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Abstract

In an electricity pool with significant share of wind power, all generators includ-
ing conventional and wind power units are generally scheduled in a day-ahead
market based on wind power forecasts. Then, a real-time market is cleared given
the updated wind power forecast and fixed day-ahead decisions to adjust power
imbalances. This sequential market-clearing process may cope with serious op-
erational challenges such as severe power shortage in real-time due to erroneous
wind power forecasts in day-ahead market. To overcome such situations, several
solutions can be considered such as adding flexible resources to the system. In
this paper, we address another potential solution based on information shar-
ing in which market players share their own wind power forecasts with others
in day-ahead market. This solution may improve the functioning of sequential
market-clearing process through making more informed day-ahead schedules,
which reduces the need for balancing resources in real-time operation. This pa-
per numerically evaluates the potential value of sharing forecasts for the whole
system in terms of system cost reduction. Besides, its impact on each market
player’s profit is analyzed. The framework of this study is based on a stochastic
two-stage market setup and complementarity modeling, which allows us to gain
further insights into information sharing impacts.
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Index for scenarios generated based on wind producer’s forecast
Index for scenarios generated based on market operator’s forecast
Index for conventional units

Index for demands

Set of wind producer’s scenarios
Set of conventional units
Set of demands

Set of market operator’s wind power scenarios

Quantity bid of demand d [MW]

Quantity offer of unit ¢ [MW]

Actual wind power realization [MW]

Wind power forecast of market operator under scenario s [MW]
Power forecast of wind producer under scenario w [MW]
Offer price of unit ¢ [$/MWHh]

Reserve-up offer price of unit i [$/MWh]

Reserve-down offer price of unit ¢ [$/MWHh]

Probability of scenario w

Probability of scenario s

Reserve-up capacity of unit ¢ [MW]

Reserve-down capacity of unit ¢ [MW]

Value of lost load for demand d [$/MWh)]

DA Variables:

APA,()
G(.
P )

pW-()

]?VV,of,(J

DA market-clearing price [$/MWh]
DA dispatch of unit i [MW]

DA dispatch of wind producer [MW]
Quantity offer of wind producer [MW]



RT Variables:

/\ET’(') Probability-weighted RT market-clearing price under scenario w
[$/MWh]

pzpill’(') Wind power spillage under scenario w [MW]

T'H U’J(') Reserve-up deployed by unit 4 under scenario w [MW]

rf L’u(') Reserve-down deployed by unit ¢ under scenario w [MW]

lfitlsd’(') Involuntarily load shedding of demand d under scenario w [MW]

Note that superscript (.) within variables refers to the corresponding step of
the study (Steps 1, 2 or 3) and the definition of each RT variable with subscript
s is similar to that with subscript w, but under market operator’s scenarios.

1. Introduction

Over the last decade, the share of wind power has rapidly grown. For ex-
ample, wind power is the generating technology with the highest rate for new
installations in Europe, reaching 128.8 GW of installed capacity by the end of
2014 [1]. Germany is currently the leading country in terms of installed capac-
ity with more than 39 GW, while Denmark is a pioneer country in terms of the
high share of wind power production, covering the same year almost 40% of its
electricity consumption from wind power [2]. However, uncertainty and variabil-
ity in wind power production pose operational challenges in electricity markets.
In [3] the impact of spatially correlated wind production on market behaviors
is assessed, while in [4] the market value of offshore wind on the electricity
spot market in Germany is evaluated. A statistical analysis of a competitive
day-ahead market coupled with correlated wind production and electric load is
presented in [5]. Lastly, in [6] the effect of short-term forecasting accuracy of
wind power on the offering strategy of wind producers is investigated. Under
this context, wind power forecast and the level of its accuracy are key factors in
modern power systems. This rises up a need for re-thinking the design of elec-
tricity markets as the share of stochastic non-dispatchable production increases.

