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ABSTRACT: A framework for the verification of ensemble forecasts of near-surface wind speed is described. It is based
on existing scores and diagnostic tools, though considering observations from synoptic stations as reference instead of
the analysis. This approach is motivated by the idea of having a user-oriented view of verification, for instance with the
wind power applications in mind. The verification framework is specifically applied to the case of ECMWF ensemble
forecasts and over Europe. Dynamic climatologies are derived at the various stations, serving as a benchmark. The
impact of observational uncertainty on scores and diagnostic tools is also considered. The interest of this framework is
demonstrated from its application to the routine evaluation of ensemble forecasts and to the assessment of the quality
improvements brought in by the recent change in horizontal resolution of the ECMWF ensemble prediction system. The
most important conclusions cover (1) the generally high skill of these ensemble forecasts of near-surface wind speed when
evaluated at synoptic stations, (2) the noteworthy improvement of scores brought by the change of horizontal resolution,
and, (3) the scope for further improvements of reliability and skill of wind speed ensemble forecasts by appropriate
post-processing. Copyright  2011 Royal Meteorological Society
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1. Introduction

One of the major recent breakthroughs in meteorological
prediction comes from the transition from point to prob-
abilistic forecasting (Palmer, 2000; Gneiting, 2008). This
phenomenon is not only observed in the meteorological
literature, since probabilistic forecasts are also becoming
customary products in economics and finance (Abramson
and Clemen, 1995; Tay et al., 2000; Timmermann, 2000).
Regarding meteorological prediction for decision-making
in the energy field, for instance, it has been demonstrated
that the optimal management and trading of wind energy
generation calls for probabilistic forecasts, see Matos and
Bessa (2011) and Pinson et al. (2007a) among others.
This actually follows from a more general result which
is that for a large class of decision-making problems,
optimal decisions directly relate to quantiles of condi-
tional predictive distributions, as discussed by Gneiting
(2011a).

Forecasts ought to be evaluated, and various frame-
works exist depending upon which of the forecast’s char-
acteristics are to be highlighted. Primarily, one should
make a difference between the quality and value of the
forecasts, following the discussion of Murphy (1993).
The former relates to the objective evaluation of intrinsic
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forecast performance, while the latter is based on the ben-
efits perceived by forecast users when making decisions
based on these forecasts. Even though these two concepts
have often been kept apart in the forecast verification lit-
erature, their linkage has been the focus of a few studies
(see for example Katz and Murphy, 1997, and references
therein for the case of forecasts of weather and climate).

Forecast quality verification is also a multi-faceted
problem in the sense that a large number of scores
and diagnostic tools may be considered. One could, for
instance, start by looking at first-order statistics such
as the bias of point forecasts or the marginal reliabil-
ity of probabilistic forecasts. Scores (Mean Absolute
Error – MAE, Root Mean Square Error – RMSE, Con-
tinuous Ranked Probability Score – CRPS) may addi-
tionally be considered, as well as corresponding skill
scores after definition of a benchmark e.g. climatology.
Finally, diagnostic approaches may be based on the joint
distributions of forecasts and verifications (Murphy and
Winkler, 1987). Consequently the appraisal of verifica-
tion statistics and scores is a subtle task, as rightly pointed
out and discussed by Mason (2008).

A core aspect of forecast verification is the definition
of the reference against which the forecasts are evalu-
ated. A common practice in the meteorological research
community is to employ the model analysis as such a ref-
erence, since it comprises the best estimate of the state of
the atmosphere at spatial and temporal scales consistent
with those of the forecasts issued by this same model.
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These forecasts are then evaluated on the numerical grid
of the model. While such an approach is relevant, it may
not reflect the final use of the forecasts which may be
needed at any location on Earth (not just for the model
grid points). In that context, it may actually be more
interesting and relevant to verify the forecasts jointly
against analysis and against actual observations. This is
recognized by research and operational weather forecast-
ing centres such as ECMWF, which aim to give more
importance to observations in their verification suite.

A few studies focusing on the evaluation of ensemble
forecasting systems against observations have recently
appeared in the literature, see, for example, Candille et al.
(2007) and Candille and Talagrand (2008). A primary
objective of the present work is to look at this problem,
with the aim of evaluating the quality of the ensemble
forecasts of wind speed issued over Europe by the
European Centre for Medium-range Weather Forecasts
(ECMWF) against analysis and actual observations while
accounting for observational uncertainty. The choice for
this domain and for the wind speed variable arises from
the growing interest in wind energy and its short-term
forecasting (Giebel et al., 2003; Lange and Focken, 2005;
Costa et al., 2008; Smith et al., 2009, among others).
A subsequent objective is to illustrate the disparities
that appear if performing forecast verification against
analysis or against observations. A final objective is
then to discuss if such additional verification results may
allow ways of further improving the quality of ECMWF
ensemble forecasts of wind speed to be foreseen.

The data, including forecasts, analysis, and observa-
tions are first introduced in Section 2. The forecast
verification methodology accounting for observational
uncertainty, as well as the time-varying climatology
employed as a benchmark, is then described in Section 3.
The results from the application of the forecast verifica-
tion methodology against observations are subsequently
gathered and commented on in Section 4. The applica-
tions considered include (1) the routine evaluation of the
ensemble forecasts of wind speed over a 3 month period
(from December 2008 to February 2009 – DJF09), and,
(2) the assessment of the impact of the change in hor-
izontal resolution of the ECMWF ensemble prediction
system. Section 5 finally develops into a discussion of
the implications of such findings, drawing conclusions
and perspectives for future work.

2. Data

2.1. Setup for the verification experiment, observations
and analysis

The domain chosen for this study is Europe, while the
forecast variable of focus is near-surface (10 m) wind
speed. One of the reasons for this choice is that forecast
users have shown more and more interest in that variable
over the last few years, owing to the significant wind
power capacities operated throughout Europe.

–10 0 10 20

35
40

45
50

55

longitude [degrees East]

la
tit

ud
e 

[d
eg

re
es

 N
or

th
]

Figure 1. Map of all synoptic stations considered in this study. The
domain is defined as Europe in a large sense, with longitudes in the
range [−10,23] degrees East, and latitudes in the range [35,58] degrees

North. synoptic stations (731).

Verification is to be performed over a set of syn-
optic stations located onshore throughout Europe, for
which observational data is available through the Global
Telecommunication System (GTS). The geographical
distribution of these 731 stations can be seen from
Figure 1. After inspection of the data at the various sta-
tions, 98 of these stations were discarded as having too
many missing data or too long periods of suspicious
behaviour in the recorded time series. No statistical meth-
ods for outlier detection have been employed. Empirical
rules have been used instead, considering for instance that
(1) very large spikes during a low wind speed period, or,
(2) periods of more than 2 days with the same recorded
wind speed values (being non-zero), were to be seen as
suspicious. The interest of considering wind speed near-
surface observations from synoptic stations on land in
this study is that such measurements are not used in the
production of the model analysis (Uppala et al., 2005).
An example historical reason for that relates to the het-
erogeneity in the representativeness of these observations
in view of the very coarse spatial and temporal resolution
of the model. One could then expect to see more dispar-
ities between verification results obtained if verification
is performed against the analysis or against the actual
observations. Local thermal and topographic effects may
additionally step in and magnify the aforementioned
disparities.

A station-oriented view of the verification problem is
proposed: instead of considering averaging all verification
scores for stations within a grid cell, all forecasts
and analysis are interpolated at the stations, and the
scores calculated for each of the stations individually.
This idea of averaging per grid cell (or for larger
areas) has been employed and explored for the case
of precipitation: see Ghelli and Lalaurette (2000) or
Pappenberger et al. (2009) for example. This approach
would also introduce some form of filtering of the
observations, and is not desirable in the present case.
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Some may say that the representativeness issue, i.e. the
fact that using raw observations is not consistent with the
temporal and spatial scales the model aims at resolving,
is not accounted for. The users of the forecasts, however,
are not interested in the spatial and temporal scales of the
model. They only want the best forecasts for the given
locations of their choice.

