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Abstract 

Proliferation of wind power generation is increasingly making this power source an important asset 
in designs of energy and reserve markets. Intuitively, wind power producers will require the 
development of new offering strategies that maximize the expected profit in both energy and 
reserve markets while fulfilling the market rules and its operational limits. In this paper, we 
implement and exploit the controllability of the proportional control strategy. This strategy allows 
the splitting of potentially available wind power generation in energy and reserve markets. In 
addition, we take advantage of better forecast information from the different day-ahead and 
balancing stages, allowing different shares of energy and reserve in both stages. Under these 
assumptions, different mathematical methods able to deal with the uncertain nature of wind power 
generation, namely stochastic programming, with McCormick relaxation and piecewise linear 
decision rules are adapted and tested aiming to maximize the expected revenue for participating in 
both energy and reserve markets, while accounting for estimated balancing costs for failing to 
provide energy and reserve. A set of numerical examples, as well as a case-study based on real data, 
allow the analysis and evaluation of the performance and behavior of such techniques. 

An important conclusion is that the use of the proposed approaches offers a degree of freedom 
in terms of minimizing balancing costs for the wind power producer strategically to participate in 
both energy and reserve markets. 

 

Keywords 

Energy and reserve markets; offering strategies; piecewise linear decision rules; stochastic 
programming; wind power 

 

Nomenclature 

The main notation used throughout the paper is stated next for quick reference. Other symbols are 
defined as required. 

Parameters 

ε  Coefficient to control the share deviation between both stages 
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λ Prices, penalties and unit costs for wind power producers 
capλ  Capacity price for power reserve 
spλ  Spot price for energy 

wπ  Probability in each scenario w 

G  Lifted support PLDR 
L Lifting operator PLDR 

MaxP  Maximum total power offer 
MinP  Minimum total power offer 
*
wQ  Eventually observed wind power in scenario w 

ir  Line segment PLDR 

V  Square matrix with (r+1)*(r+1) dimensions for PLDR 

Ŵ  Conditional mean forecast of the wind power distribution 
i

jz  Breakpoints for PLDR  

Subscript 

w  Wind scenario 
,i j  Number of lines 

Superscript 

+ Positive deviation for being long (down-regulation) 
− Negative deviation for being short (up-regulation) 
* Balancing stage 
bpt  Unit penalty cost for the wind power producer 

c  Day-ahead stage 
pt  Penalty for reserve imbalance 

Variables 

α  Control strategy (proportional share) 
δ  Random variable in PLDR 

E∆  Energy deviation 
R∆  Reserve deviation 

µ  Dual variable associated to the inequality constraints in PLDR 
E  Energy offer 
K  Slope of the linear function for PDLR 
Q  Total power offer 
R  Power reserve offer 
 

1. Introduction 

In many countries, electricity markets are facing the challenge of integrating renewable power 
(mainly, wind power) into the system while taking into consideration the uncertain production of 
these type of power plants. Wind power has reached considerable levels of penetration in some 
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power systems, but most of the wind power is not yet fully competitive in the electricity markets 
because of feed-in tariffs. 

Nevertheless, competition in the energy market has been increasing, since wind power plants 
have grown year after year. Thus, decision-making tools for wind power producers (WPPs) offering 
in the energy market have been developed in the last few years. In this respect, a large number of 
studies pursuing an optimal offering strategy for the WPPs in the day-ahead market, accounting 
with potential balancing costs (assuming a price-taker behavior) can be found in literature. Studies 
examine the use of strategies for maximizing the expected utility of wind power [1,2], strategies 
considering risk-analysis and temporal dependencies [3,4], offering in the one-price and two-price 
system [5], as well as offering under opportunity cost in the imbalance system [6], and many other 
aspects [7–10]. On the other hand, optimal strategies under the price-maker assumption have 
emerged [11–16]. Some of these strategies exploit the equilibrium in oligopolistic markets [15] or 
assume a risk-constrained behavior [16]. 

Currently, wind power technology allows the WPPs to allocate some of the available power to 
provide a reserve, thereby enabling them to support some type of ancillary services [17–19]. Thus, 
different control techniques for the curtailment of the wind power production have arisen in 
literature, such as proportional and constant control [20], as well as, ∆P and output cap control [21]. 
Furthermore, this ability will be in new business models for WPPs, since they are now able to 
initiate their participation in reserve markets. Thus, promising opportunities for increasing revenues 
by offering in two market products can be exploited. In this new context, with WPPs offering in 
both energy and reserve markets, it is crucial to develop methods for the optimal offering of wind 
power in both markets. In this way, some studies have emerged on joint offering of energy and 
reserve under uncertain production [22–25]. A multi-stage stochastic approach for evaluating under 
risk analysis the joint participation of wind in both the energy and reserve markets is proposed in 
[22]. Liang et al. [23] developed an analytical approach (based on the multi-newsvendor problem 
with budget constraint), but assumed that participation in the energy and reserve markets can be 
independently determined based on a budget constraint. In contrast, an analytical and stochastic 
approach for determining the wind offer in both energy and reserve markets, assuming wind 
correlation in both markets (under different control strategies) is proposed in [24] and [25], 
respectively. 

