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AbstratThis work is motivated by the observation that large amplitude wind �u-tuations on temporal sales of 1 to 10 hours present hallenges for the powermanagement of large o�shore wind farms. Wind �utuations on these sales areanalyzed at a meteorologial measurement mast in the Danish North Sea usinga 4 year time series of 10 minute wind speed observations.An adaptive spetral analysis method alled the Hilbert-Huang transformis hosen for the analysis, beause the non-stationarity of time series of windspeed observations means that they are not well desribed by a global spetralanalysis method suh as the Fourier transform. The Hilbert-Huang transform isa loal method based on a non-parametri and empirial deomposition of thedata followed by alulation of instantaneous amplitudes and frequenies usingthe Hilbert transform.The Hilbert-Huang transformed 4-year time series is averaged and summa-rized to show limatologial patterns in the relationship between wind variabilityand time of day. Firstly, by integrating the Hilbert spetrum along the frequenyaxis, a salar time series representing the total variability within a given fre-queny range is alulated. Seondly, by alulating average spetra onditionalto time of day, the time axis of the Hilbert spetrum is �remapped� to showlimatologial patterns. Finally, the daily pattern in wind variability and windspeed are ompared for the four seasons of the year. It is found that the mostintense wind variability ours in Autumn even though the strongest observedwind speeds our in Winter. 1



1. IntrodutionWith wind power now aounting for around 20% of Denmark's annual eletriity on-sumption, there are hallenges in managing the variable power supply arising from �utuat-ing wind speeds. On land, �utuations from individual wind farms tend to be unorrelateddue to both the spatial distribution of the turbines and the de-orrelating e�et of surfaeroughness and topography, leading to an overall smoothing in the regional power prodution(Foken et al. 2002; Giebel 2007). For o�shore wind farms, however, the power supply ispartiularly suseptible to intense �utuations due to the uniform surfae onditions and thelarge number of turbines loated within a small geographial area. For example, Akhamatovet al. (2007) disussed power �utuations from the 160 MW o�shore wind farm at HornsRev, near the west oast of Denmark, whih are more intense than those experiened for ge-ographially distributed turbines on land. The power output from the Horns Rev wind farmwas shown to �utuate with an amplitude of up to 100 MW in 15�20 min. The onstrutionof the seond Horns Rev wind farm, with a apaity of more than 200 MW in lose proximityto the existing turbines (as shown in �gure 1) is expeted to exaerbate these problems.The aim of this work is to apply a statistial method alled the Hilbert-Huang transformto desribe the time evolving variability information in wind speed time series. The appli-ability of the method to studying the seasonal and diurnal patterns in wind variability willbe demonstrated by investigating the diurnal yle in wind variability on temporal salesof 1 to 10 hours at the Horns Rev wind farm. The problem of foreasting wind variabilitywill not be addressed here, but it is suggested that de�ning a quantitative desriptor ofwind variability and determining some harateristi seasonal and diurnal trends in wind2



variability are fundamental building bloks to developing statistial or physial foreastingtools. Atually, by extrating time series of variability for di�erent temporal sales (i.e.non-overlapping ranges of frequenies), one ould develop foreasting methodologies in amultivariate time series framework, for example based on Vetor Auto-Regressive models asreently proposed in (Kim et al. 2008). Understanding wind variability on all sales is notonly of sienti� interest, but also has very pratial engineering appliations for modeling,simulation and foreasting of power �utuations and wind farm dynamis. For example, ina study by Sørensen et al. (2008), knowledge of the stohasti properties of wind speed wasused as an input to a model for simulating wind farm power �utuations. In another studyby Akhamatov (2007), �utuations in 10 minute power observations from the Horns Revwind farm were studied, and were shown to be strongly dependent on wind diretion.The omplexity of analyzing time series of wind data is that it is di�ult to de�ne anytime sale on whih the data ould be onsidered stationary. Sudden hanges in mean windare observed, but more importantly there are sudden hanges in the type, amplitude andfrequeny of �utuations (Pinson et al. 2008). There are some philosophial di�ulties inhoosing a time sale on whih to onsider the stationarity of atmospheri time series, asdisussed in setion 2 of this paper, but for the purposes of this study we assume that timeseries of 10 minute wind observations are non-stationary.There are both physial and statistial reasons for believing that time series of wind speedobservations are not simply random �utuations about a slow trend. For example, Brownet al. (1984) showed that a statistial distribution is insu�ient to desribe the strutures inhourly wind measurements, and Ailliot et al. (2006) showed that the movement of larger salemeteorologial strutures was fundamental to statistial foreasts of wind speed. In (Pinson3



and Madsen 2008), the appliation of adaptive Markov-swithing autoregressive models towind power prodution, where the �regime state� of the wind is onsidered as an unobservedproess, implies an underlying struture to the hanges in wind speed. Further, it is wellknown that meteorologial time series ontain periodiities and struture on several sales,inluding the limati, synopti, diurnal and semi-diurnal sales, and mesosale features suhas onvetive roll louds or the intermittent passage of showers. It is therefore expeted thatthe analysis of wind variability should unover interesting trends and patterns on a numberof time sales.Analyzing variability in time series lends itself to treatment in the spetral domain.For example, the well-known Fourier transform is useful in unovering the set of globalharmonis whih dominate the osillatory behavior of the time series. However, sine it isassumed that the wind speed time series are non-stationary, a loal adaptive method whihan apture the instantaneous �utuations in the data without in�uene of global harmonisfrom statistially distint parts of the time series is required. Candidate methods for suhanalysis are reviewed in setion 4 where it is argued that due to its ability to reat quiklyto hanges in the time series, and due to its adaptive, non-parametri deomposition, theHilbert-Huang transform is most appropriate for the analysis of non-stationary wind speeddata.In setion 2, several arguments for the non-stationarity of wind speed data are reviewed.In setion 3, the data olletion and site desription for this study are disussed. In se-tion 4, three methods of adaptive spetral analysis (the wavelets transform, data-adaptivewavelets based on singular spetrum analysis, and the Hilbert-Huang transform) are re-viewed, followed by a brief theoretial summary of the Hilbert-Huang transform. In setions4



