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Abstract—In a real-time electricity pricing context where con-
sumers are sensitive to varying prices, having the ability to antic-
ipate their response to a price change is valuable. This paper pro-
poses models for the dynamics of such price-response, and shows
how these dynamics can be used to control electricity consumption
using a one-way price signal. Estimation of the price-response is
based on datameasurable at grid level, removing the need to install
sensors and communication devices between each individual con-
sumer and the price-generating entity. An application for price-re-
sponsive heating systems is studied based on real data, before con-
ducting a control by price experiment using a mixture of real and
synthetic data. With the control objective of following a constant
consumption reference, peak heating consumption is reduced by
nearly 5%, and 11% of the mean daily heating consumption is
shifted.

Index Terms—Adaptive estimation, control by price, demand
forecasting, predictive control, price-response, real-time pricing.

I. INTRODUCTION

T HE concept of controlling power systems using electricity
prices was first presented by Schweppe et al. [1] in a

study where price-sensitive generation and load responded by
adjusting their production or consumption in order to maxi-
mize their revenue or minimize their costs. Glatvitsch and Al-
varado [2] and later Alvarado [3] illustrated how broadcasting
different prices at each grid node is a means to controlling con-
gestion in the power system using price-sensitive generators. In
addition to managing congestion, the balance of supply and de-
mand using real-time prices was investigated by Jokic et al. [4].
Furthermore, the use of price-responsive demand to support a
high penetration of fluctuating generation (such as wind or solar
power) through real-time pricing is studied in [5]–[7]. How-
ever, little has been done about the applicability to price-elastic
load, including its uncertainty. These studies are often based on
a known deterministic model of the price-responsivity without
being based on real data.
In power systems characterized by a high penetration of

fluctuating generation, demand-side management programs
will play a crucial role in providing the flexibility needed to
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balance the power system and control its congestion [8]–[13].
This flexibility is controllable by price as consumers become
significantly more price-elastic when exposed to varying prices
[14], provided that the price is efficiently displayed to the
user. With the emergence of energy management systems
that automatically control the flexible load of end-users [15],
predictable price-responsive patterns emerge, as seen in the
Olympic Peninsula project [16]. Due to the migration of load
across time, being able to forecast the consequences of price
changes on future price-elasticities is crucial [17]. This requires
the use of cross-time elasticities to model the auto-correlation
of price-elasticities [18].
In a novel way, this study uses a data-driven approach to

estimate and forecast the dynamics of the price-elasticity, be-
fore using the forecasting model in a model predictive con-
troller with the objective of minimizing power imbalances, as
presented in Section II. The stochastic nature of future elastici-
ties and its nonstationarity requires the use of proper statistical
models, as discussed in Section III. Section IV studies an ap-
plication for heating systems, and finally, Section V presents
an implementation of a price-generator in a simulation frame-
work. The paper ends with conclusions and suggestions for fu-
ture work in Section VI.

II. USING THE PRICE-RESPONSE TO CONTROL
THE AGGREGATED ELECTRICITY CONSUMPTION

Different entities in the power system are interested in
utilizing the flexibility of users for various purposes such as
revenue maximization, balancing issues, or grid stabilization.
Different strategies can be used to activate this flexibility.
Direct control aims at centrally controlling each flexible de-
vice, requiring a bi-directional communication interface and
knowledge about the end-user’s environment. Indirect control
on the other hand decentralizes the consumption control task
by sending out a generic control signal interpreted by each con-
sumer’s energy management system. Each consumer can then
react to a control signal, e.g., by installing devices specially
optimized for his/her environment. Indirect control however
requires a reliable estimation of the consumption’s response
to the broadcasted control signal in order to reliably activate a
given amount of flexibility.
When the generic control signal takes the form of a price

signal, the available consumption flexibility is estimated by in-
vestigating the response of consumption to price. This price-
consumption relationship will be used to generate prices such
that a given objective is achieved (Fig. 1). In order to facilitate
the integration of large shares of renewables, an objective can
be to minimize needs for reserves by adjusting the consumption.
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Fig. 1. Controller emitting a price signal is able to influence an aggregate of price-responsive consumption systems. Identification of the relationship between
price and consumption (the “price-response”) enables the controller to generate prices needed to reach a given consumption target.

