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ABSTRACT

The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel
ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power
forecasting, with details on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also
discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is
published along with this paper, in an effort to establish a benchmark data pool for the community.

© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Background

In a broad sense, energy forecasting covers a wide range
of forecasting problems in the utility industry, such as
generation forecasting, load forecasting, price forecasting,
demand response forecasting, and so on. While the deploy-
ment of smart grid technologies offers the utility indus-
try data of a higher granularity than ever before, it also
presents the challenge of obtaining business value from big
datasets. As a result, energy forecasting, one of the most
fundamental and classical problems, has found a new life
in today’s utility industry.

Although a significant amount of the literature has been
devoted to energy forecasting, most such studies are still at
the theoretical level, having little practical value. No formal
benchmarking process or data pool has been established in
the field, and new publications rarely reproduce the results
from past work done by other research groups for a com-
parison. Few academic programs in electrical engineering,
statistics or economics offer courses which concentrate on
energy forecasting. Given these facts, the IEEE Working
Group on Energy Forecasting (WGEF) organized the Global
Energy Forecasting Competition 2012 (GEFCom2012) in
order to (i) improve the forecasting practices of the utility
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industry, (ii) bring together state-of-the-art techniques for
energy forecasting, (iii) bridge the gap between academic
research and industry practice, (iv) promote analytics in
power and energy education, and (v) prepare the industry
to overcome the forecasting challenges posed by the smart
grid world. The competition included two tracks, hierar-
chical load forecasting and wind power forecasting. In this
paper, we introduce GEFCom2012 in detail, as well as pub-
lishing the complete competition dataset in an attempt to
establish a benchmarking data pool for energy forecasting.

We started planning the competition in late 2011; this
mainly involved identifying field interest, seeking spon-
sorships, and setting up the rules and schedule. Most pre-
vious forecasting competitions have used a centralized
communication approach, where the participants were
able communicate with the administrators but not with
each other. As a result, the participants did not know the
scores and ranks until the administrators calculated them
after the competition. The tourism competition (Athana-
sopoulos, Hyndman, Song, & Wu, 2011) took a different
approach, by using Kaggle’s platform, where both the par-
ticipants and administrators can share questions, ideas and
findings with each other on Kaggle’'s forum. As soon as
a team submits its entry, the score is calculated and dis-
played to the team automatically. If the score is the best
one presented by this team, the public leaderboard is re-
freshed to reflect the changes. Based on these key features,
GEFCom2012 selected Kaggle as the competition platform,
becoming the second forecasting competition to be hosted
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by Kaggle. The first Call for Participants was issued in May
2012. Prior to the launching date, we received registra-
tions from around 120 people from over 30 countries. The
competition was active on Kaggle for two months, from
8/31/2012 to 10/31/2012, and by the end of the competi-
tion, the data on each track had been downloaded by over
600 unique users.

The remainder of this paper is organized as follows:
Sections 2 and 3 introduce the two tracks, respectively,
in terms of the problem, the data, and a brief summary
of the methods and results. Section 4 discusses the issues
with and lessons learned from this competition. The pa-
per concludes in Section 5 with an outlook of potential fu-
ture work. We also acknowledge the key contributors at
the end.

2. Hierarchical load forecasting

2.1. Problem description

Short term load forecasting (STLF) provides load fore-
casts at hourly or sub hourly intervals for the following
one day to two weeks. The forecasts are used by all sec-
tors of the utility industry, from generation and transmis-
sion to distribution and retail. The reasons why businesses
need short term load forecasts include unit commitment,
T&D (transmission and distribution) operations and main-
tenance, and energy market activities. Many different sta-
tistical and artificial intelligence techniques have been
applied to STLF over the past three decades, such as multi-
ple linear regression (MLR), the Box-Jenkins approach, Ar-
tificial Neutral Networks, etc. A comprehensive review of
the literature is provided by Hong (2010).

In the hierarchical load forecasting track, the partici-
pants were required to backcast and forecast hourly loads
(in kW) for a US utility with 20 zones at both the zonal (20
series) and system (sum of the 20 zonal level series) levels,
with a total of 21 series. We provided the participants with
4.5 years of hourly load and temperature history data, with
eight non-consecutive weeks of load data removed. The
backcasting task is to predict the loads of these eight weeks
in the history, given actual temperatures, where the partic-
ipants are permitted to use the entire history to backcast
the loads. The forecasting task is to predict the loads for
the week immediately after the 4.5 years of history with-
out the actual temperatures or temperature forecasts
being given. This is designed to mimic a short term load
forecasting job, where the forecaster first builds a model
using historical data, then develops the forecasts for the
next few days. Traditionally, most STLF jobs are conducted
using system level data only. In this competition, we also
provided zonal level data, in order to further mimic a STLF
jobin the smart grid era, where the forecasters have access
to the smart meter information.

