ ∈ RNK be a vertical vector containing variables λnk, n ∈ {1, ..., N}, k ∈ {1, ...,K},
so that λnk is the (k +K(n− 1))th element in λ. The values λ?nk in vector λ? are used as uniform
prices, i.e., the price at which transactions are settled in each price area n and time period k. An
actor who places a bid s is thus paid λ?>q?s ∈ R by the market operator for the prescribed profile
q?s. If this amount is negative, the actor pays |λ?>q?s| for this profile.

2.4. Existing bid formats

Forward electricity markets generally rely on the standard price-quantity bids. This bid format
and its limitations are described in the following.

Definition 3. A price-quantity bid s is defined as a set of parameters (Q
s
, Qs, Ps, Ns,Ks),

where Q
s

and Qs denote lower and upper bounds for energy injection/withdrawal in price area Ns

and time period Ks, while Ps denotes a bid price, i.e.,

• the feasible region Fs of injection profiles qs is given by

Fs =
{

qs | qsNsKs ∈ [Q
s
, Qs], qsnk = 0, ∀(n, k) 6= (Ns,Ks)

}
, (2a)

• the cost associated with a feasible profile qs is given by

Cs(qs) = Ps · qsNsKs . (2b)

1When transmission network nodes are used as price areas, uniform prices are often referred to as locational
marginal prices or nodal prices.
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Figure 1: Example of cost function in a single price-quantity bid

Figure 1 shows an example of cost function which can be represented by a single price-quantity
bid. Multiple price-quantity bids can be placed simultaneously by an actor so as to cover multi-
ple price areas and/or time periods, as well as to represent convex piecewise linear cost functions
(Anderson and Philpott 2002, Neame et al. 2003). However, sets of price-quantity bids can only
describe box feasible regions (see Definition 4) and additively separable cost functions (see Defini-
tion 5). Figure 2 shows an example of a single bid that includes injections or withdrawals of power
at two different nodes and/or hours, i.e., (qsN1

sK
1
s
, qsN2

sK
2
s
), with N1

s 6= N2
s and/or K1

s 6= K2
s . Four

price-quantity bids are placed (one for each plane section). Altogether, they describe a box feasible
region (Figure 2, black surface) and an additively separable, convex, piecewise linear cost function
(Figure 2, coloured surface).

C
o
st

 (
€

)

q
(MWh/h)

sNsKs
1 1 q

(MWh/h)
sNsKs

2 2

Figure 2: Cost function Cs : Fs → R (coloured surface) and feasible region Fs (black surface) for a given set of four
price-quantity bids. The black surface is the projection of the coloured surface on the (qsN1

sK1
s
, qsN2

sK2
s
) plane. The

hue of the coloured surface carries the same information as the vertical axis.

Definition 4. A feasible region Fs is a box if there exists (Q
snk
, Qsnk) for all n, k so that
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Figure 3: Simple district heating infrastructure connected to two price areas in a power system.

Fs =
{

qs, Qs ≤ qsnk ≤ Qs ∀n, k
}

.

Definition 5. A cost function Cs is additively separable in its arguments qs if for any n ∈
{1, .., N} and k ∈ {1, ...,K} there exists a function Csnk so that Cs(qs) =

∑
n,k

Csnk(qsnk).

Price-quantity bids are used by a broad range of actors, such as flexible conventional generators
with piecewise linear cost functions, renewable generators such as wind power producers, load-
serving entities, or storage owners who based their offering strategies on price forecasts. Note,
however, that some markets accept piecewise linear cost functions without referring to them as
multiple price-quantity bids; see, e.g., price-dependent hourly orders in the Nord Pool day-ahead
market (Nord Pool 2020).

Some forward electricity markets, mostly in Europe (Dourbois et al. 2018), also accept block
bids, which allow the coupling of injection quantities over multiple time periods, and the expression
of a discontinuous feasible region. The specific constraints allowed in a block bid depend on specific
design choices; see, e.g., curtailable block orders and flexi orders in the Nord Pool day-ahead market
(Nord Pool 2020). Because of their discontinuous characteristics, block bids are particularly suited
to actors with a discontinuous feasible region of operation or a discontinuous cost function, e.g.,
due to unit commitment constraints and costs.

2.5. Challenges for non-conventional flexibility providers

This forward electricity market mechanism, and in particular the existing bid formats, has
been developed in the context of energy systems with fully controllable thermal generators as main
source of operational flexibility. However, these limited bid formats may hinder the ability for
non-conventional flexibility providers, such as complex energy or water infrastructures connected
to the power system, to participate in electricity markets. The following introduces two motivating
examples to illustrate these challenges.
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2.5.1. Motivating example 1: district heating utility

Consider a district heating utility participating in a forward electricity market with an hourly
time resolution. Let the index s denote its bid. Let the indices {n1, n2} denote two price areas
where the heating utility is connected to the power system. Let the indices {k1, k2} denote two
hours the heating utility is placing a bid for. The infrastructure is illustrated in Figure 3 and
includes

• Two electrical boilers, both with an energy conversion efficiency of 100% (for concision) and
a capacity of 5 MW, respectively connected to price areas n1 and n2.

• A woodchip boiler with a capacity of 3 MW and a fuel cost of 100 e/MWh, connected to
price area n1.

• A heat load, which expects to receive 5 MWh of heat energy in hour k2. The load can be
involuntarily curtailed and the value of lost load is 300 e/MWh.

• A hot water pipeline, which can transport heat energy from price area n1 to price area n2

with a delay of one hour, and without losses.

Let qs denote the electricity injection profile of the district heating utility from price areas
{n1, n2} over two subsequent hours {k1, k2}. We use the term injection for consistency with our
notation, but as the interface with the power system consists here solely of boilers, the profile
will consists of values lower than or equal to zero. Let xs denote a state variable representing the
woodchip boiler heat output in hour k1. The operational constraints of the heating utility can be
written as

xs − qsn1k1 − qsn2k2 ≤ 5,

qsn1k2 = 0, qsn2k1 = 0,

−5 ≤ qsn1k1 ≤ 0, −5 ≤ qsn2k2 ≤ 0, 0 ≤ xs ≤ 3.

(3a)

(3b)

(3c)

The heat load in hour k2 can consume heat produced in the same hour by the electrical boiler at
n2, as well as heat produced in the previous hour by boilers at n1 and transported in the pipeline.
Equation (3a) states that the heat energy consumed by the load is bounded by its capacity, but
can be lower if the load is curtailed. Equations (3b) state that the heat production of the electrical
boilers at other times must be zero as there is no load to dissipate it. Equations (3c) enforce the
three respective production limits of boilers.

For a given electricity injection profile, the heating utility is expected to minimize its total
operational cost. Let c?(qs) denote the minimum operational cost with a profile qs. With a
value of lost load of VOLL = 300 e/MWh and a woodchip fuel cost of Cw = 100 e/MWh, the
operational cost is given by

c?(qs) = min
xs

{
(5 + qsn1k1 + qsn2k2 − xs)VOLL + xsC

w, s.t. (3a)-(3c)
}
. (4)

The heating utility is willing to pay for electrical energy according to the opportunity cost of
not withdrawing this quantity. Let WTP(qs) denote the willingness to pay for the injection profile
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and let 04 = [0 0 0 0]>. We have

WTP(qs) = c?(04)− c?(qs)

= max
xs
{300(−qsn1k1 − qsn2k2) + 200xs − 600, s.t. (3a)-(3c)}

=

{
300(−qsn1k1 − qsn2k2), if (−qsn1k1 − qsn2k2) ≤ 2,

100(−qsn1k1 − qsn2k2) + 400, otherwise.

(5a)

(5b)

(5c)

Intermediate steps are provided in Appendix A. Given expression (5c), Figure 4 displays the
marginal and total willingness to pay for electrical energy as a function of the total energy with-
drawn over the two hours, i.e., − qsn1k1 − qsn2k2 (recall that qsn1k2 = qsn2k1 = 0). The left-hand
figure indicates that the heating utility is not willing to pay for electricity at higher prices than
the value of lost load (300 e/MWh). The electrical boiler has enough capacity to cover the entire
load, but if electricity prices are higher than the woodchip fuel cost (100 e/MWh), it may be more
economical to use the woodchip boiler to cover part of the load. Only up to 60% of the load can
be covered by the woodchip boiler, due to limited capacity. If electricity prices are lower than
100 e/MWh, the heating utility is ready to substitute some of the woodchip-based energy with
electrical energy.