5 and 6, the appliation of the Hilbert-Huang transform to wind speed data is disussed anddemonstrated, and onluding remarks are given in setion 7.
2. Stationarity of wind dataThe need to explore non-parametri and/or adaptive statistial tehniques for the anal-ysis of wind data is motivated by the assumption that wind speed data is non-stationary.The de�nition of a stationary time series is one where all �nite-dimensional distributions areinvariant for hanges in time (Madsen 2007). In the analysis of wind data for wind farmforeasting, we are interested in seond order stationarity, whih means that both the meanand the variane are time invariant. Although there are many statistial tests for station-arity, testing wind data for stationarity is problemati beause the de�nition of stationaritydepends on the time sale upon whih the data is onsidered.A ommon lass of tests for �rst order stationarity are based on searhing for unit rootsin an autoregressive model, sine the existene of a root outside the unit irle means thattime series will wander from its mean (Dikey et al. 1984). This method may be suitable fortime series whih vary slowly, but it is unsuitable for time series suh as wind speeds whihmay undergo sudden hanges in both mean and variane. Methods whih may be appliedto data with more omplex dynamis inlude making ross-omparisons of the time seriesin temporal or spetral spae. For example, Von Sahs and Neumann (2000) developed awavelet-based test for stationarity whih entails dividing the time series into segments ofdi�erent lengths, alulating the periodogram for eah segment, and then making ross-omparisons of pairs of segments in the frequeny domain. Witt et al. (1998) proposed a5



stationarity test where omparisons of both the probability density funtion and the spetraldensity funtion over segments of the time series are used to establish strong stationarity. Inthe time domain, Shreiber (1997) divided the time series into segments, and then used pairsof segments as explanatory variables for eah other. These methods have the shortomingthat it is neessary to hoose some time sale over whih to segment the data, and althoughWitt et al. (1998) argues that the removal of slow omponents by appliation of a high-pass�lter ould alleviate this problem, it is still evident that stationarity depends on the windowlength. For example, a window ontaining single transition from stable noturnal to day-time onvetive onditions will be onsidered di�erently from a longer window in whih suhtransitions ould be seen as part of a stationary periodi proess.In a further method proposed by Andreas et al. (2008) the issue of window length wasnavigated by expliitly de�ning the time sales over whih to ompare adjaent setions ofthe time series based on physial arguments. They alulated a �memory� period basedon the deorrelation time for eah point in the time series, and used this to determine thenumber of points to inlude in eah segment. Finally, they used standard statistial tests toassess the di�erenes in the mean and variane of adjaent segments.The methods of Andreas et al. (2008) are of most relevane to this study beause theyapplied their test to soni thermometer data and water vapor density data, and showedthat the measurements were non-stationary as a result of passing louds altering the surfae�uxes over land. They do not test the stationarity of wind data diretly, but it is lear thatnon-stationarity in temperature would drive non-stationarity in wind data due to hanges inthermal stability. Even though the measurement site in this study is o�shore, it is expetedthat areas of spatial non-stationarity will be adveted over the sea.6



Further to the results from Andreas et al. (2008), there are physial arguments why winddata should be non-stationary. The large sale Rossby waves whih determine the sequene ofhigh pressure ridges and low pressure troughs means that on a synopti sale the atmospherehanges from general onditions of subsidene, stability, and lear skies, to general onditionsof onvetive instability, preipitation and loudiness. On miro- and meso-sales, a di�erentset of dynamis an dominate depending on the atmospheri onditions. For example, ina stable atmosphere, proesses suh as inertial osillations, low level jets and gravity wavesmay dominate the variane of the wind. In a thermally unstable atmosphere, onvetion andupdrafts and downdrafts of onvetive ells may be of great importane in determining thevariane of the wind, and in strongly sheared environment turbulene and Kelvin-Helmholtzinstability may be dominating fators (Stull 1988).
3. Site desription and data preparationThe analysis is based on measurements from a meteorologial mast of height 62 m loatedto the north west of the Horns Rev wind farm in the Danish North Sea. The position ofthe mast, relative to the wind farm and the west oast of Denmark, is shown in �gure 1.The meteorologial mast is exposed to easterly setor wind whih omes from the land,and westerly setor wind whih omes from the North Sea. Flow from the southeasterlydiretion is in the wake of the wind farm. A desription of the site and the meteorologialmeasurement mast is found in (Peña and Gryning 2008).The results presented here used a 4 year time series of wind speed observations from a upanemometer mounted at the top of the meteorologial measurement mast. The measurement7



resolution was 10 minutes, and data availability was good, with only 203 missing observations(less than 0.05%) for the four years.The implementation of most spetral analysis tehniques requires a time series withoutgaps, sine a missing data point in�uenes not only that point, but introdues bias into theanalysis. For data with longer or more frequent gaps, several methods for analyzing unevenlyspaed time series data exist (for example, as desribed in (Hoke and Kämpfer 2008), wherethe Lomb-Sargle spetrum was estimated, and then inverse Fourier-transformed to obtainan approximation of the missing data). Sine the gaps in the data analyzed here were shortand infrequent, it was su�ient to simply �ll them by interpolation for the short gaps, or bymathing a piee of data from the time series itself for longer gaps. A bene�t of the Hilbert-Huang analysis is that gap-a�eted parts of the time evolving spetrum an be removed priorto post-proessing or drawing onlusions from it.A histogram and wind rose of the 62 m wind speed at Horns Rev Mast 2 for the period2000�2003 are shown in �gures 2 and 3. The wind rose shows three preferred diretion ranges� between 200 and 250 degrees, between 290 and 310 degrees, and around 110 degrees. Themost frequent strong winds above 15 m s−1 our in the southwest to northwest setor, whilethe wind speed is greatly suppressed for the north easterly setor.
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4. The Hilbert-Huang Transforma. Spetral analysis of non-stationary time seriesOther than the Fourier transform, several spetral analysis tehniques exist and havebeen applied to geophysial time series. For example, Ghil et al. (2002) applied SingularSpetrum Analysis (SSA) to a time series of the Southern Osillation Index (SOI). SSAinvolves splitting the time series into segments aording to some hoie of an embeddingdimension, �nding the empirial orthogonal funtions (EOFs) from the segments, and pro-jeting the time series onto the EOFs to de�ne the Prinipal Components. The method isgood for analyzing non-linear time series, but assumes an underlying periodiity in the data.For example, a signi�ant di�erene in statistial properties between the segments of thetime series undermines the relevane of projeting the time series onto the set of globallyde�ned EOFs.Another adaptive spetral analysis method is wavelet analysis, where a wavelet funtionwhih an be strethed or dilated is projeted onto the data to �nd the most importantfrequenies at eah time step (Labat 2005). Wavelet transforms have been used e�etivelyto study geophysial time series suh as turbulene measurements (eg Barthlott et al. (2007)),and are able to apture the hanging spetral behavior in non-stationary data. Disadvantagesof the method are that some a priori deision must be made about the shape of the waveletfuntion. This problem was addressed by Yiou et al. (2000) by applying SSA to suessivesetions of the data de�ned by a moving window suh that a `data adaptive wavelet' ould beonstruted. Their method was e�etive in unovering a hange in the frequeny of the SOI,but has obvious problems with the length of time series that is required to divide it �rstly9



