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Abstract—We consider the problem of a wind power producer
trading energy in short-term electricity markets. The producer
is a price-taker in the day-ahead market, but a price-maker
in the balancing market, and aims at optimizing its expected
revenues from these market floors. The problem is formulated as
a Mathematical Program with Equilibrium Constraints (MPEC)
and cast as a Mixed-Integer Linear Program (MILP), which
can be solved employing off-the-shelf optimization software.
The optimal bid is shown to deliver significantly improved
performance compared to traditional bids such as the forecast
conditional mean or median of wind power distribution. Finally,
sensitivity analyses are carried out to assess the impact on the
offering strategy of the producer’s penetration in the market,
of the correlation between wind power production and residual
system deviation, and of the shape of the forecast distribution of
wind power production.

Index Terms—Wind power, price-maker, electricity markets,
offering strategies, mathematical programs with equilibrium
constraints.

I. NOMENCLATURE

A. Sets

k Index for up-regulation block offered at the balancing
market, from 1 to NK

j Index for down-regulation block offered at the bal-
ancing market, from 1 to NJ

ω Index for scenario, from 1 to NΩ

B. Constants

ck Offered cost for up-regulation block k
bj Offered benefit for down-regulation block j
Ck Production limit for up-regulation block k
Cj Consumption limit for down-regulation block j
wω Own wind power production in scenario ω
δω Residual system deviation in scenario ω
λDA
ω Day-ahead market price in scenario ω
CW Installed capacity for wind power producer

C. Lower-Level Variables

pkω Up-regulation from block k in scenario ω
pjω Down-regulation from block j in scenario ω
λBω Balancing market price in scenario ω

M. Zugno, P. Pinson and H. Madsen are with DTU Compute,
Technical University of Denmark, Kgs. Lyngby, Denmark (e-mail:
{mazu,ppin,hmad}@dtu.dk).

J. M. Morales is with the Centre for Electric Power and Energy, Technical
University of Denmark, Kgs. Lyngby, Denmark (e-mail: jmmgo@dtu.dk).

Manuscript received Month dd, yyyy; revised Month dd, yyyy.

µS
kω Dual variable for capacity constraint at the balancing

market for block k in scenario ω
µD
jω Dual variable for capacity constraint at the balancing

market for block j in scenario ω

D. Upper-Level Variables

xω Wind power producer’s offer in scenario ω

II. INTRODUCTION

In the recent years, the deployment of wind power into
power systems worldwide has increased with impressive pace.
In part this expansion has been supported by national gov-
ernments in the form of market incentives, which resulted in
wind power having a competitive advantage with respect to
conventional sources of energy. In many cases, wind power
producers are granted a fixed feed-in tariff or a minimum
price for their production, so as to hedge them from the price
fluctuations of electricity markets. Furthermore, they are often
relieved of their balance responsibility, which means that the
Transmission System Operators (TSOs) bear the costs for the
deviations of actual production from the generation schedule,
which wind power producers inevitably incur.

As the cost per produced MWh of wind power constantly
decreases, wind power producers are forced to participate in
electricity markets in the same way as conventional power gen-
erators. However, wind generation is characterized by peculiar
features that distinguish it from most of the other electricity
sources. First of all, it is stochastic, and thus can be forecast
only with a certain degree of accuracy [1]. Furthermore, it
is non-dispatchable. These features imply that deviations of
the actual production from the schedule must be covered by
back-up plants.

On the other hand, electricity markets were conceived at a
time when the large-scale penetration of wind power was not
foreseen. Therefore, their design is better suited to traditional
power plants, which are dispatchable and may need a certain
time-lag between the submission of production plans and the
actual delivery of power. In modern electricity markets, most
of the energy trade takes place in so-called day-ahead markets,
with an advance in time typically in the range between 12–36
hours. Participants are then allowed to contract changes to their
day-ahead schedules either in intra-day or balancing markets.
However, prices in such markets may involve penalties and
are generally less attractive and more volatile than in the day-
ahead market.

In view of the several market floors and of the uncertainty
involved, both in production and in market quantities, the
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problem of determining the optimal bid for a wind power
producer is a multi-stage, stochastic optimization problem.

So far the state-of-the-art of research on the topic has
focused on the problem of trading wind power as a price-
taker. Considering the day-ahead and the balancing market
stages only, it can be shown that the optimal day-ahead bid
for a price-taker wind power producer is a certain quantile of
the forecast wind power distribution, which is a function of
the market prices, see [2], as well as [3] and [4] for the case
with stochastic market prices. Such quantile-based approach
is used to evaluate the performance of wind power forecasts
in [5] and [6], both of which employ historical averages of
market prices. Furthermore, the performance of this approach
is analyzed in [4] in a realistic test-case using state-of-the-art
forecasts of both wind production and market prices. Another
analytical approach is proposed in [7], where the optimal bid
is chosen in a discrete decision space, and the uncertainty in
wind power production is modeled using probability tables.
Furthermore, an approach based on utility-functions is pre-
sented in [8] along with the use of persistence forecasting
of wind power production and historical values for market
prices. The stochastic programming approach is also popular.
In [9], wind power production is modeled using scenarios, and
historical averages of prices are used. Furthermore, [10] deals
with the participation of wind power producers in multiple
market stages (day-ahead, intra-day and balancing). Recently,
[3] and [11] have shown further analytical results on the
problem of trading wind as a price-taker.

To our knowledge, there are no attempts in the literature
to study the optimal bidding for a wind power producer in
a price-maker setting. However, the problem is becoming
increasingly interesting as, due to its growing penetration into
power systems, wind power is more and more capable of
influencing market prices [12].