Notwithstanding this, to the best of our knowledge, none of the existing works simultaneously 
exploits the controllability of control strategies and takes advantage of better forecast information 
from the different day-ahead and balancing stages in the joint energy and reserve wind offering 
problem. Thus, this paper exploits the controllability of the proportional control strategy in the day-
ahead and balancing markets, taking advantage of the strategy simplicity to implement it in practice 
(as discussed in [20]). Under this control strategy, we prove that allowing use of different share 
parameters for energy and reserve between both the day-ahead (first-stage) and balancing markets 
(second-stage) can result in extra income for the WPPs. Furthermore, this work adapts, tests and 
validates a number of different approaches (fixed stochastic, flexible stochastic, McCormick 
relaxation and piecewise linear decision rules – PLDR) for optimal identification of the share of 
energy and reserve for the WPPs in both the energy and reserve markets. The fixed stochastic 
approach considers a fixed share of energy and reserve in both market stages and serves as the basis 
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for comparison with the remaining methods. Moreover, all proposed methods are demonstrated, 
validated and compared on the basis of numerical examples (as well as on a case study based on 
real-data), while seeking to improve the income of the WPPs, as well as the wind power 
participation in a wide range of services in electricity markets. This allows increased penetration in 
the power system. 

The paper is organized as follows. Section 2 briefly introduces wind power participation in the 
energy and reserve markets, detailing the impact and required market changes for allowing WPPs to 
participate in the reserve market. Section 3 presents the general formulation for wind power revenue 
in both the energy and reserve markets. Section 4 describes in detail the proposed approaches (i.e. 
the fixed and flexible stochastic, the McCormick and PLDR methods). Section 5 verifies, tests and 
compares all approaches on a set of numerical examples, as well as on a case study concerning real 
data. Finally, conclusions and future work are gathered in Section 6. 

2. Wind offering in energy and reserve markets 

The current developments in wind-turbine technology have encouraged the WPPs to show interest 
in the reserve market, thereby seeking extra revenues. New supply of different market products has 
encouraged the WPPs to rethink their strategic behavior in the wholesale market. On the one hand, 
the WPPs may split their available wind power into different markets to improve profit and reduce 
the risk of participating on one single product. On the other hand, potential penalties for power 
balancing deviations in both market products must be taken into account to avoid significant 
penalties that may reduce the expected income from both market products. 

 
Figure 1. Wind power model in the energy and reserve markets. 
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In this respect, a strategic market model for the WPPs to participate in the energy and reserve 

markets is studied. This model allows WPPs to offer their bids for energy and reserve in the day-
ahead market while accounting with expected balancing costs for missing expected production of 
energy and reserve during the balancing stage (Fig.1). Additionally, (through control strategies) the 
model allows that the share of energy and reserve established in the day-ahead stage (ratio between 
energy and reserve) can be different in the balancing stage, thereby allowing WPPs to minimize 
their power deviations while reducing expected balancing costs. This model characteristic is 
important in that it allows WPPs to use better information about their wind power forecast (closer to 
the energy delivery) to define the share of energy and reserve assumed in the balancing stage. In 
more detail, this flexibility allows WPPs to push decisions close to the real-time, thereby improving 
the quality of their decisions and reducing the lead time effect between the day-ahead decisions and 
the energy and services delivered. 

In terms of system reliability, this flexible characteristic of the model may reduce to some extent 
the uncertainty of the wind power production, since it uses better forecast information (closer to 
real-time) to define the energy and reserve share in the balancing stage. Thus, the flexible approach 
can decrease the energy and reserve deviations between day-ahead and balancing stage in 
comparison to the approach of same energy and reserve share between the day-ahead and balancing 
stage. This means that, to some extent, the level of reserve needed in the system can be slightly 
reduced if the wind power producer can change its energy and reserve share. 

However, this strategic offering will require some changes in current market rules. For instance, 
the WPPs should be allowed to offer in the reserve market in a strategic way. A smart and smooth 
way of introducing wind power in current reserve markets is to allow the WPPs and conventional 
generators to jointly offer in the reserve market. Thus, conventional generators can be used to some 
extent to cover the uncertainty of the wind power producer. However, further changes are still 
required for full participation of wind power in the reserve market. For example, introducing a new 
reserve penalty scheme to penalize WPPs for power deviations in the reserve market could force 
uncertain WPPs to offer their potential available power with some level of certainty, as suggested in 
[23,24] and implemented in the proposed model. Furthermore, the reserve market design with high 
penetration of uncertain generation may require operating closer to the delivery, since reserve 
requirements may dynamically vary on and hourly or even minute-by-minute basis [26]. Thus, 
WPPs will very probably be called (even forced to some extent) to contribute under these new 
service conditions. In this context, the flexible characteristic proposed in this work may to some 
extent cover the participation of WPPs in these new market features, where market decisions are 
made closer and closer to the delivery.  

3. General formulation of market revenues 

A general formulation for the revenue of the WPPs in energy and reserve markets is presented in 
[24]. Following a stochastic programming approach from that, the maximization of the revenue 
from day-ahead and reserve markets, accounting for the penalties from the balancing market can be 
expressed as 
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* * *cap c sp

w w w w

w

Rev R E T Oλ π λ
∈Ω

 = + − − ∑   (1) 

where λsp is the expected spot price, 	Ew
*  is the amount of expected delivered energy in scenario w, 

λ
cap is the expected capacity price for contracting reserve, Rc is the expected contracted level of 

power reserve in day-ahead stage, Tw
*  is the balancing costs from the energy deviations, Zw

*  is the 
expected penalty cost for failing to provide the scheduled reserve and πw is the probability in each 
scenario w. Time indices are not used, since all variables and parameters are for the same market 
time unit. 

Additionally, it is assumed that the WPP behaves as a price-taker, which means that the 
production of the WPP is independent of market prices and penalties. Following that behavior and 
the certainty equivalent theory [9,27], all the prices are linear in the expressions below. 

