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Abstract—A statistical analysis is performed in order to in-
vestigate the relationship between wind power production and
cross-border power transmission in Europe. A dataset including
physical hourly cross-border power exchanges between European
countries as dependent variables is used. Principal component
analysis is employed in order to reduce the problem dimension.
Then, nonlinear relationships between forecast wind power pro-
duction as well as spot price in Germany, by far the largest
wind power producer in Europe, and power flows are modeled
using local polynomial regression. We find that both forecast wind
power production and spot price in Germany have substantial
nonlinear effects on power transmission on a European scale.

Index Terms—wind power generation, power transmission,
principal component analysis, regression analysis.

I. INTRODUCTION

RIVEN by the need to comply with stringent inter-

national agreements, which aim at reducing the envi-
ronmental impact of energy production as well as energy
dependence, the deployment of renewable energy in Europe
has grown at an unprecedented pace in the recent years.
Among renewable sources, wind power plays a central role
both for its impressive technological development and for its
expansion. Particular features of wind power, like its stochastic
and non-dispatchable nature and its very low marginal cost,
render it very different from the more conventional sources of
energy.

Due to its low marginal cost, wind power production has
the consequence of lowering market prices via the so-called
“merit-order effect” [1]. This is because wind power enters
the energy supply function from the left, or, in an alternative
interpretation, reduces the load and thus shifts the intersection
between supply and load to the left, thus pushing more
expensive sources of energy out of the production schedule.
Simulation with market models in [2] and statistical analysis in
[3] confirm the price reduction effect of wind power. The latter
work also shows that the driving variable of this mechanism
is wind power forecast rather than actual production, since the
former one is used when producers bid on the market.

The European transmission network is composed of five
different synchronous zones, which in turn gather several in-
terconnected national and international energy markets. These
are organized with different rules and characterized by dif-
ferent generation portfolios; furthermore climate conditions
vary widely across Europe. In these conditions significant
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price differentials are likely to develop between areas, and
therefore also significant flows of power from areas with low
power price to areas where energy is more expensive. Thus by
influencing energy prices, wind generation also drives flows
of power from areas with temporarily favorable conditions
for wind power production to areas with higher price level,
be it due to a high demand or an expensive generation mix
[4]. Massive investments are planned in order to increase the
transmission limits between countries of the EU in the years
to come [5].

Among the challenges for a successful integration of high
penetration of wind power are the variability of its power
output and the limited accuracy of wind power forecasting
[6], [7]. Both these problems can be addressed by aggregating
the power output of wind farms distributed over a wide region.
Indeed due to the lower variability of wind power production
in Europe as compared to generation from a single region,
more than 20% of the European demand could be covered
by wind power without significant changes in the system
[8]. Furthermore forecast errors can be drastically reduced by
the so-called “smoothing effect” of aggregation, as discussed
in [9]. Investigations of this type generally assume infinite
transmission capacity, while as [10] points out, the interaction
between wind power production and transmission constraints
should be accounted for, if these phenomena are to be analyzed
at a European scale.

In this context, modeling how wind power production
interacts with the flow of energy in large international power
systems is particularly appealing. Models of this type are
needed when planning investments in new wind power or
transmission capacity. From an operational point of view,
they can help the process of scheduling cross-border power
exchanges.

Power system models have been developed and simulated
in the literature in order to study the effect of increasing
penetration of wind power on European cross-border flow.
Such models are simulated in [10] in order to study the
congestion of individual interconnections in different scenarios
of wind power penetration in Europe. A similar intent is
pursued in [11], with the focus being on offshore wind power,
and in [12], where copulas are employed to simulate wind
power production at different locations. Besides, the effect of
wind forecast errors on the uncertainty of cross-border flows
has been investigated in [13].

As opposed to simulation using market and grid models,
this work follows a top-down statistical approach based on
historical data, along the lines of the method employed in
[14]. Among the advantages of this approach is the relative
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simplicity, since no detailed modeling of the underlying phys-
ical structure of the power system is required. On the other
hand, the reliance on historical data implies the impossibility
of extrapolating the analysis out of the range of observations.
In this paper a method for analyzing the impact of wind-
related variables (external variables) on the European cross-
border flows (dependent variables) is developed and employed.
The focus is directed towards the effect of forecast wind
power production in Germany, which, besides being the largest
producer of wind energy in Europe, is centrally located
and highly interconnected with the neighboring countries. As
Germany—along with other countries in Northern Europe—
is setting ambitious targets for installed wind power capacity
already by 2020 [15] the presented methodology will allow to
assess how future deployment of wind power in this important
region will affect the European transmission grid, pinpointing
its limitations and possible bottlenecks.

The methodology proposed in this work follows three steps.
First, Principal Component Analysis (PCA) is employed in
order to reduce the size of the problem, which would other-
wise require the analysis of a large number of flows. PCA
determines the most significant modes of the flow dataset,
i.e. the directions in which it shows most of its variation.
The dimension reduction is then performed by selecting a
reduced set of modes, which account for a large fraction of
the variance of the original dataset. At a second stage, local
polynomial regression is applied on this basis in order to model
the interaction between the external variables and the chosen
modes of the flow dataset. The final step consists in mapping
the results of the analysis back from the reduced basis to the
original space, i.e. the individual cross-border flows.

This paper is structured as follows. The dataset used in
this work is briefly introduced in Section II, and the choice
of the explanatory and dependent variables is motivated.
Section III describes the employed methodology. In Section IV
we discuss the results of the application of this method on
the available dataset. Finally, concluding remarks and possible
future extensions of this work are provided in Section V.

II. DATASET

The dataset employed in this work spans a period of 3 years
from January 2006 until the end of December 2008. Since
during the winter daylight savings only one measurement is
available for the duplicated hour, 26301 hourly observations
are available in total both for dependent and explanatory
variables.