into window funtions, and seondly into segments aording to the embedding dimensionof the SSA.A further method in whih there has been reent interest is the Hilbert-Huang transform,and its extension the normalized Hilbert-Huang transform. The Hilbert-Huang transform,whih was �rst introdued by Huang et al. (1998), onsists of an empirial �lter whih de-omposes the data into a linear ombination of a set of basis funtions alled Intrinsi ModeFuntions (IMFs), followed by extration of the instantaneous amplitudes and frequenies ofeah omponent using the Hilbert transform. In an extension to the Hilbert-Huang trans-form, Huang (2005a) proposed normalization of the IMFs prior to extration of instantaneousfrequenies. Huang et al. (1998) built on work of Boashash (1992) and Cohen (1989) andothers who de�ned the onept of instantaneous frequeny and laid down the onditionsthat must be satis�ed if a time series is to have a meaningful instantaneous frequeny thatan be alulated using the Hilbert transform. Huang's major ontribution was to developa tehnique for deomposing a time series into a set of time evolving basis funtions, eah ofwhih satis�ed the onditions for alulation of a meaningful instantaneous frequeny usingthe Hilbert Transform. The deomposition tehnique is fully data adaptive, and is alledthe `Empirial Mode Deomposition' (EMD).Like wavelet analysis, the Hilbert-Huang transform failitates the alulation of an adap-tive spetrum where amplitude is expressed as a funtion of frequeny and time. Unlikewavelet analysis, the deomposition of the time series is empirial and non-parametri, anddoes not require any a priori deision about the hoie of a suitable wavelet funtion. Huanget al. (1998) systematially ompared it to the wavelet transform and illustrated its potentialin apturing time evolving frequeny information in time series inluding wind speeds, wave10



height and earthquake vibrations. The advantage of the Hilbert-Huang transform over SSAis that it is an entirely loal method whih an desribe the hanging statistial properties ofa non-stationary time series. Disadvantages of the method are the di�ulty in onstruting atheoretial desription of the empirial deomposition, in onlusively showing that the basisis orthogonal, and the problem of mode mixing, where osillations of similar frequenies aresplit between several IMFs. These issues will be disussed below when introduing the theoryof the Hilbert-Huang transform. Sine wind speed time series are subjet to sudden hangesin statistial properties, and we are interested in expressing the time evolving nature of theosillatory behavior of the time series, the Hilbert Huang transform is an obvious andidatefor the study of wind speed �utuations.Sine its introdution in 1998, the Hilbert-Huang transform has been suessfully appliedto many problems involving non-stationary time series. For example, Veltheva and GuedesSoares (2004) and Veltheva and Guedes Soares (2007) used the method to study abnormaloean waves, and Peng et al. (2005) found it to be a useful strategy for analyzing vibrationsgenerated by industrial mahinery. Shen et al. (2005) used the Hilbert-Huang transform toanalyze 55 year time series of air temperature and sea surfae temperature data, and showedthat the annual yle, 3�7 year yles, multideadal yles and a long term trend were learlydi�erentiated by the tehnique. Of lose relevane to the urrent work was a reent study byRao and Hsu (2008) who applied the method to a series of hydrologial and meteorologialtime series and systematially demonstrated the di�erenes between Fourier analysis andHilbert-Huang analysis.
11



b. Theory of the Hilbert Huang transformThe theory of the normalized Hilbert-Huang transform, and its implementation, will bereviewed brie�y here. Several detailed desriptions of the method already exist, inluding(Huang 2005b) and (Huang and Wu 2008). As disussed above, the normalized Hilbert-Huang transform onsists of three steps: EMD of the time series into IMFs, normalization ofthe IMFs and extration of instantaneous amplitudes, and �nally extration of instantaneousfrequenies from the normalized IMFs using the Hilbert transform.The EMD begins by de�ning two ubi splines. One passes through all the loal maximaof the data, and the other passes through all the loal minima. The average of the twosplines is onsidered the loal mean of the data, and is subtrated from the original timeseries. The result now has zero mean, but does not neessarily form an IMF sine it an stillontain introdued loal extrema. The proesses is repeated until onvergene is obtained,at whih point it satis�es the onditions of being an IMF as de�ned by Huang et al. (1998).In pratie, onvergene is de�ned as in (Huang et al. 2003), as the point where every loalmaximum�minimum pair is separated by a zero rossing, and when the number of zerorossings stays onstant for S iterations. S is termed the stoppage, and is reommended tobe a small number between 3 and 8.When the �rst IMF, x1(t), has been alulated using the above proedure, it is subtratedfrom the original signal:
U1(t) = U(t) − x1(t). (1)

U1(t) is the same as U(t), but has had the highest frequeny �utuations �ltered from it.
12



The next IMF is then extrated from U1(t) using the same proess, so that:
U2(t) = U1(t) − x2(t). (2)When the signal, U(t), has been deomposed into its onstituent IMFs, xi(t), it may bewritten as:
U(t) =

N
∑

i=1

xi(t) + ε(t) (3)where N is the number of IMFs that have been extrated from the signal and ε(t) is the lowfrequeny trend, ontaining zero or one extrema.Corret treatment of end e�ets in the deomposition is an ongoing question, sine itinvolves making a reasonable predition of the spline from the last extremum to the end ofthe time series (Huang and Wu 2008). In this work, however, the time series are very longand we are interested in average variability onditions, so the end e�ets do not present anysigni�ant problem.In a reent modi�ation to the Hilbert-Huang transform, Huang (2005a) proposes nor-malizing the IMFs so that their amplitude is always unity and they ontain only frequenymodulations. The normalized Hilbert-Huang transform avoids the potential problem that ifthe spetrum of osillations within the IMF and that of their low frequeny envelope over-lap, then the instantaneous frequeny will not be meaningful aording to the Bedrosiantheorem (Huang and Wu 2008). Eah IMF is normalized by dividing it by the ubi splinethat passes through the absolute value of all its extrema. The normalization should be re-peated iteratively until all amplitudes are equal to unity, beause the spline an oasionallypass through values less than the IMF. Eah IMF, xi(t) may then be divided into a fre-queny modulation part, Fi(t) and an amplitude modulation part, Ai(t), where Fi(t) is the13



normalized IMF with amplitude of unity, and
Ai(t) =

xi(t)

Fi(t)
(4)The normalised IMFs satisfy the speial property that they eah ontain only one fre-queny at eah time, so that instantaneous frequenies an be alulated using the Hilberttransform. The meaning of instantaneous frequeny is not immediately obvious. Coneptu-ally, it ould be regarded as the inverse of the time taken for one omplete osillation, but asargued by Huang et al. (2009), there is no reason to expet that the frequeny should remainonstant throughout an entire osillation. The appropriate de�nition of the loal frequenyis as the derivative of the phase angle, where the phase angle an be found by adding someproperly hosen imaginary part to the time series.

f(t) = xi(t) + ig(t) (5)suh that
xi(t) = Re [f(t)] . (6)Clearly, any funtion g(t) satis�es Eqs. (5) and (6). In general, however, the omplexsignal f(t) will ontain both positive and negative frequenies, and the frequenies will nothave physial meaning. As disussed by Cohen (1989), a breakthrough in the idea of de�ningan instantaneous frequeny was made by Gabor (1946) when a speial funtion g(t) was usedwhih �ltered out the negative frequeny omponents and doubled the positive frequenyomponents. This funtion was equivalent to the Hilbert transform, and is given as

