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Wind Energy: Forecasting Challenges for
Its Operational Management
Pierre Pinson

Abstract. Renewable energy sources, especially wind energy, are to play
a larger role in providing electricity to industrial and domestic consumers.
This is already the case today for a number of European countries, closely
followed by the US and high growth countries, for example, Brazil, India
and China. There exist a number of technological, environmental and politi-
cal challenges linked to supplementing existing electricity generation capac-
ities with wind energy. Here, mathematicians and statisticians could make a
substantial contribution at the interface of meteorology and decision-making,
in connection with the generation of forecasts tailored to the various opera-
tional decision problems involved. Indeed, while wind energy may be seen
as an environmentally friendly source of energy, full benefits from its usage
can only be obtained if one is able to accommodate its variability and limited
predictability. Based on a short presentation of its physical basics, the impor-
tance of considering wind power generation as a stochastic process is moti-
vated. After describing representative operational decision-making problems
for both market participants and system operators, it is underlined that fore-
casts should be issued in a probabilistic framework. Even though, eventually,
the forecaster may only communicate single-valued predictions. The existing
approaches to wind power forecasting are subsequently described, with focus
on single-valued predictions, predictive marginal densities and space–time
trajectories. Upcoming challenges related to generating improved and new
types of forecasts, as well as their verification and value to forecast users, are
finally discussed.

Key words and phrases: Decision-making, electricity markets, forecast ver-
ification, Gaussian copula, linear and nonlinear regression, quantile regres-
sion, power systems operations, parametric and nonparametric predictive
densities, renewable energy, space–time trajectories, stochastic optimization.

1. INTRODUCTION

Increased concerns related to climate evolution and
energetic independence have supported the necessary
technological and regulatory developments to broaden
the energy mix all around the world, with a partic-
ular emphasis placed on renewable energy sources
(Letcher, 2008). Among the various candidates, wind
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energy showed the most rapid and consistent deploy-
ment of power generating capacities. By June 2012,
the cumulative installed wind power capacity world-
wide had reached 254 GW, and it is still increasing at
a rapid pace [WWEA (World Wind Energy Associa-
tion), 2012]. Besides all the mathematical and statis-
tical challenges in the development of turbines (aero-
dynamics, materials and structures, etc.), and in the
deployment of wind energy capacities (e.g., wind re-
source estimation, logistics optimization), those relat-
ing to power systems operations and electricity markets
have attracted substantial and growing interest over the
last 3 decades. This is since, in contrast with conven-
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tional generation means, wind power generation can-
not be scheduled at will, except maybe by curtailing
the output of the wind turbines. Wind power is pro-
duced as the wind blows: the dynamics of wind power
generation are the result of a nonlinear conversion and
filtering of wind dynamics through the turbines’ ro-
tor and electric generator. It makes that the traditional
operational methods used for conventional generators
cannot directly apply to wind energy. For that reason,
of the various renewable energy sources, wind, solar,
wave and tidal energy are often referred to as stochas-
tic power generation, owing to their inherent variability
and uncertainty.

Wind energy is by far the renewable energy source
that has attracted the most attention of researchers and
practitioners. It is clear, however, that a number of op-
erational and economic issues will be the same for the
other forms of renewable energy sources. In practice,
such challenges require the modeling and forecasting
of the wind power generation process at various tem-
poral and spatial scales, to be subsequently used as in-
put to decision-making. Our objective here is to give
an overview of these forecasts and of challenges stem-
ming from their generation and verification. It is to
be noted that forecasting is only one aspect of better
accommodating renewable energy generation, such as
that from the wind into existing power systems and
electricity markets. For instance, from a more gen-
eral perspective of investment, regulation and policy,
even the way wind energy should be compared to con-
ventional technologies challenges traditional practice
(Joskow, 2011). Similarly, when assessing resource ad-
equacy (i.e., making sure that the overall generating ca-
pacity is sufficient to meet demand at all times) and
competition in electricity markets, it is argued that the
impact of renewable energy sources on market dynam-
ics ought to be accounted for (Wolak, 2013).

The most classical statistical problem involving
wind energy is that of resource assessment, that is, fo-
cusing on unconditional distributions of wind speed
and the corresponding potential power generation. In
practice, this is based on estimating marginal wind dis-
tributions given a (potentially limited) sample of wind
measurements on site and/or in the vicinity of the sites
of interest. Even though these marginal distributions
are highly valuable for the optimal siting and design
of wind farms, they have nearly no value for the op-
erational management of wind power generation: they
give an unconditional picture only, hence, they do not
give information on the volatile and conditional char-
acteristics of wind and power dynamics at the rele-
vant spatial and temporal scales. A succession of two

papers published in the Journal of Applied Meteorol-
ogy in 1984 is a symbol of the transition from mod-
els for limiting distributions only to dynamic models.
There, the seminal work of Conradsen, Nielsen and
Prahm (1984) on fitting Weibull distributions to sam-
ples of wind speed measurements of various lengths
is literally followed by that of Brown, Katz and Mur-
phy (1984), which certainly was the first paper looking
at dynamic (linear time-series) models for the predic-
tion of wind speed and corresponding power gener-
ation. Not so long after, Haslett and Raftery (1989)
bridged the gap between the two by focusing on the
dynamic spatio-temporal structure of wind speed over
Ireland and its implications for the wind energy re-
source. Since then, ample research was performed on
stochastic dynamic models for the prediction of wind
power generation at lead times between a few min-
utes and up to several days ahead, accounting or not
for spatial effects. For an exhaustive review of the
state of the art in that field, the reader is referred to
Giebel et al. (2011), while a solid introduction to the
physical concepts involved can be found in Lange and
Focken (2006). Our state of knowledge today is that
optimal decision-making involving wind power gen-
eration calls for predictions generated in a probabilis-
tic framework. These should inform of uncertainties
through predictive marginal densities, but also poten-
tially of spatio-temporal dependencies through trajec-
tories, which are known as scenarios in the operations
research literature. As a very recent example of how
forecasts in their most simple deterministic form, or as
space–time trajectories, may be used as input to oper-
ational problems, the reader is referred to Papavasiliou
and Oren (2013), focusing on a unit commitment prob-
lem (i.e., the least-cost dispatch of available generation
units) under transmission network constraints.

Wind power generation is first introduced in Sec-
tion 2 as a stochastic process observed at discrete
points in space and in time. Subsequently, in order to
underline the importance of probabilistic forecasts (in
contrast to deterministic, single-valued forecasts), Sec-
tion 3 describes representative decision problems in-
volving wind energy in power systems operations and
its participation in liberalized electricity markets. Sec-
tion 4 then covers the various types of forecasts used
today and to be employed in the future for optimal
decision-making. The paper ends in Section 5 with a
discussion that covers (i) the current and foreseen chal-
lenges for forecast improvement, (ii) the proposal of
thorough and appropriate verification frameworks, and
(iii) the importance of bridging the gap between fore-
cast quality and value.
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2. WIND POWER GENERATION AS A STOCHASTIC
PROCESS

Some of the early works on dynamic modeling and
forecasting of wind power generation were cast in
a physical deterministic framework, as, for instance,
Landberg and Watson (1994) on local wind conditions,
and similarly for the follow-up study (Landberg, 1999)
on power generation. Today however, there is a broad
consensus that wind power generation should be mod-
eled as a stochastic process, whatever the spatial and
temporal scales involved. A part of uncertainty comes
from our lack of knowledge of all the physical pro-
cesses involved, combined to our limited ability to ac-
count for all of them in mathematical and statistical
models. There may also be some inherent uncertainty
in the data generating process. The choice for appro-
priate distributions may not be straightforward.

The physical basics of wind power generation are
presented in Section 2.1. Definitions and notation are
introduced subsequently in Section 2.2. Finally, the
Western Denmark data set is described in Section 2.3.
It will be used for illustrating the different forms of
forecasts that will be described throughout the paper.

2.1 Physical Basics of Wind Power Generation

The generation of electric power from the wind re-
lies on atmospheric processes. The power output of a
single wind turbine is a direct function of the strength
of the wind over the rotor swept area. Coarsely simpli-
fying the meteorological aspects involved, winds orig-
inate from the movement of air masses from high to
low pressure areas: the larger the difference in pressure,
the stronger the resulting winds. On top of that come
the boundary layer effects, complexifying wind behav-
ior due to natural obstacles, friction effects, the nature
of the surface itself, temperature gradients, etc. The
boundary layer is formally defined as the lower part
of the atmosphere where wind speed is affected by the
surface. The resulting level of complexity makes that
the characteristic features of wind variability may be
better described in the frequency domain (Mur Amada
and Bayod Rújula, 2010). Our state of the knowledge
on wind dynamics in the boundary layer, and, more
generally, mesoscale meteorology, is today still lim-
ited: resulting models of wind characteristics have sys-
tematic and random errors.