Based on knowledge about the price-responsivity of users, the
price-generation procedure is then a means to control the con-
sumption.
The price-responsivity of users must be adaptively esti-

mated as its population and characteristics change over time,
reflecting, e.g., the demographic development or the adoption
rate of energy management systems. This means the price-re-
sponse model must be updated every time a new measurement
is available. When identifying the price-consumption relation-
ship, special care has to be taken when price and consumption
are interdependent, as they affect each other in a closed loop
system. In this case, the forward relationship, being the response
of consumption to price, must be decoupled from the feedback,
being the response of price to consumption, using a multivariate
time series model [19] as investigated in Section III.
As some price-responsive devices might have very fast re-

sponses, consumption must be measured close to real-time in
order to take full benefits from price responsive users. The re-
sulting prices must then accordingly be generated and sent out
at the same time scale, putting heavy constraints on the IT and
communication infrastructure. To minimize the infrastructure
costs, this concept works aims at controlling consumption by
price using external variables measured on an aggregated level.
External variables are measurements available from outside the
household, e.g., like the aggregated electricity consumption, ex-
cluding variables requiring sensors inside the house, e.g., like
the inside air temperature.Measurements on an aggregated level
are measurements of a whole population in contrast to an in-
dividual device or consumer. For example, the sum of every
household’s consumption in a certain district is an aggregated
variable, measurable at grid level. Here, only a one-way com-
munication system is needed between the price-emitting entity
and the price-responsive devices, given that the aggregated con-
sumption is measurable at grid level.

III. MATHEMATICAL FORMULATION
OF THE CONTROL BY PRICE CONCEPT

In this paper, the grid dynamics have been ignored, meaning
that infinite grid capacity is assumed at every point. Also, in-
stantaneous communication of the electricity price and of the
aggregated consumption metering has been assumed. This im-
plies that additional dynamics and/or delays may appear when
dealing with a real power and communication system.

A. Identification of the Price-Consumption Relationship

The price influence can be seen as a change in consumption
added to the nonresponsive consumption.Wewill here make the
assumption that consumption can be separated into nonrespon-
sive and responsive parts, such that

(1)

with

where , , and denote the finite range of past values of
consumption , price , and externals influencing the current
consumption. The price-consumption relationship is described
by the function , whereas the traditional load is described by .
In the following, statistical consumption models which can be
separated into responsive and unresponsive loads are proposed.
Even though these models focus on predicting both types of
load, only the responsive part is to be controlled. These models
will then be used in Section III-B to control the consumption by
price.
1) Finite Impulse Response Model: As a first approach, the

price-consumption relationship and its influence by a given set
of external variables are assumed to be linear. A finite impulse
response (FIR) model is proposed [19], linearly combining past
and present values of price and externals to form the output
consumption, independently of past consumption values. In that
sense, dependence on price and on external variables (such as
outside temperature) are decoupled, and the price-responsivity
can be isolated. The input variable is constructed as a vector
containing a bias term followed by the present input values and
a finite range of and past input values. The FIR model de-
scribing the output consumption is then expressed as a gen-
eral linear model

(2)

where is a zero-mean Gaussian random variable.
For a data set of input-output measurements pairs , all

observations are vertically concatenated into an input matrix
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and an output vector in order to estimate the associated model
parameters in using the least squares estimator [19]

(3)

The estimated vector consists of the coefficients describing the
contribution of each input variable at each time delay (or lag).
The coefficients corresponding to the price input variable de-
fine the impulse response function from price to consumption,
characterizing the price-response

(4)

At time , the optimal -step consumption prediction mini-
mizing squared errors is the conditional expectation [19]. For
the FIR model (2), the forecasting model is

(5)

requiring a forecast made at time of the external vari-
ables up to time .
Recursive and adaptive estimation, needed in order to account

for evolution of the population of price-responsive systems, is
done by re-estimating the model parameters every time a new
observation is obtained [19], such that

(6)

(7)

where is the forgetting factor. In order to avoid inversion prob-
lems, inputs should be normalized and the matrix should be
initialized as a diagonal matrix with sufficiently small values.
2) Nonlinear Finite Impulse Response Model: For some ex-

ternal variables, nonlinearities might be inaccurately described
by a linear model. A solution is to describe such a variable
by a linear approximation . As an example,
the function could consist of a polynomial, Fourier or ex-
ponential series. Assuming that the same transformation of is
used at each time delay (in order to lower the number of coeffi-
cients needed), the FIR model (2) becomes

...

...

...
. . .