Total electricity withdrawal (MWh) Total electricity withdrawal (MWh)

Figure 4: Marginal and total willingness to pay.

The willingness to pay of the heating utility can be expressed through a negative cost function
Cs = −WTP. Both functions are defined over a domain corresponding to the feasible region of
injection profiles, denoted by Fs. This region is characterized by equation (6) as

qs ∈ Fs ⇔
{
∃ xs ∈ R s.t. (qs, xs) feasible to (3a)-(3c)

}
(6)

⇔


qsn1k1 ≥ 0, qsn2k2 ≥ 0

qsn1k2 = 0, qsn2k1 = 0,

qsn1k1 + qsn2k2 ≤ 5.

(7a)

(7b)

(7c)
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Constraints (7a)-(7c) do not form a box feasible region, and the willingness-to-pay function
(5c) is not additively separable. Therefore, price-quantity bids cannot accurately represent these
characteristics. See Figures 5 and 6 for an example of inner approximation.

Existing block bids do allow the coupling of injection quantities over time, but typically not in
different price areas. Moreover, the feasible region of block bids is generally constrained to a point
(all-or-nothing) or a line (curtailable bid with a fixed profile).

To the best of our knowledge, no bid format in existing electricity markets or in the litera-
ture allows the coupling of injection quantities in different price areas, nor allows the definition
of linearly-constrained feasible regions and non-additively separable convex piecewise linear cost
functions. In order to improve the representation of flexible resources and their efficient utilization
in electricity markets, this paper proposes a novel price-region bid format, and shows that it can
exactly represent these characteristics. This contribution is not only relevant for district heating
infrastructures such as in this example, but for any flexible resource that can be described by a
linear model coupling time periods and/or price areas, such as cascaded hydro power plants (see
next motivating example, Section 2.5.2), water or gas supply infrastructures, battery storage sys-
tems, flexible load aggregations, networks of data centers, etc. A case study in Section 4 suggests
that, in a market with large shares of renewable energy, improving the representation of flexible
resources increases social welfare.

2.5.2. Motivating example 2: cascaded hydro power plants

Consider a system of two cascaded hydro power plants participating in a forward electricity
market with an hourly time resolution. Let index s denote the bid of the hydro power system
operator. Let indices {n1, n2} denote two price areas where the hydro power plants are respectively
connected to the power system. Let indices {k1, k2} denote two hours the operator is placing a bid
for. The hydro power system is depicted in Figure 7 and includes

• A reservoir in price area n1, with a water volume V 0
n1

(m3) at the beginning of the bid-
ding horizon. The discharge from the reservoir is converted to electricity with a factor ρn1

(MWh/m3), and is limited by lower and upper bounds Dn1
and Dn1 (m3/h). We assume no

inflow or spillage during the bidding horizon. We also assume that water volume bounds are
sufficiently loose to be irrelevant for the bidding horizon. The water volume in the reservoir
at the end of the bidding horizon has a value Wn1 , based on a forecast of future water value.

• A reservoir in price area n2, whose inflow corresponds to the water discharged from the
reservoir in price area n1. Parameters V 0

n2
, ρn2 , Dn2

, Dn2 and Wn2 are analogously defined.
This reservoir however has tight volume bounds V n2

and V n2 . As with the first reservoir,
spillage is assumed insignificant.

This cascaded hydro power plant model is analogous to models from standard references on
power system operations such as Wood et al. (2013).

Let qs denote the electricity injection profile of the hydro power plants from price areas {n1, n2}
over hours {k1, k2}. The operational constraints of the cascaded hydro power system can be written
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Figure 5: Cost function Cs = −WTP (transparent coloured surface) and feasible region Fs (grey triangular surface)
of the district heating utility. The grey surface is the projection of the coloured surface on the (qsn1k1 , qsn2k2) plane.
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Figure 6: Inner approximation of (Cs,Fs) using price-quantity bids, as an additively separable piecewise linear cost
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Figure 7: Simple cascaded hydro power infrastructure connected to two price areas in a power system.

as

Dn ≤
qsnk
ρn
≤ Dn, ∀ n ∈ {n1, n2}, k ∈ {k1, k2},

V n2
≤ V 0

n2
+
qsn1k1

ρn1

− qsn2k1

ρn2

≤ V n2 ,

V n2
≤ V 0

n2
+
qsn1k1 + qsn1k2

ρn1

− qsn2k1 + qsn2k2

ρn2

≤ V n2 .

(8a)

(8b)

(8c)

Equation (8a) enforces the discharge constraints, while equations (8b) and (8c) represent the
volume constraints in the lower reservoir. In this motivating example, constraints do not include
state variables, and the feasible region of injection profiles Fs is directly given by: qs ∈ Fs ⇔ (8a)-
(8c). In a more complex model, state variables could be used for example to represent voluntary
water spillage.

The cost of electricity production from the hydro power plants relates to the loss of stored
water during the bidding horizon. It is written as

Cs(qs) =
Wn1 (qsn1k1 + qsn1k2)

ρn1

+
Wn2 (qsn2k1 + qsn2k2 − qsn1k1 − qsn1k2)

ρn2

. (9)

As in the district heating example, the feasible region Fs is not a box region, and therefore, it
cannot be accurately represented by price-quantity bids. See Figure 8 for a numerical example.

3. Price-region bids

In this section, we define the novel price-region bid format and analyze its properties. We
consider the clearing of price-region bids in a forward electricity market, and discuss their imple-
mentation as financial rights.

3.1. Price-region bid format

Recall that an injection profile is described by a vector qs ∈ RNK . Let xs = [xs1, ..., xsLs ] ∈ RLs

be a vector of state variables xsl, l ∈ {1, ..., Ls}, associated with bid s ∈ {1, ..., S}. Let As be a
matrix of real numbers with NK + Ls + 1 columns for each s. Let Js denote the number of rows
in As. Let Bs be a horizontal vector of NK + Ls real numbers. Let 0 be a vector of NK zeros.
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qsn1k1
Dn1

qsn2k1

Dn2

Dn2

Dn1

Figure 8: Feasible region of the electricity injection from the hydro power plants in the first hour of the bidding
horizon step (solid blue area), and inner approximation as a box region for price-quantity bids (black striped area).
In this illustration we assume qsn1k2 = qsn2k2 = 0 for allowing a two-dimensional representation. Constraints that
define the blue area are therefore (8a) for horizontal/vertical edges and (8b) for oblique edges.

Definition 6. A price-region bid s is defined as a pair (As,Bs), so that

• the feasible region Fs of injection profiles qs is given by

Fs =

qs | ∃ xs ∈ RLs , s.t. As

 1
qs
xs

 ≤ 0

 , (10a)

• the cost associated with a feasible profile qs is given by

Cs(qs) = min
xs

Bs

[
qs
xs

]
, s.t. As

 1
qs
xs

 ≤ 0

− V 0
s , (10b)

where V 0
s represents the cost of operation when there is no injection or withdrawal of electric power.

The vector of state variables xs associated with bid s may be used to represent internal variables
and constraints of the bidder, as well as to model its piecewise linear cost function. A concrete
illustration of these state variables in the case of a district heating utility will be provided in Section
3.2. Note that the physical meaning of state variables in an electricity market clearing is known
by the bidder only.

Matrix As characterizes a set of linear constraints coupling the injection profile qs and state
variables xs. These constraints describe an NK +Ls-dimensional polytope. The NK-dimensional
feasible region Fs is computed in (10a) by projecting that polytope on the NK dimensions of qs.

Vector Bs characterizes the cost associated to each variable, i.e., the bid prices. Equation (10b)
computes an opportunity cost, i.e., the difference between (a) the cost associated with profile qs
given that state variables xs are set to their optimal values, and (b) the cost associated with no
electricity injection/withdrawal given that state variables xs are set to their optimal values.
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Note that the cost of operation without electric power injection or withdrawal can be formally
defined as

V 0
s = min

xs

Bs

[
0
xs

]
, s.t. As

 1
0
xs

 ≤ 0

 .