The balancing costs for energy deviations are usually defined as  

( )
( )

*, * *

*

*, * *

0

0

λ

λ

+

−

 − − ≥
=

− − − <

c c

w w

w
c c

w w

E E E E
T

E E E E
  (2) 

where (Ew
* 	- Ec) is the energy imbalance between the energy delivered 	Ew

*  and the energy contracted 

(offered) Ec. The variables λ
* ,+ and λ

* ,– are the regulation unit costs for positive and negative 
deviations, i.e., 

*, ,

*, ,

sp c

c sp

λ λ λ

λ λ λ

+ +

− −

= −

= −
  (3) 

where λc ,+ is the unit down-regulation price for being long, while λc ,– is the up-regulation price for 
being short. Additionally, we consider the two-price settlement rule as in the NordPool for mapping 
the balancing costs for energy deviations [1]. The settlement rule is part of the balancing 
mechanism for pricing the deviations from day-ahead contracts to the delivered production at the 
balancing stage. One-price and two-price system rules are not discussed in detail in this work. 
Instead, interested readers are referred to [28]. In cases of negative system imbalance (energy 
surplus – need for downward regulation), it holds that  

,

,

c sp

c sp

λ λ

λ λ

+

−

≤

=
  (4) 

Otherwise, when system imbalance is positive (energy deficit – need of upward regulation), it 
comes to 

,

,

c sp

c sp

λ λ

λ λ

+

−

=

≥
  (5) 

In hours of perfect balance, both λc ,+ and λc ,– are equal to the spot price λsp. In parallel, the 
costs for the imbalance on the reserve product are formulated based on the one-price system rule 
(since the penalty for failing to provide this service is directly related to the up/down-regulating 
price for imbalance of the power reserve), such that 
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, * *
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+
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=

− − − <

bpt c c

w w

w
bpt c c

w w

R R R R
O

R R R R
  (6) 

where (Rw
* 	- Rc) refers to the reserve power imbalance between the realized level of reserve Rw

*  in 

the balancing stage and the reserve contracted (offered) Rc in the day-ahead stage. λbpt ,+ is the unit 

penalty for the WPP when generating more power than that contracted (surplus). In contrast, λbpt ,– 
is the unit penalty cost when the WPP generates less power than that contracted. It holds that 

, ,

, ,

bpt cap pt

bpt pt cap

λ λ λ

λ λ λ

+ +

− −

= −

= −
  (7) 

hence λbpt ,+
=0 since (extra) positive reserve is not detrimental to the system’s reliability. λpt ,– is the 

penalty for negative reserve imbalance, weighted by the probability that reserve is needed. 

4. Optimal offer formulation 

Although, several wind control techniques have been emerging, few considerations on the strategic 
implementation of these control techniques in the market perspective have been made [24,25]. As 
demonstrated in [24], the proportional wind control technique [20] presents a logical and simple 
strategic behavior in terms of participation in the energy and reserve markets. Thus, we build our 
different optimization approaches based on this assumption. Furthermore, we have improved the 
proposed approaches, allowing the WPP to establish different shares of energy and reserve in both 
the day-ahead and balancing stages. 

4.1. Flexible stochastic approach 

The full flexible stochastic approach for the revenue of WPPs in the energy and reserve markets is 
given by 

* *, *, ,cap c sp bpt

w w w w w

w

max R E E E Rλ π λ λ λ λ+ + − − − −

∈Ω

 + − ∆ − ∆ − ∆ ∑  (10a) 

. . Min c Maxst P Q P≤ ≤  (10b) 
c c cE R Q+ =  (10c) 

* * *
w w wE R Q w+ = ∀ ∈Ω (10d) 

*c

w w wE E E E w− +− =∆ −∆ ∀ ∈Ω  (10e) 
*c

w wR R R w−− ≤∆ ∀ ∈Ω  (10f) 

where ∆E� is the excess of energy incurred by the WPP, ∆E� is the deficit of energy incurred by 

the WPP, ∆R� is the deficit of reserve incurred by the WPP, PMin and PMax are the bounds of the 
total power offer in the day-ahead stage. This approach is characterized by its total freedom to 
choose the energy and reserve share in each stage of the problem, i.e. the WPPs can take advantage 
of the intermediate information about wind power production, thereby reducing the expected costs 
at the balancing stage. This means that the WPP can adjust the share of energy and reserve in the 
balancing stage in line with the expected power production in each scenario w. 
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4.2. Fixed stochastic approach 

The fixed stochastic approach relies on the concept of constraining the use of information in the 
balancing stage to help in the day-ahead decision. For this purpose, the proportional control strategy 
is used. The control strategy consists in the proportional split of the energy and reserve given by αc. 
In addition to the mathematical formulation from the flexible approach, constraints (11a) to (11e) 
are included, thus representing the proportional strategy. 

c c cE Qα=  (11a) 

(1 )c c cR Qα= −  (11b) 
* * *
w w wE Q wα= ∀ ∈Ω (11c) 
* * *(1 )w w wR Q wα= − ∀ ∈Ω  (11d) 
* c

w wα α= ∀ ∈Ω (11e) 

where the energy and reserve offered in the day-ahead market is determined in (11a) and (11b), 
respectively. Both constraints contain bilinear terms (since two different variables are multiplying, 
the total power offer Qc and the control share αc which split the total power offer into energy and 
reserve to offer in the day-ahead market), thus forming a system of bilinear equations which is non-
convex. The non-convexity of both equations makes the problem more complex, but it is still 
feasible with proper solvers. The problem has been carried out with CONOPT [29] as a Non-Linear 
Programming (NLP) solver. 

Besides this, constraints (11c) and (11d) determine the energy and reserve share in the balancing 
stage for each scenario w. The fixed behavior of this approach is achieved by assuming that the 
control parameter for splitting the energy and reserve remains the same in both the day-ahead and 

balancing stages, i.e., α*=αc. This constraint (11e) is inferred in the stochastic models as the non-
anticipativity constraint, thereby preventing the WPPs from using information close to the 
balancing stage to influence day-ahead decisions. 