The ECMWF analysis data have a temporal resolution
of 6 h, while wind speed observations at synoptic sta-
tions over Europe most often have an hourly temporal
resolution. This difference will be accounted for in the
verification exercise, in order to be consistent with the
forecasts which are described in the following. When ver-
ification scores calculated against observations or against
analysis are compared, this will be done for time points
for which both observations and analysis (and obviously
forecasts) are available.

2.2. Wind speed forecasts

The wind speed forecasts used as input to this veri-
fication study are some of the operational products at
ECMWF. Attention is given to ensemble forecasts of
10 m wind speed, with the possibility of extracting some
single-valued forecasts from the ensembles, following a
methodology that will be described in a further paragraph.
The forecast length considered is of 6 days, correspond-
ing to the lead times of interest to the wind energy sector.
Note that the 6 day lead time also corresponds to a change
in the temporal resolution of the ensemble forecasts, with
forecast output being coarser for further lead times i.e.
with a temporal resolution of 6 h.

The operational configuration of the ensemble forecast-
ing system for lead times up to 6 days ahead and for the
European domain is briefly summarized. Ensemble fore-
casts are issued twice a day at 0000 and 1200 UTC, with
a horizontal resolution of about 50 km (corresponding to
a spectral truncation at wave number 399) and a tem-
poral resolution of 3 h. Operational ensemble forecasts
with such a horizontal resolution were issued until the
25 January 2010. From the 26 onwards, this horizontal
resolution has been changed to about 33 km, correspond-
ing to a spectral truncation at wave number 639. Over a
period spanning November 2009 to January 2010, 187
forecast series are available from the operational fore-
casting system with the two horizontal resolutions. These
will permit application of the proposal verification frame-
work for the assessment of the impact of the change in
horizontal resolution on the quality of ensemble forecasts
of near-surface wind speed.

The methodology employed for generation of the
ECMWF ensemble forecasts is well documented and a
number of publications can be pointed at for its var-
ious components. For a general overview, see Palmer
(2000). It is not the objective here to discuss competing
methodologies for the generation of ensemble forecasts or
more generally of probabilistic forecasts of meteorologi-
cal variables. A comparison with other global ensemble
prediction systems can be found in (for example) Buizza

et al. (2005). The ECMWF ensemble predictions aim
at representing uncertainties in both the knowledge of
the initial state of the atmosphere and in the physics
of the numerical model used for integrating these initial
conditions. For the former uncertainties, singular vectors
are employed, the core methodology being extensively
described by Leutbecher and Palmer (2008). A com-
parison of the different methodologies for the genera-
tion of initial perturbations can be found in Magnusson
et al. (2008). In parallel for the latter type of uncertain-
ties, stochastic physics is employed for sampling uncer-
tainties in the parameterization of the numerical model
(Buizza et al., 1999; Palmer et al., 2005). Note that the
potential structural model uncertainty is, therefore, not
accounted for.

The ensemble forecasts for the 633 stations of interest
are obtained by applying bilinear interpolation to the
gridded model output, i.e. as a weighted combination
of model outputs at the four grid points around the
station. The same type of bilinear interpolation is used for
downscaling the analysis data at the level of the stations.
By using such a bilinear interpolation scheme the land-
sea mask is not considered, and grid nodes over land and
sea are equally weighted.

3. Verification methodology

3.1. Time-varying climatologies as a benchmark

Verifying forecasts against a benchmark is a common
practice. A benchmark has the characteristics of being
a reference method, of being computationally cheap to
implement, and ideally model-free. The typical bench-
mark in the verification of probabilistic and ensemble
forecasting in meteorology is climatology. Roughly, cli-
matology is based on all available observations over a
long period of past observations, the distribution of which
serves as a predictive density for any lead time t + k. This
benchmark is difficult to outperform for longer-term lead
times, typically further than 5–6 days for near-surface
variables, though quite easy to outperform for short-term
forecasts, say for lead times less than a day. At these
shorter scales, persistent forecasts issued based on the
last available measurements become the most competitive
benchmark. Note that only climatology will be considered
here since focus will mainly be on the medium-range
(1–6 days).

Even though climatology is recognized as the central
benchmark in the verification of meteorological forecasts,
some concerns are also raised regarding the possibility of
misinterpreting forecast verification results (Hamill and
Juras, 2006). It may indeed be possible that the observed
skill of a forecast system when evaluated against clima-
tology is artificially good simply due to a drift between
the reference climatology and the state of the stochastic
process of interest. The discussion by Hamill and Juras
(2006) implies that climatologies may (or should) be
seen as time-varying, with the best estimate of climatolo-
gies permitting to minimize potential misinterpretation
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of forecast verification results. Following that remark,
Jung and Leutbecher (2008) have proposed an approach
to the computation of time-varying climatologies, which
is revisited here. Note that the approach of Jung and
Leutbecher (2008) has led to the computation of the
climatologies routinely used at ECMWF for the verifica-
tion of ensemble forecasts against analysis. Following a
similar argument, only skill scores representing improve-
ments over the climatology benchmark will be compared,
for climatologies calculated based on observations. This
is because considering climatologies based on the model
analysis means that forecasts would then be evaluated
against benchmarks with different dynamic characteris-
tics, hence potentially leading to misinterpretation.

Denoting by {x(t, s)}t the time-series of wind speed
measurements being a sequence of observations for the
related stochastic process {X(t, s)}t at the location s.
Measurements are available over a period ranging from
t = 0 to t = N for the number of locations considered
in this study. Since talking about climatologies, N is
supposed to be very large due to availability of several
years if not decades of data. The core idea of time-
varying climatologies is that climatologies should be
defined for each hour of the year, or at least for each
time of the year for which measurements are available,
through smoothing the high-frequency temporal features
in the recorded time series. This is in order to retain
the diurnal and seasonal variations in wind speed. Since
considering observations instead of analysis data in the
case of Jung and Leutbecher (2008), more variability and
high-frequency features are to be expected.

For convenience, let us introduce the operator v which
gives the calendar date (defined in terms of the year y,
month m, day d and hour h) for the absolute time t , while
v−1 performs the opposite operation:

{y, m, d, h} = v(t), t = v−1{y, m, d, h} (1)

The methodology for deriving climatologies is based on
kernel density estimation (KDE), an overview of which
can be found in Silverman (1986). The basic idea is to
attach a kernel to each of the available measurements, and
to consider the time-varying climatologies as a weighted
mixture of these kernels.

For simplicity, Gaussian kernels are employed here,
which for a measurement x(t, s) is defined as:

Kσ (x − x(t, s)) = 1

σx

√
2π

exp

{
(x − x(t, s))2

2σx
2

}
(2)

with σx the standard deviation of the Gaussian density
defining the bandwidth of the kernel. Such kernels are
censored at 0, however, in order to be consistent with
the fact that wind speed must be greater than or equal
to 0. Both x and σx are in m s−1, while Kσ is non-
dimensional since defining a probability density related
to a given wind speed observation. This yields:

K+
σ (x − x(t, s)) =

{
Kσ(x − x(t, s)), x > 0

�
(
−x(t, s)

σx

)
, x = 0

(3)

where � is the cumulative distribution function of a
standard Gaussian random variable N(0,1). Censored
kernels put a probability mass on 0 for low and null
wind speed values, being a function of the observation
itself and on the chosen kernel standard deviation.