A. Dependent variables

Physical hourly cross-border power flows between 34 Eu-
ropean and bordering extra-European countries form the set
of the dependent variables used in this work. This consists
of 70 flows in 2006, 72 in 2007 after the addition of the tie-
lines connecting Bulgaria-Macedonia and Estonia-Finland, and
74 in 2008 after the addition of the Norway-Netherlands and
Greece-Turkey interconnections. Since the analysis to carry
out needs data to be available for the whole period for all
the interconnections, the set of physical flows is restricted

to the original 70 interconnections established as of 2006.
Furthermore, data are missing for significant parts of the
period 2006-2008 in other two flows. The final dataset is
therefore restricted to 68 cross-border interconnections. Given
the low number of discarded flows compared to the total, such
discard has a limited impact.

Finally, a data cleaning procedure indicated the presence
of outliers stemming from phenomena of different nature.
Exceptionally high or low values for most European flows
were recorded during the UCTE system split on the 4th
November 2006, see [16]. Similarly, unusual flows can be
observed during the winter switch from daylight savings to
solar time for most interconnections. Finally, a small number
of local, single-hour spikes involving few adjacent flows is
observed, possibly stemming from smaller technical failures.
Such limited number of outliers is removed from the dataset
leaving 26281 hourly observations.

B. Explanatory variables

For the reasons mentioned in Section I the focus of the
analysis is directed towards wind power production in Ger-
many. As [3] states, the driving variable to be considered when
analyzing the effect of wind power is the production forecast
rather than the actual production. Indeed the former is used
when bidding wind power at the spot market, where the price
is settled. Since both wind power forecasts and load affect the
spot price, it is of interest to analyze their combined effect on
the cross-border flow of power. Therefore the first explanatory
variable to be considered in the analysis is the forecast wind
power penetration

t= 7 ey

where Wt is the wind power production forecast and L;
the load, both aggregated for Germany as a whole. Both
these variables are available in the considered dataset for
the whole 2006-2008 period. It should be noticed that wind
power in Germany developed constantly in the considered
period. Indeed, the installed capacity grew from 18.4 GW at
the beginning of 2006 to 23.9 GW at the end of 2008 [17].
Nevertheless, the impact on this study is limited owing to the
fact that wind power penetration is employed rather than a
scaling of the production with respect to the total installed
capacity.

An alternative approach is the direct use of the spot price in
Germany as an explanatory variable. The effect of wind power
is then considered in an indirect way, under the assumption that
wind power forecast, or penetration, is negatively correlated
with the spot price, as shown in [3]. Although the core of
the analysis presented in this paper considers the wind power
penetration as explanatory variable, we provide an example
using the electricity price in Section IV-B.

The time series of spot prices in the German electricity
market (EEX) is characterized by sparse spikes reaching
out to around €2500/MWh. As a way to solve this issue,
among other benefits, logarithmic transformation is commonly
employed when dealing with price time series, see e.g. [18].
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The time series of logarithmic prices can be generated through
the transformation

Pl =log(1+P) . 2)

This way the distance between the sparse high prices is shrunk,
while the relative distance between the denser low prices is
increased. As a side effect, handling negative prices is not
possible under the logarithmic transformation. In the dataset,
15 prices at the end of the year 2008 turned out to be negative.
These values are discarded from the dataset, which is therefore
further reduced to 26266 observations. Alternatively, a shifted
log transformation [19] could be employed without requiring
the exclusion of negative prices.

III. METHODOLOGY

Although the study of a power network could be performed
by independently analyzing each single flowgate, several rea-
sons point at other options. First, studying a wide power
system like the European one would require the analysis
of a large number of flows, with negative consequences on
the dimensionality of the problem. Furthermore, due to the
net structure of power systems several flows can be highly
correlated due to e.g. loop flows. This means that part of
the analysis carried out by independently considering each
interconnection would be redundant. On top of that, noise
can render less visible the object of the investigation. As
Section III-A explains, PCA is used here in order to overcome
these issues.

Once a reduced set of principal components is indicated by
PCA, statistical regression is employed on the reduced basis
in order to model the dependence structure between flows
and external variables. As power systems are complex and
nonlinear, their study requires nonlinear regression techniques.
Local polynomial regression was successfully applied in [14]
to perform an analysis similar to the one in this work,
though only considering the Austrian power system. The same
technique, which is introduced in Section III-B, is used in this
work. The reader interested in a deeper presentation of local
polynomial regression is referred to [20].

A. Principal component analysis

PCA is a technique that is often used when dealing with
multivariate data in order to reduce the problem dimension, see
[21]. Problem simplification is obtained by selecting a reduced
basis of orthogonal variables, which account for most of the
variance in the dataset. Let us denote with the vector X; the
values of the IV physical hourly cross-border flows at time .
Let us also assume that 7" hourly values are available for each
interconnection. The centered version X; of the multivariate
time-series of the power flows is given by

X=X, - X, 3)

where X is the vector of the mean values of the N flows. The
covariance matrix C of the flows can be computed as

T
1 v %7
C:T;tht . 4)

The eigenvectors of the covariance matrix C form a new
orthogonal basis for the flow dataset. In practice, such eigen-
vectors represent modes of the dataset, i.e. groups of flows
that often exhibit a similar behavior. By ordering the eigen-
vectors so that the corresponding eigenvalues are arranged in
a decreasing fashion, one ensures that the higher the ranking
of a vector in the new basis, the higher the fraction of total
variance of the dataset it explains. This is a trivial result of
the fact that these fractions and the eigenvalues are linearly
proportional.

The principal components are obtained by selecting the first
n eigenvectors in the new ordered basis. Although the choice
of n is arbitrary, there are several criteria for this selection,
e.g. the method of the average eigenvalue and the scree graph
method, which are discussed in [21]. The latter method, which
basically consists in a graphical discrimination between small
and large eigenvalues, has been used in this work. As a
consequence of this selection, only the n directions (or modes)
of the flow space with the largest variance are retained in the
analysis, while the remaining N — n are discarded. This is
done since the modes with larger variance carry most of the
statistical information while the ones with smaller variance
can often be associated with noise.