The importance of wind power forecast accuracy for improving the func-
tioning of wind-integrated power systems is investigated in a large number of
papers and technical reports in the existing literature. Reference [7] gives an
overview of the recent advances in wind power forecast techniques. Although
such techniques are constantly improving, wind forecasts are still followed by
a considerable error especially in day-ahead timescale [8, 9, 10]. This error
leads to several operational challenges in electricity markets as addressed in
[11, 12, 13, 14]. One potential solution to cope with those challenges is to add
various operational flexible resources to the market such as peaking units and
demand response providers [15]. The operational value of those resources is
evaluated in [16, 17, 18].



In this paper, we address another potential solution for system functioning
improvement, i.e., sharing wind power forecasts among different players, which
may assist market players to build a more accurate wind power distribution
than the one they individually forecast. Note that this sharing mechanism can
improve the forecast of each player only if the shared forecasts are not fully
correlated. This condition is consistent with the real-world electricity markets
because the forecast of each market player is dependent not only on public nu-
merical weather prediction (NWP) models, but also on the forecasting method-
ology of that player and its historical forecast error data. In case we assume
that all players have the same beliefs about all technical characteristics of the
system except the future wind power, sharing wind power forecasts allows to
characterize the market competition as a game-theoretic model with complete
information (instead of one with incomplete information).

In this paper, we consider a short-run electricity market with two sequential
trading floors: day-ahead (DA) and real-time (RT) markets. The DA market
is cleared based on all bids and offers, such as wind producers’ offers. Given
the fixed DA decisions, the market operator clears RT market based on up-
dated wind power forecasts, which might be different than the wind producers’
dispatch in DA market. Two different setups are generally available in the
literature to manage wind power uncertainty within a sequential DA-RT frame-
work: deterministic and stochastic. In the first one, the market operator clears
DA market based on all submitted bids and offers (including wind producers’ of-
fers) and determines the DA schedules, while no other possibility for future wind
power realization is considered. However, the market operator accommodates
a number of market products, e.g., flexiramp [19], based on exogenous mini-
mum requirements to provide operational flexibility against future wind power
mismatch. In contrast, DA market is cleared stochastically in the second setup
in which the market operator clears the DA market considering submitted bids
and offers (including wind producers’ offers) as well as a number of scenarios for
future wind power realization [20, 21, 22, 23, 24, 25, 26]. In this paper, we use
a stochastic market setup for two main reasons. Firstly, it results in more in-
formed DA schedules than the deterministic one, and therefore, reduces the total
expected system cost, given that wind scenarios represent accurately enough the
actual realization [22]. Secondly, the nature of information sharing is stochas-
tic, i.e., the deterministic setup avoids appropriately capturing different features
of shared information. Under this stochastic setup, the mathematical problem
for clearing DA market is formed as a stochastic two-stage programming prob-
lem [27], whose outcomes are scenario-independent DA schedules (here-and-now
decisions) and scenario-dependent RT operations (wait-and-see decisions).

Under the context above, we consider a market in which the wind pro-
ducer and the market operator independently forecast wind production in DA
timescale. It is intuitively expected that sharing wind power forecasts among
wind producers and market operator may yield improved social welfare (or re-
duced system cost) through generating a more qualified wind forecast distri-
bution, though not necessarily at the benefit of each individual market player.
This potential value is numerically evaluated in this paper from system’s per-



spective in terms of expected system cost, i.e., the total cost across all market
players.

Under the considered market setup, one potential concern is that sharing
wind power forecasts among wind producers and market operator may bring
market power for wind producers to alter market-clearing outcomes to their own
profits. In other words, each wind producer may behave more strategically if it
has better knowledge on its stochastic production. To address such a concern,
we use a game-theoretic complementarity approach [28, 29, 30] to model the
strategic behavior of a wind producer with and without sharing forecasts. This
requires solving a stochastic mathematical program with equilibrium constraints
(MPEC) [31] to determine the optimal offering strategy of wind producer. The
consideration of multiple wind producers yields a stochastic equilibrium problem
with equilibrium constraints (EPEC), which is generally hard-to-solve. Pursuing
simplicity and in order to make our findings more intuitive, we consider a single
wind producer forming a stochastic MPEC [32]. However, information sharing
analysis considering multiple wind producers is our future extension.