4.3. Stochastic approach under McCormick relaxation 

A hybrid system between the flexible and fixed approach is proposed in this section, with two 
distinct goals. The first one aims to turn convex the bilinear constraints from the fixed approach by 
using McCormick relaxation theory [30]. It is noteworthy that McCormick relaxation theory has 
been chosen among other relaxation techniques due to its ability to provide a tight approximation 
gap of the bilinear constraints and easy implementation. The second goal aims to control the 
influence of balancing stage information in the day-ahead decisions, by means of a coefficient to 
bound the deviation between the share parameter in the day-ahead and balancing stages. This goal 
emerges with the perspective of giving the WPP some controllability of the use of information close 
to the real-time, thereby allowing WPPs to quantify the level of anticipatory decision of the 
balancing stage, which cannot be provided through the fixed or flexible approaches. 

Under the assumptions of the fixed stochastic approach, the McCormick relaxation theory [30] 
is used to relax the bilinear constraints and turn the problem convex. McCormick’s relaxation 
provides a very good approximation of the bilinear terms, ensuring that the problem is convex, and 
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thereby requiring only traditional Linear Programing (LP) methods to solve the problem, which 
ensures optimal solutions. Thus, the objective function (10a) is subjected to 

*c Min

wE P wα≥ ∀ ∈Ω (12a) 
*c Min c Min

wE P Q P wα≤ + − ∀ ∈Ω  (12b) 
*c Max

wE P wα≤ ∀ ∈Ω  (12c) 
*c Max c Max

wE P Q P wα≥ + − ∀ ∈Ω (12d) 
*c

w wε α α ε− ≤ − ≤ ∀ ∈Ω (12e) 

where (12a) to (12d) is the result of the relaxation of the two bilinear constraints of the fixed 
approach. On the other hand, the control of the influence of balancing stage information in day-
ahead decisions is modeled in (12e), where � is a coefficient that defines the difference between the 
share parameter in both the day-ahead and balancing stages. The coefficient varies between 0 and 1, 
thus influencing the behavior of the split between energy and reserve. If � is close to 0, the behavior 
of this approach is close to the fixed stochastic approach. Otherwise, when � is close to 1, this 
approach tends to behave similarly to the flexible stochastic approach. Additionally, the model stays 
complete with the inclusion of (10c) to (10f), and (11c), representing the split of the available power 
in energy and reserve in both stages, and the deviation of energy and reserve in the balancing stage, 
respectively. 

4.4. Piecewise linear decision rules with axial segmentation 

A different and interesting way of modeling the recourse function of the two-stage stochastic 
problem of WPPs offering in day-ahead market while accounting for balancing costs is through 
linear decision rules. Linear decision rules are often used to linearly model the uncertainty of the 
problems, since it can provide tractable upper and lower bounds of the stochastic program. Indeed, 
the main reason why linear decision rules are used instead of stochastic programing is because it 
does not need discrete distribution of the uncertain parameter in contrast with stochastic 
programming. However, the linearization of uncertain variables often comes with rough 
approximations of the uncertainty, since the uncertainty can behave very differently from linear 
functions. Thereby, the solution’s quality provided by this method can leave much to be desired. 

One way to reduce the approximation gap of traditional linear decision rules is by defining 
uncertainty through a piecewise linear function. This approach increases the flexibility of the LDR 
method by approximating to the natural recourse function of the problem, however, the problem 
size grows significantly. An illustrative example of the decisions made by the PLDR is shown in 
Fig. 2. One can see that the piecewise approach improves the flexibility of the decisions in 
comparison with simple linear decision rules. 
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Figure 2. Illustrative example of a natural recourse function (green), linear decision rules 
approximation (black) and piecewise linear decision rules approximation (blue) under the 
realization of the uncertain parameter. 

 
In this context, we apply the method of piecewise linear continuous decisions rules with axial 

segmentation, as developed in [31], to ensure that a good linear approximation to the recourse 
problem is achieved. The method requires the establishment of breakpoints to model the piecewise 
function. For instance, quantiles of the wind power distribution can be used to define manually 
these breakpoints. An improved technique of the PLDR (the PLDR with general segmentation) 
allows optimal estimation of these breakpoints, although the complexity of the problem increases 
significantly. Thus, we restrict our attention to the PLDR with axial segmentation, by which 
specific breakpoints for the piecewise function are defined. 

The PLDR with axial segmentation idea is to expand the sample space of the uncertain 

parameter δi into ri lines with ri –1 breakpoints zj
i for j∈{1,…,ri –1} and i ∈{1,…,k} 

{ }1 1 2,...,δ δ−< <⋅⋅⋅< < ∀ ∈
i

i i

i r iz z i k  (13a) 

where δi is the lower bound and δ�i the upper bound of δi. 

Following [31], one can introduce the lifted space �	
 of the piecewise linear parameters 

�� ∈ ���  in the lifted support �, where �� ∈ � and � � �1, ���, … , �	���. 
Thus, the breakpoints are used to define the lifting operator Li,j as  

( )
{ }

{ }{ }
{ }

1

,
1

1

1

min , 1, 1

max min , ,0 1, 2,..., 1

max ,0 1,

δ

δ
δ

δ

δ

−

−

=


> =
=

− > = −


− > =

i i

i

i i

i j i i

i j j i i

i

i j i i

if r

z if r j

L
z z if r j r

z if r j r

 (13b) 

where j ∈{1,…,ri} and i ∈{2,…,k}. The retraction operator converts the lifted parameters into the 
original parameters through 

�� � �� ∈ �	
: �� � 1���  0						∀	# ∈ 	 $2, … , &'( (13c) 
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such that V is a square matrix with (ri +1)x(ri +1) dimensions, defined as  

