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Abstract—Participants in electricity markets are becoming
more proactive owing to the fast deployment of distributed energy
resources (DERs) and the further development of demand-side
management (DSM), which also boosts the emergence of Peer-
to-Peer (P2P) market mechanisms. Moreover, the market is also
required to operate in a real-time scheme in response to changes
in generation and load to maintain power balance. It is highly
desirable to propose and analyse novel approaches suitable for
real-time P2P market mechanisms. These are challenging since
most often involving a heavy computational burden, while the
time available for negotiation in real-time is very short. Our core
contribution is to design and analyse a novel asynchronous online
optimization framework and related real-time P2P market nego-
tiation mechanism, which can greatly reduce the computation and
communication burden from two aspects. First, a novel online
consensus alternating direction method of multipliers (ADMM)
algorithm is proposed. It significantly reduces computation since
only one iteration is performed for each agent at every time
period. Second, the market operates in an asynchronous mode
so that all agents can freely trade without waiting for idle or
inactive neighboring agents. The sublinear regret upper bound
is proved for our asynchronous online algorithm, which indicates
that social welfare in the market can be maximized in the long
run on average (over time). Simulations show that our algorithm
enjoys good convergence performance, robustness, and fairness.

Index Terms—Real-time P2P markets, asynchronous online
consensus ADMM, forgetting factor, non-stationary regret.
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Functions
NC(·) Production cost or utility function.
R(·) Regret function.
Numbers and Indexes
k Index for iterations.
N Cardinal number of agents.
n,m Indices for agents.
T Cardinal number of time periods.
t Indices for time periods.
Parameters
∆t Duration of each time period.
t The last time st before t where agent was active.
ρ, η Adaptive penalty factors.
τ Maximal tolerable delay for all agents.
E,E Boundaries of power.
υ Forgetting factor.
ε Allowed maximal violation of trade between agents.
p Active rate of agent.
S,D,P ,L,J ,Λ Positive upper bounded constants in assump-

tions.
V Path variation.
Sets and Vectors
λ Vector of whole transaction prices.
E Vector of whole transaction quantities.
A Set of active neighboring agents.
Ac Set of inactive neighboring agents.
Ω Set of agents.
ω Set of neighboring agents.
Ωp,Ωc,Ωps Set of producers, consumers and prosumers.
Variables
Ê The final trade quantity after projection.
Êproj The projected total power.
λ Price for transaction power.
E Power injection or transaction quantity.
E∗ Optimal power injection or transaction quantity.
F Consensus variable of trades.

I. INTRODUCTION

The ever-increasing distributed energy resources (DERs)
and demand-side management (DSM) characterize the future
of electrical power systems and market mechanisms. Market
participants undertake a proactive behavior by managing their
production and consumption. Therefore, electricity markets are
evolving towards more decentralized mechanisms. However,
current electricity markets still complete resource allocation
and pricing based on the conventional hierarchical and top-
down approach [1], which causes participants to be passive
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receivers. Recently, a novel idea of electricity markets has
emerged: these so-called Peer-to-Peer (P2P) electricity markets
rely on multi-bilateral trades among participants [2]–[9], who
work in a spontaneous and collaborative manner without
requiring a central operator to centrally schedule. Employing
P2P market mechanisms can yield many advantages, e.g., em-
powerment of participants, product differentiation, resilience
or reliability of power system, and protection of privacy [2],
[5]. Existing works about P2P markets mainly focus on the
following issues: reallocation of costs [3], product differences
[4], [9], dispatch fairness [8], communication properties [6]
and costs [7].

Meanwhile, in actual operation, due to changes in the
weather, potential power system accidents, renewable power
generation uncertainty, demand-side load variations, and other
contingencies, the actual generation and load may have a large
deviation from the schedule obtained at the day-ahead market
(DAM) stage, power balance hence ought to be restored. Thus,
it is required to rapidly reschedule the transactions among
participants to maintain power balance in response to these
changes, hence calling for real-time markets (RTMs) [10]–
[13]. At present, electricity markets in many countries, such as
Nord Pool in Northern Europe, PJM and ECROT in the United
States, and NEM in Australia, mainly adopt a combination of
DAMs and RTMs to achieve two-stage separate settlement.
Since RTMs are an important part of the electricity market,
it is necessary to also operate the P2P market mechanism
in a real-time scheme, however, which is quite technically
challenging. Compared with day-ahead and intraday markets,
the negotiation time for RTMs before operation is usually
set to 5 minutes or even shorter [14]. Thus, RTMs demand
fast computation and communication. However, a P2P market
mechanism requires a very large amount of information to be
exchanged, much greater than that required for a centralized
market mechanism [6], [7], [15]. In a real-time context, such
exchanges run the risk of not having enough time to complete
the negotiation before the deadline. Eventually, the main
challenge for designing a real-time P2P electricity market
negotiation mechanism is how to reduce the computation and
communication complexity of P2P mechanisms so that it can
be deployed in a real-time scheme.

Note that some works already considered deploying P2P
mechanisms in real-time operation [16]–[19]. For instance,
in [16], bilateral contract networks were proposed as a new
market design for P2P energy trading in real-time markets and
authors designed a price-adjustment process to implement the
negotiation mechanism; The authors in [17] presented a two-
phase operation algorithm: Phase I focuses on the day-ahead
scheduling of generation and controllable DERs, whereas
Phase II is developed for hour-ahead or real-time operation
of P2P energy trading between individual prosumers; A P2P
electricity trading model for locally buying and selling elec-
tricity among plug-in hybrid electric vehicles was proposed in
[18]. An iterative double auction mechanism was proposed to
maximize social welfare in day-ahead and real-time stages; A
real-time transaction distribution network market is established
in [19] to enable surplus renewable electricity P2P trading
to be fulfilled among different end users. However, these

works ignored the computational efficiency trouble of the real-
time P2P market, and did not consider how one could take
advantage of previous negotiations to make current results
better.

Table. I gives a comparison between our proposed asyn-
chronous online consensus ADMM and the state-of-the-art
algorithms. The standard alternating direction method of mul-
tipliers (ADMM) [8], consensus-based ADMM [3], [7], [20],
relaxed consensus+innovation (RCI) [6], [9], and primal-dual
gradient method [4] all require to operate in a synchronous
mode to maximize social welfare. But they may need to
perform multiple iterations to converge in each time period,
and run the risk of exceeding the deadline of negotiation time
period before reaching a convergence. The price-adjustment
process [16], iterative double auction [18], and continuous
double auction (CDA) [21], [22] match buyers and sellers
who submit bid prices and amounts in current time period,
but they cannot ensure that social welfare is maximized. For
the online matching CDA method [23], although it can also
implement asynchronous transactions, and each agent only
takes one match in every time period, it suffers from sub-
optimality and there is a upper-bounded gap between social
welfare maximization.

As it may be too expensive to optimally solve a real-time
P2P market at every short time period, one needs to think
of appropriate and computationally cheaper approaches. In
this work, we propose a novel asynchronous online consensus
ADMM algorithm to enable the real-time P2P electricity
market negotiation mechanism. Compared with the above
existing methods, the computation and communication burden
of P2P mechanisms are reduced via two aspects. First, we
innovatively design an online optimization framework to en-
able the real-time P2P market negotiation mechanism, which
can maximize social welfare in the long run on time average
– this is computationally lighter and more tractable. Despite
many large-scale applications of online optimization, such
as network resource allocation [24], [25], demand response
[26], [27], and energy management [28], our work is the
first application for P2P electricity markets. The number of
operations and communications among agents can be heavily
reduced, and the complexity of our approach is less than other
approaches since the online consensus ADMM algorithm only
performs one iteration for every single agent in each time
period. Second, the market operates in an asynchronous mode.
We first propose the synchronous online consensus ADMM,
which requires each agent to wait to receive all bid prices and
quantities from neighboring agents to run the algorithm. Then,
we improve it to an asynchronous mode, which means that
agents can freely trade without waiting to receive bid prices
and quantities from inactive or idle neighboring agents, so
that the computational efficiency will not be restricted by low-
reliability agents. Although the asynchronous online consensus
ADMM cannot achieve the optimal solution in every time
period, social welfare can be maximized in the long run on
time average by proving the sublinear regret upper bound.