... (8)

where and denotes the fi-
nite range of past values of . The least squares minimization
problem is established by vertically concatenating observations
of , , and . Given a specific function , the model pa-
rameters are found using a nonlinear solver such as the Lev-
enberg-Marquardt algorithm [20], as the product of the linear

model coefficients with the lag coefficients makes (8) non-
linear in the parameters.
Forecasting is achieved by using the conditional expectation

[19], where an additional forecast of up to time is re-
quired in order to construct . Recursive and adaptive es-
timation is achieved for the nonlinear case with the recursive
equations

(9)

(10)

where is the forgetting factor, is the gradient with respect to
of the model output (8), and is a vector containing residuals

at time ; see [21].
3) Auto-Regressive Model With eXogeneous Inputs: An FIR

model does not include contributions from past consumption
values. In the case where the present output depends on its
previous values, autoregressive terms need to be added. The
auto-regressive model with eXogeneous inputs (ARX) is then
formed by adding a linear contribution of past output values
such that

(11)

where is the finite range of past
outputs and its associated coefficients. Using as
input vector and as parameter vector, vertically con-
catenated observations permits the use of the same least squares
estimator (3) and adaptive estimator (7). Forecasting is done by
taking the conditional expectation [19], i.e.,

(12)

noting that future values (up to time ) of are
needed, obtained by iteratively generating forecasts for

.
The models above are based on the important assumption

that the input prices are independent of the output consumption,
technically meaning that there is no feedback from consump-
tion to price. In situations where the price is issued by a market,
price and consumption affect each other in a closed-loop system.
Decoupling these variables is necessary in order to obtain the
price-response. This is achieved by expanding the ARX struc-
ture to bivariate outputs ( ) (the outputs being consumption
and price) [19]

(13)

This can be rewritten into the general linear model (2) where the
least squares and adaptive estimators (3) and (7) can be used.
This model can easily be extended to include nonlinearly trans-
formed inputs following the same methodology used to form
the nonlinear FIR model (8).
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B. Design of a Price Generator (Controller)

With the objective of adjusting the consumption in real-time
using the electricity price, future expected deviations from a
given reference are sought to be minimized. Because the cost
of deviating from the consumption reference varies with time,
future expected deviations are penalized with different weights.
Furthermore, in order to keep the generated prices constrained,
a penalty is associated with deviations from a given price level.
This prevents extreme prices when unreachable consumption
references are used.
Every time a control action is to be taken, prices are to be

generated up to a horizon with the objective of following
future consumption targets . Even though
only the first price is broadcast, generating prices for the whole
horizon enables the system to continue broadcasting prices in
the event of failure of the price-generator, for example due to
unavailable measurements.
Given the set of information available at time , mini-

mizing future expected costs over the horizon can be formulated
as the following stochastic optimization problem:

(14)

where and are weights reflecting penalties associated
with consumption and price deviations from their respective
reference at each look-ahead time . The coefficient is
introduced in order to stabilize the controller, by penalizing
deviations from the reference price. The random variable

describes the consumption at look-ahead time
as a function of generated prices up to look-ahead time ,

given all the information available at scheduling time . This
information set contains measurements of explanatory vari-
ables needed to describe the future consumption , including
previously generated prices.
Using the expectation property (from

the definition of variance) and as the expectation is a linear op-
erator, the stochastic optimization problem (15) can be rewritten
as

(15)

The conditional expectation is the optimal pre-
dictor under such a quadratic loss function, while the conditional
variance gives its associated uncertainty [19].
Minimizing (15) therefore implies finding the optimal predictor
(forecasting model) for the consumption together with its as-
sociated uncertainty. Assuming that the uncertainty is the same
for every price value, the variance term can be ignored, and (15)

Fig. 2. Change in price yields a change of the heating setpoint within a certain
comfort zone. Transformation of the price into a standardized price, centred
around zero, is needed in order to assess how high or low a price is.

can be solved by setting the price derivative to zero, yielding a
solution equivalent to a generalized predictive controller [22];
see [21] for details.
The resulting controller is a closed-loop controller, which can

have a potentially long (and maybe unknown) time delay as
grid measurements might not instantaneously be available for
the controller. This can be handled by considering controllers
specially designed for this; see [23].
Note that the consumption forecasting model is not required

to be separable into responsive and unresponsive load, but rather
must have an explicit dependency on the price variable.

IV. APPLICATION TO PRICE-RESPONSIVE HEATING SYSTEMS

Inspired by concepts and ideas developed during the Olympic
Peninsula project [16], we here present a possible approach to
how heating systems can be used to bring flexibility into the
power system.