Of the thousands of papers in the load forecasting liter-
ature, most are devoted to a range of modeling techniques,
while many practical issues still have not received enough
attention. When designing the competition problem, we
wanted to highlight a few challenges, with the aim of en-
couraging new ideas on the following aspects:

(1) Data cleansing. The competition data are real-world
data, and include significant data quality issues due to
outages, load transfers and various other data errors.
An effective data cleansing method would be expected
to enhance the forecasting accuracy. This challenge
also applies to the wind forecasting track.

(2) Hierarchical forecasting. Different zones have differ-
ent electricity consumption behaviors. For instance,
Zone 9 represents an industrial customer load, which
is largely not weather sensitive. In order to utilize
the hierarchical information fully, the participants may
choose a bottom-up, middle-out or top-down ap-
proach. In addition, to avoid the possibility of some
participants using additional external data, we did not
specify the locations of the zones and weather sta-
tions. Therefore, another challenge is to decide which
weather station(s) should be associated with each
zone. In practice, although the forecasters do have ac-
cess to the geographical information, they still need
to decide which weather station(s) should be used for
each zone and how to use them.

(3) Special days forecasting. The loads of holidays and
the surrounding days are usually less predictable than
those of regular days, due to the limited sample sizes
and the variability of the pattern over time. When se-
lecting the weeks to be backcasted and forecasted, we
included holidays in some of the weeks.

(4) Temperature forecasting. In an operational environ-
ment, some utilities purchase commercial weather
forecasts, while others have their own meteorologists
and develop in-house weather forecasts. In this com-
petition, we did not release the temperature forecasts
for the week to be forecasted. If the participants de-
cided to use temperature variables, they had to develop
their own temperature forecasts for the week to be
forecasted.

Ensemble forecasting. The participants were not re-

stricted to any specific techniques or tools for this com-

petition. We hoped to see applications of ensemble
forecasting methods in both tracks of GEFCom2012.

(6) Integration. A load forecasting job covers a few differ-
ent tasks, including the ones listed above. The inte-
gration of these tasks is another important task. For
instance, temperature forecasts, which have low er-
rors overall, but high errors during peak load periods,
may not result in useful load forecasts. In this case, a
good integration strategy should consider the accuracy
of the temperature forecasts when applying load fore-
casting models. From the reports we received, all of
them performed the two tasks (temperature forecast-
ing and load forecasting) separately, and then simply
fed the temperature forecasts to the load forecasting
model in order to generate the load forecasts.

—
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~

Other than the standard Kaggle rules, we set up the
following two rules:

(1) The participants are not allowed to use more weather,
load or economy data than has been provided.

(2) At each hour, the sum of the zonal level loads should
be equal to the system level load.

The error score in the hierarchical load forecasting track
is the Weighted Root Mean Square Error (WRMSE), given
by:
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Zw; (A — Pr)?
WRMSE — 1 l( 1 l) ,
Ziw;
where A; and P; are the actual and predicted values of
observation i, while the weight for this observation is
denoted as w;, and specified in Table 1.

Table 1

Weight assignment.
Week(s) Weight
Forecasted week at system level 160
Forecasted week at zonal level 8
Backcasted week at system level 20
Backcasted week at zonal level 1

2.2. Data description

The complete dataset can be divided roughly into two
parts, based on the different purposes of usage: a training
set for model identification and parameter estimation, and
an evaluation set for calculating scores. Kaggle selects a
random 25% of the evaluation data as the validation set,
for calculating public scores, and the remaining 75% forms
the test set for calculating private scores. The public scores
can be seen by all of the participants and competition
administrators throughout the competition, while the
private scores are published at the end of the competition.
The validation and test data were not released to the
participants during the competition; now, however, we
are publishing the complete dataset along with this paper,
including five spreadsheets in Comma-Separated Values
(CSV) format for the hierarchical load forecasting track:

(1) Load_history. Hourly load history of 20 zones, from the
1st hour of 2004/1/1 to the 6th hour of 2008/6/30, with
the following 8 weeks set to be missing for backcasting
purposes: 2005/3/6-2005/3/12,2005/6/20-2005/6/26,
2005/9/10-2005/9/16, 2005/12/25-2005/12/31,
2006/2/13-2006/2/19, 2006/5/25-2006/5/31,
2006/8/2-2006/8/8, and 2006/11/22-2006/11/28.

