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Abstract: Reliability is seen as a primary requirement when verifyprgbabilistic forecasts since a lack of reliability would
introduce systematic bias in subsequent decision-maRegability diagrams comprise popular and practical disjit tools for
the reliability evaluation of density forecasts of contig variables. Such diagrams relate to the assessment whtbaditional
calibration of probabilistic forecasts. A reason for thegpeal is that deviations from perfect reliability can bsuailly assessed
based on deviations from the diagonal. Deviations from tagahal may however be caused by both sampling effects ara se
correlation in the forecast-verification pairs. We build @mecent proposal consisting of associating reliabilitggdams with
consistency bars that would reflect the deviations from thgahal potentially observable even if density forecastsevperfectly
reliable. Our consistency bars however reflect potentigiatiens originating from the combined effects of limitedunting
statistics and of serial correlation in the forecast-veaifbn pairs. They are generated based on an original ate@gnsistency
resampling method. Its ability to provide consistency vtk a significantly better coverage against the i.i.d. ngsiing alternative
is shown from simulations. A practical example of the religbassessment of nonparametric density forecasts aft4bom wind
power generation is finally given. Copyrigi) 2009 Royal Meteorological Society
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1 Introduction The transition from point to probabilistic forecasts is not
only observed in the meteorological literature, as proba-
Over the past few decades, one of the major breakthroubHistic forecasts are also becoming customary products
in forecasting meteorological variables for applicatioms economics and financé&pramson and Clemenl995
such as weather derivatives and renewable energy gefiay and Wallis, 2000 Timmermann 2000 or more gen-
ation, comes from the transition from point to probabilisrally in management sciences. When considering con-
tic forecasting Gneiting, 20089. One has to acknowl-tinuous variables such as wind speed, the most complete
edge the significant contribution of some of the leaiiformation about expected realization for a given lead
ing meteorological centres e.g. NCEP (National Cetime takes the form of a density forecast (equivalently
tres for Environmental Prediction) and ECMWF (Eurdgeferred to as predictive distribution), giving the prolbab
pean Centre for Medium-Range Weather Forecasts)itindensity function of the corresponding random variable.
developing ensemble forecasting systems, as well aklaving a broader view of decision-making for real-world
probabilistic view of meteorological forecasting. For BroblemsGneiting (2008h argues that for a large class of
detailed overview of ensemble forecasting and the unde@st functions of forecast users, optimal decisions diect
lying probabilistic forecasting philosophy developed if¢late to given quantiles of predictive densities of the-var
the meteorological community, the reader is referred ale of interest.
Leutbecher and Palmef2008 and references therein.  In parallel to these developments towards probabilis-
From a decision-making perspective, it has been sholifhforecasting and subsequent optimal decision-making,
that pricing weather derivatives based on density fofée issue of probabilistic forecast verification has atedc
casts would bring significant benefifagylor and Buizza Significant attention. For a recent overview of verifica-
2006. In parallel for the example case of renewabfion methods for probabilistic forecasts of categorical
energy, the production of which is a direct function gnd continuous variables in atmospheric sciences, see
meteorological conditions, it is argued that optimal maR-g. Jolliffe and Stephensor{2003. A primary require-
agement and trading of generated energy should be ba®&#t for probabilistic forecasts relates to their calitorat
on probabilistic forecasts, see eRjnsonet al. (20073. (equivalently referred to as their reliability) which cesr
sponds to their probabilistic correctness. We hereby fol-
*Correspondence to: DTU Informatics, Technical UniversifyDen- low the paradigm introduced kigneitinget al. (2007, i.e.
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2 P. PINSON ET AL.

for probabilistic forecast evaluation is different fromath has already been hinted by eRjnsonet al. (20078 for
based on testing for correct conditional coverage of dehe case of the verification of wind power density fore-
sity forecasts, as described in e.Ghtistoffersen 1998 casts, or byHamill (200) when considering verifica-
Dieboldet al, 1998, where focus is given to one-stepion of ensemble forecasts of meteorological variables.
ahead forecast only, in a time-series framework. The cdiection4 introduces a methodology to provide consis-
bration requirement mentioned above calls for a thoroutgimcy bars in the spirit d8rocker and Smith(20073, but
reliability assessment prior to proceeding with sharpecounting for serial correlation effects, using an o@djin
ness. Even if considering the use of proper scoring rulsgjrogate consistency resampling method. Simulations in
seeBrocker and Smith(2007H among others, calculatingSections show how serial correlation adds to the sampling
scores alone does not permit to see whether better s@ifect, and demonstrates the pitfall stemming from infer-
values come from higher reliability or increased sharpnce on the confidence one may have in reliability dia-
ness. A decomposition of these proper scores into thgiams based on an i.i.d. assumption for probability inte-
reliability and sharpness components should then be gl transforms of reliable density forecasts. It also eval
formed. This is since a reliability assessment is necessaajes the validity and accuracy of the methodology intro-
in order to make sure that systematic bias would not Beced. The calibration assessment of short-term forecasts
introduced in further decision-making. of wind power generation serves as an illustrative appli-
A popular and straightforward way of assessing cdlation in Sectior6. Concluding remarks end the paper in
ibration of probabilistic forecasts is via the use of relig€ction?.
bility diagrams Atger, 1998 2004. The reliability dia-
grams we consider here for the reliability assessmentFof
nonparametric density forecasts of continuous variables
consist of an equivalent cumulative version of the pop-
ular probability integral transform (abbreviated PIT)-hidJsingt as the time index, we denote §Y;} the stochas-
tograms — otherwise called Talagrand diagrams, used tior process of interest and bfy,} the time-series of
the verification of ensemble forecasts, see elgmill observed realizations. Each random variafjlean take
(2001). An extensive presentation of reliability diagramgalues inC C R, with for instanceC = R* for the case
for density forecasts of continuous variables (and equiw-wind speed. For simplicity, it is assumed that ran-
lently for ensembles) is given in Secti@n dom variables and corresponding realizations are equally
Recently for the case of probability forecasts @fpaced intime. Also, it is considered that focus is on this
binary eventsBrocker and Smith(20073 have explained stochastic process at a single location only, as reliabil-
how reliability diagrams may be misinterpreted, sindty assessment of probabilistic forecasts for spatial $ield
even for perfectly reliable probabilistic forecasts themould also be impacted by spatial sampling and corre-
will always be deviations from the diagonal originatinttion effects which are not treated here. Discussions on
from sampling effects. They have proposed an elegéigse spatial effects can be foundfilks (1995 and in
framework permitting one to easily integrate informatiodolliffe and Stephenso2003.
about the impact of sampling effects directly in reliabil- ~ Write f,,4:(y) a density forecast for the stochastic
ity diagrams. While their point is highly relevant, it igorocess of interest issued at timdor lead timet + &,
argued here that it is not only counting statistics but al8d8dF:, ¢ (y) the related cumulative distribution function.
serial correlation in forecast-verification pairs thateatf ft+k|t(y) is a forecast of the probability distribution func-
interpretation of reliability diagrams produced from fesit tion of Y;, . given the information set available at time
size datasets. Somehow, the methodology proposedwiych may be derived from ensemble forecasts or from
Brocker and Smith(20073 is based on the fallacy that forsome nonparametric statistical forecasting techniques e.
reliable forecasts the random variables whose realizatigquantile regression. In a general manner, if no assumption
are given by the probability integral transforms should iemade about the shape of predictive distributions, a non-
independent and identically distributed (i.i.d.JOU1]. Itis parametric density foreca§;+k|t(y) can be summarized
true that by definition, a necessary condition for density a set ofn quantile forecasts
forecasts to be reliable is that such random variables are
distributed Uo, 1]. It is not a necessary condition howevef:+x|:(y) = {@fii‘t [0<a1 <...<a; <...<apy <1}
for successive realizations to be independent. In the case (1)
of reliability diagrams for probabilistic forecasts of by that is, with chosen nominal proportiong spread on
events, it might be acceptable to assume independencghasunit interval. In turn, a quantile forecaﬁﬁjc)lt with
forecast-verification pairs corresponding to a given proRominal proportiony; is defined by
ability class may be sparsely and randomly distributed
over the verification period. It cannot be the case when P, i [ymc < ‘ft(jfk)n —ai, €01 (2
assessing reliability of probabilistic forecasts of multi
categorical variables or of density forecasts of contirmuou  Both forecasts and observations are available for a
variables. This will be illustrated by a simple practicdimited time periodZ c N* used for forecast verification.
example based on climatology density forecasts in S&te that for ensemble forecasts with exchangeable mem-
tion 3. The role of serial correlation and sampling effectsers, nonparametric density forecasts can also be defined