For any time of the year, the climatological distribution
Fx of wind speed is then defined as a weighted mixture of
kernels for the same hour of the current and neighbouring
days of all years in the dataset, and for the same location.
In mathematical terms this is written as:

Fx({m,h, d}, s) = 1

Ny

∑
j
wj

∑
y

∑
j

wjK
+
σ

(
x − x(v−1{y,m, d + j, h}, s)) (4)

with Ny the number of years used for producing the
climatology, and with wj a discounting factor permitting
to give less weight to days that are further from the day
of interest. This discounting factor is also chosen to be
given by a Gaussian kernel:

wj = Kσd
(j) (5)

Since Gaussian kernels do not have a compact support,
the sum over js in Equation (4) involves an infinite
number of elements. In practice since the weight defined
by Kσd

becomes very low for |j | large, say for |j | > 5σd ,
one can limit the sum over a window of size 10σd around
the point in time of interest. The other sum is over all
Nf years in the dataset.

In practice here, the data employed as input to the
calculation of time-varying climatologies consists of
Ny = 29 years of wind speed measurements recorded
with a temporal resolution of 3 h, for the 633 (validated)
meteorological stations. The temporal resolution of 3 h
is chosen in order to be consistent with the temporal res-
olution of the ensemble forecasts. These 29 years range
from 1981 to 2009. For some of the stations the length
of the dataset may be shorter since recording started after
1981. Also, after basic cleaning of the datasets, that is,
based on simple rules and not on advanced statistical
approaches, some data may be missing or considered as
invalid (i.e. negative wind speeds or wind speeds greater
than 60 m s−1). The weights in Equation (4) can easily
permit to account for these aspects, by setting wj to 0
if measurements are missing or considered as invalid.
The two bandwidths σx and σd are selected in order to
be consistent with the climatologies based on the anal-
ysis derived at ECMWF. This yields σx = 1 m s−1 and
σd = 20 days so that seasonal cycles are revealed while
higher frequency fluctuations are smoothed. These band-
width values could be further refined based on the various
rules available in the statistical literature, or alternatively
on a cross-validation exercise. Finally, since these cli-
matologies have a nonparametric form, it is necessary
to define them in terms of quantiles with various nom-
inal proportions. These nominal proportions are chosen
to span the whole unit range with 0.05 increments and
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with a finer description of the tails end, i.e. yielding a set
of nominal proportions in {0.01, 0.02, 0.05, 0.1, . . ., 0.9,
0.95, 0.98, 0.99}. The mean and standard deviation val-
ues of all climatological distributions are also recorded.
Climatologies are employed in their probabilistic form
since some of their characteristics (mean and median) as
well as full densities will be necessary for calculating the
various scores for this benchmark, subsequently yielding
skill scores for the ensemble forecasts.

As an illustration, Figure 2 depicts an example of a
time-varying climatology for the meteorological station
at Kastrup airport (Copenhagen) in Denmark for the
months of April, May and June. This climatology has
a strong diurnal pattern in the mean wind speed, while
it also exhibits longer-term variations in the form of
a seasonal trend. These dynamics at various temporal
scales can also be observed for the various quantiles
of the climatology, with for instance a reduction of the
maximum wind speeds from April to June. The low
frequency of occurrence of calm periods, even at night,
is very site-specific. Such a frequency of calm periods
is substantially higher for stations located in less windy
areas like in central Germany for instance. It is finally
worth noting that time-varying climatologies may be
refined in the future by accounting for both rounding
and measurement uncertainties in recorded wind speed
values.

3.2. Scores and diagnostic tools

A fairly common approach to the verification of ensemble
forecasts is employed here. Following arguments in a
number of publications, focus is given to both reliability
and sharpness of the ensemble forecasts of wind speed.
In parallel, since for a large number of applications
forecast users may still prefer to use point forecasts
instead of ensemble or more generally probabilistic
forecasts, an evaluation of a few point forecasts that
may extracted from the ensembles is also performed.
Especially, in view of the discussion by Gneiting (2011b),
the mean and median of ensemble forecasts are specific
point forecasts which aim at minimizing a Root Mean
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Figure 2. Example of a time-varying climatology of 10-m wind
speed for the meteorological station of Copenhagen Kastrup airport
in Denmark for the months of April, May and June. Mean,

Quantiles (nominal proportions in {0.01, 0.02, 0.05, 0.1, 0.2,
. . ., 0.9, 0.95, 0.98, 0.99}). This figure is available in colour online

at wileyonlinelibrary.com/journal/met

Square Error (RMSE) and a Mean Average Error (MAE)
criterion, respectively. This is since the expectation of a
probabilistic distribution is to minimize a quadratic loss
function (as for the RMSE), while the median of that
same distribution is to minimize any symmetric linear
loss function (as for the MAE). Finally, the bias is
generally assessed when considering the ensemble mean
as the point forecast to be extracted from the ensembles.

For a specific location s, {x̂j (t + k|t, s)}j denotes the
set of 51 ensemble members (i.e. the control forecast and
the 50 perturbed ones) issued at time t for the lead time
t + k. x̂j (.) is the j th ensemble member. The notations
x̃(t + k|t, s) and x(t + k|t, s) are used for the median
and mean of the ensembles, respectively. The scores
mentioned above are then simply given for each lead
time k as:

bias(k, s) = 1

Nf

Nf∑
t=1

x(t + k, s) − x(t + k|t, s) (6)

and,

MAE(k, s) = 1

Nf

Nf∑
t=1

|x(t + k, s) − x̃(t + k|t, s)| (7)

and,

RMSE(k, s) =

 1

Nf

Nf∑
t=1

(x(t + k, s)

−x(t + k|t, s))2




1
2

(8)

where Nf is the number of forecasts over the verification
period.

Turning attention towards the probabilistic skill of
the ensemble forecasts, it is appropriate to evaluate it
with proper skill scores such as the Continuous Ranked
Probability Score (CRPS) for instance. The expression
for the calculation of the CRPS for the lead time k is:

CRPS(k, s) = 1

Nf

Nf∑
t=1

∫
x

(
F̂ (x; t + k|t, s

)

−1{x > x(t + k, s)})2 dx (9)

where F̂ (x; t + k|t, s) is the cumulative distribution
function of the set of ensemble forecasts {x̂j (t + k|t, s)}j ,
while the Heaviside function 1{x > x(t + k, s)} repre-
sents a perfectly sharp and calibrated probabilistic fore-
cast which would have predicted a probability mass
on the actual observation x(t + k, s). In the present
case, F̂ (x; t + k|t, s) is given by linear interpolation
through the ensemble members: for a set of 51 exchange-
able members, the j th member defines the quantile of

F̂ (x; t + k|t, s) with nominal proportion αj = j

52
.
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Corresponding skill scores are obtained by comparing
for each lead time the error criteria calculated for the
ensemble forecasts and for the climatology benchmark.
Single-valued forecasts are extracted from climatologies
in a similar fashion as for ensemble forecasts. In other
words, the bias and RMSE criteria are calculated for the
ensemble mean, while the MAE criterion relies on the
median of climatology predictive densities. Skill scores
are then defined as

Score(k, s) = 1 − Score(k, s)

Score0(k, s)
(10)

where ‘Score’ can be the ‘bias’, ‘MAE’, ‘RMSE’ and
‘CRPS’ error criteria given the above, while Score0 is
the value of such a criterion if calculated for the time-
varying climatology benchmark described in Section 3.1.
The resulting skill scores would, therefore, be denoted
by ‘Sbias’, ‘SMAE’ or ‘SRMSE’ for instance. One may
also obtain spatially averaged scores and skill scores by
calculating the average over s of the scores and skill
scores introduced above.