1

1 1

1 1 2 1

2 1'

1 2

1 2 1
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1

1
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i i i
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i i
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− − −
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− − − 

 
 − −
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 −

=  
 −
 −
 
 

− − − 
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O
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(13d) 

By applying these theorems to the wind offering problem, it is assumed that the share of energy 
and reserve in the day-ahead and balancing stages can be different (same assumption of the flexible 
approach). Thus, the PLDR approach is applied under the flexible approach formulation detailed in 
section 4.1. Suppose that the wind power uncertainty is expressed in the following piecewise linear 
form 

'

1

ˆ δ
=

= +∑%
ir

W

i i

i

W W K  (14a) 

where �� is the random variable in each line i, )�* is the slope parameter of the linear function in 

each line i and +,  is the conditional mean forecast of the wind power distribution which does not 
depend on the actual realization of the uncertainty δ. The second stage variables also behave 
piecewise linearly 

* * '

1

ˆ
ir

E

i i

i

E E K δ
=

= +∑  (14b) 

* * '

1

ˆ
ir

R

i i

i

R R K δ
=

= +∑  (14c) 

'

1

ˆ
ir

E

i i

i

E E K δ
++ + ∆

=

∆ =∆ +∑  (14d) 

'

1

ˆ
ir

E

i i

i

E E K δ
−− − ∆

=

∆ =∆ +∑  (14e) 

'

1

ˆ
ir

R

i i

i

R R K δ
−− − ∆

=

∆ =∆ +∑  (14f) 

4.4.1. Equality constraints reformulation 

Let us consider the equality constraints (10d) and (10e) of the second stage problem (model in 
section 4.1. for the flexible approach) for reformulation. This means that only the equality 
constraints with uncertain variables from the flexible approach formulation are considered for 
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reformulation. By replacing the recourse variables of (10e) with the PLDR previously defined, it 
gives 

* ' ' '

1 1 1

ˆ ˆ ˆ
i i ir r r

c E E E

i i i i i i

i i i

E E K E K E Kδ δ δ
− +− ∆ + ∆

= = =

   
− + =∆ + − ∆ +   
   

∑ ∑ ∑  (15a) 

Following [32–34], this equality constraint can be reformulated in a way to eliminate the 
random variable δ and assure finite cardinality, hence 

*ˆ ˆ ˆcE E E E− +− =∆ −∆  (15b) 
− +∆ ∆− = − ∀E E E

i i iK K K i  (15c) 

Similar reformulation is performed for the other equality constraint (10d), where its final form is 
assumed as  

* *ˆ ˆ ˆE R W+ =  (15d) 

+ = ∀E R W

i i iK K K i  (15e) 

4.4.2. Inequality constraint reformulation 

Let us consider the inequality constraint (10f) of the second stage problem for reformulation. By 
replacing the PLDR for the recourse decision variables, this inequality can be reformulated as 

'

' '

1 1 *

' ' '
,( 1) ,1

1

ˆ ˆmin

. . :
δ

δ δ
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−∆
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K K

R R R

st V V i
 (16a) 

where µi is the dual variable associated to the i-th inequality constraint. By applying duality theory 
[32,35] on the minimization problem on the left-hand-side of the above inequality, one can 
transform it to the following maximization problem 

1
'
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1
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 (16b) 

The equivalent representation of the above problem in a system of constraints is 
1

' *
,1

1

ˆ ˆ
r

c

i i

i

V R R Rµ
+

−

=

− ≥ − −∆∑  (17a) 

1
'
,( 1)

1

µ
−

+
∆

+
=

= + ∀∑
r

R R

i j i j j

i

V K K j  (17b) 

0µ ≥ ∀i i  (17c) 

where the set of inequalities (17) has finite cardinality. Moreover, it is noteworthy that all recourse 
decision variables (in its piecewise linear form 14b – 14f) from the second stage problem are 
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positive variables. Thus, it is required performing similar reformulations to all these inequality 
constraints affected by the uncertainty.  

4.4.3. Objective function reformulation 

The reformulation of the objective function leads to the employment of the PLDR as expressed in 
(14). This yields 

* '
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*, ' *, '
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The expectation over the uncertain parameter for the PLDR is a model based on the lifting 
operator matrix Li,j. and the probability for each line segment -� 

1
(

1

' ( ) )

2
πδ

+

=

+ 
 =   

 
∑ i i

i

r
j z j z r

j

i

L L
E  (18b) 

Thus, by replacing the expectation calculus (18b) of the uncertain parameter �� in the objective 
function (18a), one can obtain the final form of the objective function for the PLDR model. 

 

4.4.4. Final model with compact formulation 

Finally, the wind offering problem under PLDR assumes its piecewise linear form as 
max (18 )a  

(19) 

. . (10 ), (10 )s t b c   

(15 ) (15 )

(17 ) (17 )

b e

a c

−

−  

* *, , , , 0E P E E P+ − −∆ ∆ ∆ ≥   in form of (17)  

where (10b) and (10c) represents the constraints for the first stage decision making process, detailed 
in section 4.1. Furthermore, all positive second stage decision variables must be in their piecewise 
linear form and represented by the set of inequalities as in (17). 

5. Evaluation of wind offering methods 

5.1. Illustrative case 

An illustrative example to test and evaluate the proposed approaches has been performed under 
specific assumptions and parameters. Supposing a wind power plant of 12 MW with a set of 100 
wind power scenarios from [36]. It is assumed that all the wind power scenarios have equal 
probability. Additionally, a minimum power offer of 3 MW is established as a minimum 
requirement to participate in the market, ensuring some proper profit to the wind power producer. 
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Furthermore, a set of prices for energy and reserve, as well as unit costs for energy and reserve 
deviations during the balancing stage is gathered in Table I.  
 Table 1 

In order to design the piecewise function, a set of breakpoints needs to be defined. For this 
numerical example, three breakpoints have been established, corresponding to the quantiles of 25%, 
50% and 75% of the wind power distribution, respectively. 