This work models the market participation of a wind power
producer that is a price-maker1 in the balancing market in
the framework of Mathematical Programs with Equilibrium
Constraints (MPECs) [13]. Because a much larger volume
is traded in the day-ahead market, we assume that the wind
power producer is a price-taker at that stage. Therefore, we
can employ scenarios for the day-ahead market price, as well
as for wind power production and residual system deviation.
We also assume that bids are independent between different
trading periods, and therefore consider a single time period
in our formulation. The output of the optimization model
consists of the optimal day-ahead offer and the balancing
market prices for any realization of wind power production
and system deviation. Since producers are allowed to bid
supply curves in the day-ahead market, the optimal offer is
a non-decreasing curve relating quantities of energy to the
corresponding minimum accepted prices.

The structure of this paper is the following. Section III
introduces the setup of the problem. Then, the mathematical
formulation is described in detail in Section IV. Results from

1We define a producer to be a price-maker when it is capable of impacting
the market result through its offer in a broad sense, not necessarily only by
marking up its price offer above the marginal cost of production

a series of case studies are presented in Section V. Finally,
Section VI concludes the paper.

III. PROBLEM DESCRIPTION

This section introduces the electricity market framework
considered and the setup of the problem as a bilevel model.

A. Market Framework

In this work, we consider the short-term trade of electricity
in the day-ahead and the balancing market. In the day-ahead
market, wind power producers sell production for each trading
period of the following day with a certain advance in time
to the actual delivery, typically in the range between 12–36
hours. Since at the time of offering the actual wind power
production is uncertain, producers must settle the excess or
deficit of production by trading at the balancing market. Notice
that intra-day markets are not considered in this work. This
simplification is realistic since these markets have generally
low liquidity [14].

Furthermore, we consider a one-price balancing market,
i.e., all deviations are settled at a unique price, determined
according to the marginal pricing rule. The so-called two-
price or dual-price settlement of imbalances, where the day-
ahead market price is applied to unwanted deviations in the
opposite direction to the overall system imbalance, while the
marginal price at the balancing stage is applied to all the other
deviations, is not considered in this work. We remark that
considering a two-price balancing market in this framework
would be possible with some modifications, either by modeling
the switch between day-ahead and marginal price with binary
variables, or by employing supply curves dependent on the
realization of the system deviation. The former option would
come at the expense of a higher computational complexity,
the latter of an increased modeling burden. We underline
that, while some markets (e.g., a part of the Nordic countries
in Nord Pool [15] and the Iberian MIBEL [16] in Europe)
employ the two-price system for imbalances, there are a
number of markets where the one-price scheme is adopted
(e.g., Norway [15], the Dutch APX [17] and the German
EEX [18] markets).

B. Bilevel Setup

The setup of the problem is sketched in Fig. 1. The Wind
Power Producer (WPP) seeks to maximize its total revenues
from the day-ahead and the balancing market. Since we
assume that the wind power producer is a price-taker at the
day-ahead stage, but a price-maker at the balancing market,
only the clearing of the latter market is explicitly included
in the producer’s optimization problem. This is because the
day-ahead price is not influenced by the decision of the wind
power producer and therefore, it can be modeled exogenously
with a discrete number of scenarios. On the contrary, there
is a dependence between the balancing market clearing and
the optimization problem of the wind power producer. Indeed,
the balancing market is cleared with knowledge on the bid
of the wind power producer; in turn, the latter optimizes its
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offer on the basis of the anticipation of the balancing market
price, given its offer and a forecast of its production and of
the residual system deviation.

WPP

Maximize

revenues

Market, scenario 1

Minimize

balancing costs

Market, scenario 2

Minimize

balancing costs

Market, scenario n

Minimize

balancing costs

· · ·

bid

balancing
price

bid

balancing
price

bid

balancing
price

Fig. 1. Sketch of the problem setup

Since we model the uncertainty in future wind power pro-
duction and residual system deviation with scenarios, we need
to solve a balancing market clearing problem for each scenario.
Such problem yields, for the particular realization of the uncer-
tainties considered, the optimal dispatch of regulating power
and the balancing market price, which enters the upper-level
optimization problem (i.e., the producer’s one). In the upper-
level objective function, the market outcome corresponding to
a certain scenario is weighted by the corresponding scenario
probability.

Notice that we model exogenously the market participation
of players other than the considered wind power producer
through scenarios for the residual system deviation. In other
words, we make use of a statistical tool able to forecast the
aggregate imbalance from other wind power producers, possi-
bly bidding strategically, and the load. However, if production
forecasts for all the other wind power producers are available,
competition should be modeled through an Equilibrium Pro-
gram with Equilibrium Constraints (EPEC) [19]. We leave this
complex topic for future research.

IV. MATHEMATICAL FORMULATION

The bilevel optimization scheme outlined in Section III-B
corresponds to a stochastic formulation of an MPEC. We first
formulate the problem in the general framework of stochastic
MPECs in Section IV-A. Then, we present the formulation of
the lower-level problems in Section IV-B, and of the upper-
level one in Section IV-C.

A. Stochastic MPEC Formulation

The problem at hand has a bilevel structure where several
(lower-level) optimization problems are nested in another
(upper-level) one. This can be formulated as a stochastic

MPEC as follows.