Particular focus should be given to ensemble fore-
cast reliability. Reliability refers to the correspondence of
empirical and nominal proportions of ensemble forecasts.
In contrast recalibration relates to the post processing of
ensemble forecasts in order to improve their reliability.
Probabilistic reliability is visually assessed here based on
PIT diagrams, being a cumulative version of Probability
Integral Transform (PIT) histograms, as used and dis-
cussed by Pinson et al. (2010) and Marzban et al. (2011)
for instance. Such PIT diagrams allows for straightfor-
ward visual comparison of the empirical proportions of
the ensemble members against the nominal ones. Indeed,
for a set of 51 exchangeable members, the nominal pro-

portion of the j th member is αj = j

52
, meaning that there

should be a probability of j

52
that the observed wind

speed lies below that ensemble member. PIT diagrams
are therefore based on the indicator variable ξ j (t, k, s),
defined as:

ξ j (t, k, s) = 1{x(t + k, s) < x̂j (t + k|t, s)} (11)

and its sample mean (over time, locations, potentially
lead times). Indeed for the j th ensemble member with
nominal proportion αj = j

52
, the empirical (or observed)

proportion α̂j (k, s) is estimated as:

α̂j (k, s) = E[ξ j (t, k, s)|k, s] = 1

Nf

∑
t

ξ j (t, k, s) (12)

PIT diagrams consequently depict αj versus α̂j for all
(51) ensemble members. Note that the potential effect
of sampling and of the interdependence (spatial and/or
temporal) in the forecast-verification pairs is disregarded
here. It could be accounted for in the future by using or
extending the methods described by Bröcker and Smith
(2007), Marzban et al. (2011) and Pinson et al. (2010).

3.3. Accounting for observational uncertainty

One of the reasons why observations are often not
favoured in verification studies is their underlying uncer-
tainty, along with their representativeness. This is espe-
cially true for near-surface variables, e.g. wind speed
and precipitation, for which observational uncertainty is
known to be non-negligible, while surface effects intro-
duce additional noise to what the numerical models aim at
resolving. That representativeness issue is not accounted
for here since having a station-oriented view of the fore-
cast verification problem. Somehow a forecast user will
not assess competing forecasting approaches conditional
to the model capabilities, but uniquely based on verifica-
tion scores and statistics for the location(s) of interest.

Observational uncertainty can be accounted for dur-
ing the forecast verification process. One may distinguish
between the various sorts of observational uncertainties as
in Pappenberger et al. (2009) and potentially consider the
interdependence structure (either in time or in space, or
both) in the forecast errors (Candille et al., 2007). Various
approaches may be employed for the case of the ver-
ification of ensemble forecasts, including the perturbed
ensemble and observational probability proposals of Can-
dille and Talagrand (2008). The approach followed here
is of the observational probability type: the uncertainty
in the observations is represented by transforming them
into random variables. Their impact on scores and diag-
nostics is then quantified using a Monte Carlo approach
similar to that of Pappenberger et al. (2009).

Two origins to the uncertainty in wind speed observa-
tions are considered: rounding and measurement errors. It
is assumed that gross errors originating from reporting,
transmission or archiving can be easily cleaned out, or
that observations in that case would be seen as missing.
Measurement errors come from the measuring devices
themselves. They can be assumed to be Gaussian, spa-
tially and temporally uncorrelated, with a mean µ cor-
responding to a systematic error and a variance σ 2

e for
the actual measurement uncertainty. µ and σ 2

e could be
defined for each station independently, but for simplicity
they will be uniquely defined here. This writes:

em(t, s) = N(µ, σ 2
e ) (13)

In parallel, rounding errors come from the procedure
of rounding measured wind speed to the closest integer
(in m s−1), the common practice when reporting near-
surface wind speed measurements. Rounding errors can
then be assumed to follow a uniform distribution around
the reported value:

er(t, s) = U

[
−1

2
,

1

2

]
(14)

To summarize, if writing X(t, s) the random variable for
the wind speed at time t and location s, and x(t, s) the
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reported value, X(t, s) is given by the sum of x(t, s) with
the above two random variables:

X(t, s) = (x(t, s) + em(t, s) + er(t, s))1{x(t, s)

+ em(t, s) + er(t, s) ≥ 0} (15)

with 1{x ≥ 0} indicating a censoring of the random
variable at 0 since wind speed is a non-negative quantity.
Given a reported wind speed value, and the measurement
error characteristics µ and σ 2

e , the density of X(t, s)

can be obtained from a simple convolution operation.
For simplicity, µ is assumed to be 0 in the following,
translating to having unbiased measurements.

Subsequently, in the spirit similar to the Generalized
Likelihood Uncertainty Estimation approach employed
by Pappenberger et al. (2009), a form of Monte Carlo
simulation can be used for assessing the impact of obser-
vational uncertainty on scores and diagnostics. Based on
the modelled densities of observations at each point in
time and in space, one can draw a number M of poten-
tial actual wind speed values x(i)(t, s), i = 1, . . . , M , and
calculate for each i the various scores and diagnostics
defined in the above paragraph. This is done by plug-
ging the drawn values x(i)(t, s) in the various formula
of Equations (7)–(11). It will then result in empirical
distributions of scores (MAE, etc.), corresponding skill
scores (SMAE, etc.), but also of PIT diagrams. Indeed,
in contrast to the case of Candille and Talagrand (2008),
it is possible by this approach to build a set of PIT his-
tograms or of their cumulative version in the form of
PIT diagrams. This is since the set of ‘actual’ observa-
tions drawn from the modelled densities are then of the
same nature than the predicted ensemble elements.

It should finally be noted that such a Monte Carlo
approach can be highly computationally expensive.
Deriving analytical expressions for the distributions of
some of the simplest scores may be possible. For the
case of the bias, one could use known formulae for the
distribution of the sum of Gaussian variables and for the
sum of Uniform variables, possibly non-identical (Mitra,
1971; Bradley and Gupta, 2002). They could be extended
to the case of the MAE, based on limiting assumptions.
For scores such as the RMSE and CRPS the mathe-
matical developments would become quite technical and
show the difficulty of deriving closed-form solutions.
All these aspects related to the impact of observational
uncertainty on the distribution of scores are discussed in
Appendix A. A similar remark goes for the case of
PIT histograms and diagrams. For these reasons, the
computationally-intensive method described above is pre-
ferred. The fact that computational costs may lead to
some limitations has also been mentioned by Candille
and Talagrand (2008).

4. Application results

Two test case applications are considered, corresponding
to what may be done in research and operational forecast-
ing centres such as ECMWF. On the one hand, forecast

verification is performed on a routine basis, with various
scores and diagnostics reported every quarter of a year
for instance. On the other hand specific verification exer-
cises are carried out prior to an operational upgrade of
the forecasting system, in order to assess the extent of
expected improvements. The verification framework dis-
cussed above is applied in both cases, but with different
objectives. In the first case, besides the actual routine
verification it is aimed at commenting on the discrepan-
cies between verification performed against analysis and
against observations for near-surface wind speed. The
impact of observational uncertainty on the routine scores
that would be calculated and reported in such routine
verification exercises is also illustrated and discussed. In
the second case, the objective is mainly to assess the
improvements brought in by the upgrade of an opera-
tional forecasting system for near-surface wind speed, at
the various European stations.

4.1. Routine evaluation of ensemble forecasts

The first application case consists of the routine evalu-
ation of the ECMWF ensemble forecasts of wind speed
over the quarter December 2008, January and February
2009 (DJF09) with focus on Europe. An extensive set
of maps and summary graphs have been produced for
the various scores and diagnostics, depending upon lead
times and possibly location. The verification suite allows
for the definition of a set of stations of interest, hence
permitting to look at forecast verification for a given sta-
tion, on a country-by-country basis, or for a pre-defined
region. Owing to the quantity of results that may be gen-
erated, only a subset of the most interesting results will
be shown and commented here. The effect of observa-
tional uncertainty is disregarded in the first stage. It is
then dealt with in Section 4.1.3.