Wind speed exhibits fluctuations over a wide range
of frequencies. Those in the order of days are induced
by the movement of synoptic weather patterns, that
is, by general changes in weather situations. These

are modeled within global weather models such as
those run at the European Centre for Medium-range
Weather Forecasts (ECMWF, in the UK) and at the
National Centers for Environmental Prediction (NCEP,
in the US), among others. Those models encompass
well-known dynamics of state variables for the global
weather, while wind components are a by-product de-
rived from the evolution of these state variables. In
terms of forecasting, several directions are thought of
today for improving the estimation of the initial state
of the Atmosphere and also to better account for poten-
tial uncertainties in the model and its parametrization
(Palmer, 2012).

Fluctuations referred to as diurnal and semi-diurnal
cycles (with periods of 24 and 12 hours) are mainly in-
duced by thermal exchanges between the surface (land
or sea) and the Atmosphere. Their magnitude varies as
a function of local climate and seasons. At these time
scales, the phenomena involved are fairly well known,
though certain aspects like their impact on wind pro-
files (i.e., the way wind evolves with height) still are
a subject of active research, for example, Peña Diaz,
Gryning and Mann (2010). At frequencies in the order
of minutes to hours, local effects potentially including
the presence of cumulus clouds, convective cells, pre-
cipitation, waves (for offshore sites), etc. are the drivers
of wind speed variations. Here, the physical and math-
ematical aspects may become more challenging ow-
ing to the combination of a substantial number of in-
teracting physical processes. Higher frequencies (sec-
onds to a few minutes, not considered in the present
paper) see a dominance of turbulence effects, which
are a particular concern for the structural design of tur-
bines, fatigues studies and, potentially, control. Finally,
at the other end of the spectrum, very low frequencies
also seen as long-term wind trends, have attracted in-
creased attention recently since human activity and cli-
mate evolution may potentially impact surface winds
at these time scales; see Vautard et al. (2010), for in-
stance. In the following, emphasis is placed on time
scales in the order of minutes to days, where exist-
ing meteorological challenges include the better under-
standing of the physical processes and their interaction,
as well as their modeling.

Wind speed is the meteorological variable of most
relevance to power generation. The process of the con-
version of wind to electric power for a single wind tur-
bine is described by its power curve. It is also influ-
enced by air density (being a function of temperature,
pressure and humidity) to a minor extent. Power curves
for different turbines roughly have the same shape for
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FIG. 1. Power curve of the Vestas V44 (600 kW) wind turbines
installed at the Klim wind farm, for an air density of 1.225 kg/m3.

all manufacturers and turbine types. In order to dis-
cuss and illustrate what manufacturer’s (i.e., theoreti-
cal) and observed power curves may look like, let us
take the example of the Klim wind farm in Western
Denmark. It is composed of 35 Vestas V44 wind tur-
bines having a capacity of 600 kW each, yielding a
nominal capacity of 21 MW. The nominal capacity of
a wind turbine or of a wind farm is the power out-
put it generates within the range of wind conditions
over which it was designed to operate, ideally. Fig-
ure 1 depicts the power curve for a V44 turbine. The
power production is null below the cut-in wind speed
(4 m/s), then sharply augments between the cut-in and
rated wind speeds (16 m/s). At rated speed, it reaches
its nominal power Pn. The power production is nearly
constant between rated and cut-off wind speeds (here
25 m/s). At cut-off speed, the turbine stops for security
reasons. This power curve example is for a fairly old
wind turbine model, since this wind farm started op-
erating in 1996. Various technological improvements
have been permitted to lower cut-in and rated wind
speeds, which are today between 2 and 4 m/s for the
former one and between 12 and 15 m/s for the latter
one. Moreover, cut-off wind speeds may reach up to
34 m/s. In a general manner there may also be a differ-
ence between the maximum (peak) and nominal power
values (up to 10–20%). Most importantly, the nominal
capacity of today’s wind turbines is up to 7–8 MW.

A power curve such as in Figure 1 is a theoretical
one, since it gives the power output of a single turbine
exposed to ideal wind conditions as if in a wind tunnel
(i.e., not altered by obstacles, without turbulence and
for the turbine always perfectly facing the wind), for a
given air density. In practice, however, wind turbines
are almost always gathered in wind farms with poten-
tially a mix of different turbine types. The combination

of these individual power curves will not be the same
as that of any of the individual turbine types. Besides,
depending upon the prevailing wind direction, some of
the turbines within a wind farm may mask the others—
the so-called shadowing effect, therefore reducing the
wind seen by these turbines. This combines with addi-
tional surrounding topographic and orographic effects
(i.e., hills, forest, etc.), making that the various tur-
bines within a wind farm are constantly seeing differ-
ent wind conditions, which also are different from the
free-stream wind at a reasonable distance away from
the wind farm. Consequently, the resulting wind farm
power curve has features far more complex than the
theoretical power curves provided by the manufactur-
ers for individual wind turbines.

Figure 2 depicts the empirical power curve of the
Klim wind farm based on hourly wind speed (at 10 m
above ground level) and power measurements collected
over the first 6 months of 2002. For both types of mea-
surements, a record for a given point in time corre-
sponds to the average value over the preceding hour.
Measurement errors in power and wind speed obser-
vations certainly contribute to the scatter of data ob-
served. However, the main reason for that scatter is the
impact of other meteorological variables, as, for exam-
ple, wind direction and air density, on the power gen-
eration from the wind farm. For measured wind speeds
of 5 m/s the observed power output of the wind farm
varies between 0 and 7 MW, while for wind speeds

FIG. 2. Example empirical power curve for the Klim wind farm
over a 6-month period in 2002, based on hourly measurements of
wind speed and corresponding power output. Marginal distribu-
tions of wind speed and power are also represented above, and,
respectively, right of, the power curve itself.
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of 10 m/s, that same power output may be between
6 and 15 MW. Other reasons for these variations in-
clude natural changes in the environment of the wind
farm, aging of turbine components, etc. At the turbine,
wind farm or portfolio (i.e., a group of geographically
distributed wind farms, though jointly operated) level,
all empirical power curves exhibit characteristics dif-
fering from those of theoretical ones, also with a sub-
stantial scatter of observations. Other interesting em-
pirical power curves for wind farms in Crete, as well
as challenges related to their modeling, were recently
discussed by Jeon and Taylor (2012).

2.2 Preliminaries and Definitions

Owing to the combination of complex physical pro-
cesses, and since we may not have a perfect under-
standing of all these processes anyway, it is acknowl-
edged that one should account for a random uncertainty
component in the modeling of energy generation from
wind turbines. Wind power is therefore considered as
a discrete stochastic process, that is, as a set of ran-
dom variables Ys,t observed at discrete points in time t

and in space s. Depending upon the practical setup, it
may reduce to a temporal process with a set of ran-
dom variables Yt for successive times, for instance, if
concentrating on a single wind farm or on a fixed (ge-
ographically spread) portfolio, or to a spatial process
with a set of random variables Ys for a given time but
for various locations, for instance, if looking at maps of
wind energy resource over a region. The correspond-
ing realizations of the process are denoted by ys,t in
the more general spatio-temporal case, or, more simply,
by yt and ys in the temporal and spatial cases, respec-
tively. The notation f and F are used for probability
density and cumulative distribution functions (abbrevi-
ated p.d.f. and c.d.f.) of the random variables involved,
with appropriate indices.

Wind power generation as a stochastic process ex-
hibits features that can be seen as fairly unique, even
though relevant parallels with stochastic processes for
other renewable energy sources, in meteorology and
hydrology or in economics and finance, exist. Some of
these characteristic features come from the very nature
of wind, while some others are directly linked to the
process of converting the energy in the wind to elec-
tric power. First of all, wind components and result-
ing wind speed have a combination of dynamic and
seasonal features, which may vary depending on lo-
cal wind climates and regions of the world. Besides,
when focusing on spatial and temporal scales of rele-
vance to power systems operations and electricity mar-
kets, the various meteorological phenomena involved

induce switches in the dynamic behavior of wind fluc-
tuations and in their predictability, yielding a nonsta-
tionary process [see the discussion by Vincent et al.
(2010), for instance]. Inspired by models developed in
the econometrics literature, the existence of successive
periods with different levels of predictability of wind
speeds was first captured with a Generalised Auto Re-
gressive Conditional Heteroscedastic (GARCH) model
by Tol (1997), though focusing on coarser daily wind
records.