Another potential concern is that the analysis of this paper is subject to the
realized wind power in RT. To address such a concern, we carry out an extensive
out-of-sample simulation [33] considering a large number of different wind power
realizations. This numerical analysis allows us to compare the expected system
cost and the profit of each individual producer with and without sharing wind
power forecasts.

Under this context, the contribution of this paper is fourfold:

e To propose a new potential alternative for reducing the social cost in
electricity markets, which is based on information sharing among different
agents. To the best of our knowledge, there is no relevant work in the
technical literature addressing such an alternative.

e To propose a three-step evaluation framework that numerically assesses
the value of sharing wind power forecasts between a wind producer and the
market operator, which allows them to generate more qualified scenarios.
This potential value is evaluated in terms of a reduction in expected system
cost.

e To numerically analyze the impact of sharing wind power forecasts on po-
tential strategic behavior of wind producer and on conventional producers’
expected profits. The former is investigated through a sensitivity analysis.

e To carry out an extensive out-of-sample simulation that allows us to com-
pare expected system cost and expected profit of different players with
and without sharing wind power forecasts.

Note that the mathematical methodologies used in different steps of this
study are already available in the literature, and therefore, the contributions
of this work are not methodological. In turn, those available methods are used
to propose information sharing among various actors, i.e., sharing wind power
forecasts, as a potential solution for coping with wind uncertainty. Furthermore,



the value of forecast sharing for the system is numerically assessed by a three-
step evaluation framework and a sensitivity analysis. To the best of the authors’
knowledge, there is no similar study in the current literature that investigates
the effect of information sharing in electricity markets. The topic of this paper
is of high interest to real-world electricity markets with significant penetration
of renewable energy sources, e.g., the German, Danish and Irish markets.

The rest of the paper is organized as follows: Section II proposes a three-step
evaluation framework and provides the corresponding mathematical formula-
tions. Section III provides numerical results for a large-scale case study based
on the IEEE one-area reliability test system. Finally, Section IV concludes the

paper.

2. Evaluation Framework

2.1. Features and Assumptions

An imperfectly competitive electricity market is considered, in which the
wind producer and conventional units may offer strategically [34, 35]. To avoid
forming an EPEC, the strategic offering problem of wind producer is solved while
assuming offer curve of rival conventional units as fixed parameters. These pa-
rameters are generally uncertain, which brings another source of uncertainty. In
line with [36, 37, 38, 39], we exclude such an uncertainty. Therefore, we assume
that the wind producer perfectly knows the offering strategy of its conventional
rivals. Similarly to [35, 36, 38] and for the sake of simplicity, transmission
constraints are not enforced. In addition, the inter-temporal constraints, e.g.,
ramping limits of conventional units, are not enforced and thus a single-hour
auction is considered. Unlike coal or gas-fired power plants, the operational
cost of wind producers is negligible since they are not incurred by the fuel
costs. In some realistic electricity markets, this cost is even negative due to
renewable incentives [40]. As it is customary in the technical literature, e.g.,
[41, 42, 43, 44, 45], we assume that the wind production cost is zero. Finally,
demand is assumed to be deterministic and inelastic to price, as in [46].