4.1.1. Scores at stations

As a first illustrative example, the map of CRPS values
at the various European synoptic stations for 10 m wind
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Figure 3. Map of the CRPS values calculated against observations at
all synoptic stations in the case-study (633) for 72 h ahead forecasts.
The mean CRPS is of 1.23 m s−1. 0.17<y<0.86; 0.86<y<1.02;

1.02<y<1.20; 1.20<y<1.56; 1.56<y<2.59; y>2.59.
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speed ensemble forecasts and for the lead time of 72 h
ahead is shown in Figure 3. These CRPS values are cal-
culated based on reported wind speed observations at the
stations, hence without considering observational uncer-
tainty. Let us explain how the results are displayed there.
In view of the distribution of scores (CRPS and others)
being quite skewed, it has been decided to divide such
distributions in a number of equally populated classes,
except for the ‘extreme’ score values. The 5% maxi-
mum score values represent the last one of these classes,
somehow covering outlier stations. The five other classes
represent equally populated classes of CPRS values for
the 95% remainder of the stations, hence containing each
19% of the scores data.

Most of the highest score values are for stations located
in the Alps region and in coastal areas. This could be
expected since near-surface local effects are difficult to
resolve at the fairly coarse resolution (50 km) of the
ECMWF ensemble prediction system at the time. On a
general basis, though these CRPS values are low, being
below 2.59 m s−1 for 95% of the stations. They are even
extremely low (below 1.2 m s−1) for more than half of
the stations. As a reference, the mean wind speed over
all of these stations at this period was of 3.76 m s−1,
while the mean wind speed was below 6.99 m s−1 for
95% of these stations. It happens that for some of the sta-
tions even though the data collected were deemed accept-
able since their dynamical behaviour appeared realistic,
a comparison with the forecast dynamics showed that
almost no correlation existed between the forecasts and
measurements. Consequently, the various scores calcu-
lated at these sites appeared to be independent of the lead
time. Such situations may originate from a low quality
of observational data which hence could be discarded if
refining the analysis. It could also be explained by a ques-
tionable quality of the ensemble forecasts, for instance
due to local effects not represented in a model with such
a coarse spatial resolution.

In parallel, Figure 4 depicts the disparities between
the CRPS values (for the same lead time) calculated
against analysis and observations at the various stations.
It is in practice calculated as the difference between the
CRPS values calculated against observations and against
analysis. Positive values are for scores values being
larger if calculated against observations than if calculated
against analysis. The sorting into different classes is
performed in a manner similar to the above. It appears
that scores calculated against observations can actually be
lower than scores calculated against analysis. It happens
here for 10% of the stations. One of the potential reasons
stems from the impact of observational uncertainty on
the scores calculated against actual observations at the
various stations. This impact will be further examined
below. However, the inspection of a large number of
plots with the forecasts along with corresponding analysis
and observations actually revealed that for most of these
stations, the forecasts really looked like they better
matched the observations than the analysis.
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Figure 4. Map of the difference in CRPS values (when calcu-
lated against analysis or observations) at all synoptic stations in
the case-study (633), for 72 h ahead forecasts. The overall mean
is of 0.32 m s−1. −1.5<y<0.17; 0.17<y<0.32; 0.32<y<0.48;

0.48<y<0.75; 0.75<y<1.68; y>1.68.
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Figure 5. Distribution of RMSE score values (of the ensemble mean)
for the 633 stations, as a function of lead time. Mean, Median,

Central score intervals with coverage in {10,20,. . .,90}%. This figure
is available in colour online at wileyonlinelibrary.com/journal/met

Generally, the results for the remaining 90% of the sta-
tions are consistent with intuitive expectations, i.e. reveal-
ing that scores calculated against observations tend to be
higher than if calculating against the analysis. For 85%
of the stations the discrepancies are up to 1.68 m s−1,
which is quite high in view of the CRPS values shown
in Figure 3. Similar results have been observed when
considering other forecast verification measures such as
bias, MAE, RMSE, and the corresponding skill scores.
A final aspect that can be looked at is the distribu-
tion of score values for all stations. As an example,
Figure 5 depicts the distribution of RMSE values as a
function of the lead time. These distributions are rep-
resented by a set of intervals centred on the median,
and with increasing proportions (from 10 to 90%), in
addition to the median and mean score values. Owing
to the positive skewness of these distributions, the mean
values are larger than the median ones. Mean RMSE val-
ues increase from 2.1 m s−1 for the first lead time to
2.4 m s−1 for 6 day ahead forecasts. This is because for
90% of the stations considered RMSE values may range
between 1.1 and 5.2 m s−1 depending on the station and
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Figure 6. PIT diagrams for the reliability assessment of 72 h ahead ensemble forecasts. These diagrams are for Thyboron station in (a) Denmark,
(b) Cork airport, (c) Cap Béar station in France and (d) finally all stations altogether. vs analysis, vs observations. This figure is available

in colour online at wileyonlinelibrary.com/journal/met

lead time. This type of representation of score distribu-
tions can be very informative for having an overview of
the performance of a forecasting system over a large set
of stations of interest. The periodic nature of the RMSE
curves is linked to the diurnal cycles in the wind speed
magnitude, the amplitude of such periodicities varying
throughout Europe. To identify better the effect of the
diurnal cycle on verification statistics, one may refine the
analysis performed here by verifying forecasts depending
on the time of the day (instead of the lead time), or by
making a difference between forecasts issued at 0000 and
1200 UTC.

4.1.2. Reliability of ensemble forecasts

A crucial aspect of ensemble forecast verification related
to their probabilistic reliability, for which significant dis-
parities are expected if evaluated against analysis or
against observations. For that reliability assessment, the
PIT diagrams in the form of cumulative PIT histograms
are employed (see Section 3.2 or Pinson et al., (2010) for

further details). The impact of observational uncertainty
on these PIT diagrams will not be discussed, since it has
been found to be very limited. This might be explained
by the fact that perturbed observations randomly fall
between different ensemble members, but without alter-
ing much the counts over the evaluation period. Sampling
or serial correlation effects on reliability statistics, as dis-
cussed by Bröcker and Smith (2007) and Pinson et al.
(2010), could also be considered in the future. Their effect
on the uncertainty of reliability statistics is expected to
be larger than that of observational uncertainty.

Example PIT diagrams are gathered in Figure 6 for
the stations of Thyboron in Denmark, Cork airport in
Ireland, Cap Béar in France, as well as for all 633
stations altogether. These reliability assessment results
are for 72 h ahead forecasts. In a fashion similar to other
scores, the verification suite allows for the assessment
of reliability at single stations or at pre-defined groups
of stations, for a given lead time or for groups of lead
time, thus permitting to focus certain geographical areas
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and certain forecast ranges. When assessing reliability
for various lead times and against the analysis, a fairly
well known result about the ECMWF ensemble forecasts
is observed, which is that they tend to be significantly
under-dispersive in the short range and more reliable for
the medium range.

The three PIT diagrams for single stations in Figure 6
are representative of the typical results observed over the
routine verification study. The average case is similar to
what is observed at Thyboron station in Denmark: a very
good reliability if evaluated against analysis, while this
reliability can be seen as significantly lower if assessed
against observations. The ensemble forecasts appear to be
slightly under-dispersive but well centred in probability
when seeing the analysis as the reference. This is while
ensemble forecasts appear to overestimate proportions,
especially in the lower part of the ensembles, when
employing observations as the reference. If differentiating
lead times, these reliability issues appear to be more
pronounced for the first 2 days, then improving for
further lead times, consistent with what is observed when
verifying ensembles against the analysis.

In parallel for (near-) coastal stations such as Cork
airport, or stations located in areas with specific local
wind regimes such as Cap Béar, reliability statistics
obtained against the analysis already inform about a lack
of sufficient reliability, while the picture clearly worsens
if reliability is evaluated against observations. Similar
comments can be made for the case of the Alps region.
Depending on cases, clear under- or overestimation of
probabilities was observed when assessing reliability
against observations. For a station such as Cork, this may
be since the model forecasts stronger winds as if Cork
was at sea. In contrast, for a site such as Cap Béar the
very specific acceleration of local wind regimes such as
Tramontane and Vent d’Autan may be overlooked by the
model, explaining a systematic underestimation of winds.
Note that appropriate recalibration against observations
would correct for this lack of reliability and hence
improve overall skill scores.