Our contributions mainly lie as follows.
• We propose an online optimization framework for P2P

real-time electricity markets, meaning that, instead of
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TABLE I: Comparison of different algorithms to enable P2P markets

Algorithm Category
Computational

effort per
iteration

Number of
iterations per
time period

Convergence performance
for social welfare

Standard ADMM [8] distributed/synchronous high high maximize in each time period but maybe time out
Consensus-based ADMM [3], [7], [20] decentralized/synchronous high high maximize in each time period but maybe time out

RCI [6], [9] decentralized/synchronous low high maximize in each time period but maybe time out
Primal-dual gradient [4] decentralized/synchronous high high maximize in each time period but maybe time out

Price-adjustment process [16] decentralized/asynchronous low medium cannot guarantee social welfare maximization
Iterative double auction [18] distributed/asynchronous high medium cannot guarantee social welfare maximization

CDA [21], [22] distributed/asynchronous low medium cannot guarantee social welfare maximization
Online matching CDA [23] distributed/asynchronous low low suboptimal with a upper bounded gap

Asynchronous online consensus ADMM decentralized/asynchronous high low maximize in the long run on time average

fully solving a complete P2P market at each time pe-
riod, we use a recursive approach with a single itera-
tion/optimization performed at each time step based on
new information at the current time. The computation
complexity of the P2P mechanism is highly reduced
since only one iteration is performed for each agent
at every time period (while offering some performance
guarantees).

• We first propose the online consensus ADMM algorithm
to enable the market negotiation mechanism. However,
the synchronous mechanism requires each agent to wait
to receive all bid prices and quantities from neighboring
agents to update, and the computational efficiency may
be highly limited by low-reliability agents. To overcome
this drawback, we further improve it to an asynchronous
mechanism, where agents can freely trade with each other
without waiting for idle or slow neighboring agents.

• The sublinear non-stationary regret upper bound for
our asynchronous online consensus ADMM algorithm
is proved, which implies that social welfare will be
maximized in the long run on time average.

The rest of the paper is organized as follows: Section II
presents the real-time P2P electricity market model. Section III
proposes the synchronous and asynchronous market negotia-
tion mechanisms, followed by the regret and market properties
analysis in Section IV. Numerical results and comparisons are
presented in Section V. Finally, conclusions and limitations are
drawn in Section VI.

II. REAL-TIME P2P ELECTRICITY MARKET MODEL

We consider a real-time P2P electricity market with a set Ω
of N agents, who can be producers, consumers or prosumers
over a period of time T . The time period for negotiation before
operation and delivery is set to 5 minutes. Compared with a
centralized market, a P2P electricity market is much more
decentralized, which relies on multi-bilateral direct trades
among a community of agents with flexible consumption or
production.

The network is divided into physical layer and virtual
layer. The physical layer includes electrical connection of all
agents, whereas the virtual layer is the communication network
which is used for information exchange among agents. We
assume that the communication network is predetermined, and
the communication subsets ωn for each agent n are forever
preserved as fixed communication constraints.

As it is classically done, agents are supposed rational as
in [29], i.e. always objectively taking the most beneficial
decisions, and non-strategic, i.e., not anticipating actions and
reactions of other agents.

A. Peer-to-Peer Trading

To model the trading process, the total sold or purchased
power En,t of agent n ∈ Ω at time period t is split into a
summation of bilaterally transaction quantities with a set of
neighboring agents m ∈ ωn as

En,t =
∑
m∈ωn

Enm,t, ∀n ∈ Ω, t = 1, ..., T (1)

The neighboring agents of agent n are the agents who are
connected to agent n in the communication network. A
positive value of Enm,t corresponds to a sale/production
and a negative value to a purchase/consumption. To lighten
notations, En,t = {En1,t, ..., Enm,t} is used to denote the
whole transactions of agent n at time period t. The total sold
or purchased power of agent n at time period t is constrained
as

En,t ≤ En,t ≤ En,t, ∀n ∈ Ω, t = 1, ..., T (2)

Here, for renewable generators, the upper bound En,t is set
to the smaller value of actual power generation and maximal
capacity. Each agent can be a producer (0 ≤ En,t ≤ En,t),
a consumer (En,t ≤ En,t ≤ 0) or a prosumer (En,t ≤ 0 ≤
En,t). Hence, Enm,t are constrained as

En,t ≥ Enm,t ≥ 0, ∀(n,m) ∈ (Ωp, ωn), t = 1, ..., T,

En,t ≤ Enm,t ≤ 0, ∀(n,m) ∈ (Ωc, ωn), t = 1, ..., T,

En,t≤Enm,t≤En,t,∀(n,m) ∈ (Ωps, ωn), t = 1, ..., T,
(3)

where Ωp, Ωc and Ωps are the set of producers, consumers
and prosumers, respectively. Finally, the market equilibrium
between production and consumption is represented by a set
of reciprocity balance constraints as

Enm,t + Emn,t = 0, ∀(n,m) ∈ (Ω, ωn), t = 1, ..., T. (4)

We denote the production cost and consumer utility of
agent n at time period t by convex function NCn,t, which
is supposed to denote cost net of benefit (i.e., cost minus ben-
efit). For conventional or renewable generators, the function
NCn,t reflects the costs by producing the power En,t > 0;
while for consumers, the function represents the level of
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comfort/satisfaction obtained by consumers by consuming the
power En,t < 0 [30]. A positive value of NCn,t corresponds
to a cost, and a negative value to benefit. Fig. 1 gives the
illustrative functions NCn,t for generators and consumers.

N𝐶 𝐸

E𝐺 𝐸𝐺

(a)

EU 𝐸𝑈
N𝐶 𝐸

(b)

Fig. 1: Illustrative functions NC for (a) generators, (b) con-
sumers.

B. Social Welfare Maximization Problem

Since agents do not know the information from the future,
or in other words, the information is incomplete, they can only
make decisions based on current updated and past information.
Thus the market has to be running in an online manner instead
of optimizing the market for all T . To be more specific, at
the beginning of the time period t, each agent will be aware
of the current updated information, including cost or utility
function coefficients, power boundaries, demand requirements,
and renewable generation. After obtaining the information,
agents will decide the trading prices and amounts between
neighboring agents for later time until the next decision
is made. All agents negotiate with each other to reach an
agreement on their final transactions while maximizing the
social welfare. Since the cost or utility functions of all agents
are convex, the equilibrium point will exist and be unique
[31]. Therefore, mathematically speaking, the social welfare
maximization problem can be regarded as an equivalent min-
imization problem formulated as

min
{En∈Ω}

T∑
t=1

(∑
n∈Ω

NCn,t(En,t)

)
s.t. (1)− (4).