In parallel, the conversion of the energy in the wind
to electric power acts as a nonlinear transfer function
(as represented in Figure 2) making wind power gen-
eration a nonlinear and bounded stochastic process.
There may even be smooth temporal changes in this
nonlinear transfer function owing to, for example, ag-
ing of equipment, changes in external environment,
etc. The transfer function shapes the predictability
of wind power generation. Consequently, conditional
densities of wind power generation should be seen
as non-Gaussian, with their moments of order greater
than 1 directly influenced by their mean (Lange,
2005; Bludszuweit, Domínguez-Navarro and Llom-
bart, 2008). Truncated Gaussian, Censored Gaussian
and Generalized Logit–Normal distributions were pro-
posed as relevant candidates for the modeling of con-
ditional densities of wind power generation (Pinson,
2012). In terms of stochastic differential equations, this
would translate to having a state-dependent diffusion
component. The flat parts of the transfer function also
yield concentration of probability mass at the bound-
aries, potentially requiring to consider wind power
generation as a discrete-continuous mixture, similar to
precipitation, for instance.

After proposing a suitable model structure, and esti-
mating its parameters, such a model may be employed
to simulate time-series of wind power generation for
one or several locations, for instance, as input to power
systems and market-related analysis. In most cases,
however, forecasting is the final application. Predic-
tions fed into operational decision problems always are
for future points in time and rarely for new locations
at which no observations are available. Consequently,
even though spatial aspects are of crucial interest, the
problem at hand is mainly seen as a temporal forecast-
ing problem. The set of m locations is denoted by

s = {s1, s2, . . . , sm}.(2.1)

In parallel, the set of n lead times is

t + k = {t + 1, t + 2, . . . , t + n},(2.2)
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where n is the forecast length. Lead times are spaced
regularly and with a temporal resolution equal to
the sampling time of the process observations. Since
the power generation process is bounded, it can be
marginally normalized, so that

ys,t+k ∈ [0,1]mn.(2.3)

At time t the aim is to predict some of the character-
istics of

Ys,t+k
(2.4)

= {Ys,t+k; s = s1, . . . , sm, k = 1, . . . , n},
a multivariate random variable of dimension m × n in
the complete spatio-temporal case, or of

Yt+k = {Yt+k;k = 1, . . . , n},(2.5)

a multivariate random variable of dimension n, in the
simpler setup where spatial considerations are disre-
garded.

In the most general case, the forecaster issues at time
t for the set of lead times t + k a probabilistic forecast
F̂s,t+k|t (here a predictive c.d.f.) describing as faith-
fully as possible the c.d.f. Fs,t+k of the random variable
Ys,t+k, given the information available up to time t . It
hence translates to a full description of marginal densi-
ties for every location and lead time, as well as spatio-
temporal dependencies among the set of m locations
and n lead times. This clearly comprises a difficult
problem, both in terms of generating such forecasts and
also for their verification. Consequently, since degen-
erate versions of that problem may be more tractable,
a number of them have been dealt with in the literature,
for instance, for the forecasting of marginal densities
for each location and lead time individually, or even by
forecasting some summary statistics (more precisely,
mean and quantiles) of these marginal densities only.

The combination of all uncertainties, related to phys-
ical aspects to be accounted for in the models, but also
in connection with the data-generating process, obvi-
ously is going to impact the quality of the resulting
forecasts. In Section 4 some of the most common ap-
proaches to forecasting will be reviewed. They all tend
to disregard the specific contributions of physical and
data-generating processes to forecast quality. Alterna-
tive proposals in a robust forecasting framework could
therefore be beneficial.

2.3 The Western Denmark Data Set

A data set for the Western Denmark area is used as
a basis for illustration. It consists of wind power mea-
surements as collected by Energinet.dk, the transmis-
sion system operator in Denmark. This region has one
of the highest wind power penetrations (i.e., the share
of wind power in meeting the electric energy demand)
in the world, consistently between 25 and 30% over the
last few years.

Wind power measurements are originally available
at more than 400 geographically distributed grid-
connection points. Observations have an hourly resolu-
tion over a period between 1 January 2006 and 24 Oc-
tober 2007. They represent average hourly power val-
ues. For operational purposes, these are gathered in 15
so-called control zones depicted in Figure 3 along with
their identification numbers. The total nominal capac-
ity slightly evolved during this period though generally
being around 2.5 GW. In order to additionally simplify
this case-study, the original 15 control zones are aggre-
gated into 5 zones only (see Figure 3), each having a
different share of the overall wind power capacity for
that region. All power measurements are normalized by
the respective nominal capacities of the 5 aggregated
zones. This aggregation is for the sake of example only
and could be seen as wind power generation portfolios
operated by a set of power producers in that region.
Working at such a coarse spatial resolution certainly
is sufficient for some decision problems, also simpli-
fying modeling and estimation challenges. However, it
may be that for some applications the statistician and
forecaster has to work with the original 400-location
data set, so that he has to finely analyze and model the
observed spatio-temporal dynamics; see Girard and Al-
lard (2013), for instance. This would be the case if all
the owners/operators of these individual wind farms
ask for predictions in order to design market offering
strategies or for the network operator to perform very
detailed system simulations based on the impact of spa-
tially distributed wind power generation.

Some of the features of this data at such tempo-
ral and spatial scales can be observed from the ex-
ample episode with 24 hours of hourly wind power
measurements in Figure 4, for the 5 aggregated zones
of Western Denmark. The spatio-temporal interdepen-
dence structure of the wind power generation process,
as induced by the inertia in weather phenomena and
resulting winds, especially results in smooth tempo-
ral variations at each zone, individually, as well as
in similarities in the patterns observed at the various
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Agg. zone Orig. zones % of capacity

1 1, 2, 3 31
2 5, 6, 7 18
3 4, 8, 9 17
4 10, 11, 14, 15 23
5 12, 13 10

FIG. 3. The Western Denmark data set: original locations for which measurements are available, 15 control zones defined by Energinet.dk,
as well as the 5 aggregated zones. The total nominal capacity for Western Denmark was 2.5 GW over the period covered by this data set.

zones. These spatio-temporal dependencies are neces-
sarily strengthened by the aggregation procedure em-
ployed. For instance, the drop in power generation ob-
served in zone 4 on 19 March 2007 at 8:00 UTC (i.e.,
the 20th time step) is also visible for zone 5, at the same
time and with a similar magnitude, while it may poten-
tially be related to a drop of lesser magnitude observed
in zones 2 and 3 around the same time. Note that UTC
(for Coordinated Universal Time) is the most common
standard for referring to time in the meteorological and
wind energy communities.

3. SOME REPRESENTATIVE OPERATIONAL
DECISION-MAKING PROBLEMS INVOLVING WIND

ENERGY

Some of the representative operational decision
problems are described here, while a more exten-
sive overview of such problems may be found in
Ackermann (2012). The side of power producers is
taken first, by considering the issue of designing op-
timal offering strategies in electricity markets. Subse-
quently taking the side of the system operator instead
(like Energinet.dk, the transmission system operator
for Western Denmark), an issue of rising importance
is that of quantifying the necessary backup generation
to accommodate variability and limited predictability
of wind power generation. These two decision-making
problems are somehow interrelated, since the quantifi-
cation of necessary backup capacities is performed in
a dynamic way, conditional on the clearing of the elec-
tricity market. For both types of problems, forecasts
for other quantities than wind power generation may be

necessary, like load and prices. There exists substantial
literature on the statistical modeling and forecasting of
these market variables. The interested reader is referred
to Weron (2006) for an overview.

3.1 Participation of Wind Energy in Electricity
Markets

In a number of countries with significant wind power
generation, electricity markets are organized as elec-
tricity pools, gathering production and consumption
offers in order to dynamically find the quantities and
prices for electricity generation and consumption that
permit to maximize social welfare. These electricity
pools typically have two major stages which are the
day-ahead and the balancing markets. The electricity
pool for Scandinavia, used as an example here, is com-
monly known as the Nord Pool. For an overview of
some the European electricity markets and of the way
they deal with wind power generation, see Morthorst
(2003). A parallel overview for the case of US electric-
ity markets can be found in Botterud et al. (2010).

Electricity exchanges first take place in the day-
ahead market for the next delivery period, that is, the
next day. Production offers and consumption bids are
to be placed for every time unit before gate closure,
occurring 12 hours before delivery in the Nord Pool,
where market time units are hourly. At the time t of
gate closure, wind power producers shall propose en-
ergy offers based on forecasts with lead times t + k,
k ∈ {13,14, . . . ,37}. The market clearing is there to
match production offers and consumption bids through
a single auction process, yielding the system price πc

t+k
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FIG. 4. Example episode with normalized wind power measurements for the 5 zones of the Western Denmark data set over 24 hours,
starting from the 18 March 2007 at 12 UTC.

and the program of the market participants, that is, a set
of energy blocks yc

t+k to be delivered by wind power
producers,1 for every market time unit. The superscript
c indicates that this combination of energy quantity
and price defines a contract. Power producers are fi-
nancially responsible for any deviation from this con-
tract. Indeed, in a second stage, the balancing market
managed by the system operator ensures the real-time
balance between generation and load, while translating
to financial penalties for those who deviate from their
contracted schedule. The prices for buying and selling
on the balancing market are denoted by πb

t+k and πs
t+k ,

respectively. They are generally less advantageous than
those in the day-ahead market, fairly volatile and sub-
stantially different from one another in a two-price set-
tlement system like that of the Nord Pool. The combi-
nation of the inherent uncertainty of wind power pre-
dictions and of the asymmetry of balancing prices en-
courages market participants to be more strategic when
designing offering strategies (Skytte, 1999).