To summarize the disparities in the reliability assess-
ment versus analysis and observations, a quantity is
defined based on the integrated absolute difference
between the two reliability curves. This quantity natu-
rally takes values in [0,1] and is referred to as reliability
disparity (RD). It is low in the case of Thyboron in
Figure 6, while being very high in cases such as Cork
and Cap Béar (in this same figure). A map summariz-
ing the reliability disparity values at all stations is shown
in Figure 7, for PIT diagrams based on forecasts 72 h
ahead. Qualitatively, similar patterns were observed for
all other lead times. The sorting of the RD values in
different classes is similar to the cases of Figures 3 and
4. For the 5% most extreme values, most of the corre-
sponding stations are located either in complex coastal
areas (Cornwall tip or Galicia), on small islands which
are impossible for the model to resolve (e.g. Baleares),
or in the Alps region. Cap Béar is one of these extreme
cases. In parallel for around 40% of the stations the
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Figure 7. Map of the reliability discrepancy at all synoptic stations in
the case-study (633) for 72 h ahead ensemble forecasts. 0.03<y<0.1;

0.1<y<0.15; 0.15<y<0.23; 0.23<y<0.31; 0.31<y<0.41;
y>0.41.

reliability disparity is fairly low (that is, below 0.15) cor-
responding to cases like Thyboron in Figure 6. These
stations with lower disparity are spread over Europe,
though a higher concentration can be observed in certain
parts of France, Spain, Northern Italy, Czech Republic
and Switzerland. Larger disparities tend to concentrate in
northwestern parts of France (Brittany and Normandy)
and Spain (Galicia), The Netherlands and northwestern
regions of Germany, Austria and the Balkan region.

These results are the most surprising and interesting
ones obtained from this routine forecast verification pro-
cedure. Such disparities in the reliability assessment of
ensemble forecasts if considering analysis or observa-
tions as the reference were not expected beforehand.
This can certainly be explained by the fact that onshore
wind observations are not accounted for in the produc-
tion of the analysis, and also by the significant differ-
ence in the variability of analysis and observations of
wind speed. It leads to a suggestion that recalibration of
near-surface wind forecasts against observations would
certainly permit a significant improvement their relia-
bility and overall skill. This should be performed in a
sufficiently generic and efficient framework so that this
recalibration is performed at once for the whole region,
with properly identified model structures and with model
parameters estimated and optimized on a site-specific
basis. These models may sometimes be based on sim-
ple linear regression concepts. In other cases, they may
require more advanced structures, possibly nonlinear, also
accounting for potential seasonalities and serial dynamics
in forecast-verification pairs.

4.1.3. Forecast quality over areas, and impact of
observational uncertainty

Looking at summary verification statistics over certain
areas may be particularly appealing to forecast users.
In addition, while the previous results disregarded the
potential impact of observational uncertainty on scores
and diagnostics, it is accounted for and discussed in the
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following. Due to the computational cost of the Monte
Carlo method described in Section 3.3, it would be too
costly to look at all 633 stations jointly over the whole
Europe over periods of several months. Due to assumed
spatial and temporal independence of uncertainty sources,
their impact on scores greatly diminishes as the number of
stations or the length of the evaluation period increases.
This effect was observed to become negligible if looking
at more than 100 stations over periods of more than
a month (with two forecast series issued per day).
For the case of the bias and MAE scores this can
be directly supported by Appendix A, while for other
scores this can be observed from computer simulations.
Consider the above set-up of 100 stations and 1 month
of two forecast series issued per day, with a standard
deviation of the measurement error of σe = 1 m s−1.
In that case, the 99.7% confidence intervals for the
estimated bias and MAE scores would have a width of
0.001 m s−1 only. The uncertainty in estimated scores
would additionally decrease with more stations, longer
evaluation periods or higher measurement accuracy. In
view of the application in mind (wind power prediction),
one can have a look instead at countries where significant
wind power penetration is observed and where it is known
that forecast quality is crucial for the management of
wind power into the electricity network. Denmark and
Ireland were consequently selected as illustrative test
cases, where eight and seven validated stations can be
employed, respectively.

Since no information is available about measure-
ment accuracy at these stations, the assumption such
that the standard deviation of the measurement error is
σe = 0.5 m s−1, with these measurement devices being
unbiased, is formulated. This choice is supported by
the review of the calibration uncertainty of state-of-the-
art anemometers performed by Coquilla and Obermeier
(2008). For calibrated anemometers this uncertainty may
vary between 0.1 and 0.5 m s−1 depending on the wind
speed level and the type of anemometer. It cannot be
sure, however, that the measurement devices at all the
synoptic stations considered are regularly calibrated. It
was therefore chosen to consider 0.5 m s−1 as a repre-
sentative value of all these stations, since representing
the worst case for calibrated anemometers, and com-
prising a lower bound of measurement uncertainty for
anemometers that are not calibrated. In the future, veri-
fication studies accounting for observational uncertainty
could be refined by using up-to-date information on the
quality of measurements at the various stations, or even
make σe a function of the wind speed level. Other values
for σe have been considered, leading to similar qualita-
tive results. Obviously the higher σe gets, the larger the
uncertainty on calculated scores is 200 Monte Carlo sim-
ulations are performed to estimate the uncertainty on the
various scores and diagnostics performed.

As an example, Figure 8(a) and (b) depicts the CRPS
as a function of the lead time for Ireland and Denmark,
respectively. Each figure compares scores calculated
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Figure 8. Comparison of the CRPS calculated as a function of lead
time, as an average over stations in (a) Ireland (b) and in Denmark.
It compares CRPS values calculated against analysis, against obser-
vations, with and without consideration of observational uncertainty.

vs observations (mean), 90% confidence intervals, vs observa-
tions (no unc.), vs analysis. This figure is available in colour online

at wileyonlinelibrary.com/journal/met

against analysis (at the stations level), against observa-
tions, and when accounting for observational uncertainty.
In that last case, the mean of the 200 Monte Carlo sim-
ulations is shown, along with 90% confidence intervals.
The periodic nature of verification statistics discussed for
the RMSE results of Figure 5 is also observed here for
the case of the CRPS. These periodicities are directly
linked to the effect of the diurnal cycle, which could be
isolated if aiming at further refining the analysis. This
effect does not cancel out by pooling forecasts issued at
0000 and 1200 UTC owing to the asymmetrical shape of
the diurnal cycle, with a low increase during the day and
a sharper drop in the evening. This effect will also be
noticeable in other figures.

For both Denmark and Ireland, there is a very large
difference between CRPS scores calculated against anal-
ysis and against observations, even if the general trends
are similar. For Denmark and for lead times shorter than
2 days ahead, the CRPS values calculated against obser-
vations are even twice those calculated against analysis.
The mean CRPS calculated when accounting for obser-
vational uncertainty is significantly higher than if not.
It even falls outside of the 90% confidence intervals.
These results illustrate the discussion of Appendix A,
where it is explained that accounting for observational
uncertainty would generally inflate the values of cer-
tain error criteria e.g. MAE, RMSE and CRPS (but not
the bias). By deconstructing the distribution of RMSE
scores (see Equations (A.8)–(A.10)), it is shown that the
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Figure 9. Skill scores giving improvements with respect to climatology
over Denmark for the MAE, RMSE and CRPS scores, when accounting
for observational uncertainty. Both the mean and 90% confidence
intervals are represented, for each of the skill scores. SMAE,

SRME, SCRPS, 90% confidence intervals. This figure is
available in colour online at wileyonlinelibrary.com/journal/met

mean score obtained when accounting for observational
uncertainty is necessarily larger than if not. Figure 8(a,b)
illustrates the fact that such a result also holds for the
CRPS. The picture is different if looking at reliability
though. The general deviations from perfect reliability
for Denmark and Ireland are similar to those depicted in
Figure 6 for the ‘all stations’ case. The impact of obser-
vational uncertainty is so limited that the PIT diagrams
drawn for all 200 Monte Carlo simulations cannot really
be distinguished. It seems that perturbations of recorded
measurements globally do not significantly change the
counts serving to determine the reliability of ensemble
forecasts.