Reliability diagrams for nonparametric density
forecasts of continuousvariables
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RELIABILITY DIAGRAMS FOR DENSITY FORECASTS OF CONTINUOUSARIABLES 3

as in (1). In such case, by ordering theensemble mem-i.e. based on the inverse probit functién’,
bers in ascending order, th& member gives the quantile

-1 . —1
with nominal proportiona; = j/(J + 1). The (continu- et p— V2erf i (2p - 1) (4)
ous) density forecast :(y) can then be built by inter-yith erf 1" the inverse error function. The resulting ran-
polation through the set of quantiles. dom variables and corresponding realizations are denoted

_For a given forgca_;t ho_rizoh, the core co_nceptgm andz, ;,, respectively, with Simpl)&,k = O (Zyp)
bghlnd the use of rell.ablllty dlagrams for evaluating ,deﬁhd,m = &(z,). Considering 7, . } instead of 2 , }
sity forecasts of continuous variables is that the seriesggf assessing calibration of density forecasts has some
predictive densitieq /., (y)} are reliable if and only advantages discussed in the literature, seeBerkowitz
if the random variabl€eZ; » = F;;(Yi4x) is distributed (2003, for hypothesis testing or for studying potential
U0, 1]. In practice this is performed by studying the reaserial correlation. In the present case, it will permit us to
izations ofZ; ;. which are given by the sequenge , } of apply classical tools from linear time-series analysis:Co
probability integral transforms, with, ;, = Ft%‘t(y“rk). sequently, the indicator variable introduced 8 ¢an be

Such a definition of reliability actually correspondsquivalently defined as
to an unconditional calibration of the density forecasts,
since no distinction is made between different time points
in the data set, or other conditions that may affect density
forecast reliability. This contrasts with the idea of condWith ¢’ the quantile with proportion; of a standard
tional calibration introduced b@hristoffersen(1998 and Gaussian distribution. In the following, we will equiva-
Dieboldet al. (1998 for the case of density forecasts in &ntly consider the possibility of working with the indica-
time-series context. It also contrasts with the idea of cdf! variable definitions of) and €) in order to assess the
ditional reliability assessment presented Pipsonet al. reliability of density forecasts.
(2007H and with that of forecast stratum introduced by The time—series{gij‘j)} is a binary sequence that
Brocker (2009. Both Pinsonet al. (20070 andBrocker corresponds to the series of hits (if the verificatigny,
(2009 base their argument on the fact that for the cabes below the quantile forecast) and misses (if otherwise)
of nonlinear processes, the reliability of probabilisbed- over the evaluation set. It is by Studyir{qﬁi)} that
casts may be influenced by a set of external factors, or neme can assess the reliability of a time series of quantile
even simply vary as a function of the forecasts themselvizggecasts. Indeed, an estimate; of the actual proportion
What we refer to as unconditional calibration thus corrg; . _ g {21 for a given horizonk, is obtained by
sponds to the overall probabilistic bias of the densityfore L (@i)y 4 .
casts as discussed Murphy (1993 andTaylor (1999 calculating the mean of thg,,"'} time-series over the
for instance, or to whaBneitinget al. (2007) refers to as test set
probabilistic calibration. 1N o)

A consequence of the fact that reliability diagrams ki = Zfﬁ) = ﬁ (6)
relate to an unconditional calibration assessment is that t=1 Mo T M1
aral ransionms s} fo a Sequence of reliabl foresadi /S 1S e number of time indices i, and where
densities and co?rcesponding verifications is to be i.i. ’?’éf e?:rt]isglk’6Tﬁgrr2?ep?:r;?cholaft2eclivuim'()f hits and misses,
This would be the case only if for each given time of the P Y- Y '

o) = 1zx < g8} (5)

evaluation set density forecasts were equal to the true con- N
ditional densities of the stochastic data generating m®ce n,(:ff) = #{flff,“j) =1} = Z f,ff,? (7)
(Dieboldet al,, 1998 Gneitinget al.,, 2007). t=1

In practice, since nonparametric density forecasts as n,(foi) — #{5%) =0} = N— n}gaf (8)

defined by 1) consist of a collection of quantile forecasts

for which the nominal proportions are known, evaluating ~ This measure of observed proportion serves as a basis
the reliability of density forecasts is achieved by verifyi for drawing reliability diagrams for density forecasts of
the reliability of each individual quantile forecast. Let ucontinuous variables, which give the observed propor-

introduce in a first stage the indicator variabj%”. Given tionsay; of the quantile forecasts against the nominal

: 3 . . ones. They therefore consist of Q- lots (Q-Q stand-
a quantile forecaszﬁ(“*) issued at time for lead time y Q-Qp Q-Q

t4klt ing for Quantile-Quantile), which are a classical diagnos-
t + k, and the verificationy, ; , t(‘?c) is given by tic tool in the statistical literature. A particular feaguof
this definition of reliability diagrams is that each quan-
t((;c) = Yy < ‘fgilk)\t} = 1{zh < oy} tile is eyaluated individually, Which will allow us dgfining
_ a consistency bar for each nominal proportion indepen-
_ L i oy < ‘ft(ik)n 3) dently of the other quantiles. Our consistency bars then
0, otherwise are pointwise consistency bars. Also, note that the reli-

ability diagrams we consider here are for density fore-
It can be appealing to project into the standard Gaussts of continuous variables and thus somewhat differ-
sian domain by using an inverse Normal transformaticent from those considered for probabilistic forecasting
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4 P. PINSON ET AL.