Max. f(x,λB) (1a)

s.t. h(x,λB) ≤ 0 , (1b)(
p1, λ

B
1 ,µ1

)
∈ arg min

y∈F1(x)

{g1(x,y)} , (1c)(
p2, λ

B
2 ,µ2

)
∈ arg min

y∈F2(x)

{g2(x,y)} , (1d)

...(
pNΩ

, λBNΩ
,µNΩ

)
∈ arg min

y∈FNΩ
(x)

{gNΩ(x,y)} . (1e)

The upper-level problem consists in the maximization of the
objective function f(x,λB) in (1a) subject to the feasibility
constraint (1b), and further constrained by the optimality
conditions of the lower-level problems (1c)–(1e). For a risk-
neutral wind power producer, the objective function f(x,λB)
is the expected value of the total revenues in the day-ahead and
balancing markets, given the information available at the time
of bidding. The decision variables of the upper-level problem
are the bid x in the day-ahead market, as well as the variables
of the lower-level problems.

The lower-level problems are represented by (1c)–(1e) for
all scenarios ω = 1, 2, . . . , NΩ. Such problems aim at the
minimization of the objective functions gω(x,y), provided
that the decision vector y is included in the feasible sets
Fω(x). As we will see in the following section, the objective
function of this problem represents the system balancing costs
in the realization ω of the uncertainty, which are minimized in
the balancing market. The clearing of this market results in the
dispatch of balancing power pω , primal variable of the lower-
level problem, as well as in the dual variables λBω and µω .
Notice that, as the remainder of the section will clarify, we are
particularly interested in the value of λBω . Indeed, this variable
indicates the balancing market price in scenario ω, which
enters the upper-level optimization problem. Notice also that
the lower-level problems are parameterized in the wind power
producer’s offer in the day-ahead market x, which enters such
problems as a constant.

Formulation (1) is not suitable for being solved directly by
an optimization solver, owing to the nested optimization of the
lower-level problems in (1c)–(1e). However, such optimization
problems can be replaced by their Karush-Kuhn-Tucker (KKT)
conditions, for which a mixed-integer linear formulation exists,
under reasonably mild assumptions. Indeed, KKT conditions
are necessary and sufficient for optimality if the lower-level
problems are convex and their constraints satisfy some regu-
larity conditions [20]. If this holds, bilevel problem (1) can be
reformulated as a single-level optimization problem. We derive
this formulation explicitly in the remainder of this section.

B. Lower-Level Problem

The solution to the problem below for each scenario ω clears
the balancing market.

Min.
pkω,pjω

NK∑
k=1

ckpkω −
NJ∑
j=1

bjpjω (2a)
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s.t.
NK∑
k=1

pkω −
NJ∑
j=1

pjω = −(wω − xω)− δω : λBω ,

(2b)

− pkω ≥ −Ck : µS
kω ∀k , (2c)

− pjω ≥ −Cj : µD
jω ∀j , (2d)

pkω, pjω ≥ 0 ∀k, j . (2e)

The decision variables pkω and pjω represent the dispatch
of up- and down-regulation power, respectively, from block
offers k and j. The parameter ck is the price offer (per unit
cost) associated with the deployment of supply power from
block k. Similarly, bj is the per unit benefit associated with
the power production decrease (down-regulation) from block
j. Therefore, objective (2a) is the balancing cost in scenario
ω. The balance of supply and demand is enforced by (2b).
Indeed, the terms on the right-hand side of the equation
are, after a change in sign, the sum of the deviation from
the wind power producer (actual production wω minus day-
ahead bid xω) and from all the other market participants (δω).
Notice that the residual system deviation and the producer’s
own imbalance are to be considered as a perfectly inelastic
demand (or supply) of power, which must be met at any
market price. Consequently, these two terms do not appear
in the objective function (2a), while their sum is enforced
to be equal to the power output of flexible generators at the
balancing stage through (2b). Equations (2c) and (2d) ensure
that the dispatch of regulating power is not greater than the
capacities Ck and Cj , which are the sizes of the block offers
in the balancing market. Finally, non-negativity of the power
dispatch is enforced by (2e). Notice that the dual variables of
the problem are indicated after each constraint preceded by a
colon. Variable λBω is of particular importance, as it indicates
the marginal cost of production, which is the balancing market
price in a one-price imbalance settlement.

As one can notice, problem (2) is linear and thus it can
be equivalently represented by the following set of KKT
conditions [20]

0 ≤ pkω ⊥ ck − λBω + µS
kω ≥ 0 ∀k , (3a)

0 ≤ pjω ⊥ −bj + λBω + µD
jω ≥ 0 ∀j , (3b)

NK∑
k=1

pkω −
NJ∑
j=1

pjω = −(wω − xω)− δω , (3c)

0 ≤ µS
kω ⊥ Ck − pkω ≥ 0 ∀k , (3d)

0 ≤ µD
jω ⊥ Cj − pjω ≥ 0 ∀j , (3e)

where the ⊥ operator separating two inequalities implies that
at least one of them holds strictly. Conditions (3a) and (3b)
are stationarity conditions; the inequalities on the right-hand
side define, along with the non-negativity definitions on the
left-hand side of (3d) and (3e), the feasible space of the
dual problem. Conditions (3d) and (3e) are complementarity
slackness conditions; the inequalities on the right-hand side
define, along with (3c) and the non-negativity definitions on
the left-hand side of (3a) and (3b), the primal feasible space.