Finally, looking at some of the skill scores of Equa-
tion (10), calculated against time-varying climatologies,
while accounting for observational uncertainty, and based
on the MAE, RMSE and CRPS, plotted as a function
of the lead time (Figure 9). The results are depicted for
Denmark only (as the average for the eight stations), the
results for Ireland being fairly similar.

The general pattern is similar to what would be
observed if evaluating skill scores based on the analysis
as the reference for verification. The skill (with respect
to climatology) consistently decreases with the lead time,
with the small subtlety of the CRPS skill score being
stable for the first 36 h before starting to decrease.
This is certainly due to the lack of sufficient spread
of the ensembles at early lead times, since the quality
of the ensemble mean and median (that is, in terms of
MAE and RSME) is higher. As for the scores depicted
in Figure 8(a) and (b), the impact of observational
uncertainty (for the chosen value of σe) is limited
owing to spatial and temporal dampening effect. One
therefore expects that if calculating and analysing skill
scores or score improvements over the whole set of
European stations (as will be done in the following
section), observational uncertainty would not be an issue.
Interestingly, the skill scores remain positive over the
whole forecast length. Periodicity in their evolution from
day 4 and onwards can be observed. This can certainly be
explained by the fact that the time-varying climatologies

account for diurnal effects, making them more or less
difficult to outperform depending on the time of day for
further lead times. This effect is negligible for shorter
lead times since the skill of ECMWF ensemble forecasts
is highly significant while correctly capturing diurnal
effects.

4.2. Evaluation of the impact of the change of
horizontal resolution

The second application case relates to the assessment of
the impact of the recent change of horizontal resolution
(from 50 to 33 km) of the ECMWF ensemble prediction
system (see Section 2.2) on the skill of ensemble fore-
casts of near-surface wind speed. For that purpose two
versions of the ECMWF operational forecasting system
were running in parallel for a targeted experiment over
a period of almost 3 months. This experiment yielded
187 forecast series issued over a period starting from
3 October 2009 and ending on the 26 January 2010. Their
starting times are 0000 UTC and 1200 UTC. No fore-
casts are available between 4 and 23 November 2009.
This type of experiment allows assessing the improve-
ments brought by the new version of the system before
its actual start of operation. Such improvements are usu-
ally looked at with the analysis as a reference, and by
focusing on upper-air variables (e.g. Z500). Emphasis
is placed instead on a near-surface variable while see-
ing observations as the reference. It is foreseen that an
increase in horizontal resolution yields improvements in
forecast quality for near-surface winds.

Maybe the most important aspect is the improvement
of overall scores, calculated for all stations, hence giving
an overview of potential improvements over Europe.
They are given in Figure 10 as a function of lead time,
and expressed as a percentage of the scores obtained for
the coarser resolution. These improvements are based
on the bias, MAE, RMSE of point forecasts extracted
from the ensembles, as well as on the CRPS of ensemble
forecasts. Note that the bias improvement is in terms of
its magnitude and therefore calculated as a decrease in
its absolute value. As mentioned above, the potential
effect of observational uncertainty is not considered,
firstly owing to computational costs, and also since for
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Figure 10. Global improvement of scores over Europe. The left axis
scale is for the MAE, RMSE and CRPS scores, while the right one is
for the bias. MAE, RSME, CRPS, bias. This figure is available

in colour online at wileyonlinelibrary.com/journal/met

Copyright  2011 Royal Meteorological Society Meteorol. Appl. 19: 484–500 (2012)



496 P. Pinson and R. Hagedorn

an average over such a large number of stations it is
expected to be negligible.

All improvements are positive over the forecast range
considered, up to 6 days ahead. They are between 2 and
4% for the MAE and RMSE scores, while ranging from
3 to 6% for the CRPS. In view of the number of forecast
series and stations involved, these improvements can be
seen as noteworthy. They are even more substantial for
the bias, being up to 22% for 3 day ahead forecasts.
In parallel, the periodicity present for all scores (though
especially for the bias, which then affect other scores)
show that the change of resolution also impacted the
way local diurnal effects are captured by the models.
The maximum improvements for all scores are reached
in the early medium range, that is, between 2 and 3 days
ahead. Finally, it is interesting to see that improvements
in the CRPS are larger than improvements for the more
deterministic scores MAE and RMSE (since relying on
point forecasts only). A potential explanation can be that
the forecast quality improvements are not only related
to the better ability of ensemble forecasts to target
observations, and to a higher sharpness, but also originate
from a better calibration.

Consequently, that point was further investigated by
assessing the change in the reliability of the ensemble
forecasts induced by the increased spatial resolution. This
is done based on an alternative presentation of the PIT
diagrams of Figure 6, which focuses on the probabilistic
bias of ensemble forecasts (Pinson et al., 2007b; Marzban
et al., 2011). The probabilistic bias is mathematically
defined as the difference between observed and nominal
proportions of ensemble members. It corresponds visually
to the distance between the reliability curve and the
ideal diagonal case in the plots of Figure 6. Another
alternative would be to draw these PIT diagrams on
the probability paper in the spirit of Bröcker and Smith
(2007).

Example results are gathered in Figure 11, for the
example case of 72 h ahead ensemble forecasts. Qualita-
tively similar results were obtained for other lead times.
For a large number of stations, the situation is similar
to that shown for Amsterdam Schipol and Cork airports.
It consists of a substantial improvement of probabilis-
tic reliability for the finer resolution forecasts. For some
other stations e.g. Thyboron in Denmark, however, prob-
abilistic reliability actually seems to be worse for the
forecasts with finer horizontal resolution. This is also
the case for some of the stations where the worst reli-
ability statistics were observed in Section 4.1.2, such
as Cap Béar in the South of France. Such a result is
counter-intuitive since one would expect that more local
regimes e.g. coastal effects may be better captured by
increasing resolution. This may well also depend upon
the physics behind the models instead. When looking
at all stations altogether, the improvement in ensem-
ble forecast reliability seems to exist, though being
small.

5. Conclusions and discussion

The question of verifying ensemble forecasts against
observations has been the focus of this work, with
emphasis on the ECMWF ensemble prediction system
and the European region. The main motivation behind
this work is to argue for the proposal of verification
frameworks that permit to develop a critical view of the
quality of ensemble forecasts with respect to both analysis
and observations. While it is fair to verify forecasts
against the analysis since this one is made consistent in
space and in time with the forecasts, it is also crucial
to see how a forecasting system performs against actual
observations. This certainly matters to the forecast users
who would consider verification against observations as
informing about the real quality of the forecasting system.
These forecast users today have energy-related activities
(e.g. wind power producers, traders, transmission system
operators), are involved in airport traffic control or ship
routing, etc. This approach to verification is surely also
of interest to modellers and forecasters in order for them
to further identify and characterize weaknesses of their
forecasting approaches, for instance at the occasion of
a system upgrade like the increase in spatial resolution
considered here.