Unlike price-quantity bids, a price-region bid does not require the cost function to be additively
separable or the feasible region to be a box. Figure 9 provides an example of a non-separable,
convex, piecewise linear cost function defined over a linearly-constrained feasible region. Such
characteristics can be described by a price-region bid where

• a single state variable xs1 represents the cost function of bid s, i.e., Ls = 1 and Bs = [0 ... 0 1],

• for each of the six pieces of the cost function, a row in matrix As constrains xs1 to be above
the corresponding hyperplane, and

• for each facet of the feasible region, a row in matrix As constrains qs to be within the region.
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q
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'
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Figure 9: Left: example of a non-separable, convex, piecewise linear cost function (coloured surface) defined over a
linearly-constrained feasible region (black surface). The black surface is the projection of the coloured surface on the
(qsnk, qsn′k′) plane. The hue of the coloured surface carries the same information as the vertical axis. Right: same
figure seen from above.

Price-region bids can exactly represent any convex piecewise linear function defined over a
linearly-constrained feasible region. It follows that any actor whose operations are constrained by
a set of linear inequalities coupling continuous variables (including electricity injection variables
as well as internal variables, such as a storage state-of-charge, temperature setpoints, etc.) across
multiple time periods and locations, and whose costs of operation are a linear combination of these
variables, can exactly represent its characteristics in a forward electricity market using a price-
region bid. To the best of our knowledge, no existing bid format can accommodate such a broad
range of techno-economic characteristics.
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Using the example in Figure 9, we described how a single state variable xs1 can be sufficient to
describe a piecewise linear cost function without assuming separability. However, a larger number of
state variables may be used so as to model the internal variables of the bidder, who can thus derive
a price-region bid straightforwardly from a linear operational model. This assumes no limitations
on the number of constraints and variables in a bid. We discuss issues of bid dimensionality in
Section 5.

We assume in this paper that state variables are continuous. Allowing the price-region bid for-
mat to include discrete state variables is a straightforward extension, though would be challenging
due to the non-convex nature of the resulting market-clearing problem (see Section 5 for a discus-
sion). Price-region bids can still be used by actors with non-linear characteristics, in which case
the characteristics of the bidder are approximated. The approximation is however less restrictive
than by using, for example, price-quantity bids, which we show are special cases of price-region
bids in Remark 1 below.

Remark 1. Let qsnk be the (k+K(n−1))th element in qs. A price-quantity bid (Q
s
, Qs, Ps, Ns,Ks),

as in Definition 3, is a special case of a price-region bid (As,Bs) with

As =

[ ]
−Qs 0 ... 0 1 0 ... 0
Q
s

0 ... 0 −1 0 ... 0
↑

column
(Ns−1)K+Ks+1

,

Bs =
[

0 ... 0 Ps
↑

column
(Ns−1)K+Ks

0 ... 0
]
.

(11a)

(11b)

3.2. Illustrative examples

As described below, the proposed price-region bid format can accurately model various types
of flexible assets connected to the power system.

3.2.1. Application to motivating example 1 based on a district heating utility

Let the district heating utility described in Section 2.5.1 place a price-region bid (As,Bs)
defined as

As =



-5 -1 0 0 -1 1
0 0 1 0 0 0
0 0 -1 0 0 0
0 0 0 1 0 0
0 0 0 -1 0 0
-5 -1 0 0 0 0
0 1 0 0 0 0
-5 0 0 0 -1 0
0 0 0 0 1 0
-3 0 0 0 0 1
0 0 0 0 0 -1


, B>s =


300
0
0

300
-200

 . (12)

Now assume that qs = [qsn1k1 , qsn1k2 , qsn2k1 , qsn2k2 ]> and xs = [xs]. With matrix As defined
above, the feasible region of the bid (see equation (10a) in Definition 6) exactly represents the
feasible region of the heating utility (see equation (6) in Section 2.5.1). With vector Bs defined
above, the cost function of the bid (see equation (10b) in Definition 6) exactly characterizes the
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willingness-to-pay of the district heating utility (see equation (5b) in Section 2.5.1). Thus, the
price-region bid (As,Bs) exactly represents the physical and economic characteristics of the district
heating utility.

3.2.2. Application to motivating example 2 based on cascaded hydro power plants

Similarly to the example above, now with qs = [qsn1k1 , qsn1k2 , qsn2k1 , qsn2k2 ]> and xs an empty
vector, the characteristics of the cascaded hydro power system described in Section 2.5.2 can be
captured by a price-region bid (As,Bs) defined by

As =



Dn1
−ρ−1

n1
0 0 0

−Dn1 ρ−1
n1

0 0 0
Dn1

0 −ρ−1
n1

0 0

−Dn1 0 ρ−1
n1

0 0
Dn2

0 0 −ρ−1
n2

0

−Dn2 0 0 ρ−1
n2

0
Dn2

0 0 0 −ρ−1
n2

−Dn2 0 0 0 ρ−1
n2

V n2
− V 0

n2
−ρ−1

n1
0 ρ−1

n2
0

V 0
n2
− V n2

ρ−1
n1

0 −ρ−1
n2

0
V n2
− V 0

n2
−ρ−1

n1
−ρ−1

n1
ρ−1
n2

ρ−1
n2

V 0
n2
− V n2

ρ−1
n1

ρ−1
n1

−ρ−1
n2

−ρ−1
n2



,

B>s =


Wn1
ρn1
− Wn2

ρn2
Wn1
ρn1
− Wn2

ρn2
Wn2
ρn2
Wn2
ρn2

 . (13)

Additionally to these non-conventional flexibility providers, price-region bids can be used to
model traditional power system assets, such as transmission networks and energy storage.

3.2.3. Application to the transmission network

Let the price areas covered by a market be connected by an alternating current (AC) transmis-
sion network. Let βnm denote the susceptance of a transmission line between areas n and m, in
Ω−1, and Tnm the transmission capacity in MW. Let βnm = Tnm = 0 when there is no transmission
line between n and m. Let s̄ be an index associated with the entire transmission network, and let
xs̄nk denote the voltage angle in n at time k, and xs̄ a vector which contains all voltage angle vari-
ables. Let qs̄nk (in MWh/h) denote the net energy flowing into or out of area n during time period
k. Using a lossless linearized power flow model, the operational constraints of the transmission
network are given by

qs̄nk =
N∑
m=1

βnm(xs̄mk − xs̄nk) , ∀n ∈ {1, ..., N}, k ∈ {1, ...,K},

βnm(xs̄nk − xs̄mk) ≤ Tnm , ∀n,m ∈ {1, ..., N}, k ∈ {1, ...,K},

xs̄1k = 0 , ∀k ∈ {1, ...,K}.

(14a)

(14b)

(14c)
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These constraints can be written as a bid (Fs̄, Cs̄), with

Fs̄ =
{

qs̄

∣∣∣ ∃ xs̄ ∈ RN s.t. (qs̄,xs̄) feasible to (14a)-(14c)
}
, Cs̄(qs̄) = 0.

We can equivalently write this as a price-region bid parametrized by (As̄,Bs̄) as

As̄

 1
qs̄
xs̄

 ≤ 0 , Bs̄ = 0>N(K+1).

The entire transmission network which the market covers is modeled here as a single price-region
bid, thus keeping state variables xs̄ independent from other bids. It however does not imply that
the network is managed by a single operator. An individual transmission system operator may be
responsible for only a subset of constraints (14a)-(14c).

Once the market is cleared, the sum of money λ?>q?s will be attributed to the price-region bid
s. In the transmission case, this is referred to as a congestion rent. Some market operators may
allocate this rent to the transmission network operators, while others will use it to remunerate
owners of financial transmission rights.