Simplifying the decision problem for clarity, po-
tential dependencies among time units and in space
throughout the network are disregarded. A wind power
producer is seen as participating with a global portfo-
lio of wind power generation in the electricity market.

1Note that the notation yc
t+k is used abusively for simplification.

This is since the energy block for hour t + k is necessarily equal to
the average power production value yc

t+k over that one-hour period.

The overall market revenue Rt+k is a random variable,
which, given the decision variable yc

t+k and the random
variable Yt+k , can be defined as

Rt+k = st+k

(
yc
t+k

) + Bt+k

(
Yt+k, y

c
t+k

)
,(3.1)

where the first part corresponds to the revenue from
the day-ahead market, st+k(y

c
t+k) = πc

t+ky
c
t+k , while

the second is that from the balancing market, to be de-
tailed below. Following Pinson, Chevallier and Karin-
iotakis (2007) (among others), this revenue can be re-
formulated as a combination of revenues and costs in a
way that the decision variable appears in the balancing
market term only

Rt+k = S̃t+k(Yt+k) − B̃t+k

(
Yt+k, y

c
t+k

)
,(3.2)

that is, as the sum of a stochastic, though fatal since out
of the control of the decision-maker, component S̃t+k

from selling of the energy actually produced through
the day-ahead market, minus another stochastic com-
ponent B̃t+k , whose characteristics may be altered
through the choice of a contract yc

t+k . The imbalance
is also a random variable, given by Yt+k − yc

t+k , yield-
ing the following definition for B̃t+k:

B̃t+k

(
Yt+k, y

c
t+k

)
(3.3)

=
⎧⎨
⎩

π
↓
t+k

(
Yt+k − yc

t+k

)
, Yt+k − yc

t+k ≥ 0,

−π
↑
t+k

(
Yt+k − yc

t+k

)
, Yt+k − yc

t+k < 0,
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where π
↓
t+k and π

↑
t+k are referred to as the regulation

unit costs for downward and upward balancing, respec-
tively. They are readily given by

π
↓
t+k = πc

t+k − πs
t+k,(3.4)

π
↑
t+k = πb

t+k − πc
t+k.(3.5)

For most electricity markets regulation unit costs are
always positive, making B̃t+k ≥ 0, while the overall
market revenue has an upper bound obtained when
placing an offer corresponding to a perfect point pre-
diction, yc

t+k = ŷt+k|t = yt+k . As this is not realistic,
and accounting for the uncertainty in wind power fore-
casts, optimal offering strategies are to be derived in
a stochastic optimization framework. Assuming that
the wind power producer is rational, his objective is to
maximize the expected value of his revenue for every
single market time unit, since this permits to maximize
revenues in the long run. Additionally considering the
market participant as a price-taker (i.e., not influencing
the market outcome by his own decision), and having
access to forecasts of the regulation unit costs (π̂↓

t+k|t
and π̂

↑
t+k|t ), the optimal production offer y∗

t+k at the
day-ahead market is given by

y∗
t+k = arg min

yc
t+k

E
[
Bt+k

(
Yt+k, y

c
t+k

)]
.(3.6)

This stochastic optimization problem has a closed-
form solution, as first described by Bremnes (2004),
that is, for any market time unit t + k, the optimal wind
power production offer is given by

y∗
t+k = F̂−1

t+k|t
( π̂

↓
t+k|t

π̂
↓
t+k|t + π̂

↑
t+k|t

)
,(3.7)

where F̂t+k|t is the predictive c.d.f. issued at time t

(the decision instant) for time t + k. In other words,
the optimal offer corresponds to a specific quantile of
predictive densities, whose nominal level α is a di-
rect function of the predicted regulation unit costs for
this market time unit. That problem is a variant of the
well-known linear terminal loss problem, also called
the newsvendor problem (Raiffa and Schaifer, 1961). It
was recently revisited by Gneiting (2010), who showed
that for a more general class of cost functions [i.e., gen-
eralizing that in (3.3)] optimal point forecasts are quan-
tiles of predictive densities with nominal levels readily
determined from the utility function itself, analytically
or numerically. Note that appropriate forecasts of reg-
ulation unit costs are also needed here. It was shown

by Zugno, Jónsson and Pinson (2013) and the refer-
ences therein that these may be obtained from vari-
ants of exponential smoothing (in its basic form or as
a conditional parametric generalization) and then di-
rectly embedded in offering strategies such as those
given by (3.7).

In their simplest form, market participation problems
involving wind energy rely on a family of piecewise
linear and convex loss functions, for which optimal of-
fering strategies are obtained in a straightforward man-
ner, as in the above. These only require quantile fore-
casts for a given nominal level or maybe predictive
densities of wind power generation for each lead time
individually. However, when complexifying the deci-
sion problem by adding dependencies in space (e.g.,
spatial correlation in wind power generation, network
considerations) and in time (e.g., accounting for the
temporal structure of forecast errors), it then requires
a full description of Ys,t+k (ideally in the form of tra-
jectories), instead of marginal densities for the whole
portfolio and for each lead time individually. The same
goes for alternative strategies of the decision-makers,
for instance, if one aims to account for risk aversion.
The resulting mathematical problems do not rely on
studying specific families of cost functions, but in-
stead translate to formulating large scenario-based op-
timization problems, in a classical operations research
framework. Some of the resulting stochastic optimiza-
tion problems may be found in Conejo, Carrion and
Morales (2010). The price-taker assumption is also to
be relaxed to a more general stochastic optimization
framework, where wind-market dependencies are to be
described and accounted for (Zugno et al., 2013).

3.2 Quantification of Necessary Power Systems’
Reserves

On the other side, the electric network operator has
the responsibility to ensure a constant match of elec-
tricity generation and consumption, outside of the mar-
ket framework described before. It involves the quan-
tification of so-called reserve capacities, prior to ac-
tual operations, to be readily available if needed. This
may be either for supplementing generation lacking in
the system, for example, in case of asset outages, gen-
eral loss of production and unforeseen increase in elec-
tricity demand, or, alternatively, for lowering the over-
all level of generation in the system when demand is
less than production. For an overview, see Doherty and
O’Malley (2005).

For simplicity and clarity, the timeline here is the
same as for the market participation problem described
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earlier. Potential dependencies among time units and
in space throughout the network (as induced by poten-
tial network congestion) are disregarded. The system
operator has to make a decision at time t (market gate
closure) for all time units t + k of the following day.
Reserves are to be quantified as two numbers q

↓
t+k and

q
↑
t+k for the whole power system, for downward (when

consumption is less than production) and upward (con-
versely) balancing, respectively. The choice of optimal
reserve levels is linked to a random variable Ot+k de-
scribing all potential deviations from the chosen dis-
patch (consisting in the reference values for generation
and consumption at every time t + k). This random
variable is commonly referred to as the system gen-
eration margin.

Ot+k can be defined as a sum of random variables
representing all uncertainties involved. These include
(i) potential forecast errors εL for the electric load,
(ii) the probability of generation loss through asset
outages (assets being conventional generators, trans-
mission lines and other equipment), and (iii) poten-
tial forecast errors εY for the various forms of stochas-
tic power generation. For simplicity, we only consider
wind power here, corresponding to the operational sit-
uation where, as in most countries, wind power is the
prominent form of stochastic power generation. In a
more general setup the combination of uncertainties
with, for example, solar and wave energy, should also
be accounted for. These various uncertainties are fully
characterized by probabilistic forecasts available at
time t : f̂

εL

t+k|t for the load, f̂ G
t+k|t for generation losses,

and f̂
εY

t+k|t for wind power generation. This means that,
besides the wind generation forecasts discussed in this
paper, additional predictions of potential generation
losses (e.g., the probability of failure of various equip-
ment) are to be issued, for instance, based on reliability
models in the spirit of Billinton and Allan (1984). Fore-
casts for the electric load can in addition be obtained
from one of the numerous methods recently surveyed
by Hahn, Meyer-Nieberg and Pickl (2009), though very
few of them look at full predictive densities.

Assuming independence of the various random vari-
ables, the overall uncertainty, represented by a predic-
tive marginal density f̂ O

t+k|t , is obtained through con-
volution,

f̂ O
t+k|t = f̂

εL

t+k|t ∗ f̂ G
t+k|t ∗ f̂

εY

t+k|t .(3.8)

This predictive density is split into its positive and neg-
ative parts, yielding f̂ O+

t+k|t and f̂ O−
t+k|t , since decisions

about downward and upward reserve capacities are to
be made separately.