2.2. Proposed Three-Step Framework

The proposed three-step evaluation framework is schematically depicted in
Fig. 1 and explained in detail as follows:

1. This step derives the offering strategy of wind producer through a game-
theoretic complementarity model, whose objective is to maximize the wind
producer’s expected profit. Three offering options are available for the
wind producer to exert its market power: i) strategic offering in terms of
quantity, ii) strategic offering in terms of price, and iii) strategic offering
in terms of both quantity and price. Note that the market impacts of
all options are similar. In this paper, we consider the first option, i.e.,
the wind producer derives its strategic quantity offers. This allows the
wind producer to withhold a part of its production. However, it offers



Scenarios Generated " Scenarios Generated
Scenarios Generated
based on based on based on
Wind Producer's Market Operator's
Shared Forecasts
Forecast s Forecast
S 7
N By,
o %,
-Shari A2 k%) -
Analysis 2 % Analysis
L Quantity o DA Unseen. RT
A Scenarios
Stochastic DA | Schedule

Wind P.roduce.r's Offer (MW)
Strategic Offering
Model

RT Market Clearing
(Out-of-Sample

Market Clearing

Step 1 Step 2 Step 3

Figure 1: The proposed three-step evaluation framework: non-sharing and sharing analyses

its quantity at a non-strategic price, i.e., its marginal cost (zero). This
offering setup for the wind producers is more consistent with the real-world
markets since they usually offer at zero (or even negative [40]) price.

2. Given the quantity offer of the wind producer in Step 1, the market op-
erator stochastically clears DA market considering foreseen wind power
scenarios.

3. Given the DA schedules in Step 2, the RT market is cleared for a large
number of wind power realization scenarios, which are not necessarily the
same with wind producer’s or market operator’s forecasts in DA (out-of-
sample simulation).

Note that scenarios involved in Steps 1 and 2 are generated based on available
wind power forecasts in DA market, while Step 3 is solved based on actual
realizations in RT.

The aforementioned three-step framework is investigated for two different
analyses. The first analysis (so-called non-sharing analysis) considers that the
wind power producer and the market operator use their own forecasts, which
may follow different distributions. Therefore, different sets of scenarios are
considered in Steps 1 and 2. The second analysis (so-called sharing analysis)
considers that the market operator and wind producer share their forecast in-
formation, and therefore, the decisions of the first and second steps are made
based on an identical set of scenarios.

The proposed three-step framework is mathematically explained in the fol-
lowing subsections.

2.8. Step 1: Offering Strategy of the Wind Producer

The strategic quantity offer of wind producer is derived in this step using
a stochastic complementarity model, which is similar to one proposed in [36]
and [37] but derives strategic quantity offers instead of price offers. To this end,
we use bi-level model (1), whose upper-level problem, i.e., (1a)-(1b), maximizes
wind producer’s expected profit and derives strategic offers, and whose lower-
level problem, i.e., (1c)-(1m), clears the market through minimizing the expected



system cost. The upper-level objective function (1a) is constrained by both
upper-level constraint (1b) and lower-level problem (1c)-(1m). Dual variables
are indicated in each lower-level constraint after a colon. Note that in bi-level
model (1), the wind producer’s own scenarios (w € 2) are considered (referring
to non-sharing analysis), and therefore, variables and stochastic parameters are
indexed by w. In case of the sharing analysis, index w needs to be replaced by
a new one, e.g., index h, referring to the shared scenarios.
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where EMP = {p T } is set of pri-
mal variables of lower—level problem (1c)-(1m). Furthermore, ZLLD — {4,
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HU’(SI), HFUJ(SD, ﬁgswl), I Sl)} is set of dual variables of the lower- level problem.

W
Finally, the primal Varlables of the upper-level problem (1a)-(1b) are p*-°f(51)

as well as all members of variable sets ZFF and =MD,
The upper-level objective function (la) maximizes the wind producer’s ex-
pected profit and includes:

e Wind producer’s profit in DA market, being the product of DA market-
clearing price, i.e., AP2 (1 and scheduled quantity, i.e., pWV-(51).

e Wind producer’s expected profit/cost in RT market, being the product

of the probability-weighted RT market-clearing price, i.e., )\ET’(SU, and

wind power excess/deficit in RT, i.e., PV — pW(81) sl (SD)
The upper-level constraint (1b) imposes the strategic quantity offer of wind
producer, i.e., pV°LD  to be non-negative.