Let us denote with Y;,2 = 1,...,n the principal compo-
nents of the dataset. These form a reduced orthonormal basis
for the original flows, and one can always write the centered
flow observations X as a linear combination of the PCs Y;’s
plus an error term €;, which has zero mean and finite variance

n
X, = Z ;i Yi+ e v, (5

i=1

In other words, we achieve a similar statistical representation
of the original flow dataset through linear projection from
the reduced space of the PCs. Generally speaking, the higher
the fraction of the original variance is retained with the
chosen PCs, the more accurate such representation will be.
More precisely, it is to be underlined that the variance is a
full description of the statistical information contained in a
dataset only under the assumption of joint normality. When
the original variables (flows) do not follow a multivariate
normal distribution, the comparison between the variance of
the original dataset and the variance of its projection on the PC
space is an indicator of the amount of the retained statistical
information up to moments of order 2. In the case that higher
order moments of the residuals are large in comparison to the
original signal, alternatives to PCA should be considered, e.g.
Independent Component Analysis (ICA) [22].

The advantage of using PCA is now clearly visible, as it
is possible to represent every multivariate flow observation
X, which is N-dimensional, with a set of n coefficients «; .,
where n < N.

It should be pointed out that PCA is often carried out on
centered and standardized variables, i.e. by diagonalizing the
correlation matrix R rather than the covariance matrix C. The
choice of using the covariance matrix is motivated by the
fact that in this way the information on the magnitude of the
flows is not lost in the division r;; = cij/(a)zo)?j). This is
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clearly an advantage in this case as all the dependent variables
(flows) are measured in the same unit, and, as Section IV
underlines, this choice allows a more intuitive interpretation
of the principal components. Furthermore, as [23] points out,
carrying out PCA on the covariance matrix can better isolate
the strongest variations in a dataset with uniform units.

Finally, it is important to remark that data might present
significant trends when longer datasets (i.e., spanning several
years) are employed. For example, an increase in demand
could introduce slow variations in power flows. In that case,
simply centering the multivariate flow dataset as in (3) might
reveal itself inadequate to remove such trends. To this end, one
might filter the dataset of power flows so that low-frequency
dynamics are discarded from the analysis.

B. Local polynomial regression

The model of Eq. (5), representing the power flows as a
linear combination of the principal components of the dataset,
can be modified in order to account for the effect of explana-
tory variables ug, e.g. the forecast wind power penetration
7 and the transformed electricity price P!. This is done by
allowing the coefficients «; of the principal components to
vary as functions of ug

Xe=> ai(u)Yite Vit (6)
i=1
In this work local polynomial regression, see e.g. [20], is
employed in order to study the functional forms of the «;(uy)
coefficients. This technique allows to fit a curve or a surface
(depending on whether u, is formed by one or more explana-
tory variables) to these relationships by locally approximating
them as low-order polynomials. Although in principle ut could
be of any dimension m, for practical applications this vector
should be sized reasonably. For example it is not possible to
visualize the coefficients «;(ug) if m > 2. Furthermore, the
computational time increases with the dimension of this vector.
The first step of the technique consists in the definition of
a grid in the space of the explanatory variable u. The grid is
formed here by choosing [ equally spaced quantiles in each
dimension of u. Let us indicate with u; the time series of the
i-th explanatory variable, sorted in increasing order. We are
interested in the quantiles with the following probabilities
ko1
Pr=0 "2
Let us define hy = T'pg + 1/2, where T is the sample size.
If hy is an integer, the k-th quantile u¥ is the hy-th point in
the sorted sequence u;. Otherwise, it can be estimated with
the following linear interpolation

k=1,...,0. (7

uf = (n) + (e — L)) (wi (41 — Ui lng)) > (8)

where the second subscript on the u’s indexes a certain element
of the vector u;.
A grid is then formed by considering the [ combinations

of points (uf*, ub? ... uFm) where k; = 1,2,...,1 for i =
1,2,...,m. Alternatively, equally spaced u¥ could be used

with no consequences on the remainder of the methodology
presented here.

Weighted least-squares regression is then performed locally
at each point of the grid. A set of ¢ data points, where
1 < g < T, is used for regression. These points, called
neighbors, are the ¢ closest points to the considered point of
the grid. Naturally the neighbors selection procedure requires
that a suitable metric p is defined on the explanatory vari-
able space. Hereafter the Euclidean distance is adopted, after
variables measured in different units are normalized. The ratio
h = q/T < 1 between the considered number of neighbors
and the total number of data points is referred to as bandwidth.
High bandwidths increase the smoothness of the regression,
with the trade-off of an increased bias of the regressed model.
In this work a bandwidth A = 0.2 is used.

A weight function has to be defined in order to assign higher
importance to the observations (X¢, u;), whose values of the
explanatory variables are the closest neighbors of the grid
point. Among the many possibilities, a weight function based
on the tricube function is chosen here

1-23)2 0<z<1,
w(z)= (L) 0=z ©)
0 otherwise .

One should notice that w(z) is non-increasing for positive z.
Let us name u;& the j-th point of the grid and with u’ its
g-th furthest neighbor. Since p(W’,ul) is at a maximum in

the considered neighborhood, the weight function

J
Fu) = w (" (1, ) ) (10)
p(/, ul)
is well defined. Indeed it assigns non-increasing weights to
points with increasing distance from ui#. A weight of 1 is
assigned to the grid point ug#, while @ and all the points
outside the neighborhood have 0 weight.

Weighted least squares regression, see [24], is employed
locally for each point u;# of the grid. Each observation
(X¢, 1) is weighted according to the weight function in (10).
The output of weighted least squares regression is a local
model for «;(uy), approximated as a first order polynomial of
the explanatory variables. The model is determined according
to a weighted least squares criterion, which ensures that the
modeling error €; is minimized in a consistent way.