Hi(t) = xi(t) + i
1

π
PV

∫ +∞

−∞

xi(τ)

(t − τ)
dτ = xi(t) + ihi(t) (7)14



where PV refers to the prinipal value of the integral, whih must be onsidered beause theintegrand is not de�ned at t = τ .Mathematially, the Hilbert transform of the original data ould be alulated, but theresult would be erroneous to interpret beause the instantaneous frequeny would be aresult of all the overlapping frequenies present in the original signal (Boashash 1992). Theonstrution of the normalized IMFs ensures that eah omponent satis�es the ondition of�monoomponent signals� as suggested by Cohen (1995) and Boashash (1992), whih meansthat the spetrum of the time varying amplitude does not overlap with the spetrum ofthe time varying phase. In a pratial sense, eah normalized IMF should ontain only onefrequeny at any time.By writing the real and omplex parts of the Hilbert transformed signal in polar oordi-nates, it is seen to be funtion of instantaneous phase and amplitude,
Hi(t) = ai(t)e

iθi(t). (8)where in the ase of the normalized IMFs, the amplitude will be nearly equal to unity.De�ning the instantaneous frequeny as ωi(t) = dθi(t)
dt

, the Hilbert transform may then bewritten as
Hi(t) = ai(t)e

i
R

ωi(t)dt. (9)Sine the instantaneous phase may be expressed as θ(t) = Im [ln(H(t))], the instantaneousfrequeny, de�ned as the time derivative of the instantaneous phase, an be written as
ω(t) =

dθ

dt
= Im

[

1

H(t)

dH(t)

dt

]

. (10)
15



The data is disrete, so the instantaneous frequeny is then approximated as
ω(t) ≈ Im

[

1

H(t)

∆H(t)

∆t

]

. (11)After the Hilbert transform of the N IMFs has been established, the original signal may bereonstruted as
U(t) = Re

[

N
∑

i=1

ai(t)e
i

R

ωi(t)dt

]

+ ε(t). (12)where ε(t) is the low frequeny trend in the data after the �rst N IMFs have been �lteredout.Eq. (12) shows how the signal may be deomposed into a series of IMFs, eah with timevarying amplitude and phase. An example of the �rst �ve IMFs of suh a deomposition for a13 day sample of wind speed observations is given in �gure 4. As disussed by Sweeney-Reedand Nasuto (2007) and Wu and Huang (2009), diret physial interpretation of a single IMFis not neessarily possible, due to the problem of mode mixing, where an IMF an ontainparts of �utuations belonging to di�erent sales. For example, part of the diurnal ylemay appear at some times in the same IMF as parts of the synopti yle at other times.This problem an be observed in some of the IMFs shown in �gure 4. To reate IMFs whihhave a more diret physial meaning (as well as greater uniqueness), Wu and Huang (2009)developed the Ensemble Empirial Mode Deomposition (EEMD) methodology, where whitenoise is added to the time series to reate an ensemble of deompositions. The white noiseensures that all frequenies are present at all times in the time series, and removes theproblem of mode-mixing. By averaging the ensemble of deompositions, a true deompositionis found whih has greater physial meaning, but for whih the omponents may not exatlysatisfy the the onditions of being IMFs. The EEMD tehnique has not been pursued here,16



but it would nonetheless be an important extension to the urrent work, partiularly if uniquephysial proesses (suh as osillations assoiated with roll vorties) were to be identi�ed ina single IMF.An alternative to using the Hilbert transform for alulation of instantaneous frequenyis to use the diret quadrature, as disussed in (Huang et al. 2009). This method takesadvantange of the fat that the phase an be alulated diretly as the artangent of thefrequeny modulation part of the signal divided by its quadrature. Huang et al. (2009)argues that it is a more loal alulation of the instantaneous frequeny, and that it avoidsany remaining violations of the Bedrosian theorem.One way of ombining all of the frequeny and amplitude information in the set of IMFs isto bin the instantaneous amplitude information in eah IMF into regularly spaed frequenybins. This an be ahieved by onsidering eah frequeny bin (ω, ω + ∆ω] and equating allamplitude ontributions ai(t) from the N IMFs whih orrespond to ωi(t) ∈ (ω, ω + ∆ω].The sum of the total amplitude ontributions in eah frequeny bin at eah time onstitutethe Hilbert Spetrum, H(ω, t). Other methods for handling this step inlude using non-parametri regression tehniques to �t a urve through the amplitudes, whih also has theadvantage of smoothing the spetrum (Du�y 2004). However, sine in this paper the Hilbertspetrum is �nally averaged or onverted to a salar time series (to whih is it easy to applysmoothing), no smoothing was applied to the raw Hilbert spetrum. The Hilbert spetrumhas the same units as the original data set, as it represents amplitudes of the �utuations.The Hilbert spetrum for a two week sample period in 2000 is shown in the lower panelof �gure 5. The total amplitude of �utuations at a given time is a ombination of all theamplitude ontributions at that time. The orresponding wind speed time series is shown17



in the upper panel. It is seen that the episodes of intense wind variability are re�eted asdarker spots or lines on the Hilbert spetrum. The slow variability, suh as that on days6�8, with period of around 24 hours, falls outside the frequeny range of the spetrum, andthe absene of high frequeny variability during this time is shown by the gap in the Hilbertspetrum.
5. Appliations of the Hilbert-Huang transform to theanalysis of wind speed dataThe Hilbert spetrum as shown in �gure 5 is a useful representation of the time evolvingspetral information in the data. Sine this study is foused on long time series of wind speeddata, where the frequenies of interest are those at the high frequeny end of the spetrumshown, it is important to be able to summarize the Hilbert spetrum to unover the trendsin the data. In this regard, the Hilbert-Huang transform has great �exibility. It an beaveraged along the time axis to reate a marginal spetrum, summed over the frequeny axisto reate a salar time series of variability, or an be onditionally averaged on the time axis.All of these strategies an be employed, and eah one brings out a di�erent aspet of thetrends and patterns in the data that may not otherwise be obvious.Averaging the time evolving spetrum along the time axis,