The lower-level objective function (1¢) minimizes the expected system cost
including generation-side costs in DA and RT as well as load shedding costs in
RT. The lower-level constraint (1d) represents the power balance in DA, whose
dual variable, i.e., \P»®D provides the DA market-clearing price. Constraints
(le) and (1f) bind the DA schedule of conventional units and wind producer,
respectively, based on their quantity offers. Constraint (1g) refers to power
balance in RT that adjusts the energy imbalance by operational reserve de-
ployment, wind power spillage and load shedding. Note that its corresponding
dual variable provides the probability-weighted RT market-clearing price, i.e.,
/\ST’(SI). Constraint (1h) implies that wind power spillage should be equal to
or lower than the wind power realization. Constraint (1i) restricts the load
shedding quantity. Operational reserves in RT are bounded by reserve quantity
offers and DA dispatch through (1j)-(1m).

Note that lower-level problem (1c)-(1m) is continuous, linear, and therefore
convex. This allows bi-level model (1) to be recast as a single-level MPEC
through replacing lower-level problem (1c)-(1m) by its Karush-Kuhn-Tucker
(KKT) optimality conditions [28]. The resulting MPEC can be then transformed
into a mixed-integer linear programming (MILP) problem through linearization
techniques described in [47].

2.4. Step 2: Stochastic DA Market Clearing

In this step, the market operator clears stochastically the DA market con-
sidering all foreseen wind power scenarios. The aim of the market operator is
to minimize the expected overall system cost in DA and RT. To this purpose,
it solves stochastic two-stage programming problem (2). Note that the scenar-
ios considered in (2) are those generated based on market operator’s forecast
(indexed by s), which refer to the non-sharing analysis. In sharing analysis,



this index is replaced by h referring to the shared scenarios. Note also that the
quantity offer of wind producer denoted by PW-°f:(51) is a parameter in step 2,
whose value is obtained from Step 1.

Minimize
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Objective function (2a) minimizes the expected overall system cost in DA
and RT markets. In addition, constraints (2b)-(2k) are similar to constraints
(1d)-(1m) in Step 1.

2.5. Step 8: RT Market Clearing (Out-of-Sample Simulation)

In this step, we fix the DA schedule of conventional units and wind pro-
ducer to those obtained in Step 2. Then, RT market is cleared versus different
wind power realizations, which are not necessarily the same with the scenarios
considered in Steps 1 and 2. The RT market versus a particular wind power re-
alization is given by deterministic optimization problem (3). Note that symbols
with superscript (S2) correspond to parameters (DA schedules), whose values
are obtained from Step 2.
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Objective function (3a) minimizes the imbalance cost incurred by operational
reserve deployment and/or involuntarily load shedding. In addition, constraints
(3b)-(3h) are similar to constraints (1g)-(1m) in Step 1.

3. Case Study

3.1. Data

A case-study based on the IEEE one-area reliability test system [48] is con-
sidered, in which conventional units are grouped by type and price. Each con-
ventional unit offers at a quantity identical to its installed capacity and at a price
given in Table 1. In addition to the conventional units, a single wind power pro-
ducer is considered with the installed capacity of 1500 MW. The system load is
2850 MW, and its value of lost load is assumed to be $200/MWh.