After this procedure is carried out for all the points in the
grid, a curve or surface @;(uy) is fitted from the individual
local approximations. Such a fit models the behavior of the
coefficients «;(ut) of the principal components in the whole
space of interest as functions of the explanatory variables.
Conclusions could be drawn directly from the shape of the
regression surface of the «;(uy)’s, provided that the principal
components can be easily interpreted. As an alternative, one
can choose to map the analysis back to the original space of
the non-centered flows, obtaining the models X (uy)

n

X(u) =D @i(u)Yi+ X .

i=1

(1)

This way regression curves or surfaces are obtained for each
individual flow in the dataset.
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IV. RESULTS

This section presents the results obtained from the appli-
cation of the method proposed in Section III to the dataset
described in Section II. Clearly, analyses of this type depend
heavily on the availability and on the quality of large datasets,
which are not always publicly available. Although datasets for
power flows, wind power production and load are available for
certain electricity markets, e.g., PIM [25] and the European
markets [26], the collection of such datasets require the
coordination of a number of entities so as to ensure consistency
in terms of sampling frequency, sampling time and time-span.
Obviously, this is a limitation for the readers willing to perform
a similar study, but unable to interact with the entities owning
the data.

A. Principal component analysis

The results of PCA applied to the dataset of the cross-border
flows show that it is possible to express most of the original
variance with a limited number of principal components (PCs).
By using the scree-graph method, see [21], the 8§ PCs with
highest variance are selected. The criterion used ensures that
further inclusion of PCs would not increase sensibly the
cumulative fraction of variance explained by the set.

Table I summarizes the characteristics of the selected com-
ponents. Its second column reports the fraction of total dataset
variance explained by each of the PCs individually, while the
third column shows the cumulative fraction of variance jointly
explained by selecting the first ¢ PCs. It is seen that almost
2/3 of the total variance are explained by the first 4 PCs.
Furthermore, the selected set of 8 PCs explains 82.11% of
the original variance, despite the dramatic reduction in size
of the problem from the original 68 flows to 8§ modes. In

TABLE I
INDIVIDUAL AND CUMULATIVE FRACTION OF VARIANCE EXPLAINED BY
THE 7-TH PRINCIPAL COMPONENT AND BY THE PRINCIPAL COMPONENTS
UP TO THE %-TH ONE RESPECTIVELY

Principal Individual fraction = Cumulative fraction
component of variance [%] of variance [%]

1 28.89 28.89

2 18.83 47.73

3 10.55 58.28

4 7.69 65.97

5 5.53 71.50

6 4.83 76.32

7 2.97 79.29

8 2.81 82.11

relation to the discussion on the non-normality assumption in
Section III-A, it is stressed that different statistical descrip-
tions, such as the comparison of the interquantile ranges of
the flows and their residuals, showed a similar behavior as the
one illustrated in Table I for the variance.

The analysis of the structure of the PCs gives further insight
into the characteristics of the European power system. Indeed
when PCA is carried out on the covariance matrix, see the
discussion in Section III-A, the structure of the PCs often
offers a physical interpretation. Let us denote with Y; the

i-th PC. It is a vector of 68 elements

Y;=[Yi1. --Yi,GS}T ) (12)

where Y ; represents the weight of the j-th individual flow
in the ¢-th PC. Large weights of the same sign on a PC show
that the corresponding flows tend to deviate from their mean in
the same direction; conversely they tend to deviate in opposite
directions if their weights have different signs.

Fig. 1 shows the structure of the first PC as an example.
In this illustration the widths of the arrows in the map of
Europe are scaled, so that each of them is proportional to
the weight Y7 ; of the respective j-th cross-border flow in the
first PC. As one can see, the main contribution to this first
PC is given by the simultaneous flow of power directly from
Switzerland to Germany, directly from France to Germany and
by the flow from France to Germany through Belgium and the
Netherlands. The fact that this mode alone explains almost
30% of the variation of the dataset signals the importance of
the power flow between France and Germany on a European
scale.

— PC coefficient = 0.1 Y
= PC coefficient =0.2 \
= PC coefficient = 0.3 )
= PC coefficient = 0.4
® PC coefficient = 0.5 ~
N
~
\ /‘ %
7 Ve N
7 R /
= -
\ : P
? IS
"__ > ~ \ ~
e
/ \// \
£ \
N

Fig. 1. Map of Europe showing the weight of each single centered physical
flow X; in the first principal component Y. The width of the lines in the
figure is proportional to the coefficient of the respective flow in Y1

The second and third PC, not shown here for the sake
of brevity, offer interesting interpretations, too. The second
PC is mainly composed of power flowing from Germany
to the Nordic region, and internally in Scandinavia from
Sweden to Norway. A possible interpretation could be that
cheap power is flowing from continental Europe to Norway so
that water can be kept stored in the Norwegian hydro dams,
or the other way around when continental Europe imports
power from Norway. A second significant pattern in this
principal component, although less important, is the flow of
power through Switzerland in the North to South direction.
Furthermore, the main trend in the third PC is the flow of
power towards Italy from France, both directly and through
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Switzerland, and from Germany, through Switzerland and to
a lesser extent Austria.

B. Regression curves for principal components

Regression curves or surfaces modeling the behavior of the
a;(ue) coefficients in (6) as functions of the multivariate input
u; are readily obtained by using local polynomial regression.

Fig. 2 shows the curve modeling the behavior of the
a1 (7¢) coefficient as a function of wind power penetration in
Germany. The curve clearly represents the mean trend of the

2000 T T T T T T T

1000

-1000

PC coefficientozl)

-2000

-3000 - : : - - - -
0 5 10 15 20 25 30 35 40
Forecast wind power penetration in Germany [%]

Fig. 2. Regression on the coefficient avy (uy) of the first principal component
relative to wind power penetration in Germany

relationship between the two variables, and not a deterministic
model of them. Therefore one should expect observations to
be spread around this curve, due to their stochasticity and
dependency on other variables not accounted by the model.
Nevertheless one can draw some intuitive conclusions from
this mean trend, also as a result of the interpretability of the
first principal component. In Section IV-A it is underlined
how the main trend in this mode is the power flow from
France and Switzerland to Germany. As one can see in Fig. 2,
the corresponding coefficient tends to decrease rather sensibly
when wind power penetration in Germany increases. The
implication is that the higher 7; in Germany, the lower its
import of power!.