The behavior of each approach under this test case for offering in the energy market is depicted 
in Fig. 3. Observe the different behavior for each approach. The fixed stochastic approach places a 
high offer of energy in the day-ahead market (about 7.8 MW), while the flexible, McCormick and 
the PLDR methods place small energy offers, thereby allocating most of the available power to the 
reserve market. In this case, the fixed approach is the most risk-averse method by offering a high 
bid in the energy market, to the detriment of participating in the reserve market. The behavior of the 
fixed method can be explained by the inclusion of the non-anticipativity constraint (fixing the share 
parameter in both day-ahead and market stages), since it blocks the proper use of the better 
information about the expected production during the balancing stage. The PLDR approach tends to 
follow the behavior shown by the flexible and McCormick approaches, however, one can observe 
the slope change of the linear function around the breakpoints. 

 
Figure 3. Behavior of energy offered (Ec) and delivered (E*) in the market for fixed, flexible, 
McCormick with ε=1 and piecewise linear decision rule methods. 

 
The participation of the wind power producer in the reserve market for each approach is 

presented in Fig. 4. One can verify that there is no participation in the reserve market through the 
fixed approach. The fixed approach presents an all-or-nothing behavior, where all the available 
power is submitted to one single market (energy or reserve, depending on the relation between 
prices and penalties for deviations). On the other hand, the remaining approaches reserve some 
power to participate in the reserve market. Thus, the flexible approach is the method that allows a 
full degree of freedom for the decision making process under the participation in both markets, 
taking into account penalties in the balancing stage. Furthermore, the McCormick approach presents 
a very similar behavior to the flexible approach, however the differences in the performance are due 
to the relaxation of the non-linearity in the proportional strategy.  
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Figure 4. Behavior of reserve offered (Rc) and deployed (R*) in the market for fixed, flexible, 
McCormick with ε=1 and piecewise linear decision rules methods. 

 
It is noteworthy that, for lower levels of wind power available, both flexible and the PLDR 

approaches fully allocate the available wind power to the reserve market, thereby reducing the 
expected costs in the balancing stage. i.e. by allocating all the available power to the reserve market, 
the expected costs in this market will be lower, since the penalty for failing to provide power 

reserve (λbpt,�) is much higher than the penalty for failing to provide energy (λ∗,�). On the other 
hand, for levels of available wind power higher than the bid offered in the reserve market (Pc), both 
the flexible and McCormick approaches establish the deployed reserve (P*) as equal to that offered 
in the day-ahead market, then allocating the remaining available power to the energy market. In 
contrast, the PLDR approach reserves more power in the balancing stage (P*) than is offered in the 
reserve market (Pc), thus assuming a loss opportunity cost for ensuring this robustness. 

The parameter representing the share between energy and reserve at day-ahead and balancing 
stage is shown in Fig. 5. The flexible, McCormick and the PLDR methods have a behavior in which 
most of the available power is submitted to the reserve market in the day-ahead stage, while in the 
balancing stage there is a trend to increase the share for providing energy in cases of medium-high 
levels of the available power (above 7 MW). Permission to establish different share parameters 
among the trading floors increases the freedom for decision-making, thereby increasing the 
potential profit. 
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Figure 5. Share parameter in the day-ahead (αc) and balancing stage (α*) for fixed, flexible, 
McCormick with ε=1 and piecewise linear decision rules methods. 
 

The expected revenue for each method is shown in Table 2. It is noteworthy that the flexible 
approach has the highest expected revenue, while in the opposite side is the fixed approach. The 
approach with McCormick relaxation has been performed for different ε (ε=1 and ε=0.01). In more 
detail, the approach with ε=1 obtains an expected revenue and behavior close to the flexible 
approach, while the approach with ε=0.01 performed closely to the fixed approach results, as 
expected. This is true, since ε defines the deviation between the share parameter in both the day-
ahead and balancing stages. The PLDR model obtains expected revenue very close to the fixed 
approach, although with distinct energy and reserve solutions. The PLDR model could get better 
expected revenue by allocating more available power (for middle-high levels of available wind 
power) to the energy market, thereby reducing the loss opportunity cost (i.e. reducing the excess of 
available power that is reserved).  
 Table 2 

In order to analyze the energy and reserve distributions under potential realization of the wind 
scenarios, box plots for energy (E*) and reserve (R*) are illustrated in Fig. 6 and Fig. 7, respectively. 
Thus, Fig. 6 displays the distribution in a standardized way of the expected delivered energy. One 
can see that each approach has a certain pattern for distributing the available wind power to energy 
in each scenario. The PLDR approach is the approach with the smaller interquartile range, which 
means that the dispersion of the data set is closer to the median of the distribution compared with 
the other approaches. It is noteworthy that the flexible, McCormick with ε=1 and PLDR approaches 
just focus on a small part of the available wind power to produce energy than the fixed and 
McCormick (ε=0.01) approaches. In contrast, the remaining available wind power is allocated to 
provide a power reserve, as can be seen in Fig. 7. 
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Figure 6. Box plot for energy amounts settled through the balancing stage by the proposed 
methodologies (fixed, flexible, McCormick with ε=1 and ε=0.01, and piecewise linear decision 
rules). 

In what concerns the supply of power reserve, the fixed approach does not provide reserve, so 
the distribution data set of the variable R* is 0. From Fig. 7, one can observe a small range of 
variation in providing reserve, which makes sense, since the penalty for failing to provide reserve is 
substantially higher than the case of the energy penalties. Thus, the interquartile range is close to 
zero, i.e. the distribution data is concentrated in the median of the distribution. However, some of 
the approaches (e.g. flexible, McCormick with ε=1 and PLDR) scheduled low values of reserve in a 
few scenarios, being such scenarios represented by the suspected outliers and outliers depicted in 
Fig. 7. 
 