Table 1: Technical Characteristics of Conventional Units

Unit PE 2§ RY AV RP AP

(4) MW] [$/MW] [MW] [$/MWHh] MW] [$/MWh]
G1 451 35.88 250 40 0 -

G2 500 30.12 200 35 0 -

G3 80 45.00 40 50 0 -

G4 300 5.00 300 7 300 2

G5 474 18.72 290 25 125 10
G6 800 20.56 300 27 200 12
G7 800 7.53 400 15 100 5
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There are various scenario generation techniques suggested in the literature
such as [49, 50, 51, 52, 53]. In this study, a Beta distribution with shape param-
eters (a®,b%) is considered [24]. Then, 5000 samples are generated representing
potential wind power realizations. These samples are in per-unit, i.e., wind
production divided by installed wind capacity. Note that the number of sam-
ples is arbitrarily chosen to make an appropriate trade-off between accuracy
and computational burden. These samples are used in Step 3 for an extensive
out-of-sample simulation. The wind producer’s and the market operator’s fore-
casts are used in Steps 1 and 2, and modeled using a Beta distribution but with
different shape parameters, i.e., (aV,bV) and (aM©,bMO), respectively. The
wind producer and the market operator generate 2000 scenarios each, and then
they reduce them into three scenarios using a scenario reduction approach, e.g.,
the K-means method [54]. This provides wind producer’s scenarios denoted as
w1, wy and ws with their corresponding probabilities. Similarly, the market
operator’s scenarios are generated denoted as s1, so and s3 with different prob-
abilities. In the non-sharing analysis, wind producer solves Step 1 considering
its own scenarios, and then market operator solves Step 2 based on its own
different set of scenarios. However, they both use the same set of scenarios in
the sharing analysis including all six scenarios, i.e., {w1, w2, w3, 1, S2, S3}, in
Steps 1 and 2. Note that the probability of each scenario in the sharing analysis
is the half of the non-sharing one.

Pursuing generality, three different sets for the parameters of Beta distribu-
tion are examined in this case study as given in Table 2, which yield different
distribution shapes. This way, we investigate the impact of forecast distributions
on the results of non-sharing and sharing analyses. These sets are selected to
represent the three cases with the most characteristic differences in the distribu-
tion shapes, i.e., cases with high-mean, mid-mean and low-mean distributions.
These three sets correspond to shape parameters a > b, a ~ b and a < b re-
spectively. We refer to those cases as Sets 1, 2 and 3, respectively. Note that in
this study, we assume that forecasts of wind producer and market operator have
different distributions but they still predict the same shape of distribution, i.e.,
high-mean, mid-mean or low-mean. For clarity, the distribution shapes of actual
wind power realization are illustrated in Fig. 2 considering values of a®® and bR
across different sets. Based on the considered shape parameters representing
actual realizations (5000 samples), the expected wind power production is 37%,
27% and 16% of the total system load for Set 1, Set 2 and Set 3, respectively.

Table 2: Shape Parameters of Beta Distributions

Shape Set 1 Set 2 Set 3
Parameters a>b a~b a<b
(a®, bR (3.78,1.62) (5.37,5.37) (1.89,4.48)
(a™©, pMO) (3.58,2.02) (5.17,5.77) (1.69,4.88)
(aWV, W) (3.98,1.22) (5.57,4.97) (2.09,4.08)

12
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Figure 2: Actual wind power distribution considering Set 1 (a®* > bR), Set 2 (a® = bR) and
Set 3 (a® < bR)

In the rest of this section, Subsections 3.2 and 3.3 provide results for non-
sharing and sharing analyses, respectively, considering different sets of wind
power scenarios. In addition, Subsections 3.4 and 3.5 compare the results ob-
tained from non-sharing and sharing analyses through an out-of-sample simula-
tion and a sensitivity-based approach.

8.2. Results: Non-sharing Analysis

In this subsection, we assume that the wind producer and the market oper-
ator do not share their forecast distributions. The wind producer solves bi-level
model (1) in Step 1 considering its own three scenarios, and derives its most
beneficial quantity offer as depicted in Fig. 3 by blue bars. Given producer’s
quantity offer, market operator solves problem (2) in Step 2 to clear DA market
considering its own three scenarios, which are different than the wind producer’s
ones. This step provides the DA wind power dispatch as depicted in Fig. 3 by
green bars. Additionally, the expected wind power production considering 5000
samples as potential realizations in Step 3 is illustrated by red bars.