Similar conclusions can be drawn from the regression on the
coefficients of the other PCs, which are not shown here. For
instance, the value of « rises as 7; increases, indicating an
increased flow of power from Germany to the Nordic region
and, less markedly, to Switzerland.

Regression curves modeling the behavior of the PC coeffi-
cients as a function of the logarithmic spot price in Germany
can be obtained in exactly the same fashion. Fig. 3 shows
the a coefficient modeled as a function of this independent
variable. The results can again be interpreted quite intuitively.

't is to be noted that at this time only qualitative conclusions can be drawn.
For example, one cannot distinguish when Germany is importing or exporting.
Therefore, the statement could be rephrased to “the higher T¢ in Germany,
the higher its export of power”.

Indeed, the regression curve shows that high values of flow
from Germany to Scandinavia are in average achieved with
low spot price level at the EEX market. The coefficient then
decreases as prices rise in Germany, and its sign changes when
log(1 + P;) approaches 4.

3000 T T T T T T T

2000

[N
8
o o

-1000

PC coefficientq 2)

-2000

-3000

-4000 s s s s L L s
0 1 2 3 4 5 6 7 8

Logarithmic EEX spot price

Fig. 3. Regression on the coefficient vz (uy) of the first principal component
relative to the logarithm of spot price in Germany

The approach is easily extendable to the case where the
independent variable u; is multivariate. Fig. 4 shows the
regression surface modeling «1(u;) as a function of u; =
[Ft, ht], where h; is the day-time. The latter variable appears
to influence the coefficient, too, as higher flow values are
obtained during hours where consumption peaks. Not surpris-
ingly the decreasing trend relative to wind power penetration
is confirmed at every hour of the day.

2000

s )
RIS
SR
&‘\\\\\\\

—2000

PC coefﬁcient(@l)

—4000

24:0C
18:00

35 N — 12:00
40 6:00 _
Forecast wind Day time

power penetration

in Germany [%]

Fig. 4. Regression on the coefficient vz (uy) of the first principal component
relative to wind power penetration in Germany and day-time

C. Regression curves for power flows

So far only intuitive conclusions based on the structure of
the PCs have been drawn, since the regression was carried
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out on their coefficients a;. By applying (11) it is possible
to perform similar analyses on the space of interest, i.e. the
original space of power flows. Indeed regression curves or
surfaces for the coefficients sum up to curves and surfaces for
each single flow.

Fig. 5 shows the regression for the flow between the Danish
DKI1 area, i.e. the Jutland peninsula and the Funen island, and
Norway (NO). The surface models the relationship between
this flow and wind power penetration in Germany as well as
day-time. It is seen that, as wind power penetration increases,
DKI1 passes from importing power from Norway to exporting
power. Therefore the statistical model confirms the intuitive
economic reasoning according to which the flexible Norwegian
hydro plants withhold their production when energy prices are
low due to significant wind power penetration, and increase
their production when prices are high.

Power flow DK1-NO [MW]

12:00

Forecast wind
power penetratio
in Germany [%)]

Day time

Fig. 5. Regression curve modeling the relationship between the power
flow from the continental part of Denmark (the Jutland peninsula and the
Funen island, area code DK1) and Norway (NO) as function of wind power
penetration in Germany and day-time

Models for the total net power flow of a country or control
area can be determined as the signed sum of the models for
individual flows. This can help shed some light on the behavior
of individual power systems as a reaction to increased wind
power production. Fig. 6 shows the example of the Austrian
power system. It is seen that Austria is on average a net
power exporter for low levels of wind power penetration in
Germany, while it is a net importer with high wind power
penetration. This is partly caused by the flexibility of the
Austrian generation portfolio, which is largely dominated by
hydro plants. Once more, the statistical model shows how the
market pushes hydro power producers to provide arbitrage
services as wind power production increases the volatility of
market prices.

D. Sensitivity of Results to Non-Stationarity

As mentioned in the last paragraph of Section III-A, non-
stationarity of data might be an important practical issue
when performing analyses based on PCA. Indeed, the latter
methodology as defined in Section III-A is based on the
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Fig. 6. Regression curve modeling the relationship between the net power
flow of Austria as function of wind power penetration in Germany and day-
time

stationarity assumption, as data are centered by subtracting
the mean from the dataset. When considering long datasets
spanning several years, low frequency dynamics ought to be
removed from the dataset by employing a low-pass filter.

Some relevant figures for the considered period 2006-2008
in Germany are reported in Table II. Such table is useful
to get a preliminary assessment of the presence and of the
magnitude of trends. As one can see, despite a constant
increase in installed wind power capacity in the period, the
total annual wind power output in Germany declined between
2007 and 2008. Besides, the growth in electricity demand
almost stopped between these two years. As a result, the
ratio between these two quantities is not monotonic in the
considered period.

TABLE II
TOTAL ANNUAL WIND ENERGY PRODUCTION, TOTAL ANNUAL LOAD AND
THEIR RATIO IN GERMANY DURING THE PERIOD 2006-2008

Quantity 2006 2007 2008
Total wind energy production [TWh] 34.31 42.36 41.67
Total load [TWh] 489.03  496.59  497.61
Ratio 0.0702  0.0853  0.0837

Table II illustrates that there is no steady, slow-dynamics
increase in the ratio between total demand and wind power
production as one may expect intuitively in light of the
constant increase in installed wind power capacity. The signif-
icant swings in the total annual wind power production, e.g.,
between 2006 and 2007, might compromise the stationarity
assumption, hence calling for a more detailed analysis of the
models on a year-to-year basis.