of binary/categorical variables e.gBrpcker and Smith For any timet in this dataset, a perfectly reliable
20073. The argument developed in the present papsgimatology density forecasf‘t%‘t(y) for a given look-
regarding the fact that serial correlation effects sho@ld Ahead time: can be obtained by defining it from the dis-
accounted for is still valid though. In parallel, the methodribution of wind speed hourly averages over this period
ology described in the following can be straightforwardlgf 1,000 hours. The corresponding cumulative distribu-
applied for the case of the verification of ensemble foren functionFHk“ is represented in Figurg(b). This is
casts, owing to the definition employed for nonparametotviously not the way an actual climatology density fore-
density forecasts. cast would be built, since it would be based on a long
When visually inspecting calibration from reliabilityrecord times-series of past measurements. For the purpose
diagrams, a common intuitive thought is that the closef our example however, the climatology density forecast
the observed proportions to the diagonal the better. Thie build is similar in essence to actual climatology fore-
is because asymptotically as the number of forecasists based on long records of data since being a unique
verification pairs tends towards infinity, one wishes thatunconditional density based on recorded data, while we
insure it is perfectly calibrated by relying on the mea-
lim ag; = «; Vi (9) surements themselves. As a consequence, if producing a
Nmoo reliability diagram for evaluating the calibration of such

implying that observed proportions asymptotically equ%?”s'ty forgcasts, the observed proportions would exactly
nominal ones. In practice however, evaluation sets cdl§-On the diagonal.

sisting of forecast-verification pairs are of finite (anceoft Following the discussion of Secti@the calibration
quite limited) size, and it is not expected that observégsessment of density forecasts with reliability diagrams
proportions exactly lie along the diagonal, even if tHg based on studying the distribution of the random vari-
density forecasts are perfectly reliable. This issue is d@les Z; . = Fy ) (Yi+r) whose realizations are given
cussed in detail idolliffe and Stephensoif2003 and in by the probability integral transforms , = Ft+k|t(yt+k).
Brocker and Smith(20073, while a more general dis-Intuitively, since it is expected that time-series of hgurl
cussion on uncertainty of verification measures can Wwind speed averages will exhibit a significant autocorrela-
found in Jolliffe (2007). Our contribution concerns thetion pattern (see discussion Wincentet al. (2009), and

fact that not only sampling effects but also serial correlsince such time-series is transformed through a monotonic
tion in sequences of forecast-verification pairs may affgstrictly) increasing function, an autocorrelation patte
the observed reliability of even perfectly reliable deysiis also expected to be present in the time-sefigs, }
forecasts of continuous variables. A simple mathematiedl probability integral transforms. This argument also
proof of that effect is given in Appendix A. applies to the corresponding time-ser{€s; }.

The density forecasts defined H§4+k|t(y) are by
construction perfectly reliable: we thus havg ; ~
U[0, 1]. For random variables distributedJ1], it appears
more relevant to define autocorrelation in terms of rank

Consider here the issue of density forecasting of sor%%"elat'on for various lags. It is depicted here in Fig-

continuous meteorological variable, say wind speed, alt'ra?z(a) In parallel, Figure2(b) shows the linear correl-

forecast horizork. It is of common knowledge that cli-o9ram for the time-seriefz;,.}. One sees from Figui2

matology comprises a benchmark density forecast, wh&g;i‘t the rank and linear correlograms, in the Uniform and
has the nice property of being well calibrated, and tfzAUSs!an domains, respectively, look very similar. This
characteristic of having no resolution since consisting §Mark goes along a comment of elgg Oliveira (2003
unconditional density forecasts, see for instance the i that, surprisingly, transformations may not signif-
cussion irPinson and Madsef2009. Figurel(a)depicts icantly affect an observed (serial or spatial) correlation
a time-series of mean hourly wind speed at the Horfigucture. Mostimportant, one notices that autocorreati
Rev wind farm in Denmark over a period of almosf2lués appear to be significantly positive (at a 5% sig-
1,000 houré. This offshore wind farm has been the firdificance level) for lags up to 24 hours, and significantly
large-scale offshore wind farm worldwide, and has hengidferent from 0 for other lags. This confirms the statement
motivated a number of studies for e.g. the charact§fade in Sectiod such that, even if a necessary condition
ization of local wind characteristics e.tyincentetal, O density forecasts to be reliable is that, ~ U[0,1],
(2009, or the (probabilistic) forecasting of its powepUccessive random variables (and corresponding probabil-
output Pinson and Madsen2009. The time-series of ity integral transfor_ms) do not have to be mdependent. A
wind speed is normalized by the maximum wind spe&g@nseduence of this result is that such correlations should

observed over the period, consequently taking valuesPf t@ken into account when performing hypothesis test-
[0, 1]. ing about reliability of density forecasts, or alternalyve

if issuing consistency or confidence bars when inferring

_ , _ _ on observed reliability. Note also that as mentioned by
fwind speed measurements with a 10-minute resolution for {

Horns Rev wind farm may be freely obtained at the Websi@a'ebmdet aI.(1998.,'on.e could look at the correlograms
www. wi nddat a. com of centred probability integral transforms at the power

3 Example of serial correlation in probability inte-
gral transformsfor reliable probabilistic forecasts
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Figure 1. Episode with wind speed measurements at HornsaRewthe corresponding cumulative distribution functiomresponding to
what would be an ideal climatology density forecast.
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Figure 2. Rank correlogram for the sequence of probabilitggral transforms, and linear correlogram of their ingeMormal
transformations. The dashed lines give the critical vahies5% level of significance.

J, 7 > 2in order to observe dependencies in higher ordee a possible range (for a given confidence l¢vel 3))
moments, i.e. mainly for variance, skewness and kurtosi$ observed proportions for this quantile if it were indeed
reliable, given the temporal dependencies observed in
the forecast-verification pairs induced by the process and
forecasting system of interest. From an hypothesis test-
ing point of view, one could say that having the observed

Let us recall Brocker and Smith (20073, following proportion of quantile forecasts (for a given nominal pro-

Smith (1997, who introduced the proposal of generafortion) within the range of consistency bars implies that

ing consistency bars for reliability diagrams. The idea 8n€ cannotreject the hypothesis of these quantile forecast
consistency resampling is extended here to also accde@ing reliable. This paradigm translates to accepting that
for a correlation pattern in thg, ;. } time-series. The aimthere may be a number of perfectly reliable forecast sys-
of our consistency bars is then, for each of the quantims for the time-series of measurements of interest, and
forecasts composing density forecasts, to reflect what ¢hat the combination of forecasts and verifications may

4 Consistency bars using surrogate consistency
resampling
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6 P. PINSON ET AL.