After such a description of system-wide uncertain-
ties, the system operator can plug this density into a
cost-loss analysis (Matos and Bessa, 2010), similar in
essence to the market participation problem presented
in the above. Based on cost functions g↓ and g↑ for
the downward and upward cases, the optimal amounts
of reserve capacities (in an expected utility maximiza-
tion sense) are the solution of stochastic optimization
problems of the form

q
↑∗
t+k = arg min

q
↑
t+k

E
[
g↑(

O−
t+k, q

↑
t+k

)]
(3.9)

and

q
↓∗
t+k = arg min

q
↓
t+k

E
[
g↓(

O+
t+k, q

↓
t+k

)]
,(3.10)

which may be solved analytically or numerically, de-
pending upon the complexity of the cost functions.
Here the optimal reserve levels relate to specific quan-
tiles of the predictive densities for the system margin
Ot+k . However, it would be difficult to link the optimal
reserve levels to specific quantiles of the input predic-
tive densities of wind power generation.

In its more complex form the reserve quantifica-
tion problem requires accounting for dependencies in
space and in time, similar to the trading problems, with
many more considerations relating to operational con-
straints, for example, unit characteristics (capability to
increase or decrease power output over a predefined pe-
riod of time—so-called ramping characteristics, non-
convexities in costs, etc.), and, potentially, risk aver-
sion. The resulting stochastic optimization problems
take the general form of those described and analyzed
in Ortega-Vazquez and Kirschen (2009). They require
space–time trajectories for all input variables.

4. MODELING AND FORECASTING WIND POWER
IN A PROBABILISTIC FRAMEWORK

Decision-making problems relating to an optimal
management of wind power generation in power sys-
tems and electricity markets require different types of
forecasts as input. The lead forecast range considered
in the above is between 13 and 37 hours ahead, with an
hourly temporal resolution for the forecasts. In prac-
tice, various forecast ranges, spatial and temporal res-
olutions, are of relevance depending upon the decision
problem. For instance, the shorter lead times, say, be-
tween 10 minutes and 2 hours ahead, are also crucial
for a number of dispatch and control problems. Below
are presented the leading forms of forecasts for wind
power generation, as well as example approaches to
generate them.
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4.1 Point Predictions

The traditional deterministic view of a large num-
ber of power system operators translates to preferring
single-valued forecasts. These so-called point predic-
tions are seen as easier to appraise and handle at the
time of making decisions.

When describing at time t the random variable
Ys,t+k of a set of locations s and lead times k, point
forecasts comprise a summary value for each and every
marginal distribution of Ys,t+k in time and in space.
Typically, if one aims at minimizing a quadratic crite-
rion (i.e., in a Least Squares sense), a point forecast for
location s and lead time k corresponds to the condi-
tional expectation for Ys,t+k given the information set
available up to time t , the chosen model and estimated
parameters. With respect to a predictive density f̂s,t+k|t
for location s and lead time k, that point forecast there-
fore corresponds to

ŷs,t+k|t =
∫ 1

0
yf̂s,t+k|t (y) dy.(4.1)

Integration is between 0 and 1 since one is dealing with
power values normalized by the nominal capacity of
the wind farm or group of wind farms of interest.

To issue point predictions at time t , the forecaster
utilizes an information set �t , a set containing mea-
surements �o

t (including observations of power and
of relevant meteorological variables, the notation “o”
meaning “observation”) over the area covered, as well
as meteorological forecasts �

f
t (with “f ” for “fore-

cast”) for these relevant variables, �t ⊆ �o
t ∪ �

f
t .

Based on this wealth of available information, differ-
ent types of models of the general form

Ys,t+k = h(�t) + εs,t+k(4.2)

were proposed, where εs,t+k is a noise term with zero
mean and finite variance.

Indeed, when focusing on a single location (a wind
farm), it may be that point forecasts can be issued in
an inexpensive way based on local measurements only,
and in a linear time-series framework. The first pro-
posal in the literature is that of Brown, Katz and Mur-
phy (1984), using Auto-Regressive Moving Average
(ARMA) models for wind speed observations and for
lead times between a few hours and a few days. When
focusing on wind power directly for very short range
(say, for lead times less than 2 hours), even simpler
Auto-Regressive models of order p, that is,

Ys,t+k = θ0 + ∑
i∈L

θiYs,t−i+1 + σεs,t+k,(4.3)

are difficult to outperform, possibly after data transfor-
mation (Pinson, 2012). In the above, L ⊂ N

+ is a set
of lag values of dimension p, while εs,t+k is a stan-
dard Gaussian noise term, scaled by a standard devia-
tion value σ . In addition, k = 1 if the AR model is for
1-step ahead prediction only, or to be used in an iter-
ative fashion for k-step ahead prediction, while k > 1
if one uses the AR model for direct k-step ahead fore-
casting.

These models were generalized by a few authors by
accounting for off-site observations and/or by account-
ing for regime-switching dynamics of the time-series.
A regime-switching version of the model in (4.3)
assumes different dynamic behaviors in the various
regimes, as expressed by

Ys,t+k = θ
(rt )
0 + ∑

i∈L
θ

(rt )
i Ys,t−i+1 + σ (rt )εt+k,(4.4)

where rt is a realization at time t of a regime se-
quence defined by discrete random variables, with
rt ∈ {1,2, . . . ,R}, ∀t , and R is the number of regimes.
The number of lags and the noise variance may dif-
fer from one regime to another. The regime sequence
can be defined based on an observable process, like
wind direction at time t or a previous wind power
measurement, yielding models of the Threshold Auto-
Regressive (TAR) family, which are common in econo-
metrics (Tong, 2011). As an example for wind speed
modeling and forecasting, Reikard (2008) proposed to
consider temperature as driving the regime-switching
behavior in wind dynamics. In contrast, the class of
Markov-Switching Auto-Regressive (MSAR) mod-
els, also popular in econometrics since the work of
Hamilton (1989), assumes that the regime sequence re-
lies on an unobservable process. MSAR models were
shown to be able to mimic the observable switching
in wind power dynamics, especially offshore, that can-
not be explained by available meteorological measure-
ments (Pinson and Madsen, 2012).

Incorporating off-site information in regime-
switching models of the form of (4.4) was proposed
by Gneiting et al. (2006) and subsequently in a more
general form by Hering and Genton (2010), when fo-
cusing on a data set for the Columbia Basin of east-
ern Washington and Oregon in the US. The model in
the regime-switching space–time (RST) approach orig-
inally proposed by Gneiting et al. (2006) can be formu-
lated as

Ys,t+k = θ
(rt )
0 + ∑

i∈L
θ

(rt )
i Ys,t−i+1

(4.5)
+ ∑

sj∈S

∑
i∈Lj

ν
(rt )
j,i Ysj ,t−i+1 + σ (rt )εt+k,
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that is, in the form of a TARX model (TAR with ex-
ogenous variables), where a set of terms is added to
the regime-switching model of (4.4), for observations
at off-site locations sj ∈ SX and for a set of lagged val-
ues i ∈ Lj at this location. Such models allow consid-
ering advection and diffusion of upstream information,
but require extensive expert knowledge for optimizing
the model structure.

Conditional parametric AR (CP–AR) models are an-
other natural generalization of regime-switching mod-
els,

Ys,t+k = θ0(xt ) + ∑
i∈L

θi(xt )Ys,t−i+1

(4.6)
+ σ(xt )εs,t+k,

where instead of considering various regimes with their
own dynamics, the AR coefficients are replaced by
smooth functions of a vector (of low dimension, say,
less than 3) of an exogenous variable x, for instance,
wind direction only in Pinson (2012). The noise vari-
ance can be seen as a function of x, or as a constant, for
simplicity. CP–AR models are relevant when switches
between dynamic behaviors are not that clear. Mean-
while, they also require fairly large data sets for estima-
tion, which are more and more available today. Their
use is motivated by empirical investigations at vari-
ous wind farms, where it was observed that specific
meteorological variables (e.g., wind direction, atmo-
spheric stability) can substantially impact power gen-
eration dynamics and predictability in a smooth man-
ner.

Other forms of conditional parametric models were
proposed for further lead times, also requiring addi-
tional meteorological forecasts as input. As an exam-
ple, a simplified version of the CP–ARX model (CP–
AR with exogenous variables) of Nielsen (2002) writes

Ys,t+k

= θc
0 (xt ) cos

(
2πht+k

24

)
+ θs

0(xt ) sin
(

2πht+k

24

)

(4.7)
+ θ1(xt )Ys,t + θ2(xt )g(ût+k|t , v̂t+k|t , k)

+ σεs,t+k,

where ût+k|t and v̂t+k|t are forecasts of the wind com-
ponents (defining wind speed and direction) at the
level of the wind farm of interest. The vector xt in-
cludes wind direction and lead time. In addition, g

is used for a nonlinear conversion of the information
provided by meteorological forecasts to power genera-
tion, for instance, modeled with nonparametric nonlin-
ear regression (local polynomial or spline-based). The

model in (4.7) finally includes diurnal Fourier harmon-
ics for the correction of periodic effects that may not be
present in the meteorological forecasts, with ht+k the
hour of the day at lead time k.