(5)

If we want to exactly and optimally solve above problem,
a double loop algorithm is needed. In the outer loop, the
function NCn,t will change over time, while in the inner
loop, a decentralized algorithm will run iteratively for agents
until the balance constraint (4) is satisfied. However, in a P2P
market, the number of communications will increase with the
square of the number of agents [7]. Thus, for the problem (5),
if we want to obtain the optimal solution in each time period,
all agents have to complete many iterations, which results in
a very heavy communication and computation burden. Thus,
one needs to think of appropriate and computationally cheaper
approaches. To this end, we propose an asynchronous online
optimization framework for real-time P2P market negotiation
mechanisms, which is more practical and applicable.

C. Extension to Include Physical Network Constraints
In this section, we introduce how to include the physical

network constraints. To this end, we propose to add a sys-
tem operator (SO) to the market, who helps complete the
calculation of power flows and bus voltage magnitudes by
solving an optimization problem converted from the linearized
LinDistFlow model [32], [33]. The SO only behaves as a single
agent in the market, and would not intervene the P2P trading
among agents. Thus, the P2P trading structure is not broken.

To be specific, in a distribution network, the power flow
model can be formulated as below [32]

pi = Pi −
∑
k∈δ(i)

Pk + rili, ∀i ∈ N (6a)

qi = Qi −
∑
k∈δ(i)

Qk + xili, ∀i ∈ N (6b)

vi = vπ(i) + 2(riPi + xiQi)− (r2i + x2
i )li, ∀i ∈ N (6c)

li =
P 2
i +Q2

i

vi
, ∀i ∈ N . (6d)

Here, pi/qi is the active/inactive power injection in bus i,
Pi/Qi is the active/inactive power flow from i to π(i), ri/xi
is the line resistance/reactance between i and π(i). Let Ii
be the complex current flowing from i and π(i), Vi be the
complex voltage of bus i. We assume the complex voltage
V0 at the substation node is given and fixed, and we define
li := |Ii|2 , vi := |Vi|2. The active power injection pi equals
to the cumulative active power of all agents in bus i, i.e.,∑
n∈Ni

En.
Constraint (6d) is nonconvex since it has quadratic terms.

To eliminate this non-convex term, we can linearize the power
flow model constraints using LinDistFlow model as below

pi = Pi −
∑
k∈δ(i)

Pk, ∀i ∈ N (7a)

qi = Qi −
∑
k∈δ(i)

Qk, ∀i ∈ N (7b)

Vi = Vπ(i) −
riPi + xiQi

V0
, ∀i ∈ N (7c)

1− ε ≤ Vi ≤ 1 + ε, ∀i ∈ N , (7d)

where, ε is the maximum allowed voltage deviation and
usually set to 0.05. Above LinDistFlow model constraints can
be equivalently converted into an optimization problem for SO
as below

{P,Q,V} = argmin
{P,Q,V}

∑
i∈N

∥∥∥∥∥∥pi − Pi +
∑
k∈δ(i)

Pk

∥∥∥∥∥∥
2

2

(8a)

+

∥∥∥∥∥∥qi −Qi +
∑
k∈δ(i)

Qk

∥∥∥∥∥∥
2

2

s.t. Vi = Vπ(i) −
riPi + xiQi

V0
, ∀i ∈ N (8b)

1− ε ≤ Vi ≤ 1 + ε, ∀i ∈ N (8c)

Above optimization problem (8) for SO is convex and easy
to solve, thus, the computational efficiency of the market will
not be highly reduced.
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Compared with current market-based operation of electric
energy systems, where system operators (and/or market oper-
ators) are required to centrally solve the economic dispatch
problem or optimal power flow (OPF) problem, the SO does
not directly intervene in the trading process. It behaves like
an agent in the P2P market, being involved in each step of
the solution approach and algorithm, by coupling the P2P
market to a network-constrained feasible operation outcome.
Unlike the other agents, the SO is non-profit, and just helps
to complete the power flows and voltage angles calculation.
This is in line with the original vision of Wu and Varaiya
[34], for which the SO has to be in the loop, in the case of
a multi-bilateral trading based approach to electricity markets
(so, a P2P setup). Also, for convex class of problems (so, DC
linearization of the OPF problem, LinDistFlow, etc.) having
this decentralized approach with the SO as an agent focused on
networked constrained operation can be shown to be equivalent
to a centralized setup.

III. ASYNCHRONOUS REAL-TIME P2P ELECTRICITY
MARKET NEGOTIATION MECHANISM

In this section, we first propose a synchronous real-time P2P
market mechanism, but it is highly restricted by low-reliability
agents. To overcome this drawback, it is further improved into
an asynchronous market mechanism.

A. Synchronous Market Mechanism

Since the market operates in an online framework, the
problem (5) is decomposed into each single time period. The
problem of maximizing social welfare in the time period t is
formulated as below

min
{En∈Ω}

∑
n∈Ω

(
NCn,t(En)+

∑
m∈ωn

η

2
(Enm,t−1 − Enm)2

)
s.t. (1)− (4),

(9)
where η is the penalty factor and the Bregman divergence
term η

2 (Enm,t−1 − Enm)2 is appended to make the results
close to previous value Enm,t−1 in order to speed up the
convergence process [35], [36]. The rationale behind the
Bregman divergence term is taking advantage of previous
negotiation results to make current results better so that the
gap between optimal solutions can be bounded. A novel online
consensus ADMM algorithm is proposed to implement the
real-time P2P market negotiation mechanism, which produces
the following updates:
• Power Updates: Each agent n updates their transaction

power with neighboring agents by solving the following
individual optimization problem with constraints (1)-(3):

En,t=argmin
En

NCn,t(En)+
∑
m∈ωn

λnm,t−1(Fnm,t−1−Enm)

+
ρ

2
(Fnm,t−1−Enm)2 +

η

2
(Enm − Enm,t−1)2,

(10)
where ρ is the penalty factor and λnm,t−1 is the
dual variable of the reciprocity constraint (4), which
also defines the price for transaction quantity Enm,t−1.

λn,t−1 = {λn1,t−1, ..., λnm,t−1} is used to represent
the whole transaction prices of agent n to neighboring
agents m ∈ ωn for time period t − 1. Fnm,t−1 is
the consensus variable defined as Enm,t−1−Emn,t−1

2 and
Fn,t−1 =

∑
m∈ωn

Fnm,t−1. Then, each agent broadcasts
En,t to neighboring agents.

• Price Updates: All agents update their prices to neigh-
boring agents m ∈ ωn as:

λnm,t = λnm,t−1 − ρ(Enm,t + Emn,t)/2. (11)

The online consensus ADMM operates in a synchronous
manner, which means each agent has to wait to receive all
bid prices and quantities from neighboring agents for updates.
Under the synchronous mechanism, the market efficiency will
be highly restricted by slow and low-reliability agents.

B. Asynchronous Market Mechanism

In order to overcome the drawback of the synchronous
mechanism, we propose a novel asynchronous negotiation
algorithm for the real-time P2P market. Certain methods can
also speed up the market negotiation process, e.g., adaptive
penalty factor [37] and alternative stopping criterion [7].
The adaptive penalty factor method focuses on reducing the
number of iterations, while the alternative stopping criterion
concentrates on reducing the communication times. However,
neither of them can deal with the trouble causing by low-
reliability and poor-quality agents.

Agent 1

Agent 2

Agent 3

Agent 4

t=1 t=2

Computational delay Communication delay

(a) Synchronous mechanism

Agent 1

Agent 2

Agent 3

Agent 4

t=1 t=2

Computational delay Communication delay

t=3

(b) Asynchronous mechanism

Fig. 2: Description diagrams of synchronous and asynchronous
mechanisms.