A measure to validate the models (11) obtained for the flows
is the Normalized Root Mean Squared Error (NRMSE), which
can be calculated for each interconnection j as follows:

\/ S (Rown-x,.)°
T
max; {X,;} — ming {X;,}

NRMSE; = (13)
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The value in the numerator in (13) is the Root Mean Squared
Error (RMSE), i.e., the average squared deviation of the flow
model X;(u;) from the actual observations. The term in the
denominator is a scaling factor normalizing all the flows to
the range of their observations.

In order to assess the level of non-stationarity in the
dataset, NRMSE is calculated for each flow in the dataset,
first by employing data for the whole period 2006-2008, then
considering data for one single year at a time. This can be done
simply by modifying the time indices in the sum in (13).

The results of this analysis are shown in Fig. 7. The
average value of NRMSE across the flows is roughly 15-20%.
More interestingly, NRMSE seems to be rather stable across
the considered years for each interconnection. This indicates
that non-stationarity in the dataset is not so critical for the
application considered. Indeed, one would expect that, if data
are highly non-stationary, the performance of the models swing
significantly across subsets of the dataset.
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Fig. 7. Normalized Root Mean Squared Error (NRMSE) for every inter-

connection for the whole 2006-2008 period, and for each year in the period
individually

E. Regional Analysis

The models shown up to this point consent an analysis of
the effect of explanatory variables on each individual flow or
country. We now group the results obtained for individual in-
terconnections in different geographical regions: North, South,
West and East of Germany.

Table III reports the average value of the models for the
flows obtained for Northern Europe for values of wind power
penetration in Germany from 0% to 25% with step increases
of 5%. Spline interpolation of the models at the desired wind
power penetration levels was required, due to the definition
of the grid in the explanatory variable space, which is based
on quantiles. For the sake of consistency, all the flows are
directed in the South to North direction (so that negative flows
indicate flow of power southwards). The pattern emerging
from the analysis is quite clear. At low levels of wind power
penetration, Germany is importing power from the Nordic

TABLE III
MODELED AVERAGE CROSS-BORDER FLOWS NORTH OF GERMANY AS
FUNCTIONS OF GERMAN WIND POWER PENETRATION

Average Flow Wind Power Penetration [%]

[MWh/h] 0 5 10 15 20 25
DE-DK1 -803 485 410 -465 -372  -199
DE-DK2 -276  -86 -39 -63 -24 55
DE-SE -276 - -102 -46 -61 -13 67
DKI1-NO -636  -255  -119  -83 40 179
DKI1-SE -228 -54 14 23 64 116
DK2-SE -510 -117 44 76 210 356

TABLE IV
MODELED AVERAGE CROSS-BORDER FLOWS SOUTH OF GERMANY AS
FUNCTIONS OF GERMAN WIND POWER PENETRATION

Average Flow Wind Power Penetration [%)]

[MWh/h] 0 5 0 15 20 25
DE-CH 759 1390 1733 2096 2435 2680
CH-IT 3064 2715 2917 3206 3277 3213
DE-AT 212 423 565 728 930 1136
AT-CH 422 545 618 697 774 836
AT-IT 158 156 161 166 168 168

countries through any available interconnections, where power
flows in the North to South direction indeed. This North-
South flow tends to drop, though, as wind power penetration
increases in Germany. For example, the average flow in the two
interconnections between Denmark and Sweden is reversed at
a penetration as low as 10%, also due to a likely increased
production from the Danish wind turbine fleet. The same trend
is seen for all the flows shown in Table III. When penetration
reaches 25%, power is flowing in the South to North direction
in all the interconnections except the one between Germany
and DKI1, where the percentage of installed wind power on
the total production capacity is even higher than in Northern
Germany.

Let us now consider the flows directed southwards from
Germany, included in Table IV. It is clear that the higher the
wind power penetration in Germany, the more this country
exports to its direct neighbors to the South: Switzerland and
Austria. As opposed to the situation in the Nordic region, the
trend seems to stop at the direct neighbors. Indeed, there is no
clear pattern in the interconnection between Switzerland and
Italy, which is somewhat stable at 3000 MWh/h. Furthermore,
although the power flow between Austria and Italy increases,
this trend is marginal due to the low capacity of this line. A
possible explanation for this phenomenon is the high installed
hydro power capacity in Switzerland and Austria, which
confers extra flexibility to their power systems in comparison
to e.g. Denmark, which is similarly located in the middle
between Germany and the Nordic region. Finally, it appears
that there is a loop-flow in the power transit from Germany
to Switzerland through Austria, as the flow from the last to
the second country is positively correlated with German wind
power penetration.

Clear trends emerge as well from the analysis of power
flows to the West of Germany in Table V. At null wind power
penetration in Germany, the Netherlands imports power both
from this country and from France through Belgium. When
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TABLE V
MODELED AVERAGE CROSS-BORDER FLOWS WEST OF GERMANY AS
FUNCTIONS OF GERMAN WIND POWER PENETRATION

Average Flow Wind Power Penetration [%)]

[MWh/h] 0 5 10 15 20 25
DE-NL 1583 2131 2316 2498 2580 2582
NL-BE -352 132 313 568 810 953
BE-FR -1284  -852 -685 -452 -173 55
DE-FR -1919  -1571  -1510 -1368  -1175 -1029
DE-CH 759 1390 1733 2096 2435 2680
FR-CH 463 760 916 996 1084 1174

penetration reaches 5%, the Netherlands only import power
from Germany on average, as the direction of the flow to
Belgium is reversed. In the same fashion, the French export
of power to Belgium drops, even turning into a slight import
when wind power penetration reaches 25% in Germany. This
country imports power from France in all the cases shown
in Table V, but this import is gradually halved from about
2000 MWh/h to 1000 MWh/h at the extreme columns in the
table. This fact disproves the belief that there is a loop flow
carrying power from the North to the South of Germany
through France, at least on a country level. According to
Table V, the loop flow appears to be a bit souther than that.
Indeed the power flow from France to Switzerland appears to
increase as German wind power penetration rises, while at the
same time the direct import of Switzerland from Germany is
heightened, as we already commented on earlier.