 
Figure 7. Box plot for reserve deployment in the balancing stage by the proposed methodologies 
(fixed, flexible, McCormick with ε=1 and ε=0.01, and piecewise linear decision rules). 

Page 17 of 28

John Wiley & Sons

Wind Energy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

5.2. Sensitivity analysis for McCormick stochastic approach 

A sensitivity analysis for the stochastic approach under the McCormick relaxation is performed. We 
analyze different values for the deviation (ε) between the day-ahead and balancing share 
parameters. Thus, Fig.8 shows the behavior of the energy offered in the day-ahead stage and 
delivered in the balancing stage for this methodology under different values of ε. One can observe 

that, for small deviations of ε (αc-αw
* ), the energy offered and delivered approximates to the results 

of the fixed stochastic approach shown in Fig.4, as expected. Besides that, intermediate results are 
ensured by the methodology with ε=0.05. It is noteworthy that, as long as the coefficient ε 
increases, the methodology results tend to converge to the flexible stochastic approach presented in 
Fig.4. 

 
Figure 8. Energy offered (Ec) and delivered (E*) for McCormick approach under different share 
deviations (ε). 

 
The expected offer and deployed reserve for the McCormick approach with different values of 

ε, are depicted in Fig.9. As expected, the behavior of this approach in the reserve market is similar 
to what is presented in Fig.5. As long as the value of ε decreases, the power offered in the reserve 
market also decreases. It is noteworthy that there is similar behavior between the approach with 
ε=0.1 and ε=1, where a higher level of reserve offer is settled for the approach with ε=0.1. In a 
closer view of high levels of available wind power, the approach with ε=0.1 deploys more reserve 
than that offered in the day-ahead stage, resulting in a loss opportunity cost to the wind power 
producer. 
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Figure 9. Reserve offered (Rc) and deployed (R*) for McCormick approach under different share 
deviations (ε). 

 

The performance of the share parameters in both stages is shown in Fig.10. Note that αw
*  tends to 

follow the share established in the day-ahead stage. Additionally, it is interesting to note that the 
performance of the share parameter based on ε=1 and ε=0.1 is very similar. In fact, for lower levels 
of available wind power (lower than 7 MW), both conjectures get similar results, which means that 
the constraints concerning ε are not bidding. Moreover, for the conjecture with ε=1, it is clear that 

αw
*  does not closely follow αc due to its degree of freedom in the methodology, while the opposite 

occurs for the conjecture of ε=0.1 with available wind power lower than 8 MW. 

 
Figure 10. Share parameter in the day-ahead (αc) and balancing stages (α*) for the McCormick 
approach under different share deviations (ε). 

5.3. Analysis of the methodologies under real data 

A case study based on a wind power plant with 15 MW of installed capacity participating in the 
Nord Pool is assumed. The wind data is based on power measurements and a series of 48 h-ahead 
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point predictions between March 2001 and April 2003 taken from [1]. This data set contains the 
quantiles of the wind power distribution, as well as the measurement data for 48 h-ahead. To use 
this data for validation of the proposed methodologies, scenarios need to be generated. Thus, the 
quantiles for the point predictions were used to generate 100 scenarios for each time interval based 
on the scenario generation process described in [37]. Besides, prices and penalties for energy and 
reserve are required. Advance knowledge of the expected prices and penalties is assumed. However 
and for this specific case, we consider the Nord Pool prices and penalties for the same period of the 
wind data (between March 2001 and April 2003). It is noteworthy that traditional electricity 
markets have no penalties for wind failing to provide the reserve, since current market rules allow 
no participation of wind in the reserve market. In this context, a reserve penalty for failing to 
provide reserve market must be assumed. Thus, the reserve penalty for negative reserve imbalance 
(λpt,–) is assumed to be three times higher than the capacity price (λcap) from the reserve market, 
since the deficit of reserve in real-time may reduce significantly the proper levels of security and 
reliability of the system. 

Besides the common assumptions for all methodologies used in this work, the PLDR approach 
requires the definition of breakpoints. Thus, the definition of breakpoints for the PLDR approach 
follows the same assumptions as the numerical example, i.e., three breakpoints for modelling the 
piecewise function based on the 25th, 50th and 75th quantile of the wind distribution function for 
each hour and day are considered. 

The cumulative results for energy production and revenue over the two years for each 
methodology are shown in Table 3. The results depict the cumulative offering bids in day-ahead 
stage under forecast scenarios. Overall, one can see that the fixed approach offers most of the 
expected available wind power to the energy market. In contrast, the remaining methods offer the 
expected available wind power in both markets in a balanced way. i.e., they try improving the 
expected profit through participating in the reserve market, accounting with a high reserve penalty 
for failing to provide the contracted reserve. In terms of expected revenue, the flexible approach is 
the one with higher revenue, followed by the McCormick approach with ε=1. The worst expected 
revenue comes from the fixed approach, presenting a conservative behavior, since it practically only 
offers in the energy market. Thus, the flexible approach can improve the expected revenue by about 
3% over the fixed approach. Additionally, the McCormick approach with ε=0.01 presents a 
behavior closer to the fixed approach, as expected. This is due to the parameter ε that controls the 
deviation of the share in the energy and reserve markets between the day-ahead and the balancing 
stage, which in this case is too restrictive. 
 Table 3 