(2) Temperature_history. The hourly temperature history
of 11 weather stations, from the 1st hour of 2004/1/1
to the 6th hour of 2008/6/30.

(3) Holiday_list. A list of US Federal holidays from
2004/1/1 to 2008/7/7.

(4) Load_benchmark. Predicted hourly loads from
2008/7/1 to 2008/7/7. The weight column shows the
weights assigned to different weeks and levels.

(5) Load_solution. Actual hourly loads from 2008/7/1 to
2008/7/7. The format is similar to “Load_benchmark”.
The indicator column shows the way in which we split
the solution data in order to calculate the scores for
public and private leaderboards.

2.3. Summary of methods and results

The benchmark is created based on a MLR model with
anintercept and the following effects, as discussed by Hong
(2010):

(1) main effects: Trend (an increasing normal number as-
signed to each observation in chronological order),
T (temperature of the current hour), T?, T3, Month
(a class variable, with 12 levels representing the 12
months of a year), Weekday (a class variable, with
seven levels representing the seven days of a week),
and Hour (a class variable, with 24 levels representing
the 24 h of a day).

(2) cross effects (interactions): Hour*Weekday, T*Month,
T2*Month, T3>*Month, T*Hour, T?>*Hour and T>*Hour.

The parameters are estimated using the 4.5 years of his-
tory less the 8 backcasted weeks. For each zone, we build
11 models, one per weather station. The weather station
with the best fit is then assigned to the corresponding zone.
We predict the 8 weeks of loads using the same model with
actual temperatures from the selected weather station. We
forecast the last week of loads using the same model with
forecasted temperatures, where the temperature forecast
at each hour is the average temperature at the same date
and hour over the past four years.

Table 2 summarizes the methods used by selected en-
tries based on their reports. We also calculate the WRMSEs
of the 8 backcasted weeks, 7/1/2008, the entire forecasted
week, the validation data, the test data, and all data, as is
shown in Table 3, together with the number of submissions
each team made.

3. Wind power forecasting

3.1. Problem description

Given the ever-increasing deployment of wind power
capacities as a viable renewable energy solution in the
electricity mix, a number of decision-making problems in
connection with power system operations and a participa-
tion in electricity markets require some form of forecasts as
input. The development of methods for wind power fore-
casting can be traced back to the work of Brown, Katz, and
Murphy (1984), who used simple time series models for
wind forecasting at a site of interest, then converted the
resulting wind forecasts to electric power generation by
passing them through a theoretical manufacturer’s power
curve. Since then, three decades of research and devel-
opment have led to the proposal of a wide range of ap-
proaches, with a clear intensification of these efforts since
the beginning of the new millennium, as wind power ca-
pacities began spreading round the world to a greater ex-
tent (previously, they were concentrated mainly in the
European region). A set of reviews of the state of the art
in wind power forecasting exists, to which the readers are
referred for an exhaustive coverage of the alternative ap-
proaches. The most complete of these reviews are those
by Giebel, Brownsword, Kariniotakis, Denhard, and Draxl
(2011) and Monteiro et al. (2009).