H(ω) =
1

L

L
∑

t=1

H(ω, t), (13)is useful �rstly beause it is a relationship in the same form as a Fourier spetrum (that is, aone dimensional relationship between frequeny and amplitude), and as suh it an be used18



to show the di�erene between the Hilbert-Huang analysis and the Fourier analysis. Severalstudies have made omparisons of the Fourier spetrum and the marginal Hilbert spetrum,and shown that the methods produe similar results in ases of stationary or near-stationarytime series, but that the spetra an be signi�antly di�erent in the ase of non-stationaryor non-linear data (for example, in the meteorologial and hydrologial time series studiedby Rao and Hsu (2008)).Although the marginal Hilbert spetrum and the Fourier spetrum are both expressionsof amplitude as a funtion of frequeny and an be plotted on the same axis with the sameunits, they are not simply two di�erent ways of alulating the same spetrum. As suh, theyare not expeted to be idential. The Fourier transform is a deomposition into a family ofstationary sine and osine funtions, while the Hilbert-Huang transform is a deompositioninto a family of amplitude modulated and frequeny modulated omponents. Therefore, theHilbert-Huang transform is a loal method, and will show a di�erent frequeny response forthe non-stationary osillation omponents in the data. With regard to wind speed, this maybe of partiular importane for the longer wavenumber omponents suh those driven bydiurnal or synopti timesales, as well as for shorter wavenumber omponents suh as theonset and deay of onvetive onditions. The diurnal yle is modulated by fators inludingtime of year, loudiness and airmass hanges, so it is not expeted to be well representedby a stationary osillation of period 24 hours. Similarly, the synopti yle is modulated bythe number and amplitude of Rossby waves, so it is also expeted to have a more omplexspetral representation than a single spike at two or three days.Another approah to summarize the information in the Hilbert spetrum is to aggregatethe spetrum along the frequeny axis. In this way, a salar time series of variability within19



a given frequeny range an be obtained, as
H(t) =

ω2
∑

ω=ω1

H(ω, t) (14)where H(t) represents the sum of all amplitudes within the frequeny range [ω1, ω2]. Dueto the superposition of �utuations of di�erent phase and frequeny, the signal will notalways be osillating with this total amplitude. The amplitude an be interpreted as anupper bound on the total amplitude of �utuations if all omponents were in phase, andombined aording to linear superposition. While the assumption of linear superpositionprobably does not always hold, the value of reating salar metri of the degree of variabilityis lear. For example, a salar time series an be predited using various univariate timeseries modeling tools, it an be predited using relevant explanatory variables from NWPmodels, and further it ould be used as an indiator of an impending episode of severevariability based on analysis of model data or upstream observations.Finally, the Hilbert spetrum an be summarized by binning and averaging the data alongthe time axis to reate onditional spetra. This is a partiularly interesting appliation ofthe method, sine it permits alulation of spetra for points whih do not lie onseutivelyin the time series. Further, the fast adaptivity of the method means that the spetralinformation for an isolated point in the time series is likely to be reasonably free from thein�uene of the spetral information from nearby parts of the time series.
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6. ResultsThe four year time series of wind speed measurements was analyzed in four year-longsegments of 52560 (2001�2003) or 52704 (2000) points. The temporal resolution of the datawas doubled by ubi interpolation to improve the extent to whih the highest frequeny�utuations were aptured in the �rst IMF. The interpolation obviously did not add anyhigh resolution information to the time series, but prevented the EMD from missing some ofthe existing information. The data was transformed in 4 separate years for omputationalonveniene, although the EMD took less than 400 seonds for eah time series of more than52000 points on a urrent laptop omputer.The stopping riteria for the EMD was set at S = 3, as reommended in Huang et al.(2003). The instantaneous amplitudes and frequenies of the IMFs were binned into fre-queny bins of width 5e-7 Hz to reate the two dimensional Hilbert spetrum. After theHilbert spetrum was reated, the times orresponding to the gaps in the original time serieswere removed, so they were not inluded in the subsequent analysis.Boxplots of the distributions of periods in eah IMF, alulated as the inverse of theinstantaneous frequeny, are shown in �gure 6 on a semilog axis. The medians of the dis-tributions follow a straight line when plotted on a semilog axis � that is, eah IMF has onaverage half the frequeny of the previous IMF. This result is onsistent with results pre-sented in (Wu and Huang 2004) and (Flandrin et al. 2004), where it was shown that theproesses of deomposing the time series into IMFs is equivalent to loally applying a �lterbank of overlapping band pass �lters.
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a. Comparison of the Hilbert spetrum with the Fourier spetrum: summation of the Hilbertspetrum over timeAveraging the Hilbert spetrum H(ω, t) over time yields a salar relationship betweenamplitude and frequeny, or the marginal Hilbert-Huang spetrum. The marginal Hilbert-Huang spetrum and its analogous Fourier spetrum are shown in �gure 7. The marginalHilbert-Huang spetrum was alulated as given in Eq. (13). The Fourier spetrum wasalulated using the disrete fast Fourier transform and a Hanning window funtion witha trunation point of L/16, where L is the length of the time series. Applying a windowfuntion with a suitable trunation point is an e�etive strategy to provide a onsistentestimate of the spetrum for stationary data (Madsen 2007). Even in the ase of non-stationary data, the appliation of a window funtion to trunate the time series and mitigatethe end e�ets smooths the spetrum and provides good de�nition for expeted periodiitiessuh as the 24 hour yle, but it means that the spetrum is foused on the middle of the timeseries and the data at either end is disarded. That is, to smooth the spetrum, the data mustbe trunated so that not all of the time evolving statistial properties are represented equally.The trunation point here was hosen as a trade-o� between representing a reasonable portionof the time series, and giving a spetrum that was suitably smooth for omparison with theHilbert spetrum.It is not expeted that the spetra should be idential beause the integrated Hilbert-Huang spetrum represents the time average of the instantaneous amplitude at eah fre-queny, while the amplitudes of the Fourier series omponents represent the best �t of on-stant harmonis to the whole data set. Huang et al. (1998) argue that the Hilbert marginal22



spetrum therefore has a �totally di�erent meaning� to the Fourier spetrum.Despite the problems with omparing the two spetra in �gure 7 (sine the full timeseries is used in the Hilbert spetrum, while the Fourier spetrum fouses on the middle ofthe time series), there are some features in ommon between the two spetra. For example,the diurnal yle is expeted to be identi�ed by both methods. Indeed, there is a smallpeak in both spetra at a period 24 hours, although beause this site is o�-shore the diurnalyle is not very strong. The diurnal yle in these wind speed measurements will be furtherdisussed in later parts of this paper. The two spetra also show similar spetral slope.The marginal Hilbert spetrum is smoother than the Fourier spetrum beause it isatually an average of all the spetral information for a year. A further di�erene betweenthe spetra is that the Fourier spetrum ontains information up to the Nyquist period of
2∆t, or 20 minutes, while the Hilbert-Huang marginal spetrum requires 4∆t, or 40 minutesto resolve spetral information (Huang et al. 1998), whih an be seen as a limitation of theHilbert-Huang transform methodology.b. Time series of Hilbert spetrum derived wind variabilityThe total amplitudes of variability for the two temporal ranges 1�3 hours and 3�10 hourswere alulated, and results for the year 2000 are shown in �gure 8. Both time series werevery noisy, and were smoothed using moving average smoothing with a window length of3 hours for the 1 to 3 hour temporal sales, and 10 hours for the 3 to 10 hour temporalsales. This is reasonable, beause the time series show the variability of the Hilbert-Huangvariability metri. Therefore, if an episode of variability with a period of 3 hours lasted for23



