
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
Q. J. R. Meteorol. Soc.00: 1–16 (2009)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/qj.000

Reliability diagrams for nonparametric density forecasts of
continuous variables: accounting for serial correlation

Pierre Pinson1∗, Patrick McSharry2,3,4, Henrik Madsen1
1 DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark

2 Saı̈d Business School, Oxford, UK
3 Mathematical Institute, University of Oxford, Oxford, UK

4 Smith School of Enterprise and the Environment, Oxford, UK

Abstract: Reliability is seen as a primary requirement when verifyingprobabilistic forecasts since a lack of reliability would
introduce systematic bias in subsequent decision-making.Reliability diagrams comprise popular and practical diagnostic tools for
the reliability evaluation of density forecasts of continuous variables. Such diagrams relate to the assessment of theunconditional
calibration of probabilistic forecasts. A reason for theirappeal is that deviations from perfect reliability can be visually assessed
based on deviations from the diagonal. Deviations from the diagonal may however be caused by both sampling effects and serial
correlation in the forecast-verification pairs. We build ona recent proposal consisting of associating reliability diagrams with
consistency bars that would reflect the deviations from the diagonal potentially observable even if density forecasts were perfectly
reliable. Our consistency bars however reflect potential deviations originating from the combined effects of limited counting
statistics and of serial correlation in the forecast-verification pairs. They are generated based on an original surrogate consistency
resampling method. Its ability to provide consistency barswith a significantly better coverage against the i.i.d. resampling alternative
is shown from simulations. A practical example of the reliability assessment of nonparametric density forecasts of short-term wind
power generation is finally given. Copyrightc© 2009 Royal Meteorological Society
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1 Introduction

Over the past few decades, one of the major breakthroughs
in forecasting meteorological variables for applications
such as weather derivatives and renewable energy gener-
ation, comes from the transition from point to probabilis-
tic forecasting (Gneiting, 2008a). One has to acknowl-
edge the significant contribution of some of the lead-
ing meteorological centres e.g. NCEP (National Cen-
tres for Environmental Prediction) and ECMWF (Euro-
pean Centre for Medium-Range Weather Forecasts) in
developing ensemble forecasting systems, as well as a
probabilistic view of meteorological forecasting. For a
detailed overview of ensemble forecasting and the under-
lying probabilistic forecasting philosophy developed in
the meteorological community, the reader is referred to
Leutbecher and Palmer(2008) and references therein.
From a decision-making perspective, it has been shown
that pricing weather derivatives based on density fore-
casts would bring significant benefits (Taylor and Buizza,
2006). In parallel for the example case of renewable
energy, the production of which is a direct function of
meteorological conditions, it is argued that optimal man-
agement and trading of generated energy should be based
on probabilistic forecasts, see e.g.Pinsonet al. (2007a).
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mark, Kgs. Lyngby, Denmark. Tel: +45 4525 3428, fax: +45 45882673,
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The transition from point to probabilistic forecasts is not
only observed in the meteorological literature, as proba-
bilistic forecasts are also becoming customary products
in economics and finance (Abramson and Clemen, 1995;
Tay and Wallis, 2000; Timmermann, 2000) or more gen-
erally in management sciences. When considering con-
tinuous variables such as wind speed, the most complete
information about expected realization for a given lead
time takes the form of a density forecast (equivalently
referred to as predictive distribution), giving the probabil-
ity density function of the corresponding random variable.
Having a broader view of decision-making for real-world
problems,Gneiting (2008b) argues that for a large class of
cost functions of forecast users, optimal decisions directly
relate to given quantiles of predictive densities of the vari-
able of interest.

In parallel to these developments towards probabilis-
tic forecasting and subsequent optimal decision-making,
the issue of probabilistic forecast verification has attracted
significant attention. For a recent overview of verifica-
tion methods for probabilistic forecasts of categorical
and continuous variables in atmospheric sciences, see
e.g. Jolliffe and Stephenson(2003). A primary require-
ment for probabilistic forecasts relates to their calibration
(equivalently referred to as their reliability) which corre-
sponds to their probabilistic correctness. We hereby fol-
low the paradigm introduced byGneitinget al.(2007), i.e.
based on maximizing the sharpness of predictive distri-
butions subject to calibration. Note that this framework
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for probabilistic forecast evaluation is different from that
based on testing for correct conditional coverage of den-
sity forecasts, as described in e.g. (Christoffersen, 1998;
Dieboldet al., 1998), where focus is given to one-step
ahead forecast only, in a time-series framework. The cali-
bration requirement mentioned above calls for a thorough
reliability assessment prior to proceeding with sharp-
ness. Even if considering the use of proper scoring rules,
seeBröcker and Smith(2007b) among others, calculating
scores alone does not permit to see whether better score
values come from higher reliability or increased sharp-
ness. A decomposition of these proper scores into their
reliability and sharpness components should then be per-
formed. This is since a reliability assessment is necessary
in order to make sure that systematic bias would not be
introduced in further decision-making.

A popular and straightforward way of assessing cal-
ibration of probabilistic forecasts is via the use of relia-
bility diagrams (Atger , 1998, 2004). The reliability dia-
grams we consider here for the reliability assessment of
nonparametric density forecasts of continuous variables
consist of an equivalent cumulative version of the pop-
ular probability integral transform (abbreviated PIT) his-
tograms – otherwise called Talagrand diagrams, used for
the verification of ensemble forecasts, see e.g.Hamill
(2001). An extensive presentation of reliability diagrams
for density forecasts of continuous variables (and equiva-
lently for ensembles) is given in Section2.

Recently for the case of probability forecasts of
binary events,Bröcker and Smith(2007a) have explained
how reliability diagrams may be misinterpreted, since
even for perfectly reliable probabilistic forecasts there
will always be deviations from the diagonal originating
from sampling effects. They have proposed an elegant
framework permitting one to easily integrate information
about the impact of sampling effects directly in reliabil-
ity diagrams. While their point is highly relevant, it is
argued here that it is not only counting statistics but also
serial correlation in forecast-verification pairs that affect
interpretation of reliability diagrams produced from finite-
size datasets. Somehow, the methodology proposed by
Bröcker and Smith(2007a) is based on the fallacy that for
reliable forecasts the random variables whose realizations
are given by the probability integral transforms should be
independent and identically distributed (i.i.d.) U[0, 1]. It is
true that by definition, a necessary condition for density
forecasts to be reliable is that such random variables are
distributed U[0, 1]. It is not a necessary condition however
for successive realizations to be independent. In the case
of reliability diagrams for probabilistic forecasts of binary
events, it might be acceptable to assume independence as
forecast-verification pairs corresponding to a given prob-
ability class may be sparsely and randomly distributed
over the verification period. It cannot be the case when
assessing reliability of probabilistic forecasts of multi-
categorical variables or of density forecasts of continuous
variables. This will be illustrated by a simple practical
example based on climatology density forecasts in Sec-
tion 3. The role of serial correlation and sampling effects

has already been hinted by e.g.Pinsonet al. (2007b) for
the case of the verification of wind power density fore-
casts, or byHamill (2001) when considering verifica-
tion of ensemble forecasts of meteorological variables.
Section4 introduces a methodology to provide consis-
tency bars in the spirit ofBröcker and Smith(2007a), but
accounting for serial correlation effects, using an original
surrogate consistency resampling method. Simulations in
Section5show how serial correlation adds to the sampling
effect, and demonstrates the pitfall stemming from infer-
ence on the confidence one may have in reliability dia-
grams based on an i.i.d. assumption for probability inte-
gral transforms of reliable density forecasts. It also eval-
uates the validity and accuracy of the methodology intro-
duced. The calibration assessment of short-term forecasts
of wind power generation serves as an illustrative appli-
cation in Section6. Concluding remarks end the paper in
Section7.