Since the ⊥ operator is equivalent to requiring that the
multiplication between two linear expressions be equal to 0,

the KKT conditions (3) include nonlinearities. However, it is
possible to linearize such conditions by employing binary vari-
ables [21], yielding the following set of optimality conditions

0 ≤ ck − λBω + µS
kω ≤MSS

1 zS1kω ∀k , (4a)

0 ≤ pkω ≤MSS
2

(
1− zS1kω

)
∀k , (4b)

0 ≤ −bj + λBω + µD
jω ≤MSD

1 zD1
jω ∀j , (4c)

0 ≤ pjω ≤MSD
2

(
1− zD1

jω

)
∀j , (4d)

NK∑
k=1

pkω −
NJ∑
j=1

pjω = −(wω − xω)− δω , (4e)

0 ≤ Ck − pkω ≤MS
1 z

S2
kω ∀k , (4f)

0 ≤ µS
kω ≤MS

2

(
1− zS2kω

)
∀k , (4g)

0 ≤ Cj − pjω ≤MD
1 z

D2
jω ∀j , (4h)

0 ≤ µD
jω ≤MD

2

(
1− zD2

jω

)
∀j , (4i)

zS1kω, z
D1
jω , z

S2
kω, z

D2
jω ∈ {0, 1} ∀k, j , (4j)

where the M constants are large enough to guarantee that
the inequalities are never binding when the right-hand side
is different from 0. Notice that, as long as such assumption
holds and in view of the binary variable definitions in (4j),
we have that constraints (4a) and (4b) are equivalent to (3a);
(4c) and (4d) to (3b); (4f) and (4g) to (3d); (4h) and (4i)
to (3e). Each balancing market clearing problem, i.e., for every
scenario, can be replaced by its KKT conditions (4).

Furthermore, for reasons that will become apparent later
in this section, it is interesting to notice that the dual of the
lower-level problem (2) is, for every scenario ω,

Max.
µS
kω,µD

jω,λB
ω

− λBω [(wω − xω) + δω]

−
NK∑
k=1

Ckµ
S
kω −

NJ∑
j=1

Cjµ
D
jω

(5a)

s.t. λBω − µS
kω ≤ ck ∀k , (5b)

− λBω − µD
jω ≤ −bj ∀j , (5c)

µS
kω, µ

D
jω ≥ 0 ∀k, j . (5d)

The optimal objective function values of (5) and (2) are equal.
Finally, we stress that the network is not considered in this

balancing market clearing model. This simplification, however,
is justified in a European context, since the vast majority of
European electricity markets employ zonal pricing.

C. Upper-Level Problem
In a one-price system, all deviations from the day-ahead

schedule are settled at the marginal cost, i.e., the dual λBω of
the balance equation (2b) at the balancing market. Hence, the
optimization problem of a wind power producer writes as

Max.
xω, pkω, pjω ,
λB
ω , µS

kω, µD
jω

E
{
λDA
ω xω + λBω (wω − xω)

}
(6a)

s.t. 0 ≤ xω ≤ CW ∀ω , (6b)
xω = xω′ ω, ω′ ∈ Ωi, ∀i , (6c)
xω ≤ xω′ ω ∈ Ωi, ω

′ ∈ Ωj , i < j , (6d)
KKT conditions of the lower-level problems .
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The objective function (6a) is the expectation of the sum of two
terms. The first term represents the revenues in the day-ahead
market in scenario ω, since it is given by the multiplication of
the day-ahead market price λDA

ω with the offer xω in the same
market. In an analogous fashion, the second term represents
the revenues at the balancing stage in scenario ω. Therefore,
the objective function is the expected total revenues at the two
market floors. Notice that, since the wind power producer is a
price-taker in the day-ahead market, λDA

ω is a parameter and
not an optimization variable. Furthermore, since the cleared
day-ahead price is disclosed prior to the realization of the
stochastic production and the residual system deviation in real-
time, scenarios for the day-ahead price can be considered as
first-stage scenarios, while the other scenarios can be regarded
as second-stage. This implies that the scenario set Ω can be
partitioned in a number of subsets Ωi, across which the day-
ahead price is constant, i.e.,

λDA
ω = λDA

ω′ , ∀ω, ω′ ∈ Ωi, ∀i . (7)

Furthermore, since the order of the partitions Ωi is arbitrary,
we assume that they are sorted so that the corresponding day-
ahead price is increasing, i.e.,

λDA
ω ≤ λDA

ω′ , ∀ω ∈ Ωi, ∀ω′ ∈ Ωj , i < j . (8)

Constraint (6b) enforces that the bid of the wind power
producer be included in the range between 0 and the installed
capacity CW. Furthermore, market practices usually allow
producers to submit bids in the form of non-decreasing supply
curves, i.e., price-quantity pairs indicating how much energy
the producer is willing to deliver at a certain day-ahead price.
Constraints (6c) and (6d) together ensure that the wind power
producer’s offer is consistent with such practices, based on
the partitioning of the scenario set Ω imposed by (7) and (8).
Equation (6c) is a non-anticipativity constraint, which imposes
that a single quantity is offered for every first-stage scenario
(realization of the day-ahead price). Constraint (6d) enforces
that the offer curve is non-decreasing.

The problem is complicated by the bilinear terms λBωxω in
the objective function (6a), which can be linearized by ap-
plying the strong duality theorem on the lower-level (market-
clearing) problem. At optimality, the objective value of the
primal (2) and the dual (5) problems are equal, i.e.,

NK∑
k=1

ckpkω −
NJ∑
j=1

bjpjω =− λBω [(wω − xω) + δω]

−
NK∑
k=1

Ckµ
S
kω −

NJ∑
j=1

Cjµ
D
jω .

(9)

We can therefore reformulate the term inside the expectation
operator in (6a) as follows

λBω (wω − xω) =−
NK∑
k=1

(
Ckµ

S
kω + ckpkω

)
+

NJ∑
j=1

(
−Cjµ

D
jω + bjpjω

)
− λBωδω ,

(10)

where the expression on the right-hand side is linear.