In the wind power forecasting track, the participants
were required to forecast the hourly wind power gener-
ation for seven wind farms. We provided three years of
historical data, including both wind power generation and
wind forecasts. The error score for the wind power fore-
casting track is the Root Mean Square Error (RMSE). As with
the hierarchical load forecasting track, in addition to new
techniques, we also anticipated some novel ideas in rela-
tion to data cleansing, ensemble forecasting and integra-
tion.
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Table 2
Summary of methods in the hierarchical load forecasting track.
Kaggle ID Techniques Data cleansing Weather station Holiday effect Temperature Ensemble
selection forecast forecasting
CountingLab MLR, singular value  Yes 11 models Yes Using the average Combine
decomposition corresponding to temperature of the forecasts
the 11 weather same hour from from the
stations were built similar days in the 5-best fitted
previous years models
James Lloyd Gradient boosting Not discussed Temperatures from No Estimating the Combine
machines, Gaussian all stations were smooth trend and forecasts
process regression, used daily periodicity of from three
MLR temperature models
separately
Tololo Semi-parametric Not discussed A stepwise Yes Not discussed No
regression, with procedure was
B-splines or cubic used for each zone
regression splines to select the station
as smooth function that minimized
forecasting error on
a test set
TinTin Nonparametric Yes A testing week (the Yes Using the average No
additive models last week of the temperatures at the
with P-spline, available data) was same period across
component-wise used to determine the previous years
gradient boosting the station for each
zone
Quadrivio MLR Yes Load was fitted to No Averaging the No
temperature at temperatures
each station during the same
separately, and the days from previous
best three were years
used for each zone
Chaotic Random forest, Not discussed Not discussed Yes Not discussed Combine
Experiments geometric forecasts
Brownian motion from three
models models
Andrew L Generalized Not discussed The first No Using a generalized No
additive model, component of PCA additive model
spline, PCA was used as
temperature
variable for each
hour
NHH Wavelet Not discussed Temperatures from No Not discussed No
decomposition, all stations were
mutual considered as input
information, neural candidate
networks
TheJellyTeam Neural networks Not discussed Temperatures from Yes Using the mean of No
all stations were the same period
considered from the previous
years
Shooters Touch Regression models No Weighted average Yes Not discussed No
and neural network of up to 3 stations,
selected based on
the fitted result for
each station
Tao’s Vanilla MLR No Best fit from the 11 No Average of the No
Benchmark weather stations same date/time of

the past four years

3.2. Data description

In the wind power forecasting track, we used about
three years of data on seven wind farms from the same
region of the world as a basis for the design of the com-
petition problem. The data consist of historical power
measurements for these wind farms, as well as meteoro-
logical forecasts of the wind components at the levels of
these wind farms.

The historical power measurements have an hourly
temporal resolution, with a high level of availability over
that period and for all of the wind farms. They were nor-
malized by the respective nominal capacities of the wind
farms, in order to obtain normalized power values between
zero and one, thus allowing the original characteristics of
the wind farms to be masked. This also enables a scale-free
comparison of the forecasting results for the various wind
farms.
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Table 3

Error statistics (WRMSEs) of selected entries in the hierarchical load forecasting track.
Kaggle ID Backcast 1 day ahead 1 week ahead Validation Test All Submissions
CountingLab 61890 72504 73900 70700 67215 68 160 33
James Lloyd 58 406 59273 82346 71164 71467 71387 52
Tololo (EDF) 46756 52136 82776 52669 71780 67223 39
TinTin 50926 112410 86590 64352 73307 71033 42
Quadrivio 71663 63186 81645 72825 78196 76816 29
Chaotic Experiments 78238 50967 89783 93045 80763 84209 19
Andrew L 68638 133005 106272 101069 843850 89456 3
NHH 65360 121818 109850 93641 89174 90385 18
TheJellyTeam 72197 120752 101066 83916 89202 87826 12
Tao’s Vanilla Benchmark 69557 148352 123758 112547 95588 100385 1

Meteorological forecasts were gathered for the zonal (u)
and meridional (v) components of surface winds at 10 m
above ground level. They were extracted from the archive
of the European Centre for Medium-range Weather Fore-
casts (ECMWF). ECMWEF issues high-resolution determin-
istic forecasts twice a day at OOUTC and 12UTC, with a
temporal resolution of between 3 h and 10 days ahead. In
order to match the hourly resolution of the power mea-
surements, also required by most forecast applications, the
forecasts were interpolated using cubic splines, so as to
have an hourly resolution. Only the first 48 h of each fore-
cast series were collated in the dataset. Note that these
meteorological predictions were also given in the form of
wind speeds and directions for those who preferred to use
them in such a format.

A number of 48-hour periods with missing power ob-
servations are defined for validation and testing purposes.
The first one is from 1 January 2011 at 01:00 to 3 January
2011 at 00:00. The second one is from 4 January 2011 at
13:00 to 6 January 2011 at 12:00. Note that, in order to
be consistent, only the meteorological forecasts that were
relevant for the periods with missing power data, which
would be available in practice, were given. Each of these
two periods then repeats itself every 7 days until the end of
the dataset. For instance, the first repetition of the first pe-
riod is 8 January 2011 at 01:00 to 10 January 2011 at 00:00.
The second repetition of the first period is 15 January 2011
at 01:00 to 17 January 2011 at 00:00. In between periods
with missing data, power observations are available for up-
dating the models if necessary.