According to the results obtained for Set 1, the wind producer forecasts
a comparatively higher wind production with respect to the market operator.
Therefore, the market operator schedules the wind producer at a quantity lower
than the wind producer’s quantity offer. The expected actual wind power is in
between.

Regarding Set 2, the market operator forecasts a comparatively higher pro-
duction than the wind producer. However, the DA wind power schedule cannot
exceed the producer’s quantity offer. Therefore, the DA wind schedule is equal
to the wind producer’s quantity offer. The expected wind realization in this
case is higher than the scheduled wind power in DA market.

Finally, in Set 3, the wind producer and the market operator forecast a
comparatively low wind power generation. However, it is fully dispatched in the

13
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Figure 3: Non-sharing analysis: wind producer’s quantity offer to DA market (Step 1), sched-
uled wind power in DA market (Step 2), and expected wind power realization in RT (Step
3)

DA market. The expected wind realization in this case is slightly lower than
the scheduled wind power in DA market.

8.8. Results: Sharing Analysis

In this subsection, we consider that the wind producer and the market op-
erator share their wind power forecast distributions. Therefore, an identical
scenario set including six scenarios is considered within both Steps 1 and 2.
Fig. 4 depicts the wind quantity offer (Step 1), the scheduled wind power in
DA (Step 2) and the expected wind power realization (Step 3) obtained from
the sharing analysis. In this analysis, the producer’s quantity offer and the
scheduled DA wind power are equal in each set since the wind producer and the
market operator have the same beliefs on wind power production. As expected,
the optimization models in Steps 1 and 2 yield the same results in the sharing
analysis, because they are solved considering the same set of scenarios. This
verifies the well-functioning of the mathematical models used in Steps 1 and 2.

8.4. Out-of-Sample Simulation Considering 5000 Samples

In this subsection, we clear the RT market in Step 3 for 5000 samples repre-
senting different wind power realizations, while DA decisions are fixed to those
obtained from Step 2. Then, we compute the actual system cost that consists
of the system cost in DA obtained from Step 2 plus the expected system cost
in RT obtained from Step 3. As it is given in Table 3, the actual system cost
in the sharing analysis is comparatively lower than (in case of Set 1) or equal
to (in case of Sets 2 and 3) that in the non-sharing analysis. The reason is
that sharing forecasts between the wind producer and the market operator can

14
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Figure 4: Sharing analysis: wind producer’s quantity offer to DA market (Step 1), scheduled
wind power in DA market (Step 2), and expected wind power realization in RT (Step 3).

Table 3: Actual System Cost [$]

Analysis Set 1 Set 2 Set 3
Non-Sharing 24026 32845 32970
Sharing 20982 32845 32970

lead to the generation of more qualified scenarios in DA market. This numeri-
cally concludes that sharing forecasts can potentially reduce the system cost in
systems with high wind power penetration.

Moreover, the DA and the expected RT market-clearing prices in both shar-
ing and non-sharing analyses are reported in Tables 4 and 5. Note that the DA
market-clearing price is derived from Step 2, whereas the expected RT market-
clearing price is derived in Step 3 considering 5000 wind generation samples.
The results of Table 4 imply that the DA market-clearing price for Set 2 in-
creases in the sharing analysis, which consequently results in increased profits
for all producers. The wind producer in this case exercises its market power
in order to increase market prices and the rest of producers also benefit from
increased prices.