The final optimization problem, incorporating the lineariza-
tion of the bilinear terms in (10) and of the KKT conditions
of the lower-level problem in (4), as well as using a finite
number of scenarios for describing the uncertainty, so that the
expectation operator in (6a) reduces to a sum weighted by
probabilities, writes as

Max.
Θ

NΩ∑
ω=1

πω

{
λDA
ω xω −

NK∑
k=1

(
Ckµ

S
kω + ckpkω

)
+

NJ∑
j=1

(
−Cjµ

D
jω + bjpjω

)
− λBωδω

} (11a)

s.t. (6b)–(6d) ,
(4a)–(4j) ∀ω .

The set of decision variables includes variable xω of the upper-
level problem, the variables of the primal and the dual lower-
level problems, as well as the binary variables needed for the
linearization of the complementarity conditions, i.e.,

Θ =
{
xω, pkω, pjω, λ

B
ω , µ

S
kω, µ

D
jω,

zS1kω, z
D1
jω , z

S2
kω, z

D2
jω , ∀k, j, ω

}
.

(12)

Notice that model (11) is a Mixed-Integer Linear Problem
(MILP), which can be solved employing off-the-shelf opti-
mization software.

V. APPLICATION STUDIES

This section describes a series of studies on the application
of the presented model in a realistic setup. At first, the models
employed in the examples for random variables are described
in Section V-A. Then, results obtained in a single example
are commented on in Section V-B. Finally, Sections V-C, V-D
and V-E present the results of sensitivity analyses assessing the
impact of the producer’s market penetration, of the correlation
between its output and the residual system deviation, and of the
shape of the forecast wind power probability density function,
respectively.

A. Modeling the Uncertainty

The uncertainties in the system, i.e., day-ahead price, wind
power production and system deviation, are modeled using
a discrete set of scenarios. It is assumed that the first-stage
variable (day-ahead price) is independent of the second-stage
ones (wind power production and residual system deviation).
This basically means that we can build the scenario tree
by generating first-stage and second-stage scenarios indepen-
dently, and associating a copy of the second-stage scenarios
to each first-stage scenario. Note that this assumption implies
no loss of generality for the proposed method, since it could
be overcome by employing a scenario generation method
accounting for the possible dependency structure between first-
stage and second-stage variables. We underline that this could
be achieved without increasing the size of the optimization
problem, and therefore, it is merely an issue linked to the
scenario generation method, which is out of the scope of this
paper. Finally, we point out that this independence assumption
might be not valid in practice in markets with high penetration
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of wind power production, especially as far as the relationship
between the day-ahead price and the forecast wind power
distribution is concerned [12]. In this regard, however, we
would like to underline that this simplification does not result
in an overestimation of the economic improvement obtained
with the proposed offering model, but quite the opposite.
In fact, neglecting the possible correlation between these
variables would result in conservative performance results
in comparison to more “traditional” trading strategies (e.g.,
offering the forecast mean or a certain quantile), which do not
allow differentiated offers on the basis of the realization of the
day-ahead price, as the proposed method does.

Day-ahead price scenarios were generated by random sam-
pling from the probabilistic forecast of the spot price in
Nord Pool for the 12th trading period of the 7th September
2011. The probabilistic forecast is obtained by employing the
semi-parametric approach extensively described in [22]. That
method combines a nonparametric description of the central
part of predictive distributions based on quantile regression
for quantiles with nominal proportion between 5% and 95%,
and a parametric (exponential) description of the distribution
tails. The quantile regression models use the predicted condi-
tional expectations of day-ahead price and load as input. The
parameters in the quantile regression models are adaptively
estimated using the method of [23], while the parameters for
the exponential tails are estimated once and for all under the
maximum likelihood criterion.

As far as the second-stage variables are concerned, we
employ Beta distributions to model wind power generation,
as advocated in [24]. In practical applications it would be
desirable to make use of a state-of-the-art forecasting tool
employing a non-parametric model for the distribution of
wind power production [25]. However, Beta distributions are
sufficiently realistic to the purpose of this paper. Furthermore,
notice that this assumption implies no loss of generality, as
drawing scenarios from a non-parametric distribution would
result in no additional complexity for the proposed optimiza-
tion method.

For the residual system deviation we consider a Student’s
t-distribution, which provides a good fit for the hourly data
for net system deviation in Western Denmark (DK-1 area
price in Nord Pool) during the year 2011, which are available
at [26]. A histogram of the actual data and an illustration of
the parametric fit are provided in Fig. 2. Once again, in a
practical application it would be desirable to employ a state-of-
the-art probabilistic model to describe this stochastic variable,
possibly getting rid of the stationarity assumption implicit in
our approach.

The parameters employed for these distributions are shown
in Table I. Furthermore, notice that when sampling scenar-
ios for the system deviation from the Beta distribution, we
discarded scenarios lower (greater) than the 0.001 (0.999)
quantile. This is done because arbitrarily low (or high) values
of system deviation could be sampled, which is not realistic
and could potentially destabilize the results of the analysis.
Furthermore, it should be noticed that the standard deviation
of the Student’s t-distribution used for the residual system im-
balance is 217.57 MWh, which is comparable to the installed
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Fig. 2. Histogram for system deviation in Western Denmark (DK-1 price
area of Nord Pool) during 2011, and fit using a Student’s t distribution

wind power capacity CW = 300MW owned by the producer.
On the contrary, the total installed capacity in Denmark is
approximately 14GW. These two figures are in line with the
assumption that the producer is a price-taker at the day-ahead
market, where a significant share of the total installed capacity
is supposed to participate, and a price-maker at the balancing
market, whose trading volume corresponds to the total system
imbalance.