2 Reliability diagrams for nonparametric density
forecasts of continuous variables

Usingt as the time index, we denote by{Yt} the stochas-
tic process of interest and by{yt} the time-series of
observed realizations. Each random variableYt can take
values inC ⊂ R, with for instanceC = R

+ for the case
of wind speed. For simplicity, it is assumed that ran-
dom variables and corresponding realizations are equally
spaced in time. Also, it is considered that focus is on this
stochastic process at a single location only, as reliabil-
ity assessment of probabilistic forecasts for spatial fields
would also be impacted by spatial sampling and corre-
lation effects which are not treated here. Discussions on
these spatial effects can be found inWilks (1995) and in
Jolliffe and Stephenson(2003).

Write f̂t+k|t(y) a density forecast for the stochastic
process of interest issued at timet for lead timet + k,
andF̂t+k|t(y) the related cumulative distribution function.
f̂t+k|t(y) is a forecast of the probability distribution func-
tion of Yt+k given the information set available at timet,
which may be derived from ensemble forecasts or from
some nonparametric statistical forecasting techniques e.g.
quantile regression. In a general manner, if no assumption
is made about the shape of predictive distributions, a non-
parametric density forecast̂ft+k|t(y) can be summarized
by a set ofm quantile forecasts

f̂t+k|t(y) = {q̂(αi)
t+k|t | 0 ≤ α1 < . . . < αi < . . . < αm ≤ 1}

(1)
that is, with chosen nominal proportionsαi spread on
the unit interval. In turn, a quantile forecastq̂

(αi)
t+k|t with

nominal proportionαi is defined by

P
F̂t+k|t

[

yt+k < q̂
(αi)
t+k|t

]

= αi, αi ∈ [0, 1] (2)

Both forecasts and observations are available for a
limited time periodT ⊂ N

+ used for forecast verification.
Note that for ensemble forecasts with exchangeable mem-
bers, nonparametric density forecasts can also be defined
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RELIABILITY DIAGRAMS FOR DENSITY FORECASTS OF CONTINUOUS VARIABLES 3

as in (1). In such case, by ordering theJ ensemble mem-
bers in ascending order, thejth member gives the quantile
with nominal proportionαj = j/(J + 1). The (continu-
ous) density forecast̂ft+k|t(y) can then be built by inter-
polation through the set of quantiles.

For a given forecast horizonk, the core concept
behind the use of reliability diagrams for evaluating den-
sity forecasts of continuous variables is that the series of
predictive densities{f̂t+k|t(y)} are reliable if and only
if the random variableZt,k = F̂t+k|t(Yt+k) is distributed
U[0, 1]. In practice this is performed by studying the real-
izations ofZt,k which are given by the sequence{zt,k} of
probability integral transforms, withzt,k = F̂t+k|t(yt+k).

Such a definition of reliability actually corresponds
to an unconditional calibration of the density forecasts,
since no distinction is made between different time points
in the data set, or other conditions that may affect density
forecast reliability. This contrasts with the idea of condi-
tional calibration introduced byChristoffersen(1998) and
Dieboldet al. (1998) for the case of density forecasts in a
time-series context. It also contrasts with the idea of con-
ditional reliability assessment presented byPinsonet al.
(2007b) and with that of forecast stratum introduced by
Bröcker (2009). BothPinsonet al. (2007b) andBröcker
(2009) base their argument on the fact that for the case
of nonlinear processes, the reliability of probabilistic fore-
casts may be influenced by a set of external factors, or may
even simply vary as a function of the forecasts themselves.
What we refer to as unconditional calibration thus corre-
sponds to the overall probabilistic bias of the density fore-
casts as discussed byMurphy (1993) andTaylor (1999)
for instance, or to whatGneitinget al. (2007) refers to as
probabilistic calibration.

A consequence of the fact that reliability diagrams
relate to an unconditional calibration assessment is that
one cannot assume that the sequence of probability inte-
gral transforms{zt,k} for a sequence of reliable forecast
densities and corresponding verifications is to be i.i.d.
This would be the case only if for each given time of the
evaluation set density forecasts were equal to the true con-
ditional densities of the stochastic data generating process
(Dieboldet al., 1998; Gneitinget al., 2007).

In practice, since nonparametric density forecasts as
defined by (1) consist of a collection of quantile forecasts
for which the nominal proportions are known, evaluating
the reliability of density forecasts is achieved by verifying
the reliability of each individual quantile forecast. Let us
introduce in a first stage the indicator variableξ

(αi)
t,k . Given

a quantile forecast̂q(αi)
t+k|t issued at timet for lead time

t + k, and the verificationyt+k, ξ
(αi)
t,k is given by

ξ
(αi)
t,k = 1{yt+k < q̂

(αi)
t+k|t} = 1{zt,k < αi}

=

{

1, if yt+k < q̂
(αi)
t+k|t

0, otherwise
(3)

It can be appealing to project into the standard Gaus-
sian domain by using an inverse Normal transformation,

i.e. based on the inverse probit functionΦ−1,

Φ−1 : p →
√

2erf−1(2p − 1) (4)

with ‘erf−1’ the inverse error function. The resulting ran-
dom variables and corresponding realizations are denoted
Z̃t,k andz̃t,k, respectively, with simplỹZt,k = Φ−1(Zt,k)
andz̃t,k = Φ−1(zt,k). Considering{z̃t,k} instead of{zt,k}
for assessing calibration of density forecasts has some
advantages discussed in the literature, see e.g.Berkowitz
(2001), for hypothesis testing or for studying potential
serial correlation. In the present case, it will permit us to
apply classical tools from linear time-series analysis. Con-
sequently, the indicator variable introduced in (3) can be
equivalently defined as

ξ
(αi)
t,k = 1{z̃t,k < q

(αi)
G } (5)

with q
(αi)
G the quantile with proportionαi of a standard

Gaussian distribution. In the following, we will equiva-
lently consider the possibility of working with the indica-
tor variable definitions of (3) and (5) in order to assess the
reliability of density forecasts.