3.2.4. Application to an energy storage unit as a system asset

Consider an energy storage unit indexed by s, located in a price area Ns, managed as a system
asset. Let Ps denote its charging/discharging capacity, in MW, and ηs its charging/discharging
efficiency. Let Es denote its energy capacity, and E0

s its initial energy content, both in MWh.
Let x+

sk and x−sk respectively denote the energy charged into and discharged from the storage at
time k, in MWh, and xs a vector which contains variables x+

sk, x
−
sk for all k. Let Vs denote the

economic value of stored energy at the end of the horizon, in e/MWh. For each s, the operational
constraints of the energy storage unit are given by

qsNsk = ηsx
−
sk −

x+
sk

ηs
, ∀k ∈ {1, ...,K},

0 ≤ x+
sk ≤ Ps , ∀k ∈ {1, ...,K},

0 ≤ x−sk ≤ Ps , ∀k ∈ {1, ...,K},

0 ≤ E0
s +

k∑
t=1

(
x+
sk − x

−
sk

)
≤ Es , ∀k ∈ {1, ...,K}.

(15a)

(15b)

(15c)

(15d)

These constraints can be represented as a bid (Fs, Cs), with

Fs =
{

qs

∣∣∣ ∃ xs ∈ RN s.t. (qs,xs) feasible to (15a)-(15d)
}
,

Cs(qs) = Vs

K∑
k=1

qsnk.

More specifically, given that (15a)-(15d) is a set of linear constraints on qs and xs, and that Cs is
a linear function of qs, there exists a pair (As,Bs) which rewrites (Fs, Cs) as a price-region bid by
satisfying

As

 1
qs
xs

 ≤ 0 ⇔ (15a)-(15d) , Bs =
[

0 ... 0 Vs ... Vs︸ ︷︷ ︸
columns

(Ns − 1)K + 1 to NsK

0 ... 0
]
.
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3.3. Electricity market clearing with price-region bids

We model a forward electricity market, where a subset of market participants ΩPR ⊂ {1, ..., S}
submits price-region bids, while other actors participate using other bid formats, such as price-
quantity bids or block bids. Given Definition 6, the market-clearing problem (1a)-(1c) can be
rewritten as (16a)-(16d). Intermediate steps are provided in Appendix A.

min
q,x

∑
s∈ΩPR

Bs

[
qs
xs

]
+
∑
s/∈ΩPR

Cs(qs)

s.t. As

 1
qs
xs

 ≤ 0 , ∀s ∈ ΩPR,

qs ∈ Fs , ∀s /∈ ΩPR,

S∑
s=1

qsnk = 0 : λnk , ∀n ∈ {1, ..., N}, k ∈ {1, ...,K}.

(16a)

(16b)

(16c)

(16d)

Objective function (16a) is the total operational cost of the system, incurred by the feasible
dispatch q. Vector x includes variables xsl for all s and l. Constraints (16b) and (16c) ensure
that the injection profiles qs are feasible for all actors according to their individual feasible regions,
respectively for price-region bids and other bid types. Constraints (16d) ensure that the dispatch
is feasible from the system perspective. The dual multipliers λnk are used to derive uniform
market prices. If q? and λ? are optimal for (16a)-(16d), the market operator pays actor s the
amount λ?>q?s. Price-region bids introduce linear costs and constraints, and thus do not challenge
the computational tractability of the problem. In order to prove desirable market properties, we
introduce the following condition:

Condition 1. All bids s /∈ ΩPR are special cases of price-region bids.

Some traditional bid formats such as price-quantity bids, as well as linear models of system assets,
are special cases of price-region bids, meaning that a range of existing markets readily meet Condi-
tion 1. See Remark 1 for the case of price-quantity bids. Note that, when Condition 1 is satisfied,
the market-clearing problem (16a)-(16d) is linear.

Propositions 1-3 below establish that the properties described in Section 2.3 hold under this
condition, with common assumptions for markets based on uniform pricing: each bid admits qs =
[0, ..., 0]> as a feasible injection profile, and the market is perfectly competitive (Wilson 1977, Hobbs
et al. 2004, Bose and Low 2018). The proofs of these propositions are provided in Appendix B.
Property 3 (Incentive compatibility) is trivially implied by the assumption of perfect competition.

Proposition 1. The pair (q?,λ?) from the optimal primal-dual solution of the market-clearing
problem (16a)-(16d) satisfies Property 1 (Efficiency) if the market is perfectly competitive and if
Condition 1 is satisfied.

Proposition 2. All actors participating in the market cleared by (16a)-(16d) recover their costs,
i.e., Property 2 (Cost recovery) is satisfied, if each bid admits qs = [0, ..., 0]> as a feasible injection
profile and if Condition 1 is satisfied.
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Proposition 3. The pair (q?,λ?) from the optimal primal-dual solution of the market-clearing
problem (16a)-(16d) guarantees budget balance for the market operator and thus satisfies Property
4 (Revenue adequacy).2

Propositions 1-3 imply that price-region bids are compatible with forward electricity markets
based on special cases of price-region bids, in the sense that these markets can incorporate price-
region bids without disrupting existing practices.

Non-linear or mixed-integer mechanisms such as discrete block bids do not meet Condition
1. While these cases are not studied in this paper, price-region bids can in principle be used in
markets which feature non-linear or mixed-integer bid formats. However, in this case the above
theoretical conditions would not hold.

In the following section, we investigate how price-region bids can also be used to generalize
financial rights, and we prove revenue adequacy for actors participating in both auctions.

3.4. Implementation as financial rights

Considering these non-conventional flexibility resources as electricity network assets can help
provide stable long-term revenues for them. In addition, it facilitates their day-to-day participation
in forward electricity markets, and provides an optimal dispatch of their flexibility in the power
system. In that context, the proposed price-region bids can be used to construct rights like financial
transmission rights (Hogan 1992, Chao and Peck 1996, Chao et al. 2000) and financial storage
rights (Taylor 2015, Muñoz-Álvarez and Bitar 2017), with application to general flexible resources.
Other actors such as loads, generators, and traders can purchase these rights in forward auctions.
The owner of a right is entitled to a payment in the spot market that may depend on nodal
prices or congestion. In this section, we use price-region bids to define financial flexibility rights,
which generalize both point-to-point transmission rights (Hogan 1992) and profile-based storage
rights (Muñoz-Álvarez and Bitar 2017).

Definition 7. A financial flexibility right r is defined by a profile q̃r ∈ RNK for a number
of locations N and time periods K. Once the electricity prices λ?> for these locations and time
periods are revealed, the right entitles its owner to the payment −λ?>q̃r ∈ R.

We propose to clear an auction for financial flexibility rights using a program analogous to
(16a)-(16d). A right r can be bought or sold in this auction by placing a bid (C̃r, F̃r), such as a
price-region bid (Ãr, B̃r).

A point-to-point transmission right (Hogan 1992) is a special case of a flexibility right q̃r ∈ RNK ,
with N = 2 and q̃rn1k = −q̃rn2k for all k. For a transmission system operator, placing a bid
(Ãr,0) in an auction for financial flexibility rights, with Ãr representing transmission constraints,
is equivalent to the way transmission system operators offer point-to-point transmission rights in
existing auctions (Hogan 1992). A profile-based storage right (Muñoz-Álvarez and Bitar 2017) can
be written as a right q̃r ∈ RNK with N = 1 and

∑K
k=1 q̃rn1k = 0. For a storage owner, placing a

bid (Ãr,0) in an auction for financial flexibility rights, with Ãr representing storage constraints, is

2In some markets based on uniform pricing, the transmission system operators are not remunerated directly from
market prices, which implies a budget surplus for the market operator. This surplus is non-negative (Wu et al. 1996),
and may instead be used to remunerate owners of financial transmission rights (Hogan 1992, Chao and Peck 1996,
Chao et al. 2000). We discuss this in the context of price-region bids in Section 3.4.
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equivalent to the way storage owners are suggested to offer profile-based storage rights in (Muñoz-
Álvarez and Bitar 2017). In their general form, financial rights traded with price-region bids can
further accommodate a range of flexible resources which feature spatial and temporal coupling,
and which have non-zero cost functions.