Besides (4.7), a number of alternative approaches
were introduced in the past few years for predicting
wind power generation up to 2–3 days ahead based
on both measurements and meteorological forecasts.
Notably, neural networks and other machine learning
approaches became popular after the original proposal
of Kariniotakis, Stavrakakis and Nogaret (1996) and
more recently with the representative work of Sideratos
and Hatziargyriou (2007). For all of these models, pa-
rameters are commonly estimated with Least Squares
(LS) and Maximum Likelihood (ML) approaches (and
a Gaussian assumption for the residuals εs,t+k), poten-
tially made adaptive and recursive so as to allow for
smooth changes in the model parameters (accepting
some form of nonstationarity), while reducing compu-
tational costs. It was recently argued that employing
entropy-based criteria for parameter estimation may
be beneficial, as in Bessa, Miranda and Gama (2009),
since they do not rely on any assumption for the resid-
ual distributions. A more extensive review of alterna-
tives statistical approaches to point prediction of wind
speed and power can be found in Zhu and Genton
(2012).

As an illustration, Figure 5 depicts example point
forecasts for the 5 aggregated zones of Western Den-
mark, issued on 16 March 2007 at 06 UTC based on the
methodology described by Nielsen (2002). These have
an hourly resolution up to 43 hours ahead, in line with
operational decision-making requirements. The well-
captured pattern for the first lead times originates from
the combination of the trend given by meteorologi-
cal forecasts with the autoregressive component based
on local observational data. For the further lead times,
the dynamic wind power generation pattern is mainly
driven by the meteorological forecasts, though nonlin-
early converted to power and recalibrated to the spe-
cific conditions at these various aggregated zones.

In contrast with the introductory part of this sec-
tion, where it was mentioned that point forecasts corre-
sponded to conditional expectation estimates, Gneiting
(2010, and references therein) discussed the more gen-
eral case of quantiles being optimal point forecasts
in a decision-theoretic framework. Indeed, in view of
the operational decision-making problems described in
Section 3, it is the case that if one accounts for the util-
ity function of the decision-makers at the time of is-
suing predictions, such forecasts would then become
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FIG. 5. Example episode with point forecasts for the 5 aggregated zones of Western Denmark, as issued on 16 March 2007 at 06 UTC.
Corresponding power measurements, obtained a posteriori, are also shown.

specific quantiles,

ŷs,t+k|t = F̂−1
s,t+k|t (α),(4.8)

whose nominal level α is determined from the utility
function and the structure of the problem itself. The in-
formation set and models to be used for issuing quan-
tile forecasts are similar in essence to those for point
predictions in the form of conditional expectations.
The estimation of model parameters is then performed
based on the check function criterion of Koenker and
Bassett (1978) or any general scoring rules for quan-
tiles (Gneiting and Raftery, 2007), instead of quadratic
and likelihood-based criteria. An example approach
to point forecasting of wind power generation where
point forecasts actually are quantiles of predictive den-
sities is that of Møller, Nielsen and Madsen (2008),
based on time-adaptive quantile regression.

4.2 Predictive Marginal Densities

Point forecasts in the form of conditional expecta-
tions are somewhat “just the mean of whatever may
happen.” These are not optimal inputs to a large class
of decision problems. Since the nominal level of quan-
tile forecasts to be used instead may vary in time

while depending upon the problem itself, or might be
even unknown, issuing predictive densities certainly
is more relevant. Given the random variable Ys,t+k
whose characteristics are to be predicted, these actu-
ally are predictive marginal densities f̂s,t+k|t for all
locations and lead times involved, individually, with
F̂s,t+k|t the corresponding predictive c.d.f.s.

Today such a type of wind power forecast is issued in
both parametric and nonparametric frameworks. In the
former case, based on an assumption for the shape of
predictive marginal densities (for instance, motivated
by an empirical investigation), one has

f̂s,t+k|t = f (ys,t+k; θ̂ s,t+k|t ),(4.9)

where f is the density function for power to be gener-
ated at location s and time t + k, for the chosen prob-
ability distribution, for example, truncated/censored
Gaussian or Beta. In (4.9), θ̂ s,t+k|t is the predicted
value for the vector of parameters fully characterizing
that distribution, for instance, a vector of parameters
consisting of location and scale parameters for the trun-
cated/censored Gaussian and Beta distributions. For
these classes of distributions characterized by such lim-
ited sets of parameters only, point forecasts as condi-
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tional expectations, complemented by a variance es-
timator, for example, using exponential smoothing or
based on an ARCH/GARCH process, permit to di-
rectly obtain location and scale parameters of predic-
tive marginal densities. This reliance on a limited num-
ber of parameters may be seen as desirable since it
eases subsequent estimation and related computational
cost.

Models for the density parameters take a general
form similar to that in (4.2) (and subsequent models
in Section 4.1), that is, based on linear or nonlinear
models with input a subset �t from the information
set at time t . Example parametric approaches include
the RST approach of Gneiting et al. (2006) for predict-
ing wind speed with truncated Gaussian distributions
and that of Pinson (2012) using Generalized Logit–
Normal distributions for wind power, also compared
with censored Gaussian and Beta assumptions. Simi-
larly, Lau and McSharry (2010) proposed employing
Logit–Normal distributions for aggregated wind power
generation for the whole Republic of Ireland.

In contrast, nonparametric approaches, since they do
not rely on any assumption for the shape of predictive
densities, translate to focusing on sets of quantile fore-
casts defining predictive c.d.f.s. These are conveniently
summarized by such sets of quantile forecasts,

F̂s,t+k|t = {
q̂

(αi)
s,t+k|t ;0 ≤ α1 < · · · < αi < · · ·

(4.10)
< αl ≤ 1

}
,

with nominal levels αi spread over the unit interval,
though, in practice, F̂s,t+k|t is obtained by interpo-
lation through these sets of quantile forecasts. Actu-
ally, nonparametric approaches to quantile forecasts
may suffer from a limited number of relevant observa-
tions for the very low and high nominal levels α, say,
α,1 − α < 0.05, therefore potentially compromising
the quality of resulting forecasts. This was observed by
Manganelli and Engle (2004) when focusing on risk
quantification approaches in finance, and more partic-
ularly on dynamic quantile regression models for very
low and high levels. Even though the application of in-
terest here is different, the numerical aspects of esti-
mating models for quantiles of wind power generation
for very low and high levels are similar. It may there-
fore be advantageous under certain conditions to de-
fine nonparametric predictive densities for their most
central part, say, α,1 − α > 0.05, while parametric as-
sumptions could be employed for the tails.

A number of approaches for issuing nonparamet-
ric probabilistic forecasts of wind power were pro-
posed and benchmarked over the last decade. In the

most standard case, these are obtained from already
generated point predictions and, potentially, associ-
ated meteorological forecasts. Maybe the most well-
documented and widely applied methods are the sim-
ple approach of Pinson and Kariniotakis (2010) con-
sisting in dressing the available point forecasts with
predictive densities of forecast errors made in simi-
lar conditions, as well as the local quantile regression
of Bremnes (2004) and the time-adaptive quantile re-
gression of Møller, Nielsen and Madsen (2008), to be
used for each of the defining quantile forecasts. The
approach of Møller, Nielsen and Madsen (2008) com-
prises an upgraded version of the original proposal of
Nielsen, Madsen and Nielsen (2006), where quantile
forecasts of wind power generation are conditional to
previously issued point forecasts and to input wind di-
rection forecasts. As for point predictions, neural net-
work and machine learning techniques became increas-
ingly popular over the last few years for generating
nonparametric probabilistic predictions based on a set
of quantiles (Sideratos and Hatziargyriou, 2012). In
contrast to these methods using single-valued forecasts
of wind power and meteorological variables as input,
a relevant alternative relies on meteorological ensem-
ble predictions, that is, sets of multivariate space–time
trajectories for meteorological variables as issued by
meteorological institutes [see Leutbecher and Palmer
(2008) and the references therein], which are then
transformed to the wind power space. Ensemble fore-
casts attempt at dynamically representing uncertainties
in meteorological forecasts (as well as spatial, temporal
and inter-variable dependencies), by jointly accounting
for misestimation in the initial state of the Atmosphere
and for parameter uncertainty in the model dynamics.
To obtain probabilistic forecasts of wind power gen-
eration from such meteorological ensembles, conven-
tional approaches combine nonlinear regression and
kernel dressing of the ensemble trajectories, as in the
alternative proposals of Roulston et al. (2003); Taylor,
McSharry and Buizza (1999) and Pinson and Mad-
sen (2009). In a similar vain, a general method for the
conversion of probabilistic forecasts of wind speed to
power based on stochastic power curves, thus account-
ing for additional uncertainties in the wind-to-power
conversion process in a Bayesian framework, was re-
cently described by Jeon and Taylor (2012).