The time-series{ξ(αi)
t,k } is a binary sequence that

corresponds to the series of hits (if the verificationyt+k

lies below the quantile forecast) and misses (if otherwise)
over the evaluation set. It is by studying{ξ(αi)

t,k } that
one can assess the reliability of a time series of quantile
forecasts. Indeed, an estimateâk,i of the actual proportion
ak,i = E[ξ

(αi)
t,k ], for a given horizonk, is obtained by

calculating the mean of the{ξ(αi)
t,k } time-series over the

test set

âk,i =
1

N

N
∑

t=1

ξ
(αi)
t,k =

n
(αi)
k,1

n
(αi)
k,0 + n

(αi)
k,1

(6)

whereN is the number of time indices inT , and where
n

(αi)
k,1 andn

(αi)
k,0 correspond to the sum of hits and misses,

respectively. They are calculated with:

n
(αi)
k,1 = #{ξ(αi)

t,k = 1} =

N
∑

t=1

ξ
(α)
t,k (7)

n
(αi)
k,0 = #{ξ(αi)

t,k = 0} = N − n
(α)
k,1 (8)

This measure of observed proportion serves as a basis
for drawing reliability diagrams for density forecasts of
continuous variables, which give the observed propor-
tions âk,i of the quantile forecasts against the nominal
ones. They therefore consist of Q-Q plots (Q-Q stand-
ing for Quantile-Quantile), which are a classical diagnos-
tic tool in the statistical literature. A particular feature of
this definition of reliability diagrams is that each quan-
tile is evaluated individually, which will allow us defining
a consistency bar for each nominal proportion indepen-
dently of the other quantiles. Our consistency bars then
are pointwise consistency bars. Also, note that the reli-
ability diagrams we consider here are for density fore-
casts of continuous variables and thus somewhat differ-
ent from those considered for probabilistic forecasting
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of binary/categorical variables e.g. (Bröcker and Smith,
2007a). The argument developed in the present paper
regarding the fact that serial correlation effects should be
accounted for is still valid though. In parallel, the method-
ology described in the following can be straightforwardly
applied for the case of the verification of ensemble fore-
casts, owing to the definition employed for nonparametric
density forecasts.

When visually inspecting calibration from reliability
diagrams, a common intuitive thought is that the closer
the observed proportions to the diagonal the better. This
is because asymptotically as the number of forecast-
verification pairs tends towards infinity, one wishes that

lim
N→∞

âk,i = αi, ∀i (9)

implying that observed proportions asymptotically equal
nominal ones. In practice however, evaluation sets con-
sisting of forecast-verification pairs are of finite (and often
quite limited) size, and it is not expected that observed
proportions exactly lie along the diagonal, even if the
density forecasts are perfectly reliable. This issue is dis-
cussed in detail inJolliffe and Stephenson(2003) and in
Bröcker and Smith(2007a), while a more general dis-
cussion on uncertainty of verification measures can be
found in Jolliffe (2007). Our contribution concerns the
fact that not only sampling effects but also serial correla-
tion in sequences of forecast-verification pairs may affect
the observed reliability of even perfectly reliable density
forecasts of continuous variables. A simple mathematical
proof of that effect is given in Appendix A.

3 Example of serial correlation in probability inte-
gral transforms for reliable probabilistic forecasts

Consider here the issue of density forecasting of some
continuous meteorological variable, say wind speed, at a
forecast horizonk. It is of common knowledge that cli-
matology comprises a benchmark density forecast, which
has the nice property of being well calibrated, and the
characteristic of having no resolution since consisting of
unconditional density forecasts, see for instance the dis-
cussion inPinson and Madsen(2009). Figure1(a)depicts
a time-series of mean hourly wind speed at the Horns
Rev wind farm in Denmark over a period of almost
1,000 hours†. This offshore wind farm has been the first
large-scale offshore wind farm worldwide, and has hence
motivated a number of studies for e.g. the character-
ization of local wind characteristics e.g.Vincentet al.
(2009), or the (probabilistic) forecasting of its power
output (Pinson and Madsen, 2009). The time-series of
wind speed is normalized by the maximum wind speed
observed over the period, consequently taking values in
[0, 1].

†Wind speed measurements with a 10-minute resolution for the
Horns Rev wind farm may be freely obtained at the website
www.winddata.com

For any timet in this dataset, a perfectly reliable
climatology density forecast̂ft+k|t(y) for a given look-
ahead timek can be obtained by defining it from the dis-
tribution of wind speed hourly averages over this period
of 1,000 hours. The corresponding cumulative distribu-
tion functionF̂t+k|t is represented in Figure1(b). This is
obviously not the way an actual climatology density fore-
cast would be built, since it would be based on a long
record times-series of past measurements. For the purpose
of our example however, the climatology density forecast
we build is similar in essence to actual climatology fore-
casts based on long records of data since being a unique
unconditional density based on recorded data, while we
insure it is perfectly calibrated by relying on the mea-
surements themselves. As a consequence, if producing a
reliability diagram for evaluating the calibration of such
density forecasts, the observed proportions would exactly
lie on the diagonal.

Following the discussion of Section2, the calibration
assessment of density forecasts with reliability diagrams
is based on studying the distribution of the random vari-
ablesZt,k = F̂t+k|t(Yt+k) whose realizations are given
by the probability integral transformszt,k = F̂t+k|t(yt+k).
Intuitively, since it is expected that time-series of hourly
wind speed averages will exhibit a significant autocorrela-
tion pattern (see discussion inVincentet al. (2009)), and
since such time-series is transformed through a monotonic
(strictly) increasing function, an autocorrelation pattern
is also expected to be present in the time-series{zt,k}
of probability integral transforms. This argument also
applies to the corresponding time-series{z̃t,k}.

The density forecasts defined bŷFt+k|t(y) are by
construction perfectly reliable: we thus haveZt,k ∼
U[0, 1]. For random variables distributed U[0, 1], it appears
more relevant to define autocorrelation in terms of rank
correlation for various lags. It is depicted here in Fig-
ure 2(a). In parallel, Figure2(b) shows the linear correl-
ogram for the time-series{z̃t,k}. One sees from Figure2
that the rank and linear correlograms, in the Uniform and
Gaussian domains, respectively, look very similar. This
remark goes along a comment of e.g.De Oliveira (2003)
such that, surprisingly, transformations may not signif-
icantly affect an observed (serial or spatial) correlation
structure. Most important, one notices that autocorrelation
values appear to be significantly positive (at a 5% sig-
nificance level) for lags up to 24 hours, and significantly
different from 0 for other lags. This confirms the statement
made in Section1 such that, even if a necessary condition
for density forecasts to be reliable is thatZt,k ∼ U[0, 1],
successive random variables (and corresponding probabil-
ity integral transforms) do not have to be independent. A
consequence of this result is that such correlations should
be taken into account when performing hypothesis test-
ing about reliability of density forecasts, or alternatively
if issuing consistency or confidence bars when inferring
on observed reliability. Note also that as mentioned by
Dieboldet al. (1998), one could look at the correlograms
of centred probability integral transforms at the power
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(a) Time-series with wind speed hourly averages
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Figure 1. Episode with wind speed measurements at Horns Rev,and the corresponding cumulative distribution function corresponding to
what would be an ideal climatology density forecast.
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Figure 2. Rank correlogram for the sequence of probability integral transforms, and linear correlogram of their inverse Normal
transformations. The dashed lines give the critical valuesat a 5% level of significance.

j, j ≥ 2 in order to observe dependencies in higher order
moments, i.e. mainly for variance, skewness and kurtosis.

4 Consistency bars using surrogate consistency
resampling

Let us recall Bröcker and Smith (2007a), following
Smith (1997), who introduced the proposal of generat-
ing consistency bars for reliability diagrams. The idea of
consistency resampling is extended here to also account
for a correlation pattern in the{zt,k} time-series. The aim
of our consistency bars is then, for each of the quantile
forecasts composing density forecasts, to reflect what can

be a possible range (for a given confidence level(1 − β))
of observed proportions for this quantile if it were indeed
reliable, given the temporal dependencies observed in
the forecast-verification pairs induced by the process and
forecasting system of interest. From an hypothesis test-
ing point of view, one could say that having the observed
proportion of quantile forecasts (for a given nominal pro-
portion) within the range of consistency bars implies that
one cannot reject the hypothesis of these quantile forecasts
being reliable. This paradigm translates to accepting that
there may be a number of perfectly reliable forecast sys-
tems for the time-series of measurements of interest, and
that the combination of forecasts and verifications may
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induce different types of dependence structure in the time-
series{zt,k} of probability integral transforms.