In contrast, the deployed wind power as energy and reserve and respective revenue is shown in 
Table 4. The results are based on an evaluation of the offered bids and share from the different 
approaches under the wind measurement data. Thus, the expected revenue (in Table 4) represents 
the evaluation of the offered bids (of each approach) under the realization of wind power. The wind 
measurement data concerns the realization of wind power generation for the two-year data set. 
Furthermore, the energy and reserve share of the realized wind power have been determined using 
the share parameter from the second stage problem of each method. 
 Table 4 
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One can see that the behavior of the methods under the realization of wind power is similar to 
the expected results (from Table 3). However, the total amount of realized power is lower than the 
total expected power (from Table 3), which is also reflected in the energy and reserve share, as well 
as in the expected revenue. In more detail, the expected revenue under the measurement data of 
wind power is significantly lower than the expected revenue from the methods under expectation, 
which makes sense, since deviations of energy and reserve production from day-ahead and 
balancing take into account the balancing penalties for energy and reserve. It is noteworthy, that the 
deviation between the expected revenue from the optimization (Table 3) and validation (Table 4) 
process for each method is 34.30%, 18.36%, 18.25%, 30.07% and 31.96%, respectively. 

Nevertheless, the flexible approach is the one with higher expected revenue, while the fixed 
approach is the method with worst expected revenue. In fact, the difference between the flexible 
and fixed approach in terms of expected revenue exceeds 22%. Furthermore, it is noteworthy that 
the decrease of power is higher in the energy share than in the reserve share for most of the 
methods, which is understandable, since the penalties for energy deviations are considerably lower 
than the reserve penalty for missing the contracted offer.  

6. Conclusions 

The current participation of the wind power producers in electricity markets will constantly be 
changing, since wind turbines are now able to provide energy and reserve services in the electricity 
market. 

In this work, four different approaches (fixed and flexible stochastic, under McCormick 
relaxation and piecewise linear decision rules) for wind power producer’s offering in the energy and 
reserve market are formulated. All the approaches are based on the proportional control paradigm 
that allocates proportional share of the available wind power to the energy and reserve markets. The 
fixed stochastic approach shows a risk-averse behavior by fixing the share parameter between the 
day-ahead and balancing stages. On the opposite direction, the flexible stochastic approach presents 
a risk-neutral behavior (thereby, increasing the expected revenue), since this approach allows the 
share parameter assuming different values in both the day-ahead and balancing stages, however, 
requiring a certain level of perfect information on the balancing stage. On the other hand, piecewise 
linear decision rules incorporates a more conservative trend by allocating almost all the available 
wind power to single market participation. This method will always compete with the fixed 
stochastic approach, since it contemplates robust characteristics, which limits the economic 
performance of the method. Although, the method is likely to improve by considering better 
decision of the breakpoints, its improvement will most likely be small, thereby the interest of using 
piecewise linear decision rules is to some extent limited. In contrast, the stochastic approach with 
McCormick relaxation gives full degree of freedom to the wind power producers to impose a risk-
averse or risk-neutral behavior by just adjusting the coefficient that defines the difference between 
the share parameter in both the day-ahead and balancing stages. An important conclusion from this 
work is that all the proposed approaches provide a certain range of solutions that may cover 
different goals and behaviors of the wind power producer, e.g. maximizing revenue and 
participation in the energy and reserve market. Thus, the use of such proposed methods can improve 
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the expected revenue of wind power producers compared to the revenue with current energy-only 
market participation. 

Future work will focus on improving the performance of the piecewise linear decision rules by 
optimizing the number and value of the breakpoints in the piecewise function. This may be done by 
studying the version of piecewise linear decision rules with general segmentation. 
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Table 1. Prices and units costs for energy and reserve 

Energy Price (€/MWh) Reserve Price(€/MW) 

spλ  40 capλ  41 
,cλ +  30 ,bptλ +  0 
,cλ −  50 ,ptλ −  96 
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Table 2. Expected energy and reserve bids, as well as expected revenue of the simulation for all 
proposed approaches (fixed, flexible, McCormick and PLDR). 

Method FIXED Flexible 
McCormick 

(ε=1) 
McCormick 

(ε=0.01) 
PLDR 

Energy bid (MW) 7.84 0.98 1.33 7.13 0.21 
Reserve bid (MW) 0 6.86 6.34 0.72 7.33 
Total expected power (MW) 7.84 7.84 7.67 7.85 7.54 

Expected revenue (€) 305.74 311.75 310.95 306.13 305.92 
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Table 3. Expected cumulative simulation results of two years of data for all proposed approaches 
(fixed, flexible, McCormick and PLDR). 

Method FIXED Flexible 
McCormick 

(ε=1) 
McCormick 

(ε=0.01) 
PLDR 

Energy bid (MW) 77 116.14 43 467.19 43 826.89 75 870.59 46 802.13 
Reserve bid (MW) 27.14 33 898.43 28 703.61 1 260.12 32 892.09 
Total expected power (MW) 77 143.28 77 365.62 72 530.50 77 130.71 79 694.22 

Expected revenue (€) 1 905 292.08 1 965 930.58 1 951 840.02 1 907 032.48 1 919 319.43 
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Table 4. Deployed cumulative simulation results of two years of data for all proposed approaches 
(fixed, flexible, McCormick and PLDR). 

Method FIXED Flexible 
McCormick 

(ε=1) 
McCormick 

(ε=0.01) 
PLDR 

Energy share (MW) 66 075.92 33 608.11 38 309.53 64 989.56 44 622.15 
Reserve share (MW) 21.42 32 489.23 27 787.81 1 107.78 21 475.19 
Total expected power (MW) 66 097.34 66 097.34 66 097.34 66 097.34 66 097.34 

Expected revenue (€) 1 251 807.04 1 604 984.40 1 595 615.68 1 333 659.36 1 305 892.66 
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