induce different types of dependence structure in the tinfee corrected by employing the iteratively refined surrogate
series{z, ;} of probability integral transforms. method ofSchreiber and Schmit2000. The core of the
The surrogate consistency resampling methatethod i.e. the phase scrambling, is further discussed in
belongs to the more general class of resampling meth@#svison and Hinkley(1997).
for dependent data. For an overview of those methods, One could think of directly employing this surro-
see e.glahiri (2003. An important advantage of thisgate method for generating a set of surrogates being dis-
surrogate approach is that complete time-series #ibuted U0, 1] and having the same correlogram than the
simulated based on their spectrum, instead of considgguence of observed probability integral transform. This
ing subsamples or blocks. An alternative to the use wbuld be performed by first transforming the sequence
surrogate consistency resampling would be to employ{a .} to U[0, 1] (while preserving the ranks), and by then
model-based consistency resampling approach, whereghwploying the AAFT algorithm for generating a set of
general class of ARM#&, q) (Auto-Regressive Moving surrogate Gaussian time-series. The last step, consisting
Average) models could be envisaged for modelling tloé transforming back the Gaussian surrogates fo, U
underlying process in thé¢z, ;} time-series. A subtle can actually be avoided, due to the equivalence in the
issue in this case would relate to the optimal selectiondéfinition of the indicator variable fronB8) and 6). The
the autoregressive and moving average orgeesd ¢. counting necessary for building consistency bars can then
Model misspecification could have a dramatic impact dre equivalently performed using the surrogate time-series
the quality of generated consistency bars. An additional)} or {z)}.
advantage of the surrogate approach is that by construc- |f directly employing the above method for generat-
tion it can be insured that surrogate time—ser{ét%,)c} ing surrogate time-series however, the resulting suresgat
will be distributed\ (0, 1); this would not be the case ifwill not be sampled from the true process behird},

employing a model-based approach. but merely from the periodogram obtained from a lim-
ited sample. Consistency bars generated from this method
4.1 Basics of the surrogate method would thus not be valid. Consequently, a proposal method

for surrogate consistency resampling from the true process
The basis of our surrogate consistency resampling metiehind{ z, .} is described below. It consists of first identi-
is related to the Amplitude Adjusted Fourier Transforfying the true process behird; ;. } with spectral analysis,
(AAFT) algorithm described byheileret al.(1992. This and then of generating surrogates having periodograms

algorithm is based on the assumption that observed tirgg@mpled from the smooth spectrum of the process.
series are a monotonic transformation of realizations from

a linear Gaussian process. It is indeed the case
for reliable density forecasts the time-serfes .} are a
monotonic transformation dfz; . }, for which each of the Since the core of the surrogate data method relates to the
realizations are generated fro;\d0, 1). The consecutive phase scrambling of a linear Gaussian process, a spectral
steps of the AAFT algorithm can be described as: analysis framework appears relevant for characteriziag th
rocess{Z: »}. Write g(w) the spectrum of the linear

(i) the time-series{z,} is rescaled and transformecgaussian proces&Z, .}, with w the angular frequency,

(while insuring that ranks in the data are conservegl)ld[N(w) the periodogram of the time-seriés, , }. The

K]’c Obt?'n a linear Gaussian process with time-serigsiodogrami,y () corresponds to the sample spectrum
of realizations{z; ;. } observed from{z,;} and is not a consistent (though

(i) a Fourier-Transform based algorithm is employed tiPiased) estimate giw). A consistent estimate can be
obtain a Gaussian surrogate time-se@éé,l}, by obtained instead as a smooth spectrum based on truncated

randomizing the phases. The Gaussian surrogBFJ'quQrams and lag W|ndows. While only th_e main
time-series{z(')} has the same marainal distribu?quatlons and results are given here, the reader is referred
. tk . gl to Madsen (2007 for more extended developments.

tion and correlogram as the time-ser{es ;. }

The smooth spectrum estiméjtev) of g(w) based on
(iii) {Zt(;,)c} is transformed back to the domain of the orig;}-he time-serieg2, .} is given as

tﬂ% Smooth spectrum and periodogram sampling

inal time-series, leading to the surrogate time-series K= N1
{zt(,',)c}, but with a slightly different autocorrelation Gw) = 1 Z M Ch exp(—iwk) (10)
function and power spectrum 2 k=—(N—1)

gate time-series have the same periodogram and margijjals a Jag window, allowing to reduce the influence of
distribution as the original time-serigs: »} of proba- fyrther lags on the estimate of the spectrum. While there
bility integral transforms, hence also insuring to havegists a large number of potential lag windows, the class

similar correlogram. For a more detailed descri_ption of general Tuckey windows is considered here, defined by
the surrogate data method and of the AAFT algorithm, the

reader is referred tdheileret al. (1992. Potential devi- _ f 1—2a+2acos (%), k| < M 11
ations in the marginal distribution or in the spectrum can ** = | o, |k| > M (11)
Copyright(© 2009 Royal Meteorological Society Q. J. R. Meteorol. So®0: 1-16 (2009)
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RELIABILITY DIAGRAMS FOR DENSITY FORECASTS OF CONTINUOUSARIABLES 7

where M is the truncation point, and is the parameter the choice of a truncation point/. The ;! resampling
controlling the shape of the lag window. In particulacycle then consists of the following steps:
here, we employ the Tukey-Hanning window, defined by ) _
a = 1/4. Deciding on an appropriate truncation poit (1) generate a surrogate periodografy (w,) from the
may be quite difficult as this relies on the expertise of ~ Smooth spectrum(w)
the practitioner. It will be shown from the simulation%li)
below that the surrogate consistency resampling method
proposed is not that sensitive to the choic@bfA limited _
expertise on expected serial correlation structure ptesen the phases of the surrogate periodogifh(w,).
inthe{z, ;} time-series can provide a relevant guess.
When the smooth spectrum estimaggw) is
qbtalngd, it can be used for generatllng anumb)er of realis- of the density forecasts using)( based on the
tic periodograms for the surrogate tlme-serﬁeﬁk}. For ime-serie& 1 vielding th ¢
that, let us recall here some properties of the periodogram surrogate time serle{sthk}, ylelding the surrogate
for linear Gaussian processes: observed proportionégfg,i =1,...,m. Note that
one can obtain surrogate time-series of probabil-

ity integral transforms{zijk)} and of verifications

employ a Fourier-Transform based algorithm to gen-
erate a surrogate time—seri{a#f,i} by randomizing

(iii) calculate the observed proportions for each of the
quantiles with nominal proportions;,i = 1,...,m

(i) the periodogram valueby (w,), with w, = Zp, p =
1,...,N/2, the so-called fundamental frequencies,

are independent {yf{fk} by inverse transformation

This resampling cycle is repeated a number of tinkes
and yields an empirical distribution of surrogate observed
proportions for each quantile of the density forecasts.
Let us defineéiyk as the cumulative version of this
Property(i) relating to the independence of periodogragmpirical distributionGA@k is a nonparametric estimate of
values for the fundamental frequencies (i.e. those what would be the distribution of proportions that could
defining the orthogonal basis of the Fourier series) i¢ observed for the dataset considered, for the quantile
actually a crucial property behind the phase scramvith nominal proportiony;, if it were reliable and given
bling in the surrogate data method introduced abotfee serial correlation structure induced by the forecast-
(Davison and Hinkley 1997 Theileret al, 1992. In par- Verification pairs. Given the chosen confidence lgvel

allel, the smooth spectrum estimdtev) can be plugged 3), the lower and upper bounds of the consistency bars are
into properties(ii) and (iii) in order to simulate peri- given by
odogramsI{/ (w,) for the surrogate time-serie&:{)}, o
from independent random draws g¥(1) andy?2(2) ran- 4 = G (0/2) (12)
dom variables. ar = Gir(1-p/2) (13)