less than three hours, then it would not onstitute an osillation. As disussed in setion3, there were a small number of gaps in the original data that were �lled to failitate theanalysis. In total there were 16 missing data values out of 52704 observation times in 2000.Points in the variability time series orresponding to these missing data were removed.The time series suggest that there are more high variability events in the Autumn andWinter months than in Spring and Summer. The highest onentration of peaks in the dataour in the months Otober to April. Both time series are, however, very noisy and there isno de�nite trend. Using a linear least squares regression, the two smoothed time series havea orrelation oe�ient of 0.42 to 0.51 for the 4 years, although any relationship is likely tobe non-linear and would in fat be better desribed by a generalized orrelation oe�ientsuh as suggested in (Nielsen and Madsen 2001). Nonetheless, satter plots of the two timeseries reveal no lear dependeny, and this suggests that there are partly di�erent dynamisontrolling the variability on these two time sales, although it is not neessarily suggestedhere that the separation into 1�3 hour and 3�10 hour variability is a natural marker betweentwo sales of atmospheri dynamis.. Analysis of wind variability as a funtion of time of dayIt is well established that there is a diurnal yle in wind speed over land (eg in (Holtslag1984)). Coelingh et al. (1998) showed that there is a well de�ned diurnal yle in the windspeed at two measurement sites near the Duth oast, but that the diurnal yle was almostnon-existent for three o�shore sites loated in the Duth North Sea. In another study, Peñaand Gryning (2008) found a pronouned diurnal yle in temperature at the Horns Rev24



Mast 2 for easterly winds, showing the in�uene of the land, but very little diurnal yle inwesterly winds.Here, the existene of a diurnal yle in wind variability is investigated, where �windvariability� refers to all periods from 1 to 10 hours. The four year, two-dimensional Hilbertspetra were averaged for eah season into hourly time-of-day bins. That is, 24 onditionalspetra were reated, one for eah time of day, with eah bin ontaining approximately 2190observations. The points orresponding to the missing data in the original time series wereremoved from the analysis. The averaged Hilbert spetra for the four seasons are shown in�gure 9. The spetra were normalized by dividing by the width of the frequeny bins, andmultiplied by frequeny to emphasize the higher frequenies. Therefore the units of the oloraxis are m s−1.The 4 year salar time series of variability for periods 1�3 hours was also averaged intohourly bins, so that the diurnal yle in wind variability ould be diretly ompared with thediurnal yle in wind speed. Note that sine the mean of the data is subtrated during theEMD proess, there is no impliit saling of variability ditated by the method. Variabilityand wind speed as a funtion of time of day for the four seasons are shown in �gure 10, andthe two quantities are shown plotted as a satter plot in �gure 11. Figure 11 shows thatthe highest variability ours in autumn, but that the highest wind speed ours in winter.There is no strong orrelation between average wind speed and average variability. There isa weak positive orrelation in winter, spring and summer, and a weak negative orrelation inautumn. It an therefore be seen that the diurnal yle in wind variability does not simplyfollow the diurnal yle in wind speed.In spring, there is a late afternoon maximum in wind speed, whih is followed by a25



maximum in wind variability around 3-4 hours later. The afternoon maximum in windspeed may be aused by the formation of a low level jet, in ases where warm air fromday time heating over the land is adveted over the old North Sea, leading to very stableonditions (Stull 1988). Building on this hypothesis, the maximum wind variability oursas the low level jet is diminishing in strength, and may our as the low level jet onditionsdeteriorate to a more neutrally strati�ed noturnal situation.In summer, a midday minimum in wind speed is observed, whih is likely to be part ofthe observed pattern, where a midday maximum in surfae wind speed is aompanied bya minimum in wind speed just above the surfae as the wind pro�le adjusts to the daytimeheating and destabilizes (Holtslag 1984; Wieringa 1989). It is interesting to note that aminimum in wind variability lags the minimum in wind speed by around 3 hours. Thismay our one the surfae heating has existed for long enough for the layer of surfaeair to beome well mixed; in this ase, turbulene will be at a maximum but larger sale�utuations may be equalized by the inreasingly even distribution of momentum.In winter, two daily peaks in both wind variability and wind speed are seen, where the twoyles are approximately in phase, while in autumn there are two daily peaks in both yleswhih are approximately 6 hours out of phase. The two daily peaks are almost ertainlydue to the fat that we have ombined data from the two �ow regimes - from the land andfrom the sea - into the same analysis. The reasons for the relationship between the speedand variability yles are di�ult to desribe from this analysis, and are fasinating areasfor further analysis, through data analysis or modeling.
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7. ConlusionsThe e�etiveness of the Hilbert-Huang transform as a tool for analyzing non-stationarywind speed time series has been demonstrated using time series of wind observations from ameteorologial mast near the Horns Rev wind farm. The method is partiularly relevant tothe analysis of wind speed time series, whih are known to ontain ompliated statistialstruture, breakpoints and periodiities.The two dimensional Hilbert spetrum gives a lear and intuitive representation of thesales of motion that are present in wind speed time series, and of their relative weighting.The Hilbert spetrum not only shows the most variable parts of the spetrum, but givesa lue about the existene of any oherent periodiities in the time series, sine there aretransient setions of the spetrum that show a onsistently enhaned amplitude within agiven frequeny range. It is not possible to de�ne the full three dimensional struture ofa wave based on a single point measurement, although a interesting development would beto use the Hilbert spetrum of several wind speed time series at nearby points to begin todevelop an over all piture of the strutures in the boundary layer, or to employ a methodsuh as the bivariate EMF reently developed by Rilling et al. (2007) to study patterns invetor observations of wind speed.The Hilbert spetrum has many appliations that extend its utility past the two dimen-sional Hilbert spetrum. Aggregating the spetrum along the frequeny axis to form timeseries of total variability gives rise to many analysis methodologies from time series analysis.For example the time series of wind variability lend themselves to modeling using autore-gressive moving average (ARMA) or more sophistiated univariate models, or regression27



models whih relate wind variability to other atmospheri observations or foreasts. Forlong time series, they an be binned and averaged to reate a limatologial piture of thetypes of onditions in whih severe wind variability tends to our. Further, time series ofwind variability lend themselves to being used as a warning tool for wind energy applia-tions - for example, when peaks in wind variability are identi�ed diretly either in upstreamobservations, or in NWP or other foreast data.Using the Hilbert spetrum to reate onditional spetra is a novel way to desribe thetotal frequeny response of the wind speed to relevant environmental parameters suh as timeof day. In using this method here, it was shown that the diurnal yle in wind variabilityis not very strong, and an only be shown up as a slight trend in the binned and averagedtime series analysis. Further, it was shown that the annual yle in wind variability is muhstronger than any diurnal yle. It is possible to reate onditional spetra based on any setof riteria, and it is expeted that strong trends an be unovered for riteria suh as winddiretion and time of year.In this study, the Hilbert-Huang analysis was used to study the diurnal yle in windvariability in the four seasons of the year. The method was e�etive beause it permittedanalysis of the spetral properties of the wind speed at di�erent times of year. More impor-tantly, the analysis was used to reate average spetral information at eah time of day, fordata whih do not ome from onseutive parts of the time series. The results onerningthe di�erent diurnal yles in wind speed and wind variability require further analysis fora full physial understanding, although it seems likely that the formation of a low-level jetontributed to the spring time pattern, and the formation of the midday minimum in windspeed above the surfae for �ow form the land ontributed to the summer time pattern.28