In Hogan (1992) and Muñoz-Álvarez and Bitar (2017), financial transmission and storage rights
are sold in an auction by a set of transmission and storage assets, which are treated as system
assets. In these frameworks, system assets do not have variable costs, and their owners only receive
revenues from the auction for rights. A system operator then collects the revenues from congestion
rents associated with these system assets on the forward electricity market, and is in charge of
paying the sums entitled to right owners after electricity prices are revealed. The authors in Hogan
(1992) and Muñoz-Álvarez and Bitar (2017) show that revenue adequacy holds for the system
operator if the rights are traded under the cover of the transmission and storage constraints. This
condition is referred to as simultaneous feasibility test (Hogan 1992, Muñoz-Álvarez and Bitar
2017, Philpott and Pritchard 2004). The price-region-based auction for rights generalizes the
simultaneous feasibility test to any flexible resource treated as system asset. For system assets
without variable operational costs, Proposition 4 below confirms that a system operator with a
similar responsibility as in Hogan (1992) and Muñoz-Álvarez and Bitar (2017) is also revenue
adequate. Extending this result to assets with variable costs of operation is not straightforward, as
there may be multiple approaches to the sharing of costs and revenues between the asset owner and
the system operator. Instead, we formulate Proposition 5, which states that an independent asset
owner participating in both the auction for rights and the forward electricity market with a price-
region bid is certain to recover its costs if its bids on both auctions are equivalent. Propositions 4
and 5 are proven in Appendix B.

Proposition 4. Let set Ωsys represent a collection of assets without variable operational costs,
treated as system assets and participating both in an auction for rights and a forward electricity
market with their feasible regions of operation. Each auction is cleared by a program in the form
of (16a)-(16d) where Condition 1 is satisfied. The pairs (q̃?, λ̃?) and (q?,λ?) are issued from the
optimal solutions of the respective auctions. Let a system operator collect the surplus associated
with system assets on the forward electricity market (

∑
s∈Ωsys λ?>q?s), and be responsible for paying

right owners the sums they are entitled to (−λ?>q̃?r for each r /∈ Ωsys). Then, the system operator
is revenue adequate, i.e., the following relation holds:∑

s∈Ωsys

λ?>q?s ≥ −
∑
r/∈Ωsys

λ?>q̃?r . (17)

Proposition 5. Let an actor place a bid (F̃r, C̃r) in an auction for rights, and a bid (Fs, Cs) in a
forward electricity market. Each auction is cleared by a program in the form of (16a)-(16d), and
the pairs (q̃?, λ̃?) and (q?,λ?) are issued from the optimal solutions of the respective auctions. If
F̃r = Fs, C̃r = Cs, 0 ∈ Fs, and Condition 1 is satisfied in both auctions, then the total economic
surplus this actor derives from both auctions is non-negative, i.e., the following relation holds:

λ?>q?s − Cs(q?s) + q̃?r(λ̃
?> − λ?>) ≥ 0. (18)

We only consider rights based on locational prices for simplicity. In principle, we could also
define general rights based on shadow prices in the style of flowgate transmission rights (Chao and
Peck 1996) and capacity-based storage rights (Taylor 2015). This could, however, entail a large
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number of shadow prices. For example, the large number of constraints that describe a district
heating network could lead to an impractically large number of shadow prices, which could be too
complicated for practical implementation.

4. Numerical examples

In this section we illustrate the application and benefits of price-region bids with a case study.

4.1. Case study

This case study simulates the participation of a district heating utility in a day-ahead market
under different conditions. Section 4.1.1 describes the integrated power and heat system under
study. The different conditions for market participation are then described in Section 4.1.2. Finally,
Section 4.1.3 contains our simulation results.

4.1.1. System description

We simulate the clearing of a day-ahead electricity market for a two-node power system, where
each node constitutes a price area. The market horizon is divided in 24 hourly time periods. The
power system is composed of a set of actors which participate in the day-ahead market (see Figure
10). A transmission line allows power to be transferred between the two nodes.

DISTRICT HEATING

POWER TRANSMISSION LINE

node 1 node 2

Heat pump

Woodchip boiler
Fixed heat load

Flexible heat load

BASELOAD POWER PLANT

LOAD-SERVING ENTITY

WIND POWER PRODUCER

PEAKING POWER PLANT

Electrical boiler

INDUSTRIAL POWER LOAD

HOT & COLD
WATER PIPELINES

Figure 10: Overview of the integrated power and heat system.

A district heating system connected to both nodes is operated by a district heating utility which
participates in the electricity market as a single entity. The two nodes of the district heating system
are connected by a pair of water pipelines which allow the transfer of heat energy. The pipelines
are operated with constant mass flows, which makes the resulting heat transport dynamics linear
(Li et al. 2016). The physical and economic characteristics of the different actors in the market are
all based on linear models. Mathematical formulations and numerical parameters are provided in
Appendix C.

4.1.2. Conditions of market participation

Four cases are considered:

Case 1: As the least flexible case, the district heating utility bids an inflexible withdrawal profile
in the electricity market. The profile is computed by the heating utility prior to market
participation, and maximizes the expected economic surplus that can be derived from a set
of electricity price forecast scenarios. Details on the generation of price scenarios are provided
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in Appendix C. All other actors represent their characteristics using traditional bid formats.
This case is used as a benchmark, and provides an upper bound for the total operational cost
of the system.

Case 2: Following the current practice in electricity markets, the district heating utility submits
price-quantity bids. Using the same set of price forecast scenarios as in Case 1, the heating
utility finds an optimal withdrawal quantity for each price level, at each time period and
node. For each time period and node, the price-quantity pairs are gathered into a piecewise
linear demand curve. The bid quantities are constrained to ensure that the demand curve
is non-increasing, which is a necessary condition for representing it with price-quantity bids.
As in Case 1, all other actors represent their characteristics using traditional bid formats.

Case 3: As proposed in this paper, the district heating utility places a price-region bid in the
electricity market, directly derived from its linear model of operation. This strategy does not
rely on electricity price forecasts. In this case, all actors are able to represent exactly their
characteristics in the market.

Case 4: As an idealized case, the electricity and heat sectors are co-optimized, based on linear
models of the different assets. This case is used as an ideal benchmark, providing a lower
bound for the total operational cost of the system. The information available to the central
coordinator in this case is equivalent to the information available to the electricity market
operator in Case 3.

4.1.3. Results

Price-region bids can more precisely represent flexible resources like district heating networks
and cascaded hydro power plants in electricity markets. Our simulations show that this leads to
improved utilization of flexible resources. Table 1 displays the total operational cost of the system
in different cases, which includes: variable costs from electricity suppliers, variable costs from heat-
only production in the district heating system, and costs of load curtailment. Load curtailment
only occurs in the power system in Case 1, where the bid from the district heating utility is most
inflexible. In Case 2, the district heating system provides some flexibility to the power system,
reducing the operational cost of the system by 14%. In Case 3, the flexibility from the district
heating system is used more efficiently, and the operational cost of the system is reduced by 35%
as compared to Case 1. This suggests that allowing price-region bids in an electricity market with
intermittent sources of renewable energy leads to increased social welfare, due to a better utilization
of flexible resources. Case 3 performs as well as the ideal benchmark Case 4 as the information
available to the electricity market operator in Case 3 is equivalent to the information available to
the central coordinator in Case 4. This confirms that the flexibility from the heat sector is truly
valued in the electricity market when the district heating utility participates with price-region bids.

Table 1: Comparison of the total operational cost of the system in four cases

Case Cost (ke) Cost reduction relative to Case 1 (%)

1 5.2 -
2 4.5 -14
3 3.4 -35
4 3.4 -35
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Figures 11(a)-11(c) illustrate how the feasible region of the district heating utility described by
price-quantity bids (areas delimited by red dashes in the figures) shrinks the full feasible region
described by a price-region bid (areas delimited by a solid black line). Note that the feasible
regions are defined in 48 dimensions. Figures 11(b) and 11(c) represent projections of the feasible
regions onto pairs of hourly withdrawal quantities, while Figure 11(a) represents feasible regions
for the aggregate withdrawal at each node. The region described by price-quantity bids is an inner
approximation of the full feasible region. Figure 11(a) highlights how the full feasible region cannot
be accurrately represented by a box region. It also shows that the solution from Case 3 (black
star) is not feasible to the approximate region, and thus differs from the conservative solution in
Case 2 (red circle). Figures 11(b) and 11(c) show how these solutions deviate substantially from
each other when looking at the dispatched quantities in individual hours.