(i) 22~ \2(2),p #£ 1, N/2

(iii) D)~ \2(1),p = 1, N/2

The same argument as that developed by
o _ _Brocker and Smith (20073 applies here, implying
A full description of the surrogate consistency resamplingat, by construction, the surrogate time-series of proba-
.methOd is given here based on the e_lements mtmducﬁidy integral transforms directly relate to a hypothetic
in the above Paragraphs. Again, consider the questlorggauence of forecast densitieﬁ(j) (y)} which would
reliability assessment of a seque of den- - L bkl L -

: y Seq n{qu‘t(y)}_ be reliable in view of the corresponding time-series
sity forecasts (thus for a given forecast horizien for ) e R L

L . . {y,2,.} of verifications. This is since it is imposed that

a corresponding time-seridg; .} of observations. Fol-

4.3 Surrogate consistency resampling

t+k

lowing the paradigm introduced above, one accepts tRdfrogate time-serielg;’) } are drawn from a\/(0, 1) dis-

even if this set of density forecasts were reliable, tidoution. In addition, consistency bars can be generated

forecast-verification pairs would induce a temporal cd@r all quantile forecasts in parallel — they are pointwise

relation structure in the time-serigs, } of probability consistency bars, since as explained in Secfiothe

integral transforms. calibration assessment is individually performed for
The first step of the surrogate consistency resampli@@ch each quantile with a given nominal proportion.

approach is to rescale the time_ser{e@k} so that they Thel’e |$ f|na”y no b|nn|.ng ef‘feCt tObe C0n$|dered, as the

have a marginal distribution [07 1] W|th a rank-preserving Ca|lbratI0n Of a” quant”es IS Venﬂed agaInSt the same

transformation, thus not altering its rank correlograme TRUMber of observations, corresponding to the number of

rescaled time-series are then projected into the standéi indices in7.

Gaussian domain by using the inverse probit function. Itis

assumed that the obtained time-selﬁi%@ﬂ}.is a sample of 5 gmulations

what would be the sequence of realizations coming from

the forecast-verifications pairs if the forecasting systdmthis Section are performed simulations allowing us to

were indeed reliable. The smooth spectrgfw) of the demonstrate the pitfall stemming from inference on the

related linear Gaussian process; ;. } is estimated given confidence one may have in reliability diagrams based
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on an i.i.d. assumption when issuing consistency bars. Note that we have chosen in the present paper to
Simulations are also employed for demonstrating tpeesent reliability diagrams in the most classical manner,
validity of our approach before applying it to real-worldhat is, by depicting observed against nominal probabil-
test cases and data. The simulation set-up is describedi@s. As argued bBrocker and Smith(20073, Brocker
a first stage, followed by simulations results and relaté2009 or Pinsonet al. (20078, however, one may present
comments. such diagrams in a different manner in order to focus on
the area around the ideal diagonal case. Especially, the
proposal byBrocker and Smith(20073 and byBrocker
(2009 of plotting reliability diagrams on the probabil-
The simulations are performed based 6%} time- ity paper may be seen as attractive, owing to simplicity
series only (i.e. based on linear Gaussian processes, sgfqresentation and of interpretation of consistency bars.
the conversions from\V (0, 1) to U[0, 1] (using the probit Considering some other presentation of reliability dia-
function ¢) and from U0, 1] to the original domain of grams would not call for any change in the methodology
the observations are strictly monotonic, thus preserviggscribed for the derivation of consistency bars.
ranks and counts. As a consequence, observed proportions For both correlograms, one notices that for certain
of quantile forecasts are equivalent if calculated in tRgaws the observed proportions may lie fairly close to the
original, Uniform, or Gaussian domains. diagonal, while for some other draws they may be quite
Imagine generating a time-series{af, .} of length far from this same diagonal. This is while they all relate in
N for which each realization is drawn from a standatfle same way to reliable forecast systems. It can also be
Gaussian distributio\'(0, 1) and with a linear correlo- seen from Figure that for a stronger correlation pattern
gramp(h), h being the difference between time indicesike p,, deviations from the diagonal may be larger. This
By definition, such time-series of probability integraduggests that serial correlation in forecast-verification
transforms projected into a standard Gaussian domain ¢giir magnifies the sampling effects.
responds to that for a reliable density forecasting system. Given a chosen correlogram, a numberof linear
Two types of correlograms are considered: on the ogaussian time-seriels, ,} (of length ') are generated.
hand a dampened exponential correlograrh), corre- Consistency bars are produced based on i.i.d. consistency
sponding to a stationary first-order Markovian procesgsampling, and based on the surrogate consistency resam-
and on the other hand a correlogran(h) taking the pling method described above. It is arbitrarily chosen to
form of a dampened exponential with oscillations, refledbcus on 90% consistency bars (that is, for- 5) = 0.9),
ing a seasonality in the sequence of probability integgsartly because it is the nominal coverage rate considered
transforms in the standard Gaussian domain. The dampg®rocker and Smith(20073 and partly because this is

5.1 Simulation set-up

exponential is simply given by a quite common choice for a number of real-world appli-
cations. Note that similar simulations could be performed
pa : h—exp(=7h), 7>0 (14) for other nominal coverage ratés — 3) in order to ver-

fy the quality of generated consistency bars. Overrthe

with 7 th'e parameter controling the steepness of thf%e-series, one counts the number of times the observed
exponential decay. In parallel, the dampened exponenfgl,q ions for each quantile forecasts composing regiabl

with oscillations is defined by density forecasts (i.e. the quantile of a standard Gaussian
distribution) lie below and above the consistency bars.
1 { (277]1) } ( 27‘h)
cos +1exp ,

ps  h— = 7,p > 0 This provides us with an approach to verify their actual

2 D
15) coverage.

with 7 being the same type of parameter, whileontrols , .
the period of oscillations. For the caseof(h), 7 is set -2 Simulation results
to 7 = 0.3, while p,(h) is parameterized with = 0.6 and In the following we carry out simulations on time-series
p = 12. The corresponding correlograms are depictedadfilengthN = 400 time steps with correlograms; or p;.
Figure3. Counts performed on such short time-series will clearly
As explained in the above Section, if calculatinge affected by the correlation patterns, as illustrated in
observed proportions of quantiles composing density fofégure4. In order to verify the coverage rate of the con-
casts from a time-serigg; ;. } of limited size, with correl- sistency barsyn = 1000 different time-series are gener-
ogramsp, Of ps, there will clearly be deviations from theated for each type of correlogram. Comparison is made
diagonal, even thougf:; ;. } relates to a reliable forecasbetween consistency bars generated from an i.i.d. consis-
system. This is illustrated in Figudgor time-serieqz; } tency resampling method, and from the surrogate consis-
of 400 realizations having correlogramg or p; (in Fig- tency resampling method introduced above. For this latter
ures4(a)and4(b), respectively). The nominal proportiongase, a benchmark consists of consistency bars generated
for the quantiles composing density forecasts are cho$em the true spectrum of the generated time-series. In
as ranging from 0.05 to 0.95 with a 0.05 increment. Thparallel, consistency bars generated from the estimated
three different curves in Figuréga)and4(b) correspond smooth spectrum (with various values of the truncation
to the observed proportions for 3 different drawq &f,} pointM) are also evaluated. A numberBf= 1000 surro-
for each of the two correlograms. gate time-series are used for deriving consistency bars for
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Figure 3. Dampened exponential (with and without oscélag) correlograms used in the simulations.
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Figure 4. Reliability diagrams giving examples of obserygedportions of reliable forecasting systems for two déf@r correlation
structures in the time-serigg, . } (consisting of 400 successive realizations).