The surrogate consistency resampling method
belongs to the more general class of resampling methods
for dependent data. For an overview of those methods,
see e.g.Lahiri (2003). An important advantage of this
surrogate approach is that complete time-series are
simulated based on their spectrum, instead of consider-
ing subsamples or blocks. An alternative to the use of
surrogate consistency resampling would be to employ a
model-based consistency resampling approach, where the
general class of ARMA(p, q) (Auto-Regressive Moving
Average) models could be envisaged for modelling the
underlying process in the{z̃t,k} time-series. A subtle
issue in this case would relate to the optimal selection of
the autoregressive and moving average ordersp and q.
Model misspecification could have a dramatic impact on
the quality of generated consistency bars. An additional
advantage of the surrogate approach is that by construc-
tion it can be insured that surrogate time-series{z̃(.)

t,k}
will be distributedN (0, 1); this would not be the case if
employing a model-based approach.

4.1 Basics of the surrogate method

The basis of our surrogate consistency resampling method
is related to the Amplitude Adjusted Fourier Transform
(AAFT) algorithm described byTheileret al.(1992). This
algorithm is based on the assumption that observed time-
series are a monotonic transformation of realizations from
a linear Gaussian process. It is indeed the case that
for reliable density forecasts the time-series{zt,k} are a
monotonic transformation of{z̃t,k}, for which each of the
realizations are generated from aN (0, 1). The consecutive
steps of the AAFT algorithm can be described as:

(i) the time-series{zt,k} is rescaled and transformed
(while insuring that ranks in the data are conserved)
to obtain a linear Gaussian process with time-series
of realizations{z̃t,k}

(ii) a Fourier-Transform based algorithm is employed to
obtain a Gaussian surrogate time-series{z̃(.)

t,k}, by
randomizing the phases. The Gaussian surrogate
time-series{z̃(.)

t,k} has the same marginal distribu-
tion and correlogram as the time-series{z̃t,k}

(iii) {z̃(.)
t,k} is transformed back to the domain of the orig-

inal time-series, leading to the surrogate time-series
{z(.)

t,k}, but with a slightly different autocorrelation
function and power spectrum

A sound property of the AAFT algorithm is that the surro-
gate time-series have the same periodogram and marginal
distribution as the original time-series{zt,k} of proba-
bility integral transforms, hence also insuring to have a
similar correlogram. For a more detailed description of
the surrogate data method and of the AAFT algorithm, the
reader is referred toTheileret al. (1992). Potential devi-
ations in the marginal distribution or in the spectrum can

be corrected by employing the iteratively refined surrogate
method ofSchreiber and Schmitz(2000). The core of the
method i.e. the phase scrambling, is further discussed in
Davison and Hinkley(1997).

One could think of directly employing this surro-
gate method for generating a set of surrogates being dis-
tributed U[0, 1] and having the same correlogram than the
sequence of observed probability integral transform. This
would be performed by first transforming the sequence
{zt,k} to U[0, 1] (while preserving the ranks), and by then
employing the AAFT algorithm for generating a set of
surrogate Gaussian time-series. The last step, consisting
of transforming back the Gaussian surrogates to U[0, 1]
can actually be avoided, due to the equivalence in the
definition of the indicator variable from (3) and (5). The
counting necessary for building consistency bars can then
be equivalently performed using the surrogate time-series
{z(.)

t,k} or {z̃(.)
t,k}.

If directly employing the above method for generat-
ing surrogate time-series however, the resulting surrogates
will not be sampled from the true process behind{z̃t,k},
but merely from the periodogram obtained from a lim-
ited sample. Consistency bars generated from this method
would thus not be valid. Consequently, a proposal method
for surrogate consistency resampling from the true process
behind{z̃t,k} is described below. It consists of first identi-
fying the true process behind{z̃t,k} with spectral analysis,
and then of generating surrogates having periodograms
sampled from the smooth spectrum of the process.

4.2 Smooth spectrum and periodogram sampling

Since the core of the surrogate data method relates to the
phase scrambling of a linear Gaussian process, a spectral
analysis framework appears relevant for characterizing the
process{Z̃t,k}. Write g(ω) the spectrum of the linear
Gaussian process{Z̃t,k}, with ω the angular frequency,
andIN (ω) the periodogram of the time-series{z̃t,k}. The
periodogramIN (ω) corresponds to the sample spectrum
observed from{z̃t,k} and is not a consistent (though
unbiased) estimate ofg(ω). A consistent estimate can be
obtained instead as a smooth spectrum based on truncated
periodograms and lag windows. While only the main
equations and results are given here, the reader is referred
to Madsen(2007) for more extended developments.

The smooth spectrum estimateĝ(ω) of g(ω) based on
the time-series{z̃t,k} is given as

ĝ(ω) =
1

2π

k=N−1
∑

k=−(N−1)

λkCk exp(−iωk) (10)

where Ck is the sample autocorrelation for lagk, and
λk is a lag window, allowing to reduce the influence of
further lags on the estimate of the spectrum. While there
exists a large number of potential lag windows, the class
of general Tuckey windows is considered here, defined by

λk =

{

1 − 2a + 2a cos
(

πk
M

)

, |k| ≤ M
0, |k| > M

(11)
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RELIABILITY DIAGRAMS FOR DENSITY FORECASTS OF CONTINUOUS VARIABLES 7

whereM is the truncation point, anda is the parameter
controlling the shape of the lag window. In particular
here, we employ the Tukey-Hanning window, defined by
a = 1/4. Deciding on an appropriate truncation pointM
may be quite difficult as this relies on the expertise of
the practitioner. It will be shown from the simulations
below that the surrogate consistency resampling method
proposed is not that sensitive to the choice ofM . A limited
expertise on expected serial correlation structure present
in the{z̃t,k} time-series can provide a relevant guess.

When the smooth spectrum estimatêg(ω) is
obtained, it can be used for generating a number of realis-
tic periodograms for the surrogate time-series{z(.)

t,k}. For
that, let us recall here some properties of the periodogram
for linear Gaussian processes:

(i) the periodogram valuesIN (ωp), with ωp = 2π
N

p, p =
1, . . . , N/2, the so-called fundamental frequencies,
are independent

(ii) 2
IN (ωp)
g(ωp) ∼ χ2(2), p 6= 1, N/2

(iii) IN (ωp)
g(ωp) ∼ χ2(1), p = 1, N/2

Property(i) relating to the independence of periodogram
values for the fundamental frequenciesωp (i.e. those
defining the orthogonal basis of the Fourier series) is
actually a crucial property behind the phase scram-
bling in the surrogate data method introduced above
(Davison and Hinkley, 1997; Theileret al., 1992). In par-
allel, the smooth spectrum estimateĝ(ω) can be plugged
into properties(ii) and (iii) in order to simulate peri-
odogramsI(.)

N (ωp) for the surrogate time-series{z(.)
t,k},

from independent random draws ofχ2(1) andχ2(2) ran-
dom variables.

4.3 Surrogate consistency resampling

A full description of the surrogate consistency resampling
method is given here based on the elements introduced
in the above Paragraphs. Again, consider the question of
reliability assessment of a sequence{f̂t+k|t(y)} of den-
sity forecasts (thus for a given forecast horizonk), for
a corresponding time-series{yt+k} of observations. Fol-
lowing the paradigm introduced above, one accepts that
even if this set of density forecasts were reliable, the
forecast-verification pairs would induce a temporal cor-
relation structure in the time-series{zt,k} of probability
integral transforms.