Extensions and new appliations of the Hilbert-Huang transform are still being devel-oped, and it is likely that some of these new developments will a�ord new insights into thestrutures in wind speed data. For example, the ensemble EMD is likely to help with thephysial interpretation of the IMFs, sine it addresses the problem of mode mixing. Fur-ther, the diret quadrature method for alulation of instantaneous frequeny is a more loalmethod whih avoids some of the short-omings of the Hilbert transform, and is likely to bea better strategy for future studies.The methods desribed here are not limited to the study of the diurnal yle, or to theanalysis of wind speed. The onditional spetra and binned time series analysis ould justas well be applied to other onditions of interest, suh as wind diretion, stability, or timeof year. The analysis ould also be applied to higher frequeny wind speed data, whereturbulene rather than low frequeny variability would be the subjet of study. The fous ofthis analysis has been on the study of limatologial trends, whih are useful in the proessof developing foreasting models (physial or statistial) beause they give a lue to theimportant explanatory fators whih should be onsidered.Aknowledgments.Wind speed observations for this work were supplied by Vattenfall as part of the DanishPubli Servie Obligation (PSO) fund projet �HRENSEMBLE - High Resolution ENSEM-BLEs for Horns Rev� (under ontrat PSO-6382), whih is gratefully aknowledged. Theauthors also aknowledge the support of the Danish PSO fund projet �Mesosale atmo-spheri variability and the variation of wind and prodution for o�shore wind farms� (under29



ontrat PSO-7141). The authors are grateful to Alfredo Peña from Risø for detailed proof-reading and assistane with �gure 1. Coordinates of the Horns Rev II wind farm were kindlysupplied by Dong Energy. The insightful omments of two anonymous reviewers were muhappreiated.

30



ReferenesAilliot, P., V. Monbet, and M. Prevosto, 2006: An autoregressive model with time-varyingoe�ients for wind �elds. Environmetris, 17, 107�117.Akhamatov, V., 2007: In�uene of wind diretion on intense power �utuations in largeo�shore windfarms in the north sea. Wind Eng., 31, 59�64.Akhamatov, V., C. Rasmussen, P. B. Eriksen, and J. Pedersen, 2007: Tehnial aspets ofstatus and expeted future trends for wind power in Denmark. Wind Energy, 10, 31�49.Andreas, E. L., C. A. Geiger, G. Treviño, and K. J. Cla�ey, 2008: Identifying nonstationarityin turbulene series. Bound. Layer Meteorol., 127, 37�56.Barthlott, C., P. Drobinski, C. Fesquet, T. Dubos, and C. Pietras, 2007: Long-term study ofoherent strutures in the atmospheri surfae layer. Bound. Layer Meteorol., 125, 1�24.Boashash, B., 1992: Estimating and interpreting the instantaneous frequeny of a signal,part 1: Fundamentals. Pro. IEEE, 80, 520�538.Brown, B., R. Katz, and A. Murphy, 1984: Time series models to simulate and foreast windspeed and wind power. J. Appl. Meteor. Climatol., 23, 1184�1195.Coelingh, J., A. van Wijk, and A. Holtslag, 1998: Analysis of wind speed observations overthe North Sea oast. J. Wind Eng. Ind. Aerodyn., 73, 125�144.Cohen, L., 1989: Time-frequeny distributions � a review. Pro. IEEE, 77, 941�981.Cohen, L., 1995: Time Frequeny Analysis. Prentie-Hall, 320 pp.31



Dikey, D. A., D. P. Hasza, and W. A. Fuller, 1984: Testing for unit roots in seasonal timeseries. J. Am. Stat. Asso., 79, 355�367.Du�y, D., 2004: The appliation of Hilbert-Huang transforms to meteorologial datasets. J.Atmos. Oeani Tehnol., 21, 599�611.Flandrin, P., G. Rilling, and P. Gonalves, 2004: Empirial mode deomposition as a �lterbank. IEEE Signal Proess. Lett., 11, 112�114.Foken, U., M. Lange, K. Mönnih, H.-P. Wadl, H. G. Beyer, and A. Luig, 2002: Short-term predition of the aggregated power output of wind farms - a statistial analysisof the redution of the prediiton error by spatial smoothing e�ets. J. Wind Eng. Ind.Aerodyn., 90, 231�246.Gabor, D., 1946: Theory of ommuniation. J. IEE, 93, 429�457.Ghil, M., et al., 2002: Advaned spetral methods for limati time series. Rev. Geophys.,40, 1�41.Giebel, G., 2007: A variane analysis of the apaity displaed by wind energy in Europe.Wind Energy, 10, 67�79.Hoke, K. and N. Kämpfer, 2008: Gap �lling and noise redution of unevenly sampled databy means of the lomb-sargle periodogram. Atmos. Chem. Phys., 8, 4603�4623.Holtslag, A. A. M., 1984: Estimates of diabati wind speed pro�les from near-surfae weatherobservations. Bound. Layer Meteorol., 29, 225�250.
32



Huang, N., 2005a: Computing instantaneous frequeny by normalizing Hilbert transform. U.S. Patent O�e, patent number US 6,901,353.Huang, N., 2005b: Hilbert-Huang Transform and its appliations. World Sienti� PublishingCompany, 1-26 pp.Huang, N., M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, 2003:A on�dene limit for the empirial mode deomposition and Hilbert spetral analysis.Pro. Roy. So. A., 459, 2317�2345.Huang, N. and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its appli-ations to geophysial studies. Rev. Geophys., 46, RG2006.Huang, N., Z. Wu, S. Long, K. Arnold, X. Chen, and K. Blank, 2009: On instantaneousfrequeny. Adv. Adaptive Data Anal., 1, 177�229.Huang, N. E., et al., 1998: The empirial mode deomposition and the Hilbert spetrum fornonlinear and non-stationary time series analysis. Pro. Roy. So. A., 454, 903�995.Kim, D., S.-H. Paek, and H.-S. Oh, 2008: A Hilbert-Huang transform approah for preditionyber-attaks. J. Korean Stat. So., 37, 277�283.Labat, D., 2005: Reent advanes in wavelet analysis: Part 1. a review of onepts. J.Hydrol., 314, 275�288.Madsen, H., 2007: Time Series Analysis. Chapman & Hall, 380 pp.Nielsen, H. A. and H. Madsen, 2001: A generalization of some lassial time series tools.Comput. Stat. Data Anal., 37, 13�31. 33