As shown in Fig. 2(a), in the synchronous P2P market,
agents have to wait to receive all bid prices and quantities from
neighboring agents, and a lot of time is wasted on waiting for
the slowest agent. Given that the number of agents in P2P
markets is usually very large and the negotiation time in real-
time is quite short, if there exists one invalid or damaged
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agent, the market efficiency will be heavily reduced. Thus,
the synchronous mechanism is not suitable for the real-time
P2P market. To overcome this issue, we propose a novel
asynchronous negotiation mechanism for the real-time P2P
market, where agents can freely trade with each other without
waiting for inactive or idle neighboring agents.

A simple example is given to show the asynchronous market
mechanism. In Fig. 2(b), in the time period t = 1, agents 1-3
are active and they will negotiate with each other to determine
the transaction prices and quantities without waiting for agent
4, whose transaction prices and quantities between agents 1-3
will remain unchanged. Then, in the time period t = 2, all
four agents are active, and they can trade with each other. In
the asynchronous mechanism, no agent has to be synchronized
with all neighboring agents, nor does it need to wait for the
slow agents. Compared with the synchronous mechanism, the
length of the time period can be shorter, and the market can
run more frequently.

Let An,t ⊆ ωn denote the set of active neighboring
agents of agent n at time period t. For example, in Fig. 2,
A1,1 = {2, 3} and A2,2 = {1, 3, 4}. We use Acn,t to denote
the complementary set of An,t, i.e., An,t ∩ Acn,t = ∅ and
An,t∪Acn,t = ωn. We define EAn,t to be the whole transaction
quantities of agent n for active neighboring agents m ∈ An,t
at time period t.

Based on the synchronous online consensus ADMM, we
further propose the asynchronous online consensus ADMM.
Let tn be the last time period before t where agent n was
active. υ ∈ (0, 1] is the forgetting factor, which has been
proposed and developed in [38]–[41]. The forgetting factor is
given to control the amount of older information that is used
for current computation. A value of 1 results in no forgetting
while decreasing values increase the amount of forgetting.
Values slightly less than 1 are generally preferred. The asyn-
chronous online consensus ADMM algorithm produces the
following updates.
• Power Updates: The active agent n will update the

transaction power for active neighboring agent m ∈ An,t
by solving the following individual optimization problem:

EAn,t=argmin
EAn

t∑
l=tn+1

υt−lNCn,l(En)

+
∑

m∈An,t

λnm,t(Fnm,t−1−Enm)

+
ρ

2
(Fnm,t−1−Enm)2 +

η

2
(Enm − Enm,t−1)2 (12a)

s.t. En =
∑

m∈An,t

Enm,t +
∑

m∈Ac
n,t

Enm,t (12b)

(2) and (3),

while for the idle neighboring agents m ∈ Acn,t, the
quantities will remain unchanged, i.e.,

Enm,t = Enm,t−1, m ∈ Acn,t. (13)

To ease the notation, we define Gn,t(En) =∑t
l=tn+1 υ

t−lNCn,l(En). Then, each agent broadcasts
En,t to neighboring agents.

• Price Updates: All agents update their prices to neigh-
boring agents m ∈ ωn as:

λnm,t =

{
λnm,t−1 − ρEnm,t+Emn,t

2 , ∀m ∈ An,t
λnm,t−1, ∀m ∈ Acn,t

(14)

However, since each pair of two agents only have one
negotiation in each time period, the power balance between
two agents may not be balanced, i.e., Enm,t + Emn,t 6= 0.
To address this problem, we design a projection-based power
update process to ensure the power balance.

C. Projection-based Power Update Process

In the electricity market, it is necessary to ensure the bal-
ance for trade among agents. Thus, a projection-based power
update process is designed to determine the final transaction
quantities. This process is executed after the power and price
updates (12)-(14). In this process, iterations are indexed with
k.

First, Êk+1
nm,t is set to be the intermediate value of the

transaction quantities between active agents n and m from
last iteration as

Êk+1
nm,t = (Êknm,t − Êkmn,t)/2, ∀m ∈ An,t. (15)

Here, the initial value Ê1
nm,t is obtained after the power

update (12), i.e., Ê1
nm,t+1 = Enm,t+1. Then the total power

is obtained as

Êk+1
n,t =

∑
m∈An,t

Êk+1
nm,t +

∑
m∈Ac

n,t

Enm,t. (16)

After projecting into the feasible region (2), the projected
power Êproj,k+1

n,t is updated as

Êproj,k+1
n,t = max

{
min

{
Êk+1
n,t , En,t

}
, En,t

}
. (17)

Then the trade Êk+1
nm,t to active neighboring agent m is updated

as

Êk+1
nm,t = Êk+1

nm,t

Êproj,k+1
n,t

Êk+1
n,t

, ∀m ∈ An,t. (18)

Finally, all active agents send the updated quantities Êk+1
nm,t to

its active neighboring agents, and check if the balance equation
Êk+1
nm,t+Ê

k+1
mn,t < ε is satisfied, where ε is the allowed maximal

violation; if not, repeat the processes (15)-(18) until balance.
For the projection-based power update process, there is only

one situation where agents cannot reach transaction balance,
which is that the maximum power generation of all generators
still cannot meet the minimum demand of all consumers.
However this situation probably will not happen in actual
operation unless there is a serious malfunction occurs in the
power system. Therefore, as long as the market has feasible
solutions, the power update process will ensure balances for
trading among agents.

The asynchronous negotiation mechanism for the real-time
P2P electricity market is detailed in Fig. 3.
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Fig. 3: Flowchart of the asynchronous negotiation mechanism
for real-time P2P electricity market

IV. MARKET ANALYSIS

In this section, we first analyze the convergence perfor-
mance of the online algorithm. Under some standard assump-
tions, the sublinear regret upper bound for the asynchronous
online consensus ADMM algorithm is proved, which indicates
that social welfare will be maximized in the long run on
time average. After that, four desirable properties of market
mechanisms are analyzed.

A. Regret Analysis

The convergence performance of an online optimization
algorithm is usually measured by the regret, which is the
accumulated gap between the online solutions and the best
solutions in hindsight [35], [42]–[44]. The regret for our
problem is formulated as below.

R(T )=

T∑
t=1

(∑
n∈Ω

NCn,t(Ên,t)

)
−

T∑
t=1

(∑
n∈Ω

NCn,t(E
∗
n,t)

)
(19)

where Ên,t is the online solution of agent n in the time period
t using our asynchronous online consensus ADMM, and E∗n,t
is the optimal solution. The goal of the online algorithm is to
generate decisions making the regret R(T ) small. If the regret
is bounded by a sublinear function of T , e.g., R(T ) = O(

√
T )

[45], then the average regret converges to zero as T → ∞,
which indicates that the sequence of the decisions converges
to the best fixed decisions in hindsight.

Before presenting the results, some needed rational assump-
tions are introduced to derive the sublinear regret upper bound
to be presented later in Theorem 1.

Assumption 1.
(a) Gn,t are convex with bounded subgradients for m ∈ ωn,

i.e., ∂Gn,t(En,t)
∂Enm,t

≤ S, ∀(n,m) ∈ (Ω, ωn), with S being a
positive constant.

(b) The initial values are set to zero, i.e., λnm,1 = 0 and
Enm,1 = 0, ∀(n,m) ∈ (Ω, ωn).

(c) The gap between optimal solutions and initial ones are
bounded, i.e., (E∗nm,t − Enm,1)2 ≤ D1 and (F ∗nm,t −

Fnm,1)2 ≤ D2, ∀(n,m) ∈ (Ω, ωn), with D1 and D2

being positive constants.
(d) The cost gap between online solutions and optimal ones

are bounded, i.e., NCn,t(En,t)−NCn,t(E∗n,t) ≤ J, ∀n ∈
Ω, with J being a positive constant.