Along with this paper, we publish the complete dataset
in the form of 11 spreadsheets (in comma-separated values
(CSV) format) for the wind power forecasting track:

(1) WindPower_train. Hourly wind power observations
for the seven wind farms from 2009/7/1 to 2010/12/31
(i.e., the training set), without any holes, except
potentially as a result of data quality issues.

(2) WindPower_eval. Hourly wind power observations for
the seven wind farms from 2011/1/1 to 2012/6/28
(i.e., the evaluation set), with holes for the periods for
which the forecasts are expected to be produced, as
mentioned above.

(3) WindForecasts_wf1, ..., WindForecasts_wf7. Wind
forecasts for the seven wind farms and for the same
period as for the measurements. Forecasts are issued
every 12 h, with a forecast horizon of 48 h and an
hourly temporal resolution.

(4) WindPower_benchmark. Predicted hourly wind power
at the seven wind farms for the holes in the evaluation
set.

(5) WindPower_solution. Actual wind power measure-
ments for the holes defined in the evaluation set. The
format is similar to “WindPower_benchmark”. The in-
dicator column shows how we split the solution data
when calculating the scores for the public and private
leaderboards.

3.3. Summary of methods and results

The persistence method, as one of the simplest ap-
proaches to issuing wind power forecasts for these wind
farms, is used here as a benchmark. This forecasting
approach is based on a random walk model, where the
forecasted value is defined as the most recent available ob-
servation. The methods used by nine selected teams to-
gether are summarized in Table 4. We also show the error
statistics of these nine teams and the persistence bench-
mark in Table 5, together with the number of submissions
made by each team. The error statistics (in RMSEs) are bro-
ken down by wind farms, validation data, test data and all
data.

4. Discussion

Fig. 1 shows the cumulative number of unique IDs that
downloaded the data from each track from the beginning
of the competition. The vertical dash-dot line indicates the
end of the competition, at which point there were about
600 unique IDs from each track. After the competition,
the data were still being downloaded by the Kaggle users.
Using Kaggle’s platform, the competition attracted many
more participants than expected, many of whom were very
experienced data scientists outside the utility industry.
While the diverse range of backgrounds of the participants
introduces a lot of new ideas into the energy forecasting
field, some of the participants are not interested in joining
the post-competition activities, such as submitting reports,
presenting their work at conferences, and writing scientific
papers.

Kaggle provides a forum where participants and com-
petition administrators can post questions, answers and
findings. This feature allows the participants to help each
other in the public domain. It also allows the administra-
tors to address issues as soon as they are raised. As the
competition proceeds, there is rich body of information in
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Table 4
Summary of methods used in the wind power forecasting track.
Kaggle ID Technique Data cleansing Ensemble
forecasting
Leustagos Linear combination of nine models (regression from meteorological No Yes
forecasts to power, inter-wind farm dependencies, autoregressive
components, with different model structures)
DuckTile Data cleaning, and then local linear regression with wind forecasts, day and  Yes No
time of the year as inputs
MZ Linear models estimated with regularized least squares with radial basis No No
functions spanning the space of wind forecasts, and autoregressive features
Propeller Linear regression from wind forecasts to power measurements, then a Yes No
nonlinear correction with gradient boosting machines (with optimal inputs
identified through cross-validation)
Duehee Lee Plain combination of a large number of neural networks (52) and Gaussian No Yes
process models (5), mapping all input data to power measurements
MTU EE5260 Linear regression and neural networks for the conversion of meteorological ~ No No
forecasts to power
SunWind Plain combination of a power curve model, an autoregressive model, alocal  No Yes
linear regression model, and a support vector machine model
ymzsmsd Sparse Bayesian learning with input measurements and forecasts from all No No
wind farms
4138 Kalchas Regularized kernel-based regression for the conversion of meteorological No No
forecasts to power
Benchmark Persistence No No
Table 5
Error statistics (RMSEs) of selected entries in the wind power forecasting track.
Kaggle ID WF1 WF2 WF3 WF4 WF5 WF6  WF7  Validation Test All Submissions
Leustagos 0.145 0.138 0.168 0.144 0.158 0.133 0.140 0.146 0.146 0.146 37
DuckTile 0.143 0.145 0.172 0.145 0.165 0.137 0.146 0.149 0.147 0.148 82
Mz 0.141 0.151 0.174 0.145 0.167 0.141 0.145 0.148 0.149 0.149 19
Propeller 0.144 0.153 0.177 0.147 0.175 0.141 0.147 0.148 0.153 0.152 64
Duehee Lee 0.157 0.144 0.176 0.160 0.169 0.154 0.148 0.155 0.155 0.155 10
MTU EE5260 forecast team 0.161 0.172 0.193 0.162 0.192 0.156 0.160 0.166 0.169 0.168 20
SunWind 0.174 0.177 0.193 0.176 0.179 0.157 0.162 0.173 0.171 0.172 26
ymzsmsd 0.163 0.186 0200 0.164 0.192 0.162 0.167 0.173 0.174 0.174 24
4138 Kalchas 0.180 0.179 0.197 0.175 0.200 0.160 0.165 0.179 0.176  0.177 3
Benchmark 0302 0338 0373 0.364 0.388 0.341 0.361 0.361 0.353 0355 1
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Fig. 1. Number of unique users who downloaded competition data from the two tracks during the first 3 months.