Peng, Z. K., P. W. Tse, and F. L. Chu, 2005: An improved Hilbert-Huang transform and itsappliation in vibration signal analysis. J. Sound and Vib., 286, 187�205.Peña, A. and S.-E. Gryning, 2008: Charnok's roughness length model and non-dimensionalwind pro�les over the sea. Bound. Layer Meteorol., 128, 191�203.Pinson, P., L. E. Christensen, H. Madsen, P. Sørensen, M. H. Donovan, and L. E. Jensen,2008: Regime-swithing modelling of the �utuations of o�shore wind generation. J. WindEng. Ind. Aerodyn., 96, 2327�2347.Pinson, P. and H. Madsen, 2008: Adaptive modelling and foreasting of wind power �utu-ations with Markov-swithing autoregressive models. Int. J. Foreasting, submitted.Rao, A. and E. Hsu, 2008: Hilbert-Huang Transform Analysis of Hydrologial and Environ-mental Time Series. Springer, 372 pp.Rilling, G., P. Flandrin, P. Gonalves, and J. M. Lilly, 2007: Bivariate empirial modedeomposition. IEEE Signal Proess. Lett., 14, 936�939.Shreiber, T., 1997: Deteting and analyzing nonstationarity in a time series using nonlinearross preditions. Phys. Rev. Lett., 78, 843�846.Shen, S. S. P., T. Shu, N. E. Huang, Z. Wu, G. R. North, T. R. Karl, and D. R. Easterling,2005: HHT analysis of the nonlinear and non-stationary annual yle of daily surfae airtemperature data. Hilbert-Huang transform and its appliations, N. E. Huang and S. S. P.Shen, Eds., World Sienti� Publishing, 187�209.Sørensen, P., N. A. Cutululis, A. Vigueras-Rodríguez, H. Madsen, P. Pinson, L. Jensen,34



J. Hjerrild, and M. Donovan, 2008: Modelling of power �utuations from large o�shorewind farms. Wind Energy, 11, 29�43.Stull, R. B., 1988: An Introdution to Boundary Layer Meteorology. Kluwer Aademi Pub-lishers, 666 pp.Sweeney-Reed, C. M. and S. J. Nasuto, 2007: A novel approah to the detetion of syn-hronisation in EEG based on empirial mode deomposition. J. Comput. Neurosi., 23,79�111.Veltheva, A. and C. Guedes Soares, 2007: Analysis of abnormal wave reords by the Hilbert-Huang transform method. J. Atmos. Oeani Tehnol., 24, 1678�1689.Veltheva, A. D. and C. Guedes Soares, 2004: Identi�ation of the omponents of wavespetra by the Hilbert Huang transform method. Appl. Oean Res., 26, 1�12.Von Sahs, R. and M. H. Neumann, 2000: A wavelet-based test for stationarity. J. TimeSer. Anal., 21, 597�613.Wieringa, J., 1989: Shapes of annual frequeny distributions of wind speed obesrved on highmeteorologial masts. Bound. Layer Meteorol., 47, 85�110.Witt, A., J. Kurths, and A. Pikovsky, 1998: Testing stationarity in time series. Phys. Rev.E, 58 (2), 1800�1810.Wu, Z. and N. Huang, 2004: A study of the harateristis of white noise using the empirialmode deomposition method. Pro. Roy. So. A., 460, 1597�1611.
35



Wu, Z. and N. Huang, 2009: Ensemble empirial mode deomposition: A noise assisted dataanalysis method. Adv. Adaptive Data Anal., 1, 1�41.Yiou, P., D. Sornette, and M. Ghil, 2000: Data-adaptive wavelets and multi-sale singular-spetrum analysis. Physia D, 142, 254�290.

36



List of Figures1 Map of the west oast of Denmark, showing the loation of the existing HornsRev wind farm (Horns Rev windfarm I) and meteorologial mast 2 (M2). Theloation of mast 2 is 55◦31'8.10� North, 7◦47'15.07� East. The seond HornsRev wind farm (Horns Rev windfarm II), under onstrution, is also shown. . 392 Histogram of wind speed at Horns Rev mast 2 for the years 2000�2003. . . . 403 Wind rose for Horns Rev mast 2 for the years 2000-2003. Angles are thediretion from whih the wind blows. . . . . . . . . . . . . . . . . . . . . . . 414 The �rst �ve IMFs from the Empirial Mode Deomposition of a wind speedtime series. The bottom panel shows the orresponding wind speed observations. 425 Hilbert Spetrum (lower panel) of 10 minute wind observations at Horns RevMast 2 for a two week period in February 2000. The orresponding wind speedtime series is given in the upper panel. Darker ontours mean higher amplitude�utuations, and lighter ontours mean smaller amplitude �utuations. . . . 436 Distribution of periods for the �rst 10 IMFs for the years 2000-2003. Thewhiskers show the 90th and 10th perentiles, and the symbols *, o and +show the 5th or 95th, 1st or 99th and 0.5th or 99.5th perentiles respetively. 447 Smoothed Fourier spetrum (alulated using a disrete Fourier transform anda Hanning window funtion) and Hilbert-Huang marginal spetrum for a 1year time series of 10 minute wind observations . . . . . . . . . . . . . . . . 45
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8 Time series of total amplitude of �utuations for periods 1 to 3 hours (upperpanel) and 3 to 10 hours (lower panel), for the year 2000. The time series weresmoothed using entered moving average smoothing with a window length of 3hours (1 to 3 hour variability time series) and 10 hours (3 to 10 hour variabilitytime series). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 Hilbert-Huang spetra, averaged for the years 2000�2003 aording to time ofday. Spring (top left), Summer (top right), Autumn (bottom left) and Winter(bottom right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4710 Upper panel: Total amplitude of variability on sales of 1�3 hours as a funtionof time of day, averaged for the years 2000�2003. Lower panel: Wind speedas a funtion of time of day, averaged for the years 2000-2003. . . . . . . . . 4811 The same data as in �gure 10, plotted as average variability on sales of 1�3hours against average wind speed. . . . . . . . . . . . . . . . . . . . . . . . . 49
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Fig. 2. Histogram of wind speed at Horns Rev mast 2 for the years 2000�2003.
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Fig. 9. Hilbert-Huang spetra, averaged for the years 2000�2003 aording to time of day.Spring (top left), Summer (top right), Autumn (bottom left) and Winter (bottom right)
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