The first step of the surrogate consistency resampling
approach is to rescale the time-series{zt,k} so that they
have a marginal distribution U[0, 1] with a rank-preserving
transformation, thus not altering its rank correlogram. The
rescaled time-series are then projected into the standard
Gaussian domain by using the inverse probit function. It is
assumed that the obtained time-series{z̃t,k} is a sample of
what would be the sequence of realizations coming from
the forecast-verifications pairs if the forecasting system
were indeed reliable. The smooth spectrumĝ(ω) of the
related linear Gaussian process{Z̃t,k} is estimated given

the choice of a truncation pointM . The jth resampling
cycle then consists of the following steps:

(i) generate a surrogate periodogramI(j)
N (ωp) from the

smooth spectrum̂g(ω)

(ii) employ a Fourier-Transform based algorithm to gen-
erate a surrogate time-series{z̃(j)

t,k} by randomizing

the phases of the surrogate periodogramI
(j)
N (ωp).

(iii) calculate the observed proportions for each of the
quantiles with nominal proportionsαi, i = 1, . . . , m
of the density forecasts using (6), based on the
surrogate time-series{z̃(j)

t,k}, yielding the surrogate

observed proportionŝa(j)
i,k , i = 1, . . . , m. Note that

one can obtain surrogate time-series of probabil-
ity integral transforms{z(j)

t,k} and of verifications

{y(j)
t+k} by inverse transformation

This resampling cycle is repeated a number of timesB
and yields an empirical distribution of surrogate observed
proportions for each quantile of the density forecasts.
Let us defineĜi,k as the cumulative version of this
empirical distribution.Ĝi,k is a nonparametric estimate of
what would be the distribution of proportions that could
be observed for the dataset considered, for the quantile
with nominal proportionαi, if it were reliable and given
the serial correlation structure induced by the forecast-
verification pairs. Given the chosen confidence level(1 −
β), the lower and upper bounds of the consistency bars are
given by

ai,k = Ĝ−1
i,k (β/2) (12)

āi,k = Ĝ−1
i,k (1 − β/2) (13)

The same argument as that developed by
Bröcker and Smith (2007a) applies here, implying
that, by construction, the surrogate time-series of proba-
bility integral transforms directly relate to a hypothetical
sequence of forecast densities{f̂ (j)

t+k|t(y)} which would
be reliable in view of the corresponding time-series
{y(j)

t+k} of verifications. This is since it is imposed that

surrogate time-series{z̃(j)
t,k} are drawn from aN (0, 1) dis-

tribution. In addition, consistency bars can be generated
for all quantile forecasts in parallel — they are pointwise
consistency bars, since as explained in Section2 the
calibration assessment is individually performed for
each each quantile with a given nominal proportion.
There is finally no binning effect to be considered, as the
calibration of all quantiles is verified against the same
number of observations, corresponding to the number of
time indices inT .

5 Simulations

In this Section are performed simulations allowing us to
demonstrate the pitfall stemming from inference on the
confidence one may have in reliability diagrams based
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on an i.i.d. assumption when issuing consistency bars.
Simulations are also employed for demonstrating the
validity of our approach before applying it to real-world
test cases and data. The simulation set-up is described in
a first stage, followed by simulations results and related
comments.

5.1 Simulation set-up

The simulations are performed based on{z̃t,k} time-
series only (i.e. based on linear Gaussian processes), since
the conversions fromN (0, 1) to U[0, 1] (using the probit
function Φ) and from U[0, 1] to the original domain of
the observations are strictly monotonic, thus preserving
ranks and counts. As a consequence, observed proportions
of quantile forecasts are equivalent if calculated in the
original, Uniform, or Gaussian domains.

Imagine generating a time-series of{z̃t,k} of length
N for which each realization is drawn from a standard
Gaussian distributionN (0, 1) and with a linear correlo-
gramρ(h), h being the difference between time indices.
By definition, such time-series of probability integral
transforms projected into a standard Gaussian domain cor-
responds to that for a reliable density forecasting system.
Two types of correlograms are considered: on the one
hand a dampened exponential correlogramρd(h), corre-
sponding to a stationary first-order Markovian process,
and on the other hand a correlogramρs(h) taking the
form of a dampened exponential with oscillations, reflect-
ing a seasonality in the sequence of probability integral
transforms in the standard Gaussian domain. The damped
exponential is simply given by

ρd : h → exp(−τh), τ > 0 (14)

with τ the parameter controling the steepness of the
exponential decay. In parallel, the dampened exponential
with oscillations is defined by

ρs : h → 1

2

{

cos

(

2πh

p

)

+ 1

}

exp

(

−2τh

p

)

, τ, p > 0

(15)
with τ being the same type of parameter, whilep controls
the period of oscillations. For the case ofρd(h), τ is set
to τ = 0.3, whileρs(h) is parameterized withτ = 0.6 and
p = 12. The corresponding correlograms are depicted in
Figure3.

As explained in the above Section, if calculating
observed proportions of quantiles composing density fore-
casts from a time-series{z̃t,k} of limited size, with correl-
ogramsρd or ρs, there will clearly be deviations from the
diagonal, even though{z̃t,k} relates to a reliable forecast
system. This is illustrated in Figure4 for time-series{z̃t,k}
of 400 realizations having correlogramsρd or ρs (in Fig-
ures4(a)and4(b), respectively). The nominal proportions
for the quantiles composing density forecasts are chosen
as ranging from 0.05 to 0.95 with a 0.05 increment. The
three different curves in Figures4(a)and4(b) correspond
to the observed proportions for 3 different draws of{z̃t,k}
for each of the two correlograms.

Note that we have chosen in the present paper to
present reliability diagrams in the most classical manner,
that is, by depicting observed against nominal probabil-
ities. As argued byBröcker and Smith(2007a), Bröcker
(2009) or Pinsonet al.(2007b), however, one may present
such diagrams in a different manner in order to focus on
the area around the ideal diagonal case. Especially, the
proposal byBröcker and Smith(2007a) and byBröcker
(2009) of plotting reliability diagrams on the probabil-
ity paper may be seen as attractive, owing to simplicity
of presentation and of interpretation of consistency bars.
Considering some other presentation of reliability dia-
grams would not call for any change in the methodology
described for the derivation of consistency bars.

For both correlograms, one notices that for certain
draws the observed proportions may lie fairly close to the
diagonal, while for some other draws they may be quite
far from this same diagonal. This is while they all relate in
the same way to reliable forecast systems. It can also be
seen from Figure4 that for a stronger correlation pattern
like ρs, deviations from the diagonal may be larger. This
suggests that serial correlation in forecast-verifications
pair magnifies the sampling effects.

Given a chosen correlogram, a numberm of linear
Gaussian time-series{z̃t,k} (of lengthN ) are generated.
Consistency bars are produced based on i.i.d. consistency
resampling, and based on the surrogate consistency resam-
pling method described above. It is arbitrarily chosen to
focus on 90% consistency bars (that is, for(1 − β) = 0.9),
partly because it is the nominal coverage rate considered
by Bröcker and Smith(2007a) and partly because this is
a quite common choice for a number of real-world appli-
cations. Note that similar simulations could be performed
for other nominal coverage rates(1 − β) in order to ver-
ify the quality of generated consistency bars. Over them
time-series, one counts the number of times the observed
proportions for each quantile forecasts composing reliable
density forecasts (i.e. the quantile of a standard Gaussian
distribution) lie below and above the consistency bars.
This provides us with an approach to verify their actual
coverage.