(e) Path variation is defined as the temporal change
of the optimal solutions sequence, i.e., Vnm,T =∑T
t=1

∣∣E∗nm,t − E∗nm,t+1

∣∣. The optimal solutions do not
change dramatically, or in mathematical sense, the path
variation is bounded as Vnm,T ≤ P, ∀(n,m) ∈ (Ω, ωn),
with P being a positive constant called variation budget.

(f) The electricity prices do not change dramatically, or in
mathematical sense, the price variation between two time
periods is bounded as |λnm,t+1 − λnm,t| ≤ Λ, ∀(n,m) ∈
(Ω, ωn), with Λ being a positive constant.

(g) Let τ > 1 be a maximal tolerable delay for all agents.
For all (n,m) ∈ (Ω, ωn) and time periods t ≥ 0, it must
be that m ∈ An,t ∪ An,t−1 · · · ∪ An,max{t−τ+1,1}.

In Assumption 1, (a) is an assumption that many may see
as simplifying the reality of prosumers’ marginal utility func-
tions. The issue of potential non-convexity in market clearing
approaches is general in the electricity market literature, and
not restricted to the case of the P2P market studied here.
It should be noted the fact that function Gn,t, which acts
as a smoother over the previous cost and utility functions,
may actually help in having more well-behaved functions as
input to the current optimization process. (b) is the settings of
initial values. (c) and (d) are also reasonable since the online
solutions and optimal solutions cannot be infinite. (a)−(d) are
usually required in the online optimization settings. Generally,
in the field of online optimization research, it is inevitable
to make some assumptions about the real problems, and our
assumptions as similar in essence to, e.g., [44], [46]–[49].
For the specific case of (e), it is reasonable to think that
the optimal solutions do not change drastically or infinitely
from one step to the next, otherwise, the power system would
probably break down. Thus, we place mild restrictions on
the possible variation of the optimums, as is also proposed
in previous works [44], [47], [48]. (f) is reasonable in the
context of electricity markets since electricity prices cannot be
infinite. Finally for (g), any unbounded delay will jeopardize
the market social welfare convergence. Therefore, throughout
this paper, we assume that the asynchronous delay in this
market is bounded. If it was not, this would mean an agent is
not active anymore, and should be removed from the market.
We then follow the popular asynchronous model [50] to make
that assumption. It implies that every agent n will trade with
neighboring agents within the period [t− τ + 1, t]. In another
word, the bid prices and quantities from neighboring agents
received by each agent n must be at most τ time periods
delayed.

Bearing all the above in mind, the following theorem estab-
lishes the sublinear regret upper bound for the asynchronous
online consensus ADMM algorithm.

Theorem 1. The asynchronous online consensus ADMM al-
gorithm has the following sublinear regret upper bound by
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setting ρ =
√
T and η =

√
T .

R(T )≤N(N − 1)

υτ

(
D1+D2+Λ2+S2

2
+LP

)√
T+

NJ

υτ (1− υ)
(20)

where L = maxn∈Ω 2 ∗ (En − En).

Proof. See Appendix A.

Since the regret has O(
√
T ) upper bound, we have

limT→∞
R(T )
T = 0, which implies the accumulated gap

between our online solutions and optimal ones are approaching
to zero in the long run on time average. In the market
context, regret can be regarded as the cumulative total cost gap
between online solutions and optimal ones. Thus, the sublinear
regret upper bound also indicates that social welfare will be
maximized in the long run on time average.

B. Desirable Properties of Market Mechanism

It is important and necessary to evaluate a market mech-
anism by checking the four desirable properties, which are
market efficiency1, incentive compatibility2, cost recovery3

and revenue adequacy4. Based on the Hurwicz theorem [51],
no mechanism is capable of achieving all those properties at
the same time.

1) Market efficiency: According to Theorem 1, we have
limT→∞

R(T )
T = 0, which implies that social welfare and

market efficiency will be maximized in the long run and on
average (over time).

2) Incentive compatibility: The P2P market mechanism we
have proposed is based on Locational Marginal Pricing (LMP),
and the biggest limitation of LMP markets is that incentive
compatibility cannot be satisfied anyway. Hence, the fact we
cannot insure incentive compatibility is due to the pricing
mechanism itself and not to the fact we are working with a P2P
market. However, the LMP mechanism is widely considered in
actual electricity markets in practice as, for example, the PJM
market in the USA [14]. Although our design cannot guarantee
incentive compatibility, revenue adequacy is satisfied, which
is usually more important in electricity markets.

3) Cost recovery: The individual profit for an agent n in
time period t is∑

m∈ωn

λnm,tEnm,t −NCn,t(En,t) (21)

Since the quadratic cost function is convex, monotonically
increasing, and passing through the origin, the agent can
always set En,t = Enm,t = 0 to avoid a negative profit. In
other words, the agent does not participate in the market during
the time period t. Thus, the cost recovery is satisfied.

1Market efficiency is maximized when outcomes maximize social welfare.
2A mechanism is said incentive-compatible if every participant can maxi-

mize its objective just by acting according to its true preferences.
3Cost recovery implies that individual profit is non-negative.
4Revenue adequacy implies that there is no financial deficit in the market.

4) Revenue adequacy: From (14), the prices between each
pair of two agents are identical, i.e., λnm,t = λmn,t, and
after the projection-based power update process, the quan-
tities between each pair of two agents are balanced, i.e.,
Ênm,t + Êmn,t = 0. Thus, the revenue adequacy is satisfied.

Summing up the above, our proposed real-time P2P market
mechanism satisfies most of the desirable properties.

V. SIMULATION RESULTS

Our online algorithms are tested on a dataset of wind power
generation of 20 wind farms in Australia [52] to show the
convergence performance. In order to better display perfor-
mance, uniformly distributed stochastic parameter settings are
applied. We use Matlab R2017b on a PC with 1.6 GHz Intel
Core 4 Duo CPU and 8 GB memory to perform simulation,
and solve the convex optimization problem by CVX Sedumi
solver. Since MATLAB cannot implement parallel computing,
the agents run the procedure sequentially, i.e., one agent will
start running after the previous one has completed. We record
the computational time of each agent, and the time for all
agents to complete an iteration is the maximal value of the
computational time of all agents. The decentralized mechanism
is achieved in this way. In the communication network setting,
each agent is freely able to trade with any other agent, or in
other words, the communication adjacent subset ωn is the set
Ω minus n.

A. Convergence Performance

We establish a market consisting of 20 conventional gen-
erators, 20 users, and 20 wind generators with actual wind
power generation data. The convergence performance of the
synchronous and asynchronous mechanisms is tested. At any
given moment, an agent has only two states, i.e., it can only
be either active or inactive, and these two states are mutually
exclusive. Thus we believe the Bernoulli distribution is suitable
for modeling the active rates of agents. We set the active
rate is pn and the idle rate is 1 − pn. The active rates
of agents can be collected according to the type of agents.
For conventional thermal generators, the active rates can be
obtained according to the generation plans; for consumers,
active rates can be obtained based on electric usage habits;
for renewable generators, when to enter the market depends
on the weather condition, which can be roughly estimated from
historical data. The probability of the number of consecutive
delayed time periods is shown in Fig. 4 under different active
rates. It can be seen from the figure that agents are extremely
unlikely to be infinitely delayed.