Example nonparametric forecasts are shown in Fig-
ure 6 for the same period as in Figure 5, as obtained by
applying the method of Pinson and Kariniotakis (2010)
to the already issued point predictions and their input
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FIG. 6. Example episode with probabilistic forecasts for the 5 aggregated zones of Western Denmark (and corresponding measurements
obtained a posteriori), as issued on 16 March 2007 at 06 UTC. They take the form of so-called river-of-blood fan charts [termed coined after
Wallis (2003)], represented by a set of central prediction intervals with increasing nominal coverage rates (from 10% to 90%).

meteorological forecast information. The characteris-
tics of these predictive densities smoothly evolve as a
function of a number of factors, for example, lead time,
geographical location, time of the year and level of
power generation (since nonlinear and bounded power
curves shape forecast uncertainty). By construction,
and through adaptive estimation, these predictive den-
sities are probabilistically calibrated, meaning that ob-
served levels for the defining quantile forecasts corre-
spond to the nominal ones. This is a crucial property of
probabilistic forecasts to be used as input to decision
problems such as those of Section 3, since a probabilis-
tic bias in the forecasts would yield suboptimality of
resulting operational decisions. Actually, in addition,
probabilistic calibration is also a prerequisite for ap-
plication of the methods described in the following in
order to generate trajectories.

4.3 Spatio-Temporal Trajectories

Both point forecasts and predictive densities are sub-
optimal inputs to decision-making when spatial and
temporal dependencies are involved. It is then required
to fully describe the density of the spatio-temporal

process Ys,t+k. Following a proposal by Pinson et al.
(2009) for wind power and, more recently, by Möller,
Lenkoski and Thorarinsdottir (2013) for multiple mete-
orological variables, the probabilistic forecast F̂s,t+k|t
can be fully characterized under a Gaussian copula by
the predictive marginal c.d.f.s F̂s,t+k|t , ∀s, k, and by a
space–time covariance matrix Ĉt linking all locations
and lead times. In that case, using notation similar to
that of Möller, Lenkoski and Thorarinsdottir (2013),

F̂s,t+k|t (ys,t+k|Ĉt )
(4.11)

= 	mn

({
	−1(

F̂s,t+k|t (y)
)}

s,k|Ĉt

)
,

where ys,t+k was defined in (2.3) and 	 is the c.d.f. of
a standard Gaussian variable, while 	mn is that for a
multivariate Gaussian of dimension m × n. Going be-
yond the Gaussian copula simplification, one could en-
visage employing more refined copulas, though at the
expense of additional complexity. The interested reader
may find an extensive introduction to copulas in Nelsen
(2006).

This type of construction of multivariate probabilis-
tic forecasts for wind power generation in space and
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in time has clear advantages. Indeed, given that all pre-
dictive densities forming the marginal densities are cal-
ibrated, it may be assumed that one deals with a latent
space–time Gaussian process consisting of successive
multivariate random variables Zt (each of dimension
m × n) with realizations given by

zt = {
	−1(

F̂s,t+k|t (ys,t+k)
);

(4.12)
s = s1, s2, . . . , sm, k = 1,2, . . . , n

}
.

Consequently, this latent Gaussian process can be used
for identifying and estimating a suitable parametric
space–time structure or, alternatively, if m × n is low
and the sample size large, for the tracking of the non-
parametric (sample) covariance structure, for instance,
using exponential smoothing.

Similarly, one of the advantages of this construction
of multivariate probabilistic forecasts based on a Gaus-
sian copula is that it is fairly straightforward to issue
space–time trajectories. Remember that these are the
prime input to a large class of stochastic optimization
approaches, such as the advanced version of the prob-
lems presented in Sections 3.1 and 3.2, where repre-
sentation of space–time interdependencies is required.
Such trajectories also are a convenient way to visual-
ize the complex information conveyed by these multi-
variate probabilistic forecasts, as hinted by Jordà and
Marcellino (2010), among others. Let us define by

ŷ(j)
s,t+k|t = {

ŷ
(j)
s,t+k|t ; s = s1, s2, . . . , sm,

k = 1,2, . . . , n
}
,(4.13)

j = 1,2, . . . , J,

a set of J space–time trajectories issued at time t . As
an illustrative example, Figure 7 gathers a set of J = 12
space–time trajectories of wind power generation for
the same episode as in Figures 5 and 6. The covari-
ance structure Ĉt used to fully specify the space–time
interdependence structure is obtained by exponential
smoothing of the sample covariance of the latent Gaus-
sian process. The trajectories are then obtained by first
randomly sampling from a multivariate Gaussian vari-
able with the most up-to-date estimate of the space–
time covariance structure. Denote by z(j)

t the j th sam-
ple, whose components z

(j)
s,t+k will directly relate to a

location s and a lead time k in the following. These
multivariate Gaussian samples are converted to wind
power generation by a transformation which is the in-
verse of that in (4.12). This yields

ŷ
(j)
s,t+k = F̂−1

s,t+k|t
(
	

(
z
(j)
s,t+k

)) ∀s, k, j.(4.14)

This type of visualization allows to appraise the tem-
poral correlation in wind power generation and poten-
tial forecast errors through predictive densities, giving
an extra level of information if compared to the proba-
bilistic forecasts of Figure 6. There are obvious limita-
tions stemming from the dimensionality of the random
variable of interest. For instance, here, the spatial in-
terdependence structure, though serving to link these
trajectories, is nearly impossible to appreciate.

5. DISCUSSION: UPCOMING CHALLENGES

Three decades of research in modeling and forecast-
ing of power generation from the wind have led to a
solid understanding of the whole chain from taking ad-
vantage of available meteorological and power mea-
surements, as well as meteorological forecasts, all the
way to using forecasts as input to decision-making. To-
day, methodologies are further developed in a proba-
bilistic framework, even though forecast users may still
prefer to be provided with single-valued predictions.
Some important challenges are currently under investi-
gation or identified as particularly relevant for the short
to medium term. These are presented and discussed be-
low, with emphasis placed on new and better forecasts,
and forecast verification, as well as bridging the gap
between forecast quality and value.

5.1 Improved Wind Power Forecasts: Extracting
More out of the Data

Improving the quality of wind power forecasts is a
constant challenge, with strong expectations linked to
the increased commitment of the meteorological com-
munity to issue better forecasts of relevant weather
variables, mainly surface wind components. This will
come, among other things, from a better description
of the physical phenomena involved, especially in the
boundary layer, as well as from an increased resolution
of the numerical schemes used to solve the systems of
partial differential equations.

Meanwhile, for statisticians, there are paths toward
forecast improvement that involve a better utilization
of available measurement data, combining measure-
ments available on site and additional observations spa-
tially distributed around that site. Wind forecasts used
to issue power forecasts over a region seldom capture
fully the spatio-temporal dynamics of power genera-
tion owing to, for example, a too coarse resolution
(spatial and temporal) and timing errors with respect
to passages of weather fronts. However, all distributed
meteorological stations and wind turbines may serve as
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FIG. 7. Set of 12 space–time trajectories of wind power generation for the 5 aggregated zones of Western Denmark, issued on the 16 March
2007 at 06 UTC.

sensors in order to palliate for these deficiencies. For
the example of the Western Denmark data set, Girard
and Allard (2013) explored the spatio-temporal char-
acteristics of residuals after capturing local dynamics
at all individual sites, hinting at the role of prevailing
weather conditions on the space–time structure. For the
same data set, Lau (2011) investigated an anisotropic
space–time covariance model based on a Lagrangian
approach, conditional to prevailing wind direction over
the region. Based on such analysis, it is required to
propose nonlinear and nonstationary spatio-temporal
models for wind power generation, for instance, using
covariance structures conditional to prevailing weather
conditions, in the spirit of Huang and Hsu (2004). An
advantage will be that, instead of having to identify and
estimate models for every single site of interest (more
than 400 for the Western Denmark data set), and at var-
ious spatial and temporal resolutions of relevance to
forecast users, a single model would fit all purposes at
once. Even though more complex and potentially more
costly in terms of parameter estimation, they could lead

to a substantial overall reduction in computational time
and expert knowledge necessary to set up and maintain
all individual models. Alternatively, approaches rely-
ing on stochastic partial differential equations ought
to be considered owing to appealing features and re-
cent advances in their linkage to spatio-temporal co-
variance structures, as well as improved computational
solving (Lindgren, Rue and Lindström, 2011). Chal-
lenges there, however, relate to the complexity of the
stochastic processes involved, requiring to account for
the state-dependent diffusion part, and also for changes
in the very dynamics of wind components, as induced
by a number of weather phenomena. It is not clear how
all these aspects could be accounted for in a compact
set of stochastic differential equations, which could be
solved with existing numerical integration schemes.