The situation in Eastern Europe is summarized in Table VI.
The trends in this region are more complex, also due to the
huge number of cross-border flows. Proceeding in the analysis
from North to South, we see that there is an increasing power
export from Germany to Poland as wind power penetration
rises in the former country. Nevertheless, most of the extra
power imported by Poland is exported in turn to Slovakia
and the Czech Republic. The latter country, a net exporter of
energy on average, sees an increasing part of its export shifting
to Austria and, to a lesser extent, to Slovakia from Germany,
as wind power penetration rises in this country. The increased
power imported from North by Slovakia is then exported in
the South direction through Hungary and Croatia to Slovenia.
Finally it is seen that Slovenia imports less and less power
from Austria, and exports more and more power to Italy as
the German wind power penetration increases.

V. CONCLUSION

In this work a statistical method for analyzing the impact
of wind power in Germany on European cross-border power
flows is presented and applied.

The problem dimension is successfully reduced by applying
Principal Component Analysis (PCA). Besides, PCA indicates
the most important modes of physical power flow in the Euro-
pean system. These modes are the flows carrying power from
France to Germany, both directly and through Belgium and
the Netherlands, the flow from Germany to Scandinavia and
the one from Germany in the South direction. This confirms
the centrality of Germany in the study of the European power
system.

TABLE VI
MODELED AVERAGE CROSS-BORDER FLOWS EAST OF GERMANY AS
FUNCTIONS OF GERMAN WIND POWER PENETRATION

Average Flow Wind Power Penetration [%]

[MWh/h] 0 5 10 15 20 25
DE-PL 414 414 473 582 660 700
PL-CZ 779 819 885 951 947 888
PL-SK 312 330 375 425 452 451
CZ-DE 877 1033 1026 958 902 852
CZ-AT 589 655 720 799 848 874
CZ-SK 784 680 736 834 865 850
SK-HU 801 897 987 1078 1137 1163
HU-HR 488 614 686 759 826 873
HR-SI 113 381 474 531 597 641

SI-IT 365 471 525 561 577 575
SI-AT -176 -44 -23 -19 19 68

Local polynomial regression is employed on the PCs both
with respect to forecast wind power penetration and spot price
in Germany. It is shown that both the external variables have a
remarkable impact on the flows. Indeed an increase in forecast
wind power penetration causes a fall in the German import of
power (or rise in the export), while rising spot prices have the
opposite effect. Furthermore, especially in the case of EEX
spot price, non-linearities are evident in these relationships.

From a global perspective, it is seen that variations of
wind power penetration in Germany have significant effects
on power flows in Europe. Indeed import and export pat-
terns between countries change significantly, and loop flows
originate. Furthermore, while some of the interconnections
benefit from an increasing forecast wind power penetration
in Germany, i.e. the ones linking the main average exporters
to Germany (France and, at least at low wind power levels,
Scandinavia), the stress on other interconnections, e.g. the ones
linking Germany to the South of Europe, increases as more
and more wind power is produced in Germany. Analyses like
the one presented in this paper can contribute to the state-
of-the-art by quantitatively assessing such global phenomena,
whose understanding is currently limited to a qualitative or
intuitive level.

Clearly, the study presented in this paper could be per-
formed thanks to the availability of datasets for wind power
production, consumption and power flows, which is in general
not straightforward, with the notable exceptions of the PIM
market [25] and ENTSO-E [26]. It is hoped that in the near
future, convinced by the results of data-driven research studies
like this one, TSOs and market operators will strengthen their
effort to make more and more datasets of this type available
to researchers worldwide.

Possible applications of the methodology proposed in this
paper are related to both long- and short-term problems. Long-
term problems that could benefit from analyses of this type
include decisions on investment in new wind power capacity
and in grid expansion. As far as the short-term problems are
concerned, this methodology could support the process of
scheduling cross-border flows as well as the assessment of
risk in interconnected power systems.

The described methodology has been employed for analysis
only. In the future though, such a modeling approach could
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also be used in connection with power system models or
forecasting tools. Such tools would have to be calibrated with
the results of data-driven analysis, as the one shown in this
paper, for simulating European power flows as a function of
appropriate explanatory variables, which could include the
nominal power capacity of a certain country, market prices,
etc.

ACKNOWLEDGMENT

The authors gratefully acknowledge Austrian Power Grid
AG (APG) for the support through the project “Impact
of Stochastic Generation on EU Cross-border Flows”. The
European Network of Transmission System Operators for
Electricity (ENTSO-E) is also acknowledged for its role in
providing the dataset. Furthermore, we would like to thank
the Editor of this Journal and three anonymous referees for
providing constructive comments that undoubtedly contributed
to improving the quality of this manuscript. Finally, we thank
Peter Meibom for his valuable comments on this work.

REFERENCES

[1] P. Morthorst, S. Ray, J. Munksgaard, and A. F. Sinner, “Wind energy
and electricity prices,” European Wind Energy Association, Tech.
Rep., 2010. [Online]. Available: http://www.ewea.org/fileadmin/ewea_
documents/documents/publications/reports/MeritOrder.pdf

[2] P. Giabardo, M. Zugno, P. Pinson, and H. Madsen, “Feedback, com-
petition and stochasticity in a day ahead electricity market,” Energy
Econom., vol. 32, no. 2, pp. 292-301, 2010.

[3] T. Jénsson, P. Pinson, and H. Madsen, “On the market impact of wind
energy forecasts,” Energy Econom., vol. 32, no. 2, pp. 313-320, 2010.

[4] H. Abildgaard, D. Klaar, B. Kriszak, J. Rodriguez, and W. Winter,
“European Wind Integration Study (EWIS) - Reference study towards
a successful integration of wind power into European electricity grids,”
in Proc. CIGRE Sess., Paris, France, 2008.