A. Flexibility Potential of Heating Systems

Flexible devices are seen as devices with a high inertia,
meaning that they can be turned off for a short period with
no or very little consequences for the user. Heating systems,
such as hot tap water heating and space heating have inertia
due to the time constants involved in their dynamics. These
systems are actuated by being turned on or off such that their
thermostat’s temperature follows a certain reference (setpoint),
meaning that the device is adequately turned on or off when it
reaches extremes of a given temperature band centered around
the reference temperature. Controlling the temperature setpoint
is therefore a mean to turn on or off such devices during a cer-
tain period of time. This period is related to the system’s time
constant, and therefore characterizes the flexibility potential.

B. Electricity Price Incentive to Activate Flexibility

In a real-time pricing context, users would be willing to ad-
just their consumption to periods of low prices in order to save
money. According to the price of electricity, the temperature
setpoint could then be adjusted as long as it stays within a pre-
defined comfort zone (Fig. 2), as inspired by the Olympic Penin-
sula project [16]. During periods of high price, space heating is
for example more likely to be turned off as the temperature ref-
erence is lowered. Furthermore, pre-heating takes place during
periods of low prices in anticipation of future high prices. As it
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Fig. 3. Price responsive heating systems adjust their consumption based on a filtered price signal, their comfort settings, and their heating needs. The measured
aggregated consumption is the sum over all heating systems.

takes a certain time for the system to reach its reference, com-
fort is barely reduced given that the setpoint is only changed for
a short period of time.
Price-responsive devices must assess how high or low the

electricity price is, filtering out slow variations (such as monthly
or yearly variations). The received price is therefore trans-
formed into a dimensionless standardized price by comparing
it to a reference reflecting the mean price level. Inspired by [10],
[16] the standardized price is defined as the increase in price
relative to a reference

(16)

where the reference is computed as an exponentially
weighted moving average of past prices

(17)

is a smoothing constant accounting for how long a price is re-
membered and denotes the sampling time. The standardized
price has a simple interpretation: when a doubling of the price
occurs, the standardized price is +100%. This however assumes
that the reference price is kept different from zero.

C. Occupancy Modes

Consumers’ price responsivity and comfort needs vary during
a day, mostly depending on whether or not they are at home.
This state is represented by an occupancy mode, triggered by the
user or according to a schedule [16]. Three occupancymodes are
used: night mode, work mode and home mode (Fig. 4). For each
device, each occupancy mode defines a setpoint, a price sensi-
tivity and its related comfort bounds (Fig. 2), hereby reflecting
varying price responsivities and comfort needs.
The overall setup of a price-responsive heating system is de-

scribed in Fig. 3.

D. Price-Responsiveness of the Participants of the Olympic
Peninsula Project

The Olympic Peninsula project [16] implemented, among
others, price-response heating systems as previously described

Fig. 4. Time dependent sample distributions approximating the probability of
being in one of three occupancymodes from the Olympic Peninsula project [16].

in this section (with a slightly different price standardization
method; see [16]).
Every 5 min, price-responsive appliances formulated bids ex-

pressing their current electricity needs. The aggregated elec-
tricity bids (demand) and production capacities of the generators
(supply) together with feeder constraints (supply limits) yielded
a clearing price that was sent out to customers every 5 min. The
calculation of the clearing price was done by intersecting supply
and demand curves, leaving the market as the price-generating
entity.
As prices were issued by a market, consumption and price

both influence one another. Isolating the response of consump-
tion to price is therefore achieved by utilizing the bivariate
ARX model (13), using consumption and price as output vari-
ables. Price, dewpoint,1 sun irradiance, and heating temperature
setpoint are used as input variables. The model complexity is
chosen such that an increase in the number of lags does not
significantly improve performances, measured as the coeffi-
cient of determination. Hence, autoregressive
lags (10 hours) are used with lags for the external
variables, yielding a coefficient of determination of 75%. The

1The dewpoint is a measure of temperature associated with humidity.
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Fig. 5. Response of consumption to a price step after removing the consump-
tion to price feedback. A model complexity of lags (10
hours) yields a coefficient of determination of 75%. The selected model shows
a slight rebound after 6 h, which in our opinion is negligible. However, situa-
tions where a significant rebound is present cannot be excluded, as seen later in
Fig. 10. In this sense, the step response has a significant duration of 5–6 h.

Fig. 6. Consumption’s response to price of the heating system is investigated
by stimulating the system with price steps of random durations and magnitudes.