5. Conclusion and future perspectives

Existing bid formats in current forward electricity markets cannot accurately value certain types
of flexible resources. To enable complicated flexible resources such as interconnected infrastructures
to precisely represent their capabilities in electricity markets, we propose a new price-region bid
format which allows the expression of any linearly-constrained feasible region of operation and
convex piecewise linear cost function. As shown with two motivating examples based on district
heating utility and cascaded hydropower plants, a price-region bid can be straightforwardly derived
from a linear operations model including continuous state variables.

The price-region bid format generalizes existing bid formats such as price-quantity bids as well
as linear models of system assets, and is shown to be compatible with markets that rely on these
mechanisms. We show that market clearing with price-region bids can be carried out as a linear
program, and that important desirable market properties hold under common assumptions.

Price-region bids derived directly from operational models may feature a large number of state
variables and constraints. Despite linearity, a market-clearing problem including bids with high
dimensionality may be challenging to solve. Therefore, in practice, price-region bids may need to
meet requirements fixed by the market operator, such as limits on the number of constraints and/or
the number of state variables used in the bid. In those conditions, methods for price-region bid
dimension reduction would be of interest, so that market participants with complex characteristics
can derive optimal bids under dimension restrictions. Some state variables and constraints may be
superfluous and could be omitted without losing information. But in cases where only few variables
and constraints are allowed, the flexibility characteristics may need to be approximated, e.g., using
inner approximation of the feasible region.

The price-region bid format proposed in this paper is a generalized linear bid. Extensions
to mixed-integer linear or convex non-linear bid formats are also of interest. The formulation of
mixed-integer linear price-region bids may not need to differ greatly from this paper’s formulation.
Allowing the use of discrete state variables would readily enable price-region bids to generalize
mixed-integer bid formats, such as the discrete block bids in Nord Pool (2020) and O’Connell et al.
(2016). However, non-convexity of a mixed-integer market-clearing problem poses challenges as
uniform pricing cannot straightforwardly be applied (Scarf 1994, Gribik et al. 2007, Liberopoulos
and Andrianesis 2016, Fuller and Celebi 2017).

As our price-region bid format proposal is made to fit within the current electricity markets
that clear the market in a deterministic manner, we have solely focused on highlighting its benefits
in deterministic markets. There are currently a very few real-world electricity markets that use
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a stochastic program for market clearing under uncertainty, e.g., the Swiss operational reserve
market (Abbaspourtorbati and Zima 2016). It is worth noting that the proposed price-region bid
format would still be compatible with stochastic market frameworks, as long as the convexity and
linearity of the market-clearing problem are preserved. This could be the case if the potential
uncertainty is modeled using, for example, scenario-based stochastic programming. An another
example, chance-constrained programming can also model the uncertainty and be analytically re-
formulated in a linear way, but it is necessary to make some assumptions, e.g., related to properties
of the probability distribution of the uncertainty (Nemirovski and Shapiro 2007). Additionally, fu-
ture work should investigate the application of the proposed price-region bids to model different
ancillary services, such as operating and contingency reserve products, which are currently cleared
in European electricity markets in sequential and independent market trading floors (Dominguez
et al. 2019). The proposed price-region bid format can provide a more accurate representation of
the flexibility region of unconventional flexibility providers, increase their availability in ancillary
services and energy markets, and reduce the need for contingency reserves. Following the hierar-
chical approach by Dvorkin et al. (2018), future work should also investigate how to set ancillary
service requirements in the current sequential and deterministic market framework to approximate
the robust dispatch proposed by Zugno and Conejo (2015).

Finally, it is of interest to explore whether the proposed price-region bid format affects the
potential market power of sufficiently large participants and their strategic behavior. On the one
hand, while the increased complexity of this bid format may result in transparency issues, it is also
expected to increase the privacy of the market participants by making inference of their costs or
parameters more complex, and therefore, reduce their ability to anticipate each other’s behavior.
Future work should investigate the impact of the proposed bid format on transparency and privacy
of market participants by comparing the performances of different approaches for estimating supply
and demand curves in electricity markets (Vázquez et al. 2014, Mitridati and Pinson 2017, Ruiz
et al. 2013). On the other hand, these transparency issues may challenge market monitoring and
allow the flexibility providers to exercise more market power. In this case, an additional study from
regulatory perspective is required, aiming to investigate the potential market solutions to monitor
strategic behavior and possibly mitigate market power.
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(b) Electricity withdrawal in hour 20
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(c) Electricity withdrawal in hour 21

Figure 11: District heating feasible region and optimal dispatch in Cases 1-3.
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Appendix A. Reformulations

Appendix A.1. Intermediate steps for equation (5c)

Equation (4) can be written as

c?(qs) = min
xs

{
xs(C

w −VOLL) + (qsn1k1 + qsn2k2)VOLL, s.t. (3a)-(3c)
}

= min
xs

{
− 200xs + 300(qsn1k1 + qsn2k2), s.t. (3a)-(3c)

}
= −max

xs

{
300(−qsn1k1 − qsn2k2) + 200xs − 600, s.t. (3a)-(3c)

}
.

Equation (4) also implies that

c?(04) = min
xs

{
xs(C

w −VOLL), s.t. 0 ≤ xs ≤ 3 and xs ≤ 5
}

= − 600.

It follows that

WTP(qs) = c?(04)− c?(qs)

= max
xs

{
300(−qsn1k1 − qsn2k2) + 200xs − 600, s.t. (3a)-(3c)

}
.

Appendix A.2. Price-region-based market-clearing reformulation

For a given pair (As,Bs), let V 0
s be a scalar defined as

V 0
s = min

xs

Bs

[
0
xs

]
, s.t. As

 1
0
xs

 ≤ 0

 .

It follows that the cost function expressed in (10b) may be rewritten as

Cs(qs) = min
xs

Bs

[
qs
xs

]
, s.t. As

 1
qs
xs

 ≤ 0

− V 0
s . (A.1)

Let a market receive a set of price-region bids from actors ΩPR ⊂ {1, ..., S}. Note that

∑
s∈ΩPR

Cs(qs)
(A.1)
=

∑
s∈ΩPR

min
xs

Bs

[
qs
xs

]
, s.t. As

 1
qs
xs

 ≤ 0

− ∑
s∈ΩPR

V 0
s

= min
x

 ∑
s∈ΩPR

Bs

[
qs
xs

]
, s.t. (16b)

− ∑
s∈ΩPR

V 0
s .
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It then follows that (1a)-(1c) can be written as

min
q

{
S∑
s=1

Cs(qs), s.t. (1b)-(1c)

}

≡ min
q

 ∑
s∈ΩPR

Cs(qs) +
∑
s/∈ΩPR

Cs(qs), s.t.
{

qs ∈ Fs , ∀s ∈ ΩPR, (16c)− (16d)
}

≡ min
q

min
x

{ ∑
s∈ΩPR

Bs

[
qs
xs

]
, s.t. (16b)

+
∑
s/∈ΩPR

Cs(qs),

s.t.
{
∃ x feasible to (16b)

}
, (16c)-(16d)

}

≡ min
q,x

 ∑
s∈ΩPR

Bs

[
qs
xs

]
+
∑
s/∈ΩPR

Cs(qs), s.t. (16b)-(16d)


≡ (16a)-(16d).

Appendix B. Proofs

Appendix B.1. Proof of Proposition 1 – part I

A profit-maximizing actor participates in the market so as to maximize its economic surplus.
For a given dispatch q and prices λ, let ESs(qs,λ) denote the economic surplus of the actor placing
bid s, i.e., the difference between its income from market prices λ and the cost associated with the
profile qs. It is written as

ESs(qs,λ) = λ>qs − Cs(qs). (B.1)

Let SW(q,λ) denote the sum of individual economic surpluses as defined in (B.1), i.e.,

SW(q,λ) =

S∑
s=1

(
λ>qs − Cs(qs)

)
.

If (q,λ) is a feasible solution to (16a)-(16d), maximizing SW(q,λ) is equivalent to minimizing the
objective function of (16a)-(16d), owing to the following relation:

SW(q,λ) =
S∑
s=1

N∑
n=1

K∑
k=1

(
λnk

S∑
s=1

qsnk

)
−

S∑
s=1

Cs(qs)
(16d)
= −

S∑
s=1

Cs(qs).