TABLE I
INFORMATION ON STOCHASTIC INPUT PARAMETERS

Stochastic Distribution Parameters # scenarios
variable type original reduced

λDA non-parametric - 10 000 12

w Beta
α = 3.78

10 000 100β = 1.62
CW = 300

δ Student’s t
µ = −0.96

10 000 100σ = 161.14
ν = 4.43

As one can see in Table I, 10 000 scenarios were gener-
ated independently for each stochastic variable. In order to
impose different rank correlation levels between wind power
production and system deviation, we employed the method
in [27]: first, we generated two random permutations of 10 000
Normal scores; then, we imposed the desired correlation
(notice that Pearson and Spearman correlation almost coincide
for Gaussian variables) by multiplying the permutations by the
Cholesky factor of the desired rank correlation matrix; finally,
we reordered the random samples for wind power production
and system deviation according to the order of this product.

After this, we made use of the fast-forward scenario re-
duction technique [28] to decrease the number of first-stage
and second-stage scenarios to 12 and 100, respectively. This
procedure is based on a heuristic that iteratively adds scenarios
to a reduced set, so as to minimize the maximum mutual
distance between elements. Then, probabilities of the reduced
scenarios are determined by assigning the probability of each
scenario in the original set to the closest element in the reduced
set.

The last variables to be set are the ones characterizing
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the bids of participants at the balancing market, i.e., the per
unit costs (benefits) of offered production increase (decrease),
ck (bj), and the size of the respective blocks Ck (Cj).
Data of individual bids at the balancing market are hardly
available, owing to the confidentiality policies of market and
transmission system operators. However, Nord Pool Spot pub-
lishes historical supply curves for the day-ahead Scandinavian
market [29].

We employed the supply curve for the 12th trading period
on the 7th September 2011 and the scenarios generated for the
day-ahead price in Nord Pool for the same day and time to
build bids for up- and down-regulation. First of all, we halved
the capacity of the day-ahead bids in order to account for the
fact that not all the generators trading in the day-ahead market
are participating at the balancing market. This results in the
marginal cost curve illustrated in Fig. 3. Assuming that all the
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Fig. 3. Marginal cost curve at the balancing market

producers whose marginal cost is below the day-ahead price
scenario are dispatched at the day-ahead market, and the ones
whose cost is above such price are not, we consider that down-
regulation (production decrease from schedule) is supplied by
the former participants and up-regulation by the latter ones.
This way, we obtain a set of balancing market bids that is
dependent on the first-stage scenario, i.e., the realization of
the day-ahead price. In total we employed NK + NJ = 159
offer blocks in the case study, with variable total numbers
of up- and down-regulation blocks depending on the level of
the day-ahead price, as a result of the splitting of the curve
explained above.

Notice that, despite we derive the bids from a supply curve,
demand could provide regulation as well at the balancing mar-
ket by increasing or decreasing the scheduled consumption.

B. Results with Optimal Bidding

In the first case study, we employ the dataset generated
as described in the previous section and impose a correlation
ρ = 0.3 between the out-turn of the wind power producer and
the residual system deviation using the method in [27], which
is briefly sketched in Section V-A.

Defining the producer’s penetration in the balancing market,
ψ, as the ratio between the standard deviation of the wind

power distribution and its sum with the standard deviation of
the residual system imbalance, we obtain

ψ =
σw

σw + σδ
= 19.88% . (13)

Notice that this definition of penetration is only one among
several possible ones. However, as clarified later, it is intuitive
as an increase in ψ is obtained by scaling up the wind
power producer’s capacity, and scaling down the total system
deviation.

In this case, a totally price-insensitive day-ahead offer is
optimal, consisting of the following optimal quantity

x = 76.69MWh . (14)

First of all, it seems that the possibility of offering a curve
does not lead to improved market results in this case, as the
producer prefers a single quantity bid. We link this feature
to the choice of a mostly convex supply curve, see Fig. 3.
Indeed, for increasing prices, the penalty given by the price
spread between the day-ahead and the balancing markets tends
to be higher for a “short” producer (i.e., producing less than the
day-ahead offer). This implies that the higher the day-ahead
price, the lower the optimal bid for the producer. However,
this is not possible since constraint (6d) enforces that the bid
curve be not decreasing.

Second, the optimal quantity bid in (14) appears to be a
rather low quantile of the wind power distribution. Indeed, it
lays just below the lowest scenario for wind power production.
However, notice that this bid is far from being trivial. Indeed,
for a price-taker wind power producer in a market with one-
price settlement of imbalances, the optimal bid would be
either 0 or the nominal capacity, depending on whether the
expectation of the balancing price is higher or lower than the
day-ahead price [3]. Besides, wind power producers often bid
the forecast conditional mean of wind power distribution in
practice, which is perceived as a “safe” strategy. Among the
reasons for this is the fact that there is a well established
literature on point forecasting for wind power production,
and the fact that point forecasts have been used for years
since wind generation became a contributor to the electricity
generation mix in power systems. Furthermore, point forecasts
such as the conditional mean are recognized as risk-averse,
as it minimizes the expected squared deviation from actual
production [4]. Remarkably, none of these possible offers are
optimal.

Table II reports the main financial results obtained by bid-
ding the optimal quantity (14). The first and second columns
represent the improvement in average market revenues as
compared to the strategies of offering the conditional mean and
median of wind power distribution in the day-ahead market.
The third column, instead, compares with the case where the
actual production is traded exclusively at the balancing market.
Notice that the nominal capacity offer is not included in the
table, as this offer is far from being optimal with a hockey-
stick supply curve such as the one depicted in Fig. 3.

The improvement is above 3% as compared to bidding the
mean or the median, and above 1.5% better than with a null
day-ahead bid. The last column reports the average energy
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price (e 54.26/MWh) obtained by averaging the ratio between
revenues and wind power production over the scenario set.