the forum, which requires the new participants to review
the old posts. Some participants, chiefly new Kaggle users,
may not review the previous posts, which can lead to vio-
lations of some competition rules. In order to avoid similar
situations in the future, we would recommend that compe-
tition administrators increase the participants’ awareness
of important posts in the forum discussion.

In the hierarchical load forecasting track, in order to
maintain the load level of each zone, we gave the actual
loads instead of standardized values, which opens the

possibility that some participants may be able to guess
the location of the utility, and use external information to
win the competition. To avoid this situation, we required
the teams to submit reports and codes, which were
then evaluated by the award committee of GEFCom2012.
Ultimately, two teams were disqualified due to their use
of actual temperature data in the forecasted week. In the
wind power forecasting track, the data were standardized,
so that the participants could not find the solution by
guessing where the wind farms are.
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In real world short term load or wind forecasting jobs,
forecasters have to develop their forecasts on a daily ba-
sis using newly available information. In other words, the
forecast origin moves every day. In order to implement this
feature in a competition, we would have to host multi-
ple phases, with new data being released at each phase.
While each phase might take a couple of weeks to com-
plete, the entire competition would take much longer than
two months. Implementing this feature would also require
the participants to be fully engaged throughout the compe-
tition. This is more achievable as an in-class competition
than an inaugural international competition, and there-
fore, we did not set up this feature when designing
GEFCom2012. As an amendment, we leave a few missing
periods in the history for prediction. Since we cannot really
determine whether the participants are using data after a
missing period when predicting this missing period, we did
not restrict the participants to using only the data prior to
each missing period being predicted. This setup may mean
that regression or some other data mining techniques have
an advantage over some time series forecasting techniques
such as ARIMA, which may be part of the reason why we
did not receive any reports using the Box-Jenkins approach
in the hierarchical load forecasting track.

By nature, forecasting is a stochastic problem. In the
utility industry, some applications in some utilities require
probabilistic forecasts in the form of predictive densities
or scenarios as inputs, such as annual peak demand
forecasting for system planning (Hyndman & Fan, 2009),
systems reserve quantification (Matos & Bessa, 2011),
unit commitment (Tuohy, Meibom, Denny, & O’Malley,
2009), and trading of wind power generation (Pinson,
Chevallier, & Kariniotakis, 2007). On the other hand, a
lot of decision-making processes are set to take point
forecasts only. The majority of the energy forecasting
literature has considered point forecasts. In GEFCom2012,
in order to keep the competition problem and error scores
straightforward, we let the participants develop point
forecasts rather than probabilistic ones.

5. Conclusion

GEFCom2012 includes two tracks: hierarchical load
forecasting and wind power forecasting. The competition
attracted hundreds of participants worldwide. In this pa-
per, we have introduced GEFCom2012 from several as-
pects, including the background, problem, data, methods,
results, and lessons learned. We have also published the
complete dataset from each track in an attempt to establish
a data pool for energy forecasting. In the future, we would
like to expand the competition by adding more tracks, such
as long term load forecasting, price forecasting and solar
generation forecasting. We would also like to explore other
features, such as a rolling forecast origin, comprehensive
error scores, and probabilistic forecasts.
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