We operate the synchronous and asynchronous market
mechanisms in two different active rate ranges, i.e., pn ∈
(0.9, 1) and pn ∈ (0.95, 1), lasting 200 time periods, and
the convergence performance is shown in Fig. 5. For the
asynchronous mechanism, it can be seen that agents can freely
trade in each time period and the average regret R(T )/T
drops rapidly in about the first 40 time periods. Since then,
the average regret declines much slower, but it still keeps
going down with small oscillations, mainly due to the large
uncertainty in renewable power generation. The convergence
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Fig. 5: Average regret R(T )/T of synchronous and asyn-
chronous markets with different active rate ranges.

performance and curves are close under two different active
rate ranges, thus the change of the active rate only has a
slight impact on the convergence performance, which shows
the robustness of the asynchronous mechanism.

Compared with the asynchronous mechanism, the active
rate has a greater impact on the convergence performance
of the synchronous mechanism. As the active rate increases,
the probability of all agents being active at each time period
will increase, and the number of transactions will increase
accordingly (the mark “+” refers to transactions). The market
can be running more frequently, thereby increasing the average
regret convergence speed, even better than the asynchronous
mechanism (in the time period about 60 to 200). Therefore,
if the reliability of all agents is high, the asynchronous mech-
anism may require more iterations (time periods). However,
it should be noticed that in the real world P2P market, the
number of agents is usually very large, which means as long
as there exists one agent who has a very low active rate, the
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Fig. 6: The number of time periods between two transactions
under different active rate ranges.

synchronous mechanism could be very inefficient. In the real
world, it is less likely that all agents are efficient and have high
reliability. Thus, the asynchronous mechanism probably will
not take more iterations (time periods) than the synchronous
mechanism in practical applications.

B. Market Transaction Frequency

We operate the synchronous and asynchronous market
mechanisms under five different active rate ranges to investi-
gate the frequency of market transactions, which is measured
by the average number of time periods between two market
transactions. The markets run 50 times with different settings
in 200 time periods. Fig. 6 shows the average number of time
periods between two transactions. The figure shows that, as the
lower bound of active rates decreases, the average number of
time periods between two transactions for synchronous mech-
anism increases exponentially. However, for the asynchronous
market, since agents can trade with each other in each time
period, the value remains at 1. Therefore, the asynchronous
market negotiation mechanism can operate more frequently
and better catch up with the uncertainty of renewable power
generation.

C. Fairness of Individual Profit

A agent is reliable if he can continuously trading with
neighboring agents over a specific period of time without
failure. In our work, a market mechanism is defined to be
“fair” if a more reliable agent can get more profit than a
less reliable agent. We believe that “fairness” defined in our
work is an important metric that should be considered, since
a fair market mechanism can encourage agents to voluntarily
improve quality and reliability, and more reliable agents can
help to increase the social welfare in return.

We build a small market with 5 conventional generators, 5
users, and 5 wind generators. The parameters of the same
type of agents are identical. The active rates of the five
conventional generators are set to 0.6, 0.7, 0.8, 0.9, and 1,
respectively, while the active rates of the other agents are
all set to 1. By displaying the accumulated individual profits
of conventional generators and users in 200 time periods,
we compare the fairness of synchronous and asynchronous
mechanisms. As shown in Fig. 7, the result indicates that
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the profits of the same type of agents are identical in the
synchronous market since agents have to trade together. In
the asynchronous market, agents with a higher active rate
can trade more frequently and earn more profits. Therefore,
the asynchronous market mechanism is more fair, and the
deployment of it can encourage agents to improve the quality
and reliability.

D. The Impact of Forgetting Factor

The impact of the value of forgetting factor on the con-
vergence performance is tested. The forgetting factor is given
to control the amount of older information that is used for
current computation. By giving less weight to older data, the
agent focuses more on the updated new information. Fig. 8
shows that the reduction of the forgetting factor value will
increase the amount of forgetting and improve the convergence
performance.

VI. CONCLUSION

P2P markets are considered as an evolution of the future
electricity markets driven by the development of DERs and
DSM. However, it is technically challenging to operate P2P
market mechanisms in real-time, since they usually involve a
heavy computation burden, while real-time trading demands
fast calculations. How to reduce the computation complexity
of P2P mechanisms to be within a real-time architecture
remains a challenge. To this end, we propose a novel real-time

P2P electricity market that integrates online optimization ap-
proaches and asynchronous mechanism, where each agent only
performs one iteration and can freely trade with neighboring
agents without waiting for the idle or inactive ones. Finally, we
give proof of the sublinear regret upper bound for our asyn-
chronous online consensus ADMM algorithm, which indicates
that social welfare can be maximized in the long run on time
average. Simulation results show that our asynchronous market
mechanism has good convergence performance, robustness,
and fairness compared with the synchronous mechanism.

The main drawback of the asynchronous mechanism are that
if most agents are reliable, it may take a very long period of
time to converge below an acceptable level. However, it is less
likely that all agents are efficient and have high reliability in
actual markets.

APPENDIX A
PROOF OF THE SUBLINEAR REGRET UPPER BOUND

Let ∂Gn,t(En,t)
∂Enm,t

be the gradient of Gn,t(En) at Enm,t. Since
EAn,t minimizes (12), combining (14), we have

∂Gn,t(En,t)

∂Enm,t
= λnm,t + ρ(Fnm,t−1−Fnm,t)

+ η(Enm,t−1 − Enm,t), ∀m ∈ An,t
(22)

Since Gn,t is a convex function and its subgradient at
Enm,t+1 is given in (22), for optimal solution E∗n,t we have

Gn,t(En,t)−Gn,t(E∗n,t)

≤
∑

m∈An,t

∂Gn,t(En,t)

∂Enm,t
(Enm,t − E∗nm,t)

=
∑

m∈An,t

λnm,t(Enm,t−F ∗nm,t)

+
∑

m∈An,t

ρ(Fnm,t−1−Fnm,t)(Enm,t−F ∗nm,t)

+
∑

m∈An,t

η (Enm,t−1 − Enm,t) (Enm,t−E∗nm,t)

=
∑

m∈An,t

λnm,t(Enm,t−F ∗nm,t)

+
∑

m∈An,t

ρ

2

[
(Fnm,t−1−F ∗nm,t)2−(Fnm,t−F ∗nm,t)2

+(Enm,t−Fnm,t)2−(Enm,t−Fnm,t−1)2
]

+
η

2

[
(E∗nm,t − Enm,t−1)2−(E∗nm,t − Enm,t)2

−(Enm,t − Enm,t−1)2
]

(23)

According to the Fenchel-Young’s inequality [53], we have

Gn,t(Ên,t)−Gn,t(En,t)

≤
∑

m∈An,t

∂Gn,t(Ên,t)

∂Ênm,t
(Ênm,t − Enm,t)

≤
∑

m∈An,t

1

2ρ

(
∂Gn,t(Ên,t)

∂Ênm,t

)2

+
ρ

2
(Ênm,t − Enm,t)2
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≤
∑

m∈An,t

1

2ρ

(
∂Gn,t(Ên,t)

∂Ênm,t

)2

+
ρ

2
(Fnm,t − Enm,t)2

≤
∑

m∈An,t

1

2ρ

(
∂Gn,t(Ên,t)

∂Ênm,t

)2

+
(λnm,t−1 − λnm,t)2

2ρ

(24)

For the penultimate inequality, because Ênm,t begins updating
from Fnm,t, if the projection update finishes at the first time,
which also means both agents do not touch the bound, the
term (Ênm,t − Enm,t)2 reaches the maximal value (Fnm,t −
Enm,t)

2; The worst case is that the final trade reaches at the
initial value Enm,t or −Emn,t, which means at the beginning,
one of the agents n or m has reached the bound, then the term
(Ênm,t − Enm,t)2 reaches the minimal value zero.