TABLE II
FINANCIAL RESULTS OBTAINED USING THE OPTIMAL BID

Profit improvement w.r.t. Average price
mean (%) median (%) zero (%) (e/MWh)

3.08 3.25 1.58 54.26

Finally, it should be noticed that, while the offer in (14)
is aimed at maximizing the expected revenues, no account
is taken of the possible impact on the producer’s imbalance.
Indeed, this offer results in an expected average imbalance
(in absolute value) equal to 122.06 MWh. On the other hand,
a known result is that the expected absolute value of the
imbalance is minimized by offering the forecast median, which
in this case would yield an expected imbalance of 44.82 MWh.
We refer the reader to [4] for further discussion on the topic as
well as for quantitative results obtained in a price-taker setting.

The optimization described above was performed using
CPLEX 12 in GAMS. The model size is reported in Table III.
The algorithm converged in 1680 s on a laptop equipped with
a 4-core processor clocking at 2.66 GHz. Despite the model
size, the problem was solved relatively fast. In this respect, it
is worth mentioning that the algorithm was warm-started by
setting the binary variables to the values resulting from the
market-clearing procedure when the wind power producer’s
offer is set to the mean of the scenario set for production at
any price level. Notice that the latter problem is an LP, and
therefore solves rather quickly.

TABLE III
REDUCED MODEL SIZE IN CPLEX

Size

Rows 57 353
Columns 35 748
Non-zeros 150 797
Binaries 17 885

C. Sensitivity Analysis: Market Penetration

As mentioned in the previous section, we expect the optimal
bid for a small wind power producer to be either 0 or the
nominal capacity when the latter quantity is small compared to
the residual system deviation. On the contrary, in the idealized
situation where the producer is the only participant incurring
deviations from the day-ahead schedule, we would expect that
the optimal bid be close to the median of the conditional
wind power distribution. This is because the resulting bal-
ancing market price would always be less favorable than the
day-ahead market price. In the cases in between these two
extremes, we expect the bid to have an intermediate behavior.

Different levels of penetration ψ, as defined in (13), of
the wind power producer in the balancing market can be
obtained simply by scaling the wind power production (15)
and the residual system deviation (16), so as to satisfy (17).
Since there is one degree of freedom left, we can choose the

scaling factors A and B that leave unchanged the sum between
the installed wind power capacity and the maximum absolute
value of system deviation, as enforced by (18).

wi
ω = Awω , (15)

δiω = Bδω , (16)

ψi =
σwi

σwi + σδi
=

Aσw
Aσw +Bσδ

, (17)

ACW +max
ω

{∣∣δiω∣∣} = CW +max
ω

{|δω|} . (18)

This makes comparisons more consistent, since we can
expect similar prices with similar total deviation levels in
the balancing market. We consider penetration levels spanning
from 10% to 25% with an interval of 2.5%.

Fig. 4 shows the optimal bids obtained for the penetration
levels mentioned above. As one can notice, the optimal offer in
the day-ahead market is 0 with the lowest value of penetration
ψ = 10%. Then, the curve tends to increase with the value of
ψ, as we expected from our intuitive analysis.
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Fig. 4. Day-ahead offer curves with different levels of market penetration
of the producer

The main financial results are summarized in Table IV. It
is important to notice that, as ψ increases, the improvement
obtained using the optimal bid versus the conditional mean
and median drops from over 7% to about 2%. On the contrary,
the improvement compared to the zero day-ahead offer rises
from 0% to around 2.5%. Finally, the average price obtained
decreases by e 3.5/MWh. This result is also in line with the
expectations, since an increasing penetration implies that the
total imbalance will tend to be in general of the same sign as
the producer’s deviation, thus leading to less favorable prices.

D. Sensitivity Analysis: Correlation

For the study in this section, we reorder the second-stage
scenarios so as to impose a rank correlation level of -0.7, -0.3,
0, 0.3 and 0.7, using the method in [27], which is sketched in
Section V-A.

The optimal offering curves are depicted in Fig. 5. As it ap-
pears, there is a decreasing trend in the day-ahead offer, which
drops from roughly 170 MWh (ρ = −0.7) to about 40 MWh
(ρ = 0.7). Apparently, the producer takes better advantage of
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TABLE IV
FINANCIAL RESULTS WITH DIFFERENT LEVELS OF MARKET PENETRATION

OF THE PRODUCER

Producer Profit improvement w.r.t. Average price
penetration (%) mean (%) median (%) zero (%) (e/MWh)

10 7.34 7.58 0.00 56.90
12.5 5.97 6.20 0.03 56.10
15 4.56 4.79 0.16 55.34

17.5 3.63 3.81 1.26 54.68
20 3.05 3.23 1.58 54.24

22.5 2.53 2.70 2.18 53.76
25 1.96 2.13 2.53 53.40

the negative correlation with the residual system deviation by
bidding closer to its median. Indeed, such a bid implies that
the producer’s deviation is more frequently of opposite sign
compared to the system imbalance, and will therefore result
in more favorable balancing market prices. With increasing
correlation, a low bid better hedges the producer from the
highest balancing prices, which occurs when the system is
short of power.
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Fig. 5. Day-ahead offer curves with different levels of correlation between
the wind power output of the producer and the residual system deviation

Table V reports the main financial results in this sensitivity
study. The higher the correlation, the larger the improvement
with respect to bidding the median. Contrarily, the improve-
ment with respect to the zero day-ahead bid drops. Finally, the
average price diminishes with increasing correlation, which is
an intuitive result, since a high correlation between own and
system deviations implies less favorable prices in the balancing
market.