[5] “ENTSO-E pilot ten years network development plan,” ENTSO-E,
Tech. Rep., 2010. [Online]. Available: https://www.entsoe.eu/fileadmin/
user_upload/_library/SDC/TYNDP/TYNDP-final_document.pdf

[6] A. Costa, A. Crespo, J. Navarro, G. Lizcano, H. Madsen, and E. Feitosa,
“A review on the young history of the wind power short-term prediction,”
Renew. Sust. Energy Rev., vol. 12, no. 6, pp. 1725-1744, 2008.

[7] G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl,
“The state-of-the-art in short-term prediction of wind power : A
literature overview, 2nd edition,” ANEMOS.plus, Tech. Rep., 2011.
[Online]. Available: http://www.prediktor.dk/referenc.htm

[8] G. Giebel, “A variance analysis of the capacity displaced by wind energy
in europe,” Wind Energy, vol. 10, no. 1, pp. 69-79, 2007.

[9] U. Focken, M. Lange, K. Monnich, H.-P. Waldl, H. G. Beyer, and

A. Luig, “Short-term prediction of the aggregated power output of wind

farms—a statistical analysis of the reduction of the prediction error by

spatial smoothing effects,” J. Wind Engin. Industr. Aerodyn., vol. 90,

no. 3, pp. 231-246, 2002.

F. van Hulle, P. Kreutzkamp, and S. Uski-Joutsenvuo, “Enhancing cross

border exchange to facilitate wind power integration at European scale,”

in Proc. German Wind Energy Conf. (DEWEC), Bremen, Germany, nov

2008.

[11] J. Tande, M. Korpas, L. Warland, K. Uhlen, and F. van Hulle, “Impact of

TradeWind offshore wind power capacity scenarios on power flows in

the European HV network,” in Proc. 7th Int. Wind Integration Workshop,

Madrid, Spain, may 2008.

S. Hagspiel, A. Papaemannouil, M. Schmid, and G. Andersson, “Copula-

based modeling of stochastic wind power in Europe and implications for

the Swiss power grid,” Appl. Energy, vol. 96, pp. 33—44, 2012.

N. A. Cutululis, P. Sgrensen, G. Giebel, M. Korpas, and L. Warland,

“Uncertainty on predicted cross border flows caused by wind forecast

errors,” in Proc. 7th Int. Wind Integration Workshop, Madrid, Spain, may

2008.

B. Klockl and P. Pinson, “Effects of increasing wind power penetration

on the physical operation of large electricity market systems,” in Proc.

CIGRE/IEEE PES Jt. Symp. Integr. Wide-Scale Renew. Resour. Power

Deliv. Syst., 2009.

[10]

[12]

[13]

[14]

[15] “Energy concept for an environmentally sound, reliable and affordable
energy supply,” Federal Ministry of Economics and Technology
(BMWi), Tech. Rep., 2010. [Online]. Available: http://www.bmwi.de/
English/Navigation/Service/publications,did=367764.html

“Final report system disturbance on 4 November 2006, UCTE,
Tech. Rep., 2007. [Online]. Available: https://www.entsoe.eu/resources/
publications/former-associations/ucte/other-reports/

DEWI, “Statistics archive,” Online, 2012. [Online]. Available: http:
/Iwww.dewi.de/dewi/index.php?id=47&L=%5C%5C%5C%27

A. Ledén and A. Rubia, Modelling prices in competitive electricity
markets. Wiley & Sons, 2004, ch. 8, pp. 177-189.

R. Weron, Modeling and Forecasting Electricity Loads and Prices—A
statistical Approach. Wiley, 2006, ch. 4.

[20] W. Cleveland and S. Devlin, “Locally weighted regression: An approach
to regression analysis by local fitting.” J. Amer. Statist. Assoc., vol. 83,
no. 403, pp. 596-610, 1988.

A. C. Rencher, Multivariate statistical inference and applications.
Wiley-Interscience, 1998, ch. 9.

A. Hyvérinen, J. Karhunen, and O. Erkki, Independent Component
Analysis.  Wiley, 2001.

D. S. Wilks, Statistical methods in the atmospheric sciences, 2nd edition,
ser. International Geophysics. Elsevier Academic Press, 2006, vol. 91,
ch. 11, pp. 469-471.

H. Madsen, Time series analysis.

[16]

[17]
(18]

(19]

[21]

[22]

(23]

[24]
[25]

Chapman & Hall/CRC, 2008, ch. 3.

PJM Electricity Market, Website, 2012. [Online]. Available: http:
/lwww.pjm.com/home.aspx

ENTSO-E, Website, 2012. [Online]. Available: http://www.entsoe.net/
default.aspx

[26]

Marco Zugno (S’11) received the M.Sc. degree in
Electrical Engineering from the Technical University
of Denmark (DTU) in 2008 and the M.Sc. degree in
Automation Engineering from the Universita degli
Studi di Padova, Padua, Italy, in 2009. He is cur-
rently pursuing the Ph.D. degree at the Informatics
and Mathematical Modeling department of the Tech-
nical University of Denmark. His research interests
include electricity market modeling, stochastic pro-
gramming and hierarchical optimization.

Pierre Pinson (M’11) received the M.Sc. degree
in Applied Mathematics from the National Institute
for Applied Sciences (INSA Toulouse, France) in
2002 and the Ph.D. degree in Energetic from Ecole
des Mines de Paris in 2006. He is currently with
the Informatics and Mathematical Modeling depart-
ment of the Technical University of Denmark as an
Associate Professor. His research interests include
among others forecasting, uncertainty estimation,
optimization under uncertainty, decision sciences,
and renewable energies.

Henrik Madsen received the Ph.D. degree in statis-
tics at the Technical University of Denmark, Kgs.
Lyngby, Denmark, in 1986. He was appointed Pro-
fessor in mathematical statistics in 1999. He is
an elected member of the International Statistical
Institute (ISI), and he has participated in the de-
velopment of several ISO and CEN standards. His
research interests includes analysis and modeling
of stochastic dynamics systems, signal processing,
time series analysis, identification, estimation, grey-
box modeling, prediction, optimization, and control,
with applications mostly related to energy systems, informatics, environmental
systems, bioinformatics, biostatistics, process modeling, and finance.