Combining (23)-(24), we have

Gn,t(Ên,t)−Gn,t(E∗n,t)

≤
∑

m∈An,t

λnm,t(Enm,t−F ∗nm,t)+
ρ

2
(Enm,t−Fnm,t)2

+
∑

m∈An,t

ρ

2

[
(Fnm,t−1−F ∗nm,t)2−(Fnm,t−F ∗nm,t)2

]
+

∑
m∈An,t

η

2

[
(E∗nm,t − Enm,t−1)2−(E∗nm,t − Enm,t)2

]
+

∑
m∈An,t

1

2ρ

(
∂Gn,t(Ên,t)

∂Ênm,t

)2

+
(λnm,t−1 − λnm,t)2

2ρ

(25)

For the first term, using Enm,t − Fnm,t =
λnm,t−1−λnm,t

ρ ,
F ∗nm,t + F ∗mn,t = 0, λnm,t = λmn,t and summing up for all
n ∈ Ω yields∑

n∈At

∑
m∈An,t

λnm,t(Enm,t−F ∗nm,t)+
ρ

2
(Enm,t−Fnm,t)2

=
1

2

∑
∀(n,m)∈(Ω,An,t)

λnm,t
[
Enm,t+Emn,t−(F ∗nm,t+F

∗
mn,t)

]
+
ρ

2
(Enm,t−Fnm,t)2+

ρ

2
(Emn,t−Fmn,t)2

=
1

2

∑
∀(n,m)∈(Ω,An,t)

2λnm,t(Enm,t−Fnm,t)

+
1

2ρ
(λnm,t−1−λnm,t)2+

1

2ρ
(λmn,t−1−λmn,t)2

=
∑

∀(n,m)∈(Ω,An,t)

1

2ρ
(λ2
nm,t−1−λ2

nm,t) (26)

For the second term

(Fnm,t−1−F ∗nm,t)2−(Fnm,t−F ∗nm,t)2

= (Fnm,t−1−F ∗nm,t−1)2−(Fnm,t−F ∗nm,t)2

+ (Fnm,t−1−F ∗nm,t)2−(Fnm,t−1−F ∗nm,t−1)2

≤ (Fnm,t−1−F ∗nm,t−1)2−(Fnm,t−F ∗nm,t)2

+ (2Fnm,t−1 − F ∗nm,t−1 − F ∗nm,t)(F ∗nm,t−1 − F ∗nm,t)
≤ (Fnm,t−1−F ∗nm,t−1)2−(Fnm,t−F ∗nm,t)2

+ L
∣∣E∗nm,t−1 − E∗nm,t

∣∣ (27)

Similarly, for the third term

(E∗nm,t − Enm,t−1)2−(E∗nm,t − Enm,t)2

≤ (Enm,t−1−E∗nm,t−1)2−(Enm,t−E∗nm,t)2

+ L
∣∣E∗nm,t−1−E∗nm,t

∣∣ (28)

Combining (25)-(26) and based on Assumption 1, we have
T∑
t=1

(∑
n∈At

Gn,t(Ên,t)

)
−

T∑
t=1

(∑
n∈At

Gn,t(E
∗
n,t)

)

≤
∑

∀(n,m)∈(At,An,t)

1

2ρ
(λ2
nm,1−λ2

nm,T )

+
∑
n∈At

∑
m∈An,t

ρ

2

[
(Fnm,1−F ∗nm,1)2−(Fnm,T−F ∗nm,T )2

]
+
∑
n∈At

∑
m∈An,t

η

2

[
(Enm,1−E∗nm,1)2−(Enm,T−E∗nm,T )2

]
+

T∑
t=1

∑
n∈At

∑
m∈An,t

(ρ+ η)L

2

∣∣E∗nm,t − E∗nm,t∣∣
+

T∑
t=1

∑
n∈At

∑
m∈An,t

1

2ρ

(
∂Gn,t(Ên,t)

∂Ênm,t

)2

+

T∑
t=1

∑
n∈At

∑
m∈An,t

(λnm,t−1 − λnm,t)2

2ρ

≤ N(N − 1)

(
ρD2

2
+
ηD1

2
+

(ρ+ η)LP

2
+
TS2

2ρ
+
TΛ2

2ρ

)
(29)

Now, for each n ∈ AcT , let t̃n be the last iteration where
agent n was active. Using Assumption 1(g), we have that

T∑
t=1

(∑
n∈At

Gn,t(Ên,t)

)
−

T∑
t=1

(∑
n∈At

Gn,t(E
∗
n,t)

)

=

T∑
t=1

∑
n∈At

t∑
l=tn+1

υt−l
(
NCn,l(Ên,t)−NCn,l(E∗n,t)

)

≥
T∑
t=1

∑
n∈Ω

υτ
(
NCn,t(Ên,t)−NCn,t(E∗n,t)

)
−
∑
n∈Ac

T

T∑
l=t̃n+1

υT−l
(
NCn,l(Ên,t)−NCn,l(E∗n,t)

)
(30)

Noting that Ên,l = Ên,t for l = tn + 1, ..., t and using
Assumption 1(f), the last term in (30) can be bounded as
follows:∑

n∈Ac
T

T∑
l=t̃n+1

υT−l
(
NCn,l(Ên,t)−NCn,l(E∗n,t)

)
≤ NJ 1− υT−t̃n

1− υ
≤ NJ

1− υ
(31)

where we have used Act ∈ Ω. By using (31) and (30) in (29),
we finally have

R(T ) =

T∑
t=1

∑
n∈Ω

(
NCn,l(Ên,t)−NCn,t(E∗n,t)

)
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≤ N(N − 1)

υτ

(
ρD2

2
+
ηD1

2
+

(ρ+ η)LP

2
+
TS2

2ρ
+
TΛ2

2ρ

)
+

NJ

υτ (1− υ)
(32)

Setting ρ =
√
T and η =

√
T yields sublinear regret R(T ).
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trading under network constraints in a low-voltage network,” IEEE
Transactions on Smart Grid, vol. 10, no. 5, pp. 5163–5173, 2018.

[22] K. Chen, J. Lin, and Y. Song, “Trading strategy optimization for a
prosumer in continuous double auction-based peer-to-peer market: A
prediction-integration model,” Applied energy, vol. 242, pp. 1121–1133,
2019.

[23] H. S. Esch, F. Moret, P. Pinson, and A. M. Radoszynski, “Online
matching and preferences in future electricity markets,” in Proceedings
of the 19th Yale Workshop on Adaptive and Learning Systems, pp. 1–9,
2019.

[24] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable
and dynamic iot management,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 1276–1286, 2018.

[25] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization
approach to proactive network resource allocation,” IEEE Transactions
on Signal Processing, vol. 65, no. 24, pp. 6350–6364, 2017.

[26] S.-J. Kim and G. B. Giannakis, “An online convex optimization approach
to real-time energy pricing for demand response,” IEEE Transactions on
Smart Grid, vol. 8, no. 6, pp. 2784–2793, 2016.

[27] A. Lesage-Landry and J. A. Taylor, “Setpoint tracking with partially
observed loads,” IEEE Transactions on Power Systems, vol. 33, no. 5,
pp. 5615–5627, 2018.

[28] W.-J. Ma, J. Wang, V. Gupta, and C. Chen, “Distributed energy manage-
ment for networked microgrids using online admm with regret,” IEEE
Transactions on Smart Grid, vol. 9, no. 2, pp. 847–856, 2016.

[29] R. H. Day, “Rational choice and economic behavior,” Theory and
decision, vol. 1, no. 3, pp. 229–251, 1971.

[30] R. Deng, Z. Yang, M.-Y. Chow, and J. Chen, “A survey on demand
response in smart grids: Mathematical models and approaches,” IEEE
Transactions on Industrial Informatics, vol. 11, no. 3, pp. 570–582,
2015.