This proves the first item of Property 1, i.e., the optimal solution to (16a)-(16d) maximizes the
social welfare. �

Appendix B.2. Proof of Proposition 1 – part II

If all bids s /∈ ΩPR can be written as special cases of price-region bids, i.e., for each s /∈ ΩPR there
exists a price-region bid (As,Bs) which perfectly represents (Fs, Cs), then the problem (16a)-(16d)
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can be written as

min
q,x

S∑
s=1

Bs

[
qs
xs

]

s.t. As

 1
qs
xs

 ≤ 0 , ∀s = 1, ..., S,

S∑
s=1

(qsnk) = 0 : λnk , ∀n = 1, ..., N, k = 1, ...,K.

(B.2a)

(B.2b)

(B.2c)

In the following, we show that the Karush-Kuhn-Tucker (KKT) conditions for optimality of the
market-clearing problem (B.2a)-(B.2c) match the KKT conditions for the individual price-taker
profit-maximizing problems.

For all s, let µs be the Lagrange multipliers of constraints (B.2b). Let As,j,i denote the element
in the jth row and ith column of the matrix As, and Bs,p the pth element of Bs. The optimality
condition of (B.2a)-(B.2c) are

Bs,(K(n−1)+k) +

Js∑
j=1

(µs,jAs,j,(K(n−1)+k+1)))− λnk

= 0 , ∀ s = 1, ..., S, n = 1, ..., N, k = 1, ...,K,

Bs,(KN+l) +

Js∑
j=1

(µs,jAs,j,(KN+l+1)) = 0 , ∀s = 1, ..., S, l = 1, ..., L,

µs ≥ 0 , ∀s = 1, ..., S,

µs ◦As

 1
qs
xs

 = 0 , ∀s = 1, ..., S.

(B.3a)

(B.3b)

(B.3c)

(B.3d)

Now let λ? denote the optimal value of λ in (B.2a)-(B.2c), i.e., the vector of market-clearing prices.
The below optimization maximizes the economic surplus of actor s given prices λ?:

max
qs

{ESs(qs,λ
?), s.t. qs ∈ Fs} . (B.4)
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The problem may be rewritten as

(B.4)
(B.1)
≡ max

qs

{
λ?>qs − Cs(qs), s.t. qs ∈ Fs

}
≡ min

qs

{
Cs(qs)− λ?>qs, s.t. qs ∈ Fs

}
(10b)
≡ min

qs

{
min
xs

Bs

[
qs
xs

]
, s.t. As

 1
qs
xs

 ≤ 0


− λ?>qs s.t. qs ∈ Fbid

s

}
(10a)
≡ min

qs,xs

{
Bs

[
qs
xs

]
− λ?>qs s.t. As

 1
qs
xs

 ≤ 0

}
.

(B.5a)

(B.5b)

(B.5c)

(B.5d)

Let µs denote the Lagrange multipliers of constraint (B.5d). The KKT conditions for optimality
of (B.5d) write as

B(K(n−1)+k) +
J∑
j=1

(µs,jAs,j,(K(n−1)+k+1)))− λ?nk

= 0 , ∀ n = 1, ..., N, k = 1, ...,K,

B(KN+l) +

J∑
j=1

(µs,jAs,j,(KN+l+1)) = 0 , ∀ l = 1, ..., L,

µs ≥ 0,

µs ◦As

 1
qs
xs

 = 0.

(B.5e)

(B.5f)

(B.5g)

(B.5h)

The KKT conditions {(B.2b), (B.3a)-(B.3d)} for the market-clearing problem are equivalent
to the collection of KKT conditions (B.5d)-(B.5h) for the individual price-taker profit-maximizing
problems. This implies that no price-taker market participant has incentives to deviate unilaterally
from the optimal dispatch q?, which proves the second item of Property 1. �

Appendix B.3. Proof of Proposition 2

Let (q?,λ?) denote an optimal solution to the market-clearing problem (B.2a)-(B.2c). The
equivalence of the KKT conditions {(B.2b), (B.3a)-(B.3d)} and (B.5d)-(B.5h) (see Appendix B.2)
implies that, under Condition 1:

ESs(q
?
s,λ

?) ≥ ESs(qs,λ
?) , ∀qs ∈ Fs, ∀s ∈ {1, ..., S}. (B.6)

If all bidders allow an empty injection profile as a feasible solution, i.e., 0 ∈ Fs ∀s, then equation
(B.6) implies, for all s ∈ {1, ..., S},

ESs(q
?
s,λ

?) ≥ ESs(0,λ
?)

(B.1)⇔ ESs(q
?
s,λ

?) ≥ λ?>0− Cs(0).
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Following Condition 1, there exists, for all s, a vector Bs so that Cs(qs) = Bsqs, ∀qs ∈ Fs. It
follows that Cs(0) = 0 and

ESs(q
?
s,λ

?) ≥ 0.

This verifies Property 2, i.e., the market participants recover the costs announced in their bids. �

Appendix B.4. Proof of Proposition 3

Let (q?,λ?) denote an optimal solution to the market-clearing problem (16a)-(16d). The net
income of the market operator from the transactions prescribed by (q?,λ?) is

∑S
s=1 λ

?>q?s and,
given (16d), is always equal to zero. It follows that the market operator is budget-balanced and
thus revenue adequate, i.e., Property 4 is satisfied. �

Appendix B.5. Proof of Proposition 4

The system operator is responsible to pay the sum
∑

r/∈Ωsys(−λ?>q̃?r) to right owners. Given
the balance constraints (16d) in the auction-clearing problem, this sum is equal to

∑
r∈Ωsys λ?>q̃?r .

The maximum value this amount can take is

max
q̃r, r∈Ωsys

{ ∑
r∈Ωsys

λ?>q̃r, s.t. q̃r ∈ F̃r, ∀r ∈ Ωsys

}
, (B.7)

where F̃r is the feasible region of system asset r declared in the auction for right. We assume the
same feasible region is declared in the forward electricity market, i.e., Fs = F̃r for all s = r ∈ Ωsys,
and rewrite (B.7) as

max
qs, s∈Ωsys

{ ∑
s∈Ωsys

λ?>qs, s.t. qs ∈ Fs, ∀s ∈ Ωsys

}
=

∑
s∈Ωsys

max
qs

{
λ?>qs, s.t. qs ∈ Fs

}
.

(B.8)

(B.9)

Given Cs = 0 for all s ∈ Ωsys, we rewrite (B.9) as∑
s∈Ωsys

max
qs

{ESs(qs,λ
?), s.t. qs ∈ Fs} . (B.10)

We show, in Appendix B.2, that maxqs {ESs(qs,λ
?), s.t. qs ∈ Fs} = ESs(q

?
s,λ

?). It follows that
expression (B.10), and thus the sum the system operator is responsible to pay to right owners, is
bounded by

∑
s∈Ωsys q?s, i.e., ∑

s∈Ωsys

λ?>q?s ≥ −
∑
r/∈Ωsys

λ?>q̃?r . �

Appendix B.6. Proof of Proposition 5

Let an auction for rights be cleared by a program analogous to (16a)-(16d) and satisfy Condition
1. The rights allocated in the auction write q̃? (analogous to q? in (16a)-(16d)), and the prices
at which rights are traded write λ̃? (analogous to λ? in (16a)-(16d)). Let an actor place a bid
(F̃r, C̃r) in this auction. Now let a forward electricity market be cleared by (16a)-(16d) and satisfy
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Condition 1. The optimal dispatch of this market is q? and the corresponding electricity prices
λ?. Let the same actor as above place a price-region bid (Fs, Cs) in this market. As argued in
Appendix B.3, the following relation holds:

ESs(q
?
s,λ

?) ≥ ESs(qs,λ
?) , ∀qs ∈ Fs,

⇔ λ?>q?s − Cs(q?s) ≥ λ?>qs − Cs(qs) , ∀qs ∈ Fs.
(B.11)

(B.12)

If F̃r = Fs, then q̃r ∈ Fs for all q̃r ∈ F̃r, including for q̃r = q̃?r . It follows that

λ?>q?s − Cs(q?s) ≥ λ?>q̃?r − Cs(q̃?r),
⇔ λ?>q?s − Cs(q?s)− λ?>q̃?r ≥ −Cs(q̃?r),
⇔ λ?>q?s − Cs(q?s) + q̃?r(λ̃

?> − λ?>) ≥ q̃?rλ̃
?> − Cs(q?r).