5.2 Simulation results

In the following we carry out simulations on time-series
of lengthN = 400 time steps with correlogramsρd or ρs.
Counts performed on such short time-series will clearly
be affected by the correlation patterns, as illustrated in
Figure4. In order to verify the coverage rate of the con-
sistency bars,m = 1000 different time-series are gener-
ated for each type of correlogram. Comparison is made
between consistency bars generated from an i.i.d. consis-
tency resampling method, and from the surrogate consis-
tency resampling method introduced above. For this latter
case, a benchmark consists of consistency bars generated
from the true spectrum of the generated time-series. In
parallel, consistency bars generated from the estimated
smooth spectrum (with various values of the truncation
pointM ) are also evaluated. A number ofB = 1000 surro-
gate time-series are used for deriving consistency bars for
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Figure 3. Dampened exponential (with and without oscillations) correlograms used in the simulations.
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(a) Correlogramρd
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(b) Correlogramρs

Figure 4. Reliability diagrams giving examples of observedproportions of reliable forecasting systems for two different correlation
structures in the time-series{z̃t,k} (consisting of 400 successive realizations).

each of them time-series. As is the case for any computer-
intensive resampling method, the number of replications
B should be chosen sufficiently large in order to obtain
realistic confidence bounds, though not too large in order
to keep computational time reasonable. The values of the
truncation points are chosen from an expert guess based
on the analysis of the periodograms of the time-series
{z̃t,k}, as it would be done for real-world applications. For
the case of the correlogramρd, potential expert guesses
could beM = {12, 24, 36} while for the case of theρs

correlogram, they could consist ofM = {24, 36, 48, 60}.
It is often said that a reasonable choice forM is such that
M = 2

√
N , see e.g. (Upton and Cook, 2002, pp. 324-

325), which would translate toM = 40 here. The corre-
sponding results, consisting of observed coverage of con-
sistency bars, are gathered in TableI for the correlograms
ρd or ρs, respectively.

In both cases, one clearly sees that there is a sig-
nificant difference between i.i.d. and surrogate consis-
tency resampling methods in terms of observed coverage
of the generated consistency bars. As expected, the lack
of coverage is more significant as the correlation pat-
tern is stronger, i.e. for the correlogramρs. This is an
illustration of the pitfall stemming from assuming inde-
pendence when serial correlation is indeed present in the
sequence of forecast-verification pairs. Such lack of cov-
erage could translate to concluding a lack of calibration of
density forecasts over the period considered, while in fact
the observed deviation from perfect reliability cannot be
deemed significant.

When employing the surrogate consistency method
with the true spectrum of the time-series{z̃t,k} in order
to generate surrogate time-series, the observed coverage
of the consistency bars is very close to the target 90%
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10 P. PINSON ET AL.

Table I. Summary of the observed coverage rate of the 90% consistency bars generated with either i.i.d. or surrogate consistency
resampling methods, for time-series with correlogramρd and ρs. Consistency bars are for a set of quantiles defining nonparametric
density forecasts. Surrogate consistency resampling based on the true spectrum of the time-series is used as a benchmark. For the surrogate
consistency resampling method using estimated smooth spectrum, several expert guesses on the truncation pointM are considered. Note
that asymptotically asm andB tend towards infinity, the observed coverage rate for proportionsαi and(1 − αi) should be the same. The

differences here are due to sampling effects.

(a) Correlogramρd

αi i.i.d. surrogate surrogate surrogate surrogate
(M = 12) (M = 24) (M = 36) (true)

0.05 66.7 86.7 90.2 91.1 90.4
0.10 61.4 88.0 88.7 88.9 90.2
0.15 59.0 84.8 87.3 89.0 90.7
0.20 58.4 85.5 87.7 88.6 90.5
0.25 56.4 85.3 88.1 88.7 89.8
0.30 57.6 85.0 86.8 88.9 89.9
0.35 55.2 84.8 87.9 87.9 89.7
0.40 56.0 85.6 88.7 89.1 90.5
0.45 56.7 86.3 89.2 88.6 89.7
0.50 56.3 86.0 88.3 88.7 90.6
0.55 54.6 87.2 88.3 88.7 89.4
0.60 54.0 86.9 88.9 89.4 88.9
0.65 55.8 86.5 89.5 89.8 89.4
0.70 54.4 85.4 88.8 89.8 89.3
0.75 56.5 85.6 88.1 89.6 89.1
0.80 59.7 86.3 88.8 90.9 89.2
0.85 59.3 86.1 89.4 89.2 89.8
0.90 61.2 87.5 90.0 89.2 90.0
0.95 65.1 88.8 91.1 90.4 90.6

(b) Correlogramρs

αi i.i.d. surrogate surrogate surrogate surrogate surrogate
(M = 24) (M = 36) (M = 48) (M = 60) (true)

0.05 57.7 86.8 88.4 88.2 91.1 90.9
0.10 53.7 84.4 86.6 87.9 90.4 90.8
0.15 52.0 83.3 85.9 87.5 90.4 90.0
0.20 50.8 82.6 85.7 87.0 90.2 90.7
0.25 51.1 83.1 86.1 86.7 90.5 90.7
0.30 48.7 83.5 86.9 87.5 90.0 90.5
0.35 46.6 83.2 86.7 87.6 91.0 89.3
0.40 45.8 83.4 86.5 87.3 90.3 90.1
0.45 46.3 83.2 86.7 87.1 90.7 90.6
0.50 45.4 83.3 85.8 87.6 90.1 90.6
0.55 46.4 82.9 86.2 88.4 90.5 89.8
0.60 45.5 83.0 85.9 88.0 89.8 89.4
0.65 47.8 83.2 86.7 88.7 89.7 89.8
0.70 47.7 83.0 87.3 88.9 89.2 90.0
0.75 48.5 83.2 86.2 89.6 88.6 89.8
0.80 51.1 83.9 87.3 90.1 89.1 90.3
0.85 51.8 84.1 87.5 88.8 89.3 90.0
0.90 54.8 85.5 87.2 88.2 88.2 88.9
0.95 59.9 86.4 88.8 89.7 89.8 91.7

nominal coverage. Furthermore when employing the esti-

mated smooth spectrum instead, the coverage of generated

consistency bars is also close to the target 90% nomi-

nal coverage. Choosing a truncation point which is too
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small results in under-representing the correlation struc-
ture present in the sequence of forecast-verification pairs,
leading to generation of consistency bars that are too nar-
row. By making a reasonable guess for the truncation
point, i.e.M = {24, 36} andM = {48, 60} for the case
of the correlogramsρd andρs, respectively, the generated
consistency bars appear to have an acceptable coverage. It
is true that for practical real-world verification studies it
might be difficult to pick an optimal truncation point (as
would be the case for any spectral analysis study in any
case), but a reasonable guess from the practitioner should
provide a sufficiently accurate estimate of the spectrum,
leading to appropriate consistency bars.