each of then time-series. As is the case for any computer- In both cases, one clearly sees that there is a sig-
intensive resampling method, the number of replicationgicant difference between i.i.d. and surrogate consis-
B should be chosen sufficiently large in order to obtaiancy resampling methods in terms of observed coverage
realistic confidence bounds, though not too large in orddrthe generated consistency bars. As expected, the lack
to keep computational time reasonable. The values of tifecoverage is more significant as the correlation pat-
truncation points are chosen from an expert guess batgfl is stronger, i.e. for the correlogram. This is an

on the analysis of the periodograms of the time-seridgstration of the pitfall stemming from assuming inde-
{2:.1}, as itwould be done for real-world applications. Fgrendence when serial correlation is indeed present in the
the case of the correlograpy, potential expert guessesequence of forecast-verification pairs. Such lack of cov-
could beM = {12,24,36} while for the case of the, e€rage could translate to concluding a lack of calibration of
correlogram, they could consist 6f = {24, 36,48,60}. density forecasts over the period considered, while in fact
It is often said that a reasonable choice fdris such that the observed deviation from perfect reliability cannot be
M =2y/N, see e.g. Ypton and Cook 2002 pp. 324- deemed significant.

325), which would translate td/ = 40 here. The corre- When employing the surrogate consistency method
sponding results, consisting of observed coverage of canth the true spectrum of the time-seri€s, .} in order
sistency bars, are gathered in Tabfer the correlograms to generate surrogate time-series, the observed coverage
pa Of ps, respectively. of the consistency bars is very close to the target 90%
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Table I. Summary of the observed coverage rate of the 90%istensy bars generated with either i.i.d. or surrogate isterscy

resampling methods, for time-series with correlogragmand p,. Consistency bars are for a set of quantiles defining nonpetrac

density forecasts. Surrogate consistency resamplingllzasthe true spectrum of the time-series is used as a benkhRoathe surrogate

consistency resampling method using estimated smoothrapecseveral expert guesses on the truncation plirdre considered. Note

that asymptotically as» and B tend towards infinity, the observed coverage rate for priip@s«; and(1 — a;) should be the same. The
differences here are due to sampling effects.

(a) Correlogrampy

a; | ii.d. surrogate surrogate surrogate surrogate
(M=12) (M =24) (M =36) (true)
0.05| 66.7 86.7 90.2 91.1 90.4
0.10| 61.4 88.0 88.7 88.9 90.2
0.15| 59.0 84.8 87.3 89.0 90.7
0.20| 58.4 85.5 87.7 88.6 90.5
0.25| 56.4 85.3 88.1 88.7 89.8
0.30| 57.6 85.0 86.8 88.9 89.9
0.35| 55.2 84.8 87.9 87.9 89.7
0.40| 56.0 85.6 88.7 89.1 90.5
0.45| 56.7 86.3 89.2 88.6 89.7
0.50| 56.3 86.0 88.3 88.7 90.6
0.55| 54.6 87.2 88.3 88.7 89.4
0.60| 54.0 86.9 88.9 89.4 88.9
0.65| 55.8 86.5 89.5 89.8 89.4
0.70 | 54.4 85.4 88.8 89.8 89.3
0.75| 56.5 85.6 88.1 89.6 89.1
0.80| 59.7 86.3 88.8 90.9 89.2
0.85| 59.3 86.1 89.4 89.2 89.8
0.90| 61.2 87.5 90.0 89.2 90.0
0.95]| 65.1 88.8 91.1 90.4 90.6

(b) Correlogramp,

«; |iid. surrogate surrogate surrogate surrogate surrogate
(M =24) (M =36) (M=48) (M =60) (true)
0.05| 57.7 86.8 88.4 88.2 91.1 90.9
0.10| 53.7 844 86.6 87.9 90.4 90.8
0.15| 52.0 83.3 85.9 87.5 90.4 90.0
0.20| 50.8 82.6 85.7 87.0 90.2 90.7
0.25] 51.1 83.1 86.1 86.7 90.5 90.7
0.30 | 48.7 83.5 86.9 87.5 90.0 90.5
0.35| 46.6 83.2 86.7 87.6 91.0 89.3
0.40| 45.8 834 86.5 87.3 90.3 90.1
0.45| 46.3 83.2 86.7 87.1 90.7 90.6
0.50| 45.4 83.3 85.8 87.6 90.1 90.6
0.55]| 46.4 82.9 86.2 88.4 90.5 89.8
0.60| 455 83.0 85.9 88.0 89.8 89.4
0.65| 47.8 83.2 86.7 88.7 89.7 89.8
0.70 | 47.7 83.0 87.3 88.9 89.2 90.0
0.75| 485 83.2 86.2 89.6 88.6 89.8
0.80| 51.1 83.9 87.3 90.1 89.1 90.3
0.85| 51.8 84.1 87.5 88.8 89.3 90.0
0.90| 54.8 85.5 87.2 88.2 88.2 88.9
0.95| 59.9 86.4 88.8 89.7 89.8 91.7

nominal coverage. Furthermore when employing the estonsistency bars is also close to the target 90% nomi-
mated smooth spectrum instead, the coverage of generagddcoverage. Choosing a truncation point which is too
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RELIABILITY DIAGRAMS FOR DENSITY FORECASTS OF CONTINUOUSARIABLES 11