(B.13)

(B.14)

(B.15)

Provided that 0 ∈ F̃r, and according to Proposition 2 (see Appendix B.3), the auction for rights
satisfies cost recovery for all participants, i.e.,

λ̃?>q̃?r − C̃r(q?r) ≥ 0. (B.16)

Using C̃r = Cs, equations (B.15) and (B.16) imply

λ?>q?s − Cs(q?s) + q̃?r(λ̃
?> − λ?>) ≥ 0. � (B.17)

Appendix C. Case study models

Appendix C.1. District heating utility model

This section characterizes the physical characteristics of the district heating utility, shown in
Figure 10, as a set of linear constraints. It then describes its bidding strategy in the day-ahead
market.

Let n1, n2 denote the two price areas in the power system, and s the index of the bid from the
district heating utility. Let K denote the number of market time periods in the bidding horizon,
and τ = 1h the duration of each period. Let hwc

k , hel
k and hhp

k denote the rate of heat production in
time period k for the woodchip boiler, the electrical boiler and the heat pump, respectively. Their
unit is GJ/h. Let Hwc = 37.5 GJ/h, Hel = 5 GJ/h and Hhp = 30 GJ/h denote the maximum
heat production level of these units. Let αel = 3 GJ/MWh and αhp = 5 GJ/MWh denote the
power-to-heat conversion ratio of the electrical boiler and the heat pump, respectively. Equations
(C.1a)-(C.1b) relate the withdrawal of electrical energy from n1 and n2 to the heat production by
the heat pump and the electrical boiler. Equations (C.1c)-(C.1e) set bounds on the heat production
of units, for all k ∈ {1...K}:

hel
k = −αhpqsn1k

hel
k = −αelqsn2k

0 ≤ hhp
k ≤ H

hp

0 ≤ hel
k ≤ Hel

0 ≤ hwc
k ≤ Hwc.

(C.1a)

(C.1b)

(C.1c)

(C.1d)

(C.1e)
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Let Dfix
k denote the heat demand rate of the inflexible load in time period k, in GJ/h. The

inflexible load follows the demand profile displayed in Figure C.12. Let dflex
k denote the rate at

which heat is supplied to the flexible load in time period k, in GJ/h. Let Eflex = 150 GJ denote
the total energy the flexible load requires over the horizon, and Rflex = 10 GJ/h the maximum rate
at which it can be supplied. Equations (C.1f)-(C.1g) describe the flexible load constraints:

K∑
k=1

τdflex
k = Eflex,

0 ≤ dflex
k ≤ Rflex , ∀ k ∈ {1...K}.

(C.1f)

(C.1g)
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Figure C.12: Demand profile of inflexible heat load.

The hot water pipelines are operated at constant mass flows. Figure C.13 provides a schematic
representation of the supply-and-return pipelines system. Energy is injected from the left-hand
side by increasing the temperature of the water flowing from the return pipe outlet to the supply
pipe inlet at a fixed flow rate. Energy is withdrawn from the right-hand side by cooling down the
water flowing from the supply pipe outlet to the return pipe inlet at the same fixed flow rate. In
this case study, it is assumed that it takes exactly one time period for the water mass to travel
from one end to the other end of a pipe. This means that, in a given time period, the temperature
of the water at the outlet of a pipe is equal to the temperature at the inlet of the pipe in the
previous time period. Let tsup

k denote the water temperature in the inlet of the supply pipe at time
period k, and tret

k that of the return pipe, in ◦C. The initial temperatures are set to tsup
0 = 70 ◦C,

tret
0 = 50 ◦C, and temperatures at the end of the horizon are enforced to reach the same value (see

equations (C.1h)-(C.1i)) so that operations in the next day are not compromised. Equations (C.1j)
enforce lower and upper bounds for temperatures, respectively Tmin = 30 ◦C and Tmax = 90 ◦C,
for all k ∈ {1...K}. Equations (C.1k) enforce that the temperatures in the return pipe are never
higher than in the supply pipe, for all k ∈ {1...K}:

tsup
K = tsup

0 ,

tret
K = tret

0 ,

Tmin ≤ tret
k , tsup

k ≤ Tmax,

tret
k−1 ≤ t

sup
k , tret

k ≤ t
sup
k−1.

(C.1h)

(C.1i)

(C.1j)

(C.1k)

Let αpipe = 1.5 GJ/◦C denote the specific energy of the mass of water that travels the pipelines
in one time period. The energy injected at area n1 into the pipelines in time period k is αpipe(tsup

k −
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Figure C.13: Supply and return district heating pipelines.

tret
k−1). The energy withdrawn from the pipelines in area n2 in a time period k is αpipe(tsup

k−1 − t
ret
k ).

Equations (C.1l)-(C.1m) respectively describe the conservation of energy in areas n1 and n2, for
all k ∈ {1...K}:

τ(hwc
k + hhpk ) = αpipe(tsup

k − tret
k−1),

τhel
k + αpipe(tsup

k−1 − t
ret
k ) = τ(Dfix

k + dflex
k ).

(C.1l)

(C.1m)

Let qs denote the injection profile of the heating utility, and let a vector xs include all variables
{hwc

k , h
el
k , h

hp
k , d

flex
k , tsup

k , tret
k , k = 1...K}. The feasible region of electricity injection Fs is given by

Fs =

{
qs

∣∣∣ ∃ xs ∈ RLs s.t. (qs,xs) satisfies (C.1a)-(C.1m)

}
.

The district heating system in this case study has only one variable cost component: the fuel
cost of the woodchip boiler, Cwc = 40 e/GJ. The cost function of the district heating utility is
thus

Cs(qs) = min
xs

{
K∑
k=1

(Cwchwc
k ), s.t. (C.1a)-(C.1m)

}

−min
xs

{
K∑
k=1

(Cwchwc
k ), s.t. (0,xs) satisfies (C.1a)-(C.1m)

}
.

Appendix C.2. Characteristics and bids of other market participants

This section describes the other actors in the case study and their participation on the day-
ahead market. The transmission line is a system asset, modeled by the market operator based
on physical characteristics communicated by the transmission system operator. It is modeled as a
lossless transmission line, with a capacity of 5 MW.

The wind power producer has a variable electricity supply capacity in a range between 0 and
25 MWh/h. The available power is assumed to be well-known by the wind power producer a day
ahead of delivery. It offers energy in the market by placing price-quantity bids with bid prices set
to zero.

The load-serving entity has a variable electricity demand between 5 and 15 MWh/h. The
demand profile is assumed to be well-known by the load-serving entity a day ahead of delivery. It
bids for energy in the market by placing price-quantity bids with bid prices set to a value of lost
load of 1000 e/MWh. This is a relatively high value so that the demand can be met even when
electricity supply is scarce.

The peaking power plant has a flexible power output. Its variable cost of operation is positive
and increases as the power output increases, following a piecewise linear function. This actor offers
energy in the market by placing price-quantity bids.
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The baseload power plant has a constant, predictable supply capacity of 10 MWh/h with no
variable costs of operation. It offers this energy in the market by placing price-quantity bids with
bid prices set to zero.

The industrial load has a predictable inflexible demand for electrical energy following the profile
from Figure C.14. It bids for this energy in the market by placing price-quantity bids with bid
prices set to a value of lost load of 1000 e/MWh.
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Figure C.14: Demand for electrical energy from the industrial load.

Appendix C.3. Generation of price scenarios

Cases 1 and 2 rely on a set of electricity price forecast scenarios. These are generated by
simulating different outcomes of the market-clearing program, using slightly different wind power
and load profiles. The intention is to obtain representative price series for the system under study,
accounting for a certain degree of uncertainty in wind power and load. Figure C.15 below display
the set of wind power and load profiles that are used to generate different scenarios. Combining the
different profiles leads to 27 different scenarios. The highlighted profiles in Figure C.15 correspond
to the realized profiles in the day-ahead market.
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Figure C.15: Left: set of likely available wind power profiles. Right: set of likely load profiles (load serving entity).
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