6 Application to the reliability assessment of density
forecasts of wind power generation

Wind power is the renewable energy with the fastest
growth over the last few years. It has a significant share
in the electricity generation mix in a number of Euro-
pean countries, most notably in Denmark and Spain.
The optimal integration of this renewable energy in the
existing electricity system requires forecasts for various
ranges of horizons depending on the decisions to be made,
i.e. from a few minutes ahead for the control of wind
farm output, to several days ahead for offshore main-
tenance planning. The forecasts that are used the most
today have an hourly resolution up to 48-72 hours ahead,
are employed for the trading and management of the
wind power generation, and issued based on one or sev-
eral forecasts of relevant meteorological variables for the
site(s) of interest. If considering lead times from few
minutes up to 2 hours ahead, forecasts are then gener-
ated from purely statistical methods relying on local mea-
surements only, as for instance in (Gneitinget al., 2006;
Pinson and Madsen, 2009b). For an overview of moti-
vations, techniques and practical experience with wind
power forecasting, the reader is referred toGiebelet al.
(2003) andCostaet al. (2008). Among the various types
of forecasting products employed for wind energy man-
agement, maintenance planning and trading, nonparamet-
ric density forecasts are becoming more and more popu-
lar, since benefits from their use have been demonstrated,
see e.g. (Matos and Bessa, 2009; Pinsonet al., 2007a).
This is because the loss functions of forecast users com-
monly differ from the classical quadratic loss function for
which point forecasts relating to the conditional expec-
tation are optimal. Such loss functions may also vary in
time due to the changes in the structure and dynamics of
electricity markets. As wind power generation is a non-
linear and bounded process, predictive densities may be
highly skewed and with heavy tails (Lange, 2005), hence
being difficult to accurately model with known parametric
families of density functions, see discussion byPinson
(2006). This has motivated the development of a large
number of nonparametric methods for wind power density
forecasting, based on statistical methods and/or ensem-
ble forecasts, see (Bremnes, 2006; Møller et al., 2008;

Nielsenet al., 2006; Pinson and Madsen, 2009) among
others.

We consider here nonparametric density forecasts
of wind power generation for the whole installed capac-
ity in Western Denmark, which approximately represents
Pn =2.5GW over the period considered. All forecasts and
measurements are normalized by this nominal capacity,
and therefore expressed in percentages of Pn. Forecasts
are issued hourly, and have an hourly temporal resolution
up to a forecast length of 43 hours. The point forecasts of
wind power generation were provided by the Wind Power
Prediction Tool (WPPT) as described in e.g.Nielsenet al.
(2002), while the nonparametric density forecasts were
generated based on the adapted resampling method ini-
tially described inPinson (2006). The period for which
both measurements and forecasts are available goes from
the beginning of January 2006 until mid-November 2007.
Figure5 depicts an example with wind power point fore-
casts issued on the 8th January 2007 at noon, related non-
parametric density forecasts, as well as the corresponding
measurements. Density forecasts take the form of a set
of central prediction intervals (i.e. centered in probability
around the median) with increasing nominal proportions
from 10% to 90%. They thus are defined by 18 quantile
forecasts with nominal proportions from 5% to 95% with
5% increment, except for the median.

Three different sets of forecast series are arbitrarily
selected from the two years which were available. These
three periods are picked over Autumn 2006, Spring and
Summer 2007. The first two sets consists of 600 fore-
cast series, while the latter one consists of 800 forecast
series. The reliability of nonparametric density forecasts
is studied based on reliability diagrams in the form of
those presented in Section2. Each lead time is considered
individually. Inspection of the periodograms and correl-
ograms of the{z̃t,k} time-series suggests that truncation
points between 36 and 60 hours could be relevant for the
first two sets of forecasts series, whileM may take values
between 72 and 96 hours for the case of the last set, for all
forecast horizons. A common value of 48 hours is selected
for the first two sets, while a value of 84 hours is picked
for the third one. As shown and discussed in Section5,
the width of the generated consistency bars is not highly
sensitive to the choice forM . A sufficiently large number
B of surrogate time-series is chosen asB = 1000.

Let us focus for instance on the calibration assess-
ment of 42-hour ahead density forecasts of wind power
generation, which is summarized in Figure6. After the
series of probability integral transforms are converted
to having a Normal distribution, with a rank-preserving
transformation, the smooth spectra of the obtained time-
series related to the three sets of forecast series are esti-
mated with the method described in Section4.2. These
smooth spectrum estimates are gathered in Figure6(a).
Significant differences can be observed among these
smooth spectrum estimates. While the smooth spectrum
estimated for set one could relate to a first-order Marko-
vian process with moving average, that for set two is typ-
ical of a second-order Markovian process. Finally for set
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Figure 5. Example of nonparametric density forecasts of wind power generation for the whole Western Denmark (issued on the 8th January
2007 at noon) in the form of a river of blood fan chart. Densityforecasts are represented as a set of central prediction intervals with
increasing nominal proportions. Power values are normalized by the total wind capacity Pn for the region. Measurements and point forecasts

are also depicted.

three the estimated smooth spectrum can be seen as that
of a first-order Markovian process with seasonalities. This
therefore makes us expect different widths for the consis-
tency bars to be generated. The reliability diagrams for the
three sets of forecats series are depicted in Figures6(b),
6(c)and6(d). Consistency bars, generated using the meth-
ods described in Section4, are depicted as pointwise con-
sistency bars informing, for each nominal proportion of
the quantile forecasts composing nonparametric density
forecasts, about consistent deviations that can be expected
even if such forecasts were perfectly reliable.

The three sets of consistency bars indeed have dif-
ferent widths, thus reflecting the effect of the identified
correlation structures on the potential range of observed
proportions for perfectly reliable density forecasts. They
are generally tighter for set two, i.e. for which the smooth
spectrum takes the form of that for a simple second-order
Markovian process. Notice that the larger consistency bars
are for the set with the most forecast series (set three),
illustrating the fact that it is not because more forecast
series are available that one should expect smaller consis-
tency bars — again due to the stronger correlation pattern
present for that set.

Let us now interpret these reliability diagrams. If
consistency bars were not available, one would subjec-
tively appreciate the observed deviations from the diag-
onal and decide on acceptable reliability (or not) of the
various quantile forecasts composing nonparametric den-
sity forecasts. One would then certainly accept all quantile
forecasts to be reliable over set three. In contrast, quantile
forecasts with nominal proportions between 0.45 and 0.8
for set one and with nominal proportions between 0.1 and
0.65 for set two would be deemed as non-reliable owing
to an increased deviation between the ideal diagonal case

and observed proportions. Now consider the sets of con-
sistency bars. For sets one and three, the observed pro-
portions of all quantiles composing density forecasts lie
within the consistency bars, even though deviations from
the diagonal are of different magnitudes. This does not tell
us that the quantiles forecasts are reliable, but inversely
that it cannot be concluded that they are not reliable (for
a 10% level of significance). This goes against the subjec-
tive evaluation given before. In contrast for set two, the
fact that observed proportions for quantile forecasts with
nominal proportions between 0.1 and 0.55 lie outside of
the consistency bars confirms that quantile forecasts for
such nominal proportions should not be considered as reli-
able.

7 Concluding remarks

Focus has been given to the question of the calibration
assessment of density forecasts of continuous variables,
originating from ensemble forecasts or statistical meth-
ods, with reliability diagrams. It has been explained that
employing such reliability diagrams relates to the evalu-
ation of unconditional calibration. In many applications
one should acknowledge the presence of serial correlation
in the sequence of probability integral transforms even for
reliable density forecasts, in turn induced by the sequence
of forecast-verification pairs.