small results in under-representing the correlation stridielsenet al, 2006 Pinson and Madsen2009 among
ture present in the sequence of forecast-verification pagthers.
leading to generation of consistency bars that are too nar- We consider here nonparametric density forecasts
row. By making a reasonable guess for the truncatiohwind power generation for the whole installed capac-
point, i.e. M = {24,36} and M = {48,60} for the case ity in Western Denmark, which approximately represents
of the correlogramg, andp, respectively, the generated?, =2.5GW over the period considered. All forecasts and
consistency bars appear to have an acceptable coverageeldsurements are normalized by this nominal capacity,
is true that for practical real-world verification studiés and therefore expressed in percentages off@recasts
might be difficult to pick an optimal truncation point (agre issued hourly, and have an hourly temporal resolution
would be the case for any spectral analysis study in amy to a forecast length of 43 hours. The point forecasts of
case), but a reasonable guess from the practitioner shawitdd power generation were provided by the Wind Power
provide a sufficiently accurate estimate of the spectruRrediction Tool (WPPT) as described in eNjelsenet al.
leading to appropriate consistency bars. (2002, while the nonparametric density forecasts were
generated based on the adapted resampling method ini-
tially described inPinson (2006. The period for which
6 Application to the reliability assessment of density both measurements and forecasts are available goes from
forecasts of wind power generation the beginning of January 2006 until mid-November 2007.
Figure5 depicts an example with wind power point fore-
Wind power is the renewable energy with the fastesists issued on thé"8anuary 2007 at noon, related non-
growth over the last few years. It has a significant shasarametric density forecasts, as well as the corresponding
in the electricity generation mix in a number of Euromeasurements. Density forecasts take the form of a set
pean countries, most notably in Denmark and Spaf.central prediction intervals (i.e. centered in probiapil
The optimal integration of this renewable energy in thgound the median) with increasing nominal proportions
existing electricity system requires forecasts for vasiofrom 10% to 90%. They thus are defined by 18 quantile
ranges of horizons depending on the decisions to be m&deecasts with nominal proportions from 5% to 95% with
i.e. from a few minutes ahead for the control of win8% increment, except for the median.
farm output, to several days ahead for offshore main- Three different sets of forecast series are arbitrarily
tenance planning. The forecasts that are used the nuggécted from the two years which were available. These
today have an hourly resolution up to 48-72 hours ahedttee periods are picked over Autumn 2006, Spring and
are employed for the trading and management of tBammer 2007. The first two sets consists of 600 fore-
wind power generation, and issued based on one or seyst series, while the latter one consists of 800 forecast
eral forecasts of relevant meteorological variables fer theries. The reliability of nonparametric density foresast
site(s) of interest. If considering lead times from fevg studied based on reliability diagrams in the form of
minutes up to 2 hours ahead, forecasts are then gefiesse presented in Secti@nEach lead time is considered
ated from purely statistical methods relying on local meidividually. Inspection of the periodograms and correl-
surements only, as for instance Brieitinget al, 2006 ograms of the(z; .} time-series suggests that truncation
Pinson and Madsen2009h. For an overview of moti- points between 36 and 60 hours could be relevant for the
vations, techniques and practical experience with wifiest two sets of forecasts series, whilé may take values
power forecasting, the reader is referredGiebelet al. between 72 and 96 hours for the case of the last set, for all
(2003 andCostaet al. (200§. Among the various typesforecast horizons. A common value of 48 hours is selected
of forecasting products employed for wind energy mafoer the first two sets, while a value of 84 hours is picked
agement, maintenance planning and trading, nonparanfi@t-the third one. As shown and discussed in Sectipn
ric density forecasts are becoming more and more pope width of the generated consistency bars is not highly
lar, since benefits from their use have been demonstratshsitive to the choice fav/. A sufficiently large number
see e.g. Matos and Bessa2009 Pinsonet al, 20073. B of surrogate time-series is chosenias= 1000.
This is because the loss functions of forecast users com- Let us focus for instance on the calibration assess-
monly differ from the classical quadratic loss function fanent of 42-hour ahead density forecasts of wind power
which point forecasts relating to the conditional expegeneration, which is summarized in FigueAfter the
tation are optimal. Such loss functions may also vary $eries of probability integral transforms are converted
time due to the changes in the structure and dynamicgmtaving a Normal distribution, with a rank-preserving
electricity markets. As wind power generation is a notransformation, the smooth spectra of the obtained time-
linear and bounded process, predictive densities maydeeies related to the three sets of forecast series are esti-
highly skewed and with heavy tailsgnge, 2005, hence mated with the method described in Sectih2 These
being difficult to accurately model with known parametrismooth spectrum estimates are gathered in Fi§ag
families of density functions, see discussion Biyison Significant differences can be observed among these
(2009. This has motivated the development of a largenooth spectrum estimates. While the smooth spectrum
number of nonparametric methods for wind power densigtimated for set one could relate to a first-order Marko-
forecasting, based on statistical methods and/or enseman process with moving average, that for set two is typ-
ble forecasts, seeBfemnes 2006 Mgller et al, 2008 ical of a second-order Markovian process. Finally for set
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Figure 5. Example of nonparametric density forecasts otiyiower generation for the whole Western Denmark (issueti@8t January

2007 at noon) in the form of a river of blood fan chart. Dengdyecasts are represented as a set of central predictiervahd with

increasing nominal proportions. Power values are normely the total wind capacity,Por the region. Measurements and point forecasts
are also depicted.

three the estimated smooth spectrum can be seen asahdtobserved proportions. Now consider the sets of con-
of a first-order Markovian process with seasonalities. Thistency bars. For sets one and three, the observed pro-
therefore makes us expect different widths for the congpsartions of all quantiles composing density forecasts lie
tency bars to be generated. The reliability diagrams for tivéthin the consistency bars, even though deviations from
three sets of forecats series are depicted in Figbifes the diagonal are of different magnitudes. This does not tell
6(c)and6(d). Consistency bars, generated using the metls that the quantiles forecasts are reliable, but inversely
ods described in Sectiagh are depicted as pointwise conthat it cannot be concluded that they are not reliable (for
sistency bars informing, for each nominal proportion @f 10% level of significance). This goes against the subjec-
the quantile forecasts composing nonparametric dengitye evaluation given before. In contrast for set two, the
forecasts, about consistent deviations that can be expefaet that observed proportions for quantile forecasts with
even if such forecasts were perfectly reliable. nominal proportions between 0.1 and 0.55 lie outside of
The three sets of consistency bars indeed have dfife consistency bars confirms that quantile forecasts for
ferent widths, thus reflecting the effect of the identifieslich nominal proportions should not be considered as reli-
correlation structures on the potential range of obsenale.
proportions for perfectly reliable density forecasts. yhe
are generally tighter for set two, i.e. for which the smooth
spectrum takes the form of that for a simple second-order Concluding remarks
Markovian process. Notice that the larger consistency bars
are for the set with the most forecast series (set threedcus has been given to the question of the calibration
illustrating the fact that it is not because more forecaa$sessment of density forecasts of continuous variables,
series are available that one should expect smaller consigginating from ensemble forecasts or statistical meth-
tency bars — again due to the stronger correlation patteds, with reliability diagrams. It has been explained that
present for that set. employing such reliability diagrams relates to the evalu-
Let us now interpret these reliability diagrams. ktion of unconditional calibration. In many applications
consistency bars were not available, one would subjege should acknowledge the presence of serial correlation
tively appreciate the observed deviations from the diag-the sequence of probability integral transforms even for
onal and decide on acceptable reliability (or not) of thieliable density forecasts, in turn induced by the sequence
various quantile forecasts composing nonparametric defforecast-verification pairs.
sity forecasts. One would then certainly accept all quantii  We have built on an interesting proposal by
forecasts to be reliable over set three. In contrast, geanBrocker and Smith(20073 consisting of associating reli-
forecasts with nominal proportions between 0.45 and @Bility diagrams with consistency bars. Consistency bars
for set one and with nominal proportions between 0.1 ahdre reflect the potential impact of both limited count-
0.65 for set two would be deemed as non-reliable owiirgy statistics and serial correlation on what would be the
to an increased deviation between the ideal diagonal cabserved reliability of a perfectly reliable forecast gyst
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Figure 6. Example results from the reliability assessméAehour ahead nonparametric density forecasts of windgpgeneration. The
smooth spectrum estimates related to the 3 sets of foremées sre gathered in (a). Reliability diagrams with caesisy bars for a 90%
confidence level are depicted in (b), (c) and (d).