Fig. 7. Standard deviation of the population of household consumptions is av-
eraged over the whole time series, and compared to the span (max-min) of the
aggregated consumption, in order to give an indicator of the variability in the
data. Twenty houses are considered to be enough to obtain consumption patterns
having a mean representative for the population.

found consumption response to a price step has a significant
duration of 5–6 h (see Fig. 5).

V. CONTROL-BY-PRICE EXPERIMENT

A. Experimental Setup

In the light of testing a consumption control system, a sim-
ulation framework is developed implementing the concept de-
scribed in Section IV. Focussing on the flexible consumption
of households, a thermal model for a household is established
based on [10], [24], and [25] in the form of a system of differ-
ential equations having as states indoor air and building thermal
mass temperatures. These are influenced by the outside temper-
ature, sun radiation and space heating system of the households.

Fig. 8. Mean consumption change after a change in price, averaged over dif-
ferent times of the day, displayed with one standard deviation.

Thermal parameters are functions of the living area, therefore
representative populations of the Danish society can be simu-
lated based on its distribution of living areas,2 The space heating
system is assumed to instantly and uniformly heat up the in-
door air. Heat pumps are implemented having their output and
consumption depending on outside temperature, as seen in [24].
Price-responsivity is implemented by controlling the tempera-
ture setpoint as described in Section IV, and human behavior
is introduced by randomizing the occupancy modes extracted
from the Olympic Peninsula project. The simulated results are
then validated against real consumption data; see [21].
Based on weather data from the Danish Meteorological In-

stitute (DMI) for January 2009, the heating consumption of 20
Danish households equipped with heat pumps is simulated with
prices broadcasted every 5 min. Price sensitivities and comfort
bounds are kept constant over time and across the population
of households. Price steps of random durations and magnitudes
are generated in order to obtain representative responses in con-
sumption (Fig. 6). Twenty houses are considered to be enough
in order to obtain consumption patterns having a mean repre-
sentative for the population (Fig. 7).

B. Estimation of the Price-Response

The real response of the system can be investigated by ex-
citing the simulated system with different prices. Keeping the
price constant, two days are simulated in order to ensure conver-
gence from initial conditions. Using the final state of the system,
various changes of prices are simulated for one sample ahead.
As a reference case, no price change is performed. The resulting
consumption is measured, assuming that all internal variables
have not had time to change significantly during one sample,
and compared to the reference case (Fig. 8). Because the price
during the two first days was kept constant to 1, the change in
price is actually the standardized price.
A nonlinear immediate price response is observed, with re-

sponsivity saturations for price changes higher than 1 and lower
than . The response also depends on time of the day, with
maximum responsivity during periods of high heating demands
(the morning and evening peak) [21].
An FIR model (2) is sufficient to describe the price response

of the aggregate of households, found to depend on outdoor tem-
perature, sun irradiance and heating temperature setpoint. A co-
efficient of determination of 59% is achieved using

2Available at Statistics Denmark http://www.dst.dk/HomeUK.aspx.
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Fig. 9. Extracted response of consumption to a step of price with an FIR model
using price, outside temperature, sun irradiance, and heating temperature set-
point as inputs. A model complexity of lags (6.7 h) yields a
coefficient of determination of 59% with a noticeable price effect of approxi-
mately 5–6 h.

Fig. 10. Using a model complexity of lags (20 h), it is
observed that occupancy modes reduce the effect of consumption shifting.

Fig. 11. Linear model with Fourier basis expansion using the four first har-
monics corresponding to periods of 24, 12, 6, and 3 h sufficiently represents the
heating setpoint by minute of the day (Olympic Peninsula data).

lags (6.7 h). The noticeable duration of the response is also
found to be 5–6 h (Fig. 9).
It should however be noted that this response contains both

the price standardization procedure of Section IV and the phys-
ical response of the system. Furthermore, occupancy modes en-
abled a consumption reduction during periods of high prices,
without entailing a noticeable increase at a later time.
The models used for the price-responsivity are based on the

heating setpoint variable, which is an internal variable, thus re-
quiring a two-way communication system with households. As
the heating temperature setpoint exhibits a functional relation to
the minute of the day variable (Fig. 11), it can be replaced by
the latter, being an external variable. The minute of day vari-
able is therefore nonlinearly transformed, and is approximated
by a linear model using a Fourier series with 4 harmonics cor-
responding to periods of 24, 12, 6, and 3 h (Fig. 11).

Fig. 12. Proof-of-concept is illustrated by a constant consumption reference,
yielding a reduction in peak of nearly 5% and a mean daily shifted quantity of
11%. The price-responsive and unresponsive groups are comparable as control-
ling by price only decreased the overall consumption over twomonths simulated
by 1% for the unresponsive group.