We have built on an interesting proposal by
Bröcker and Smith(2007a) consisting of associating reli-
ability diagrams with consistency bars. Consistency bars
here reflect the potential impact of both limited count-
ing statistics and serial correlation on what would be the
observed reliability of a perfectly reliable forecast system

Copyright c© 2009 Royal Meteorological Society
Prepared usingqjrms3.cls

Q. J. R. Meteorol. Soc.00: 1–16 (2009)
DOI: 10.1002/qj



RELIABILITY DIAGRAMS FOR DENSITY FORECASTS OF CONTINUOUS VARIABLES 13

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

angular frequency [rad/s]

am
pl

itu
de

 

 

set 1
set 2
set 3

(a) Smooth spectra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nominal

ob
se

rv
ed

 

 

observed
ideal

(b) Reliability diagram - Set 1
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(c) Reliability diagram - Set 2
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(d) Reliability diagram - Set 3

Figure 6. Example results from the reliability assessment of 42-hour ahead nonparametric density forecasts of wind power generation. The
smooth spectrum estimates related to the 3 sets of forecast series are gathered in (a). Reliability diagrams with consistency bars for a 90%

confidence level are depicted in (b), (c) and (d).

over the set of available observations. An original surro-
gate consistency resampling method has been introduced
and evaluated for that purpose. The presence of serial cor-
relation clearly increases the width of consistency bars.
Even though the serial correlation pattern has to be esti-
mated (here in the frequency domain), it has been demon-
strated from simulations that the actual coverage of our
consistency bars is close to their intended nominal cover-
age.

The consistency bars which have been considered
in the present paper are pointwise consistency bars. This
means that they relate to the individual reliability assess-
ment of the quantile forecasts (for a given nominal pro-
portion) composing nonparametric density forecasts. As a
possible extension of the work presented here, one may
consider the definition of consistency envelopes, which
in contrast would relate to the simultaneous reliability

assessment of quantile forecasts with various nominal pro-
portions (thus for the full densities), in a multiple hypoth-
esis testing framework.

Our most important message here is not that one
should mandatorily use the approach introduced for gen-
erating consistency bars, but instead that one must con-
sider the potential effect of serial correlation in reliability
assessment. Indeed, it has been shown that assuming inde-
pendence of the sequence of probability integral trans-
forms would clearly lead to underestimating the range of
potentially observed proportions for a perfectly reliable
probabilistic forecasting system over the period of inter-
est. One may decide on one’s own way of modelling or
accounting for serial correlation, potentially simulating
different plausible serial correlation patterns and assessing
their impact on the width of consistency bars. Note that the
question of interdependence among forecast-verification
pairs should also be considered if focusing on probability
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forecasts for binary events. It might be that interdepen-
dence is not an issue for a large number of cases, but one
should still be aware of this potential issue before to apply
i.i.d. resampling methods.

For the surrogate consistency resampling method
developed, only one parameter, i.e. the truncation point
M , has to be selected for the estimation of the smooth
spectrum. This is somehow the price to pay for capturing
the interdependence structure in the sequence of proba-
bility integral transforms. Even though the selection of
M may call for some statistical (and/or signal process-
ing) expertise from the practitioner, the actual coverage
of consistency bars is not highly sensitive to the choice
for M , especially if consistency bars are to be used for
visual assessment of density forecasts calibration and not
for thorough hypothesis testing. In parallel the number
B of replications of the consistency resampling method,
which corresponds to the number of surrogate time-series
to be generated, should be chosen sufficiently large, e.g.
B ≥ 1000. Since computational power is rapidly increas-
ing, picking a large value forB should not be a problem.
For reference, only 4 minutes were necessary for gen-
erating the reliability diagrams with consistency bars of
Section6 with Matlab, i.e. for time-series of length600
and800 with the number of surrogatesB = 1000.

Unconditional calibration is only one aspect of prob-
abilistic forecast verification. It is a crucial aspect though
as a probabilistic bias in density forecasts would directly
translate to a bias in decisions to be made from such
probabilistic forecasts. If being strict about forecast ver-
ification, density forecasts which cannot be deemed as
reliable should not be considered further for decision-
making. Fortunately, one can easily correct for a lack of
unconditional calibration, with e.g. conditional paramet-
ric models (Nielsenet al., 2006) or smoothed bootstrap
(Hall and Rieck, 2001). For the case of the application
considered, the use of consistency bars has permitted us to
carry out a reliability assessment of nonparametric density
forecasts of wind power generation, with results stronger
than those obtained before, i.e. solely based on subjective
evaluation of the deviation between observed proportions
and the ideal diagonal case of reliability diagrams. We
intend to promote the use of consistency bars as a generic
feature of reliability diagrams for the evaluation of density
forecasts of wind power generation.
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Appendix A. A mathematical proof of the effect of
serial correlation on the size of consistency bars

In this Appendix a simple mathematical proof is given of
the effect of serial correlation on the size of consistency
bars. More precisely, we show here that for any type of
correlation in the sequence of forecast-verification pairs,
the consistency bars are to be wider than in the i.i.d. case.

Let us focus, without loss of generality, on a given
nominal proportionαi. The forecast horizonk is omitted
in the developments below in order to lighten the nota-
tions. In view of the definition of the indicator variable
ξ
(αi)
t in (3), it appears thatξ(αi)

t is the realization at time
t of a Bernoulli random variable with parameterαi. As a
consequence, the observed proportionâi is a realization of
a random variable defined as the sum of Bernoulli trials,
scaled by the number of trialsN , being here the length of
the evaluation period. Below, we will denote this sum by
Xi or X̃i, for the i.i.d. and correlated case, respectively.

In the case where there is no serial correlation present
in the sequence of forecast-verification pairs, the corre-
sponding Bernoulli trials are i.i.d. By definition, the sum
Xi of N i.i.d. Bernoulli trials with chance of successαi

follows a binomial distribution,Xi ∼ B(N, αi). The first
two moments of the distribution of the proportionXi/N
are then given by

E [Xi/N ] = αi (16)

var[Xi/N ] =
αi(1 − αi)

N
(17)

In contrast when serial correlation is present in the
sequence of forecast-verification pairs, the corresponding
Bernoulli trials cannot be independent. In such a case,
it is known that the sumX̃i of N dependent Bernouilli
trials can be modelled with a Beta-Binomial distribution,
see e.g.Ahn and Chen(1995) or Tsaiet al. (2003). This
distribution is defined as

X̃i ∼ B(N, θ) (18)

with
θ ∼ Beta(αi, σθ) (19)

Note that for the sake of simplicity, the Beta distribution
Beta(αi, σθ) in the above is characterized by its mean
αi and varianceσθ, instead of its two shape parameters.
Consequently, the first two moments of the distribution of
the proportionX̃i/N are given by

E

[

X̃i/N
]

= αi (20)

var
[

X̃i/N
]

=
αi(1 − αi)

N

(

1 +
N − 1

σθ + 1

)

(21)
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Since necessarilyN > 1 andσθ > 0, one has

var
[

X̃i/N
]

> var[Xi/N ] (22)

meaning that, whateverαi, the distribution of proportions
in the case of serial correlation will have a higher second-
order moment that if there is no correlation. Such distri-
butions will in any case be centred onαi and symmetric
around it. Therefore, for any confidence level(1 − β),
consistency bars will be wider if serial correlation is
present in the sequence of forecast-verification pairs.
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