over the set of available observations. An original surrassessment of quantile forecasts with various nominal pro-
gate consistency resampling method has been introdupedions (thus for the full densities), in a multiple hypoth
and evaluated for that purpose. The presence of serial @sis testing framework.

relation clearly increases the width of consistency bars. Our most important message here is not that one
Even though the serial correlation pattern has to be estiould mandatorily use the approach introduced for gen-
mated (here in the frequency domain), it has been demergating consistency bars, but instead that one must con-
strated from simulations that the actual coverage of diigler the potential effect of serial correlation in reliéi
consistency bars is close to their intended nominal covagsessment. Indeed, it has been shown that assuming inde-
age. pendence of the sequence of probability integral trans-

forms would clearly lead to underestimating the range of

The consistency bars which have been CO”Side‘Tr;ﬁﬂentially observed proportions for a perfectly reliable
in the present paper are pointwise consistency bars. Thigpabilistic forecasting system over the period of inter-
means that they relate to the individual rellablllty assessst. One may decide on one’s own way of mode”ing or
ment of the quantile forecasts (for a given nominal praccounting for serial correlation, potentially simulatin

portion) composing nonparametric density forecasts. Agifferent plausible serial correlation patterns and asiegs

possible extension of the work presented here, one miagir impact on the width of consistency bars. Note that the
consider the definition of consistency envelopes, whigaestion of interdependence among forecast-verification
in contrast would relate to the simultaneous reliabilifyairs should also be considered if focusing on probability
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forecasts for binary events. It might be that interdepenind power (point) forecasts. Acknowledgments are due
dence is not an issue for a large number of cases, but tméwvo Reviewers and one Associate Editor, whose sug-
should still be aware of this potential issue before to appgstions and comments permitted to enhance the paper.
i.i.d. resampling methods. Acknowledgments are finally due to Henrik Aa. Nielsen,
For the surrogate consistency resampling methdames W. Taylor, as well as Tilmann Gneiting, for fruit-
developed, only one parameter, i.e. the truncation point discussion about reliability of ensemble and density
M, has to be selected for the estimation of the smodttecasts.
spectrum. This is somehow the price to pay for capturing
the interdependence structure in the sequence of pro
bility integral transforms. Even though the selection
M may call for some statistical (and/or signal process-
ing) expertise from the practitioner, the actual coveragrethis Appendix a simple mathematical proof is given of
of consistency bars is not highly sensitive to the choitiee effect of serial correlation on the size of consistency
for M, especially if consistency bars are to be used foars. More precisely, we show here that for any type of
visual assessment of density forecasts calibration and cmftrelation in the sequence of forecast-verification pairs
for thorough hypothesis testing. In parallel the numb#te consistency bars are to be wider than in the i.i.d. case.
B of replications of the consistency resampling method, Let us focus, without loss of generality, on a given
which corresponds to the number of surrogate time-sen@sninal proportiony;. The forecast horizok is omitted
to be generated, should be chosen sufficiently large, émgthe developments below in order to lighten the nota-
B > 1000. Since computational power is rapidly increagions. In view of the definition of the indicator variable
ing, picking a large value foB should not be a problem.g,fo”) in (3), it appears thagt(ai) is the realization at time
For reference, only 4 minutes were necessary for geref a Bernoulli random variable with parameter. As a
erating the reliability diagrams with consistency bars ebnsequence, the observed proportipis a realization of
Section6 with Matlab, i.e. for time-series of length00 a random variable defined as the sum of Bernoulli trials,
and800 with the number of surrogate3 = 1000. scaled by the number of trial§, being here the length of
Unconditional calibration is only one aspect of prolihe evaluation period. Below, we will denote this sum by
abilistic forecast verification. It is a crucial aspect thbu X; or X;, for the i.i.d. and correlated case, respectively.
as a probabilistic bias in density forecasts would directly In the case where there is no serial correlation present
translate to a bias in decisions to be made from suchthe sequence of forecast-verification pairs, the corre-
probabilistic forecasts. If being strict about forecast vesponding Bernoulli trials are i.i.d. By definition, the sum
ification, density forecasts which cannot be deemed &s of N i.i.d. Bernoulli trials with chance of success
reliable should not be considered further for decisiofellows a binomial distributionX; ~ B(N, ;). The first
making. Fortunately, one can easily correct for a lack tfo moments of the distribution of the proportidfy /N
unconditional calibration, with e.g. conditional parameare then given by
ric models Nielsenet al, 200§ or smoothed bootstrap

Sbendix A. A mathematical proof of the effect of
ial correlation on the size of consistency bars

(Hall and Rieck 2001). For the case of the application E[Xi/N] = o (16)
considered, the use of consistency bars has permitted us to var[X,/N] = a;i(1 — ai) (17)
carry out a reliability assessment of nonparametric dgnsit ’ N

forecasts of wind power generation, with results stronger |y contrast when serial correlation is present in the
than those obtained before, i.e. solely based on subjeciéguence of forecast-verification pairs, the correspandin
evaluation of the deviation between observed proportioggroulli trials cannot be independent. In such a case,
and the ideal diagonal case of reliability diagrams. Weis known that the sunx; of N dependent Bernouilli
intend to promote the use of consistency bars as a gengfifls can be modelled with a Beta-Binomial distribution,
feature of reliability diagrams for the evaluation of deysisee e.gAhn and Chen(1995 or Tsaiet al. (2003. This

forecasts of wind power generation. distribution is defined as
X; ~ B(N,0) (18)
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Since necessariliy > 1 andoy > 0, one has Hall P, Rieck A. 2001. Improving coverage accuracy of noapar
metric prediction intervalsl. Roy. Stat. Soc. 83: 717-725.
> . Hamill T. 2001. Interpretation of rank histograms for veiriig
var [Xl/ N} > var[X;/N] (22) ensemble forecastslon. Wea. Revi29: 550-560.

. o ) Jolliffe IT. 2007. Uncertainty and inference for verificati
meaning that, whatever;, the distribution of proportions measuresWeather Forecasg2: 137—150.

in the case of serial correlation will have a higher seconbiliffe IT, Stephenson DB. 200Borecast Verification: A Prac-
order moment that if there is no correlation. Such distri- titioner’s Guide in Atmospheric Sciendd/iley: New York.
butions will in any case be centred af and symmetric Lan%e |\|/| 200§-h0r]1 the uncertainty of V\(/jind p.ovyerl %{ed_rz;t]ioﬂs

round it. Therefore. for an nfidence level— - Analysis of the forecast accuracy and statistical dist
around it. Therefore, for any confidence level—3), Lol e e o rans. ASMET: 177184,
consistency bars will be wider if serial correlation IS,

tin th £f t ificati . hiri SN. 2003.Resampling Methods for Dependent Data
present in tne sequence ol foreécast-vermcation pairs. Springer Series in Statistics, Springer: Berlin.

Leutbecher M, Palmer TN. 2008. Ensemble forecastihg.
Comput. Phys227: 3515-3539.
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