The FIR model (8) that uses a transformed input can then be
used to extract a price-response exclusively based on external
variables. Using 40 lags (3.5 h) for every input, the coefficient
of determination is reduced only from 59% to 56%, while the
number of parameters is halved (from 312 to 168) without any
significant change in the response structure.

C. Control by Price Using a Constant Consumption Objective

Two months of consumption data (November and December
2008) are simulated as training data for the forecasting models.
A comparative nonresponsive group is simulated in parallel.
The consumption target is kept constant, equal to the mean
of the training data, but could be chosen equal to the generation
of renewables, in order to maximize its penetration. The price
level is also kept constant, chosen as the mean of the training
prices. Based on the step response extracted, a horizon of 3.5
h is used, taken as the amount of time during which a change of
price significantly influences the consumption. Price and con-
sumption penalties and are kept constant during the
whole horizon. The penalties on the deviations from refer-
ence prices were chosen sufficiently large to prevent prediction
errors from causing instabilities in the controller.
As a result, a reduction in peak consumption of nearly 5%

is observed together with a mean daily consumption shift of
11% (Fig. 12). The price-responsive and unresponsive groups
are comparable because controlling by price only decreased the
total consumption by 1%.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, several models are proposed to describe the
dynamics of the price-elasticity of consumers, used to control
their consumption using prices. The estimation of the price-re-
sponse is carried out using data from the Olympic Peninsula
project [16], demonstrating the applicability of the method. A
price generator (controller) is designed based on a forecasting
model of the price-response, continuously updated to track its
time-varying changes. With the objective of maintaining con-
stant consumption, a significant amount is shifted and peaks are
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flattened (Fig. 12). Even though the control signal is not fol-
lowed perfectly, this presents a significant reduction of back-up
power capacity that is necessary for integrating large amounts
of fluctuating energy, and reduces the grid reinforcement invest-
ments required.
The presented control-by-price approach has been conceptu-

alized with flexibility, implementability, and cost-efficiency in
mind. It can be used in a restricted environment between, e.g., an
electricity trader and his flexible customers, or in an larger en-
vironment between, e.g., the TSO and flexible customers (pro-
vided that the proper market structures exist). It can be ex-
tended to include price-responsive generation, or to generate
nodal prices reflecting grid congestion. As no a priori knowl-
edge about consumers is required, if the aggregated consump-
tion is measurable at grid level, then a one-way communication
system suffices (namely the broadcasting of prices), thereby re-
ducing deployment costs. As long as adaptive estimation is used
to track the time-varying changes, the system is self-learning,
meaning, e.g., that the population of consumers and devices can
grow and vary in diversity.
From a TSO or DSO perspective, the fact that price signals

should be used to optimize power system operations in real time
should act as a strong incentive for them to account for new in-
formation on the system’s state (grid failures, generation fore-
casts, etc.) as quickly as possible. Therefore, it is expected that
prices would adjust accordingly so as to reflect all available
information, public and/or private, in the sense of an efficient
market.
Future developments are envisaged in three complementary

directions. First of all on the prediction side, the models pro-
posed for the price-response of the consumers may be improved
by generalizing the assumed linear relationship between price
and consumption, for instance in order to account for satura-
tions in the measured price-response (Fig. 8). A measure of the
amount of available flexibility in the systemwould then be given
by the estimated saturation bounds, representing the maximum
increase and decrease in consumption that can be achieved at
all times. These models should also be generalized to apply to
other load types with more complex consumption patterns, e.g.,
electric vehicle charging systems.
Secondly concerning the control aspects, the risk associated

with the uncertainty of the users’ response to prices should be
taken into account when generating price signals. This means
that uncertainties in the predicted explanatory variables, and
subsequently the uncertainty in the price-elasticity forecast it-
self, need to be accounted for. Resulting controllers would then
not only seek to minimize expected costs, but also integrate a
risk-related measure, e.g., the value at risk (VAR).
Finally, the development of better price-forecasting models

and price-generating controllers calls for new experiments with
a wide-range of demand-side management set-ups exposed to
a real-time price signal, as simulations are limiting because the
human factor needs to be accounted for. Such new experiments
could reveal ways to improve consumers’ flexibility. Further-
more, user acceptance of such a technology might require spe-
cific pricing contracts that reduce the financial risk taken by con-
sumers exposed to varying prices. This, however must take into

account consumers’ loss of interest in participating when the
price-generating entity takes on the risk.
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