[31] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2010.

[32] M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial
distribution systems,” IEEE Transactions on power Delivery, vol. 4,
no. 1, pp. 725–734, 1989.

[33] Z. Wang, B. Chen, J. Wang, M. M. Begovic, and C. Chen, “Coordinated
energy management of networked microgrids in distribution systems,”
IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 45–53, 2014.

[34] F. F. Wu and P. Varaiya, “Coordinated multilateral trades for electric
power networks: theory and implementation,” International Journal of
Electrical Power & Energy Systems, vol. 21, no. 2, pp. 75–102, 1999.

[35] H. Wang and A. Banerjee, “Online alternating direction method (longer
version),” arXiv preprint arXiv:1306.3721, 2013.

[36] H.-F. Xu, Q. Ling, and A. Ribeiro, “Online learning over a decentralized
network through admm,” Journal of the Operations Research Society of
China, vol. 3, no. 4, pp. 537–562, 2015.

[37] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[38] J. W. Messner and P. Pinson, “Online adaptive lasso estimation in vector
autoregressive models for high dimensional wind power forecasting,”
International Journal of Forecasting, vol. 35, no. 4, pp. 1485–1498,
2019.

[39] J. K. Møller, H. A. Nielsen, and H. Madsen, “Time-adaptive quantile
regression,” Computational Statistics & Data Analysis, vol. 52, no. 3,
pp. 1292–1303, 2008.

[40] B. Sommer, P. Pinson, J. W. Messner, and D. Obst, “Online distributed
learning in wind power forecasting,” International Journal of Forecast-
ing, vol. 37, no. 1, pp. 205–223, 2021.

[41] P. Pinson and H. Madsen, “Adaptive modelling and forecasting of
offshore wind power fluctuations with markov-switching autoregressive
models,” Journal of forecasting, vol. 31, no. 4, pp. 281–313, 2012.

[42] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th international conference
on machine learning (icml-03), pp. 928–936, 2003.

[43] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2-3,
pp. 169–192, 2007.

[44] O. Besbes, Y. Gur, and A. Zeevi, “Non-stationary stochastic optimiza-
tion,” Operations research, vol. 63, no. 5, pp. 1227–1244, 2015.



13

[45] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

[46] J. Matamoros, “Asynchronous online admm for consensus problems,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5875–5879, 2017.

[47] X. Gao, X. Li, and S. Zhang, “Online learning with non-convex losses
and non-stationary regret,” in International Conference on Artificial
Intelligence and Statistics, pp. 235–243, 2018.

[48] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in
dynamic environments using mirror descent,” IEEE Transactions on
Automatic Control, vol. 63, no. 3, pp. 714–725, 2017.

[49] A. S. Bedi, A. Koppel, and K. Rajawat, “Asynchronous online learning
in multi-agent systems with proximity constraints,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 5, no. 3,
pp. 479–494, 2019.

[50] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods, vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[51] L. Hurwicz, “On informationally decentralized systems,” Decision and
organization: A volume in Honor of J. Marschak, 1972.

[52] J. Dowell and P. Pinson, “Very-short-term probabilistic wind power
forecasts by sparse vector autoregression,” IEEE Transactions on Smart
Grid, vol. 7, no. 2, pp. 763–770, 2015.

[53] R. T. Rockafellar, Convex Analysis, vol. 36. Princeton University Press,
2015.

Zhenwei Guo received the B.E. and Ph.D. degrees
in automation from Zhejiang University, Hangzhou,
China, in 2016 and 2021, respectively. He is cur-
rently a Postdoctoral Fellow with the Research Cen-
ter of Cyber Science and Technology, Hangzhou In-
novation Institute, Beihang University. His research
interests include smart grid, blockchain technology,
distributed optimization and P2P electricity market.

Pierre Pinson (SM’13, F’20) received his M.Sc.
degree in applied mathematics from the National
Institute for Applied Sciences, Toulouse, France, and
the Ph.D. degree in energetics from Ecole des Mines
de Paris, Paris, France. He is a Professor of Oper-
ations Research at the Department of Technology,
Management and Economics of the Technical Uni-
versity of Denmark, Lyngby, Denmark. His research
interests include forecasting, uncertainty estimation,
optimization under uncertainty, decision sciences,
and renewable energies. He is the Editor-in-Chief

for the International Journal of Forecasting.

Qianhong Wu received his Ph.D. degree in Cryptog-
raphy from Xidian University in 2004. Since then,
he has been with Wollongong University (Australia)
as an associate research fellow, with Wuhan Uni-
versity (China) as an associate professor, and with
Universitat Rovira i Virgili (Spain) as a research
director. He is currently a professor in Beihang Uni-
versity. His research interests include applied cryp-
tography, information security and privacy, VANET
security, cloud computing security, cryptocurrency
and blockchain. He has been a holder/coholder of

more than a dozen of China/Australia/Spain funded projects. He has authored
70 patents and over 150 publications. He has served in the program committee
of tens of international conferences in information security and privacy.

Shibo Chen (M’17) received the B.Eng. degree in
electronic engineering from University of Science
and Technology of China (USTC), Hefei, China, in
2011 and the Ph.D. degree in electronic and com-
puter engineering from the Hong Kong University of
Science and Technology (HKUST), Kowloon, Hong
Kong, in 2017. He was a Postdoctoral Fellow with
HKUST before joining the Department of Mechan-
ical and Energy Engineering , Southern University
of Science and Technology (SUSTech), Shenzhen,
China in 2019 as a Research Assistant Professor. His

current research interests include smart grid, optimization theory and game
theory.

Qinmin Yang received the Bachelor’s degree in
Electrical Engineering from Civil Aviation Univer-
sity of China, Tianjin, China in 2001, the Master of
Science Degree in Control Science and Engineering
from Institute of Automation, Chinese Academy of
Sciences, Beijing, China in 2004, and the Ph.D.
degree in Electrical Engineering from the University
of Missouri-Rolla, MO USA, in 2007. From 2007 to
2008, he was a Post-doctoral Research Associate at
University of Missouri-Rolla. From 2008 to 2009, he
was a system engineer with Caterpillar Inc. From

2009 to 2010, he was a Post-doctoral Research Associate at University of
Connecticut. Since 2010, he has been with the State Key Laboratory of In-
dustrial Control Technology, the College of Control Science and Engineering,
Zhejiang University, China, where he is currently a professor. He has also
held visiting positions in University of Toronto and Lehigh University. He
has been serving as an Associate Editor for IEEE Transactions on Systems,
Man, and Cybernetics: Systems, Transactions of the Institute of Measurement
and Control, and Automatica Sinica. His research interests include intelligent
control, renewable energy systems, smart grid, and industrial big data.

Zaiyue Yang (M’10) received the B.S. and M.S.
degrees from the Department of Automation, Uni-
versity of Science and Technology of China, Hefei,
China, in 2001 and 2004, respectively, and the Ph.D.
degree from the Department of Mechanical Engi-
neering, University of Hong Kong, in 2008. He was a
Postdoctoral Fellow and Research Associate with the
Department of Applied Mathematics, Hong Kong
Polytechnic University, before joining the College of
Control Science and Engineering, Zhejiang Univer-
sity, Hangzhou, China, in 2010. Then, he joined the

Department of Mechanical and Energy Engineering, Southern University of
Science and Technology, Shenzhen, China, in 2017. He is currently a Professor
there. His current research interests include smart grid, signal processing and
control theory. Prof. Yang is an associate editor for the IEEE Transactions on
Industrial Informatics.