The increasing availability of high-dimensional data
sets, with a large number of relevant meteorological
and power systems variables, possibly at high spa-
tial and temporal resolutions, gives rise to a number
of challenges and opportunities related to data aggre-
gation. These challenges have already been identified
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in other fields, for example, econometrics, where ag-
gregation has shown its interest and potential limita-
tions. A relevant example work is that of Giacomini
and Granger (2004), which looks at the problem of
pooling and forecasting spatially correlated data sets.
On the one hand, considering different levels of ag-
gregation for the wind power forecasting problem can
permit to ease the modeling task, by identifying groups
of turbines with similar dynamic behavior which could
be modeled jointly. On the other hand, this would
lower the computational burden by reducing model
size and complexity. Proposals related to aggregation
should, however, fully consider the meteorological as-
pects at different temporal and spatial scales, which
may dynamically condition how aggregate models
would be representative of geographically distributed
wind farms. One could build on the classical Space–
Time Auto-Regressive (STAR) model of Cliff and Ord
(1984) by enhancing it to having dynamic and condi-
tional space–time covariance structures. In a similar
vain, dynamic models for spatio-temporal data such as
those introduced by Stroud, Müller and Sansó (2001)
and follow-up papers are appealing, since they provide
an alternative approach to data aggregation by seeing
the overall spatial processes as a linear combination
of a limited number of local (polynomial) spatial pro-
cesses in the neighborhood of appropriately chosen lo-
cations. Overall, various relevant directions to space–
time modeling could be explored, based on the sub-
stantial literature existing for other processes and in
other fields.

5.2 New Forecast Methodologies and Forecast
Products

As a result of these efforts, new types of forecasts
will be available to decision-makers in the form of con-
tinuous surfaces and trajectories, from which predic-
tions with any spatial and temporal resolution could be
dynamically extracted. Similar to the development of
meteorological forecasting, the need for larger compu-
tational facilities might call for centralizing efforts in
generating and issuing wind power predictions. Actu-
ally, in the opposite direction, a share of practitioners
request predictions of lower complexity that could be
better appraised by a broader audience and more easily
integrated into existing operational processes. For in-
stance, since accommodating the variability of power
fluctuations with successive periods of fast-increasing
and fast-decreasing power generation is seen as an is-
sue by some system operators in the US and in Aus-
tralia, methodologies were proposed for the predic-
tion of so-called ramp events, where the definition

of these “ramp events” is based on the very need of
the decision-maker (Bossavy, Girard and Kariniotakis,
2013; Gallego et al., 2013).

Besides, even though alternative parametric assump-
tions for predictive marginal densities have been
analyzed and benchmarked, for example, Beta
(Bludszuweit, Domínguez-Navarro and Llombart,
2008), truncated and censored Gaussian, and Gener-
alized Logit–Normal (Pinson, 2012), there is no clear
superiority of one over the others, for all potential
lead times, level of aggregation and wind dynamics
themselves. This certainly originates from the nonlin-
ear and bounded curves representing the conversion
of wind to power, known to shape predictive densi-
ties. Such curves may additionally be time-varying,
uncertain and conditional on various external factors.
This is why future work should consider these curves
as stochastic power curves, also described by multi-
variate distributions, as a generalization of the pro-
posal of Jeon and Taylor (2012). Their impact on the
shape of predictive densities ought to be better under-
stood. Then, combined with probabilistic forecasts of
relevant explanatory variables, for instance, from re-
calibrated meteorological ensembles, stochastic power
curves would naturally yield probabilistic predictions
of wind power generation, in a Bayesian framework.
This is since stochastic power curves comprise models
of the joint density of meteorological variables and of
corresponding wind power generation. Predictive den-
sities of wind power generation would then be obtained
by applying Bayes rule, that is, by passing probabilis-
tic forecasts of meteorological variables through such
stochastic power curve models.

To broaden up, and since operational decision-
making problems are based on interdependent vari-
ables (power generation from different renewable en-
ergy sources, electric load and potentially market vari-
ables), multivariate probabilistic forecasts for relevant
pairing, or for all of them together, should be issued
in the future, with the weather as the common driver.
Similar to the proposal of Möller, Lenkoski and Tho-
rarinsdottir (2013) for multivariate probabilistic fore-
casts of meteorological variables, one could generalize
the space–time trajectories of Section 4.3 to a multi-
variate setup. Alternatives should be thought of, allow-
ing to directly obtain such spatio-temporal and mul-
tivariate predictions, instead of having to go through
predictive marginal densities first.
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5.3 Verifying Probabilistic Forecasts of
Ever-Increasing Dimensionality

Forecast verification is a subtle exercise already for
the most simple case of dealing with point forecasts,
to be based on the joint distribution of forecasts and
observations (Murphy and Winkler, 1987). Focus is to-
day on verifying forecasts in a probabilistic framework,
for instance, following the paradigm of Gneiting, Bal-
abdaoui and Raftery (2007) originally introduced for
the univariate case, based on calibration and sharp-
ness of predictive marginal densities. The nonlinear
and double-bounded nature of the wind power stochas-
tic process (possibly also a discrete-continuous mix-
ture) renders the verification of probabilistic forecasts
more complex, especially for their calibration. It gen-
erally calls for an extensive reliability assessment con-
ditional on variables known to impact the shape of pre-
dictive densities: level of power, wind direction, etc.
In addition, the benchmarking and comparison of fore-
casting methods ought to account for sample size and
correlation issues, since evaluation sets often are of
limited size (though of increasing length now that some
wind farms have been operating for a long time), while
correlation in forecast errors and other criteria (skill
score values, probability integral transform) is neces-
sarily present for forecasts with lead times further than
one step ahead. Verifying high-dimensional forecasts,
like space–time trajectories in the most extreme case,
based on small samples will necessarily yield score
values that may not fully reflect actual forecast quality
even though the score used is proper. Indeed, the de-
viations from the expected score value, which could be
estimated better with larger samples, would be substan-
tial. Correlation issues may only magnify this problem,
since they somewhat reduce the effective sample size
for estimation. An illustration of the combined effects
of sampling and correlation on the verification of prob-
abilistic forecasts can be found in Pinson, McSharry
and Madsen (2010).

Going from univariate to multivariate aspects,
Gneiting et al. (2008) explained how the previously in-
troduced paradigm can be readily generalized for mul-
tivariate probabilistic predictions, yielding an evalua-
tion framework including skill scores and diagnostic
tools. An application to the verification of temporal
trajectories of wind power generation in Pinson and
Girard (2012) illustrated its potential limitations stem-
ming from the high-dimensionality (there, n = 43 lead
times) of the underlying random variables. Following
the discussion in Section 5.1, it is clear that new views

on forecast verification ought to be introduced and
evaluated as dimensionality increases. For instance, re-
cent work by Hering and Genton (2011) showed how
to compare spatial predictions in a framework inspired
by the Diebold–Mariano test and with limited assump-
tions on the spatial processes themselves, thus permit-
ting to deal with high-dimensional predictions by fo-
cusing on their spatial structure.

5.4 Bridging the Gap Between Forecast Quality
and Value

Murphy (1993) introduced 3 types of goodness for
weather forecasts, also valid and relevant for other
types of predictions like for wind power. Out of these 3,
quality and value play a particular role: (i) quality
relates to the objective assessment of how well fore-
casts describe the stochastic process of interest (and
its realizations), regardless of how the forecasts may
be used subsequently, while (ii) value corresponds to
the economic/operational gain from considering fore-
casts at the decision-making stage. Through the in-
troduction of representative operational decision prob-
lems in Section 3, it was shown that optimal forecasts
as input to decision-making in a stochastic optimiza-
tion framework take the form of quantiles, predictive
marginal densities or, finally, trajectories describing the
full spatio-temporal process. However, it is not clear
today how improving the quality of these forecasts,
for instance, in terms of reduced skill score values or
increased probabilistic calibration, may lead to added
value for the decision-makers, especially when they
might use these forecasts sub-optimally. In practice,
this will call for more analytic work in a decision-
theoretic framework, by better linking skill scores of
the forecasters and utility of the decision-makers, as
well as for a number of simulation studies in order
to simulate the usage of forecasts of varying quality
as input to a wide range of relevant operational prob-
lems. Full benefits from integrating wind power gener-
ation into existing power systems and through electric-
ity markets will only be obtained by optimally integrat-
ing forecasts in decision-making.
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