The disparity between verification versus observations
and model analysis originally comes from the difference
in spatial and temporal scales of these references. The
model analysis is obviously consistent with the spatial
and temporal scales of the model forecasts, since being
based on the same numerical model. Very local effects,
for example thermal or those induced by the topography,
are therefore not accounted for in the model analysis
while being present in the dynamics of the observations.
In addition here, the fact that the near-surface wind
observations on land are used in the production of
the model analysis may magnify these disparities. They
were observed to be substantial, their magnitude being
almost comparable to the score values themselves (for the
CRPS). It was also explained and shown that accounting
for the effect of observational uncertainty would make the
scores even worse. The study performed may be refined,
if more information about measurement uncertainty at
each and every station can be obtained. In the case
where spatial and temporal independence of rounding
and measurement errors is a safe assumption, the effect
on average scores calculated over large period of times
and areas is much less pronounced. It may then allow
formulating robust conclusions about the comparative
performance of competing forecasting approaches e.g. in
the case of different horizontal resolutions here. Further
work in that direction may allow issuing guidelines on the
treatment of observational uncertainty depending upon
the magnitude of measurement error, as well as the spatial
and temporal scales involved.

In parallel, it is while focusing on reliability that
the disparities between verification against analysis and
observations are the most patent. The smooth character-
istics of the analysis there contrast with the potentially
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Figure 11. Impact of the change of horizontal resolution on the reliability of 72 h ahead ensemble forecasts at stations. The diagrams depicts
the probabilistic bias of ensemble forecasts as a function of the nominal proportions of the ensemble members. (a) They are for all stations,
(b) Amsterdam Schipol airport, (c) Cork airport and (d) finally Thyboron station in Denmark. Coarser resolution, finer resolution. This figure

is available in colour online at wileyonlinelibrary.com/journal/met

strong fluctuations in observations, and consequently
yields totally different reliability statistics. The ensembles
tend to overestimate observed wind speeds on a general
basis. For certain sites with strong local regimes though,
one retrieves a more intuitive result such that ensembles
significantly underestimate wind speed. The impact of
observational uncertainty on the PIT diagrams was found
to be minimal. This may originate from the proposal of
employing a method of the observational probability type.
As discussed by Candille and Talagrand (2008), perturb-
ing ensembles in a manner consistent with observational
uncertainty may allow to better account for the impact
of observational uncertainty on reliability assessments. A
thorough investigation of these aspects should be per-
formed in the near future to further support results from
the reliability evaluation of ensemble forecasts of wind
speed against observations.

Besides its main message, this work has allowed a
number of practical conclusions to be obtained from
the application of this verification framework. The most
important ones relate to (1) the generally good quality of
ensemble forecasts of wind speed over Europe, (2) the
noteworthy improvement of scores brought by the change
of horizontal resolution in the system, and, (3) the scope
for further improvements of reliability and skill of wind
speed ensemble forecasts. Regarding that last point, let
us mention a comparable study on ensemble forecasting
of near-surface wind speed reported by Thorarinsdottir
and Gneiting (2011b) for the North-West Pacific region
of North America. Ensemble forecasts of 10 m wind
speed were there issued based on the University of
Washington Mesoscale Ensemble (UWME) system. For
an evaluation period covering the whole calendar year
of 2008, the CRPS of ensemble forecasts for lead
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times up to 2 days ahead were shown to improve
dramatically when employing appropriate recalibration
techniques. These results support the expectations such
that significant improvement in the reliability and overall
skill of ECMWF ensemble forecasts (verified against
observations) could be achieved with appropriate post-
processing techniques.

These various conclusions are of particular relevance
for various meteorological applications based on wind
speed forecasts. This is particularly valid for the wind
power application, for which it is known that forecast
accuracy greatly impacts the cost of managing wind
power production while being critical for the overall
electricity networks safety.
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Appendix A. On the distributions of some scores
when accounting for observational uncertainty.

In this appendix the distributions of some of the scores
that may be employed for wind speed forecast verifi-
cation are discussed. These distributions only account
for observational uncertainty. Sampling uncertainty is not
considered, though it could be fairly easily additionally
accounted for. It is explained how some of the score
distributions can be derived analytically, while it cannot
be the case for some others. This motivates the use of a
simulation-based approach to their estimation.

For simplicity, let us disregard the censoring of the
random variable X(t, s) in Equation (15). The error
e(t, s) around a reported measurement x(t, s) is given
by a sum of random variables:

e(t, s) = em(t, s) + er(t, s) (A.1)

which have been defined by Equations (13) and (14). It
then allows us expressing the forecast errors ε̃(t + k|t, s)
and ε(t + k|t, s) as the following random variables:

ε̃(t + k|t, s) = [x(t + k, s) − x̃(t + k|t, s)]
+ em(t + k, s) + er(t + k, s) (A.2)

ε(t + k|t, s) = [x(t + k, s) − x(t + k|t, s)]
+ em(t + k, s) + er(t + k, s) (A.3)

depending upon the point forecasts being defined as the
median or mean of ensemble forecasts.

One remembers that the observational and rounding
part of the error are independent. Spatial and/or tempo-
ral independence of the observational errors e(t + k, s)

is also assumed. This appears reasonable if having a
diversity of measuring systems geographically spread
and appropriately maintained. In that case, let us just
first recall that the average of N independent Gaus-
sian variables Yi ∼ N(0, σ 2) is a Gaussian variable such
that:

1

N

N∑
i=1

Yi ∼ N
(

0,
σ 2

N

)
(A.4)

In parallel, from the result exposed in Cramér (1946)
such that the sum of N independent Uniform variables
Zi ∼ U [0, 1] can be approximated (if N is large) by
a Gaussian variable, one would obtain in the present
case:

1

N

N∑
i=1

Zi ∼ N
(

0,
1

12N

)
(A.5)

Based on the above results, for a location s and only
evaluating scores over time (over Nf forecast series), the
bias for the lead time k is distributed as:

bias(k, s) ∼ N


 1

Nf

Nf∑
t=1

[x(t + k, s)

− x(t + k|t, s)],
1

12
+ σ 2

e

Nf


 (A.6)

In parallel in the case for which |x(t + k, s) − x̃(t +
k|t, s)| > |e(t + k, s)|, the distribution of the MAE score
accounting for observational uncertainty would similarly
write:

MAE(k, s) ∼ N


 1

Nf

Nf∑
t=1

|x(t + k, s)

−x̃(t + k|t, s)|,
1

12
+ σ 2

e

Nf


 (A.7)

The condition expressed above seldom holds in practice.
It could however be a first acceptable approximation if
the magnitude of observational uncertainty is globally far
smaller than that of the forecast error. If this assumption
cannot be made, deriving the analytical expression of the
MAE distribution becomes fairly technical owing to the
presence of absolute values.

For the case of the RMSE things also get complicated
due to the fact one then has to deal with products of
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random variables. After a little algebra, the distribution
of the RMSE can be written as:

RMSE(k, s) ∼ N


 1

Nf

Nf∑
t=1

[x(t + k, s) − x(t + k|t, s)]2,

2σε




1

12
+ σ 2

e

Nf





 + 1

Nf

Nf∑
t=1

e(t + k, s)2 (A.8)

where

σε =

 1

Nf − 1

Nf∑
t=1

[x(t + k, s) − x(t + k|t, s)]2




1
2

(A.9)

is the standard deviation of the forecast error of the mean
of the ensemble forecasts calculated based on reported
observations.

The last term in Equation (A.8) involves calculating
the mean of the squared distributions of observational
uncertainty, which would be difficult to derive analyti-
cally. One notes however that:

E


 1

Nf

Nf∑
t=1

e(t + k, s)2


 = E[e2] = σ 2

e > 0 (A.10)

which tells us that the mean RMSE when accounting for
observational uncertainty will in any case be larger than
that calculated if not accounting for such observational
uncertainty.

A similar problem arises when attempting to derive
the distribution for the CRPS. This is since for each time
step one then integrates the squared difference between
the probabilistic forecast and the step function defined by
the reported observation. Numerical approximation may
be possible and could be the topic of further research, but
globally, owing to the resulting complexity of calculation
of the scores distributions and to the necessity to consider
the potential censoring of observational error distributions
in Equation (A.1), since wind speed cannot be negative, a
simulation-based approach like that described in Section
3.3 may be seen as appropriate.
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