TABLE V
FINANCIAL RESULTS WITH DIFFERENT LEVELS OF CORRELATION

BETWEEN THE WIND POWER OUTPUT OF THE PRODUCER AND THE
RESIDUAL SYSTEM DEVIATION

Correlation Improvement w.r.t. Average price
mean (%) median (%) zero bid (%) (e/MWh)

-0.7 0.19 0.27 4.72 54.84
-0.3 0.69 0.95 3.57 54.47

0 1.89 2.59 2.33 54.36
0.3 3.08 3.25 1.58 54.26
0.7 7.43 8.05 0.13 52.93

E. Sensitivity Analysis: Distribution Shape
In this section, we consider different Beta distributions

modeling the forecast probability density function (pdf) of
wind power production. To this end, we consider four different
values ([1.89, 3.78, 5.67, 7.56]) for the parameter α of the Beta
distribution, and four different values ([1.62, 3.24, 4.86, 6.48])
for β. To assess the effect of a changing distribution on the
performance of the proposed strategy, we consider the 16
possible combinations of these parameter values.

The considered parameter space covers a wide range of
cases of wind power production. Qualitatively speaking, the
chosen parameters give rise to pdfs with low mean and positive
skewness when α < β, with mean around half the installed
wind power capacity and skewness close to 0 when α ≈ β, and
to distributions with high mean and negative skewness when
α > β. Fig. 6 illustrates three examples of Beta distributions,
one for each group described above, obtained with parameter
values employed in the simulation.
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Fig. 6. Examples of Beta distributions as parameters change: α = 1.89 and
β = 6.48 result in the low-mean distribution, α = 7.56 and β = 6.48 in the
mid-mean distribution, α = 7.56 and β = 1.62 in the high-mean distribution

To analyze the performance improvement brought by the
proposed optimal strategy, we test it against two usual bench-
marks for day-ahead market offer: the zero-offer and the
conditional mean of wind power distribution.

In Fig. 7, the improvement in expected profit with respect
to the zero offer is shown as a surface for the 16 combinations
of the α and β parameters of the Beta distribution considered.
As one can notice, the improvement lies between 0 and 3%,
which is consistent with the magnitude of the improvement
observed in the previous studies. Remarkably, the zero-offer
is basically optimal for low values of α and high values of
β, which result in low-mean Beta distributions. Furthermore,
there is a rather visible increasing trend of the performance
improvement toward the right-hand side of the figure, where
we find gradually higher values of α and lower values of β.
Indeed, the combinations of parameters located on the right
corner of the figure result in distributions with the highest
mean and most negative skewness. Intuitively, it is reasonable
that the zero offer becomes less and less efficient as the power
distribution shifts closer to the installed capacity.

Fig. 8 illustrates the improvement with respect to offering
the forecast conditional mean of wind power production. Once
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Fig. 7. Profit improvement with respect to offering zero as a function of the
parameters α and β of forecast wind power distribution

again, the magnitude of the improvement is consistent with the
results obtained so far. Besides, there is a trend specular to the
one observed in Fig 7. Indeed, the performance improvement
decreases as we move from the left to the right-hand side of
the figure. This trend highlights that, with combinations of
α and β yielding distributions with high mean and negative
skewness, the margin for improvement of the optimal strategy
compared to offering the conditional mean decreases.
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Fig. 8. Profit improvement with respect to offering the forecast mean as a
function of the parameters α and β of forecast wind power distribution

Finally, let us point out that the surfaces in Figs. 7 and 8 are
obtained from a single simulation per set of parameter values.
These surfaces correspond to one of the potential realizations
from a stochastic process, the stochasticity coming from how
representative these particular sets of scenarios may be. If
one wanted to have a full (though very costly) picture of
the potential variations in these surfaces, one would have to
repeat the simulations several times in a Monte Carlo fashion,
therefore obtaining their empirical probabilistic description

VI. CONCLUSION

This paper considers the optimization problem of a wind
power producer being a price-taker at the day-ahead mar-
ket, but a price-maker at the balancing market. We model
this problem as a Mathematical Program with Equilibrium

Constraints (MPEC) and cast it as a Mixed-Integer Linear
Program (MILP). Uncertainty in day-ahead price, wind power
production, and system deviation is modeled by employing
scenarios.

Through a case study built from Nord Pool, the Scandina-
vian electricity market, and considering a one-price settlement
of imbalances, we show that the optimal day-ahead bid is
different from the zero and the nominal capacity offer, as well
as from the forecast conditional mean and median of wind
power distribution. This result is non trivial, since for a price-
taker producer the optimal bid is either zero or the nominal
capacity. The improvement in expected revenues with respect
to these strategies amounts to between 1.5% and 3%.

Furthermore, we assess the impact of the producer’s market
penetration, correlation with the system imbalance and shape
of forecast distribution of power production. We find that
the optimal offer in the day-ahead market is increasing with
market penetration and decreasing with correlation. Besides,
the average market value of the energy traded by the wind
power producer is a decreasing function of both parameters.
Finally, we show a consistent performance improvement up to
5% with respect to offering zero or the mean at the day-ahead
market, under a number of different distributions of forecast
wind power production.

This work opens up several directions for future research.
First of all, it would be interesting to assess the impact of
market design on the optimal offering strategy and on the
market results for the wind power producer, by modeling e.g.,
the two-price imbalance settlement. This would shed light
on the current debate on the optimal design of balancing
markets. Furthermore, the model could be extended so as to
allow trading in the intraday market. Besides, considering the
offering problem of a wind power producer that is a price-
maker at all market stages would be a relevant extension.
Modeling the electricity network could be another important
upgrade of the model presented. Another topic of research
consists in devising a method to solve this problem by using
decomposition techniques, capable of exploiting its structure.
Finally, modeling competition between wind power producers
in the framework of Equilibrium Problems with Equilibrium
Constraints (EPECs) would be particularly interesting.
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