In addition to the impact of sharing forecasts on actual system cost and
market-clearing prices as social measures, its impact on different players’ profit
needs to be investigated. The expected profit of each player includes its profit in
DA market (Step 2) plus its expected profit/cost in RT market (Step 3). Table
6 gives the wind producers’ expected profit for the three different sets, while
Table 7 presents the expected profit of each conventional unit. According to the
results reported in Table 6, the wind producer benefits from sharing forecasts
as its profit increases in the first two sets while it remains unchanged in Set 3.
These results numerically reveal that sharing forecasts is beneficial for the wind
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Table 4: Day-Ahead Price in different sets [$/MWh]

Analysis Set 1 Set 2 Set 3
Non-Sharing 20.56 20.56 30.12
Sharing 20.56 30.12 30.12

Table 5: Expected Real-Time Price in different sets [$/MWHh]

Analysis Set 1 Set 2 Set 3
Non-Sharing 13.68 10.23 25.99
Sharing 18.86 10.23 25.99

producer due to finding better knowledge on its future stochastic production.
Besides, information sharing brings more market power to wind producer to
alter the market-clearing outcomes to its own benefit. More specifically, the
wind power producer has a high level of production in Set 1 and benefits from
having better knowledge of its expected generation. In Set 2, the expected
wind power production is comparatively lower than that in Set 1, however, the
wind producer withholds a part of its generation to increase the market-clearing
prices and to gain more profit. Finally, Set 3 refers to a case with a low level
of wind generation, in which the forecast sharing does not affect the market
clearing outcomes. Further discussion on wind producer’s profit is provided in
the next subsection.

Unlike the wind producer, the conventional units may lose or may gain profit
if the market operator and the wind producer share their forecasts. In Set 1,
producers G1, G2 and G3 gain higher profits in the sharing analysis due to
increased expected RT price (Table 5). In contrast, producers G5, G6 and
G7 lose profit because their production levels are decreased. In both analyses,
producer G4 is fully dispatched in DA market while the clearing price of that
market is identical. Therefore, its profit does not change. In Set 2, the profits
of most conventional producers increase because the DA price is significantly
higher in the sharing analysis (Table 4). Results corresponding to Set 3 are
identical in both analyses since the power schedule of units and market-clearing
prices do not change.

Table 6: Expected Profit of The Wind Producer [3]

Analysis Set 1 Set 2 Set 3
Non-Sharing 18107 10920 10223
Sharing 18937 15471 10223
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Table 7: Expected Profit of The Conventional Units [$]

Unit Analysis Set 1 Set 2 Set 3
G1 Non-Sharing 0.5 0 9
Sharing 50.5 0 9
G2 Non-Sharing 9.8 11 299.2
Sharing 74.2 11 299.2
G3 Non-Sharing 0 0 0
Sharing 7.2 0 0
G4 Non-Sharing 4668 4676 7538
Sharing 4668 7544 7538
G5 Non-Sharing 1059 1231 5487
Sharing 941.2 5762 5487
G6 Non-Sharing 717.3 830.52 7857
Sharing 574.22 8478 7857
G7 Non-Sharing 10470 10505 18089
Sharing 10425 18153 18089

8.5. Sensitivity Analysis

As reported in the previous subsection, the wind producer’s expected profit
may increase by sharing forecasts. A part of this profit increment happens due
to the generation of a more qualified set of scenarios. Besides, it happens as
the wind producer is able to behave more strategically with more information
access. This section numerically measures wind producer’s market power in
sharing and non-sharing cases through a sensitivity analysis. To this end, we
use the value obtained for dual variable corresponding to the upper bound of
constraint (2d) in Step 2. This value implies the sensitivity of system cost with
respect to the wind producer’s strategic quantity offer. As given in Table 8, its
absolute value in the non-sharing analysis is lower than in the sharing analysis.
More specifically, that value is zero for Sets 1 and 3 of the non-sharing analysis,
while it is non-zero considering the sharing analysis. This reveals that sharing
forecasts with market operator increases the ability of wind producer to exert
market power. Note that the negative value for this dual variable means that
system cost in DA market (Step 2) increases with the strategic behaviour of wind
producer. However, recall that the actual system cost, i.e., the system cost in
DA (obtained from Step 2) plus the expected system cost in RT (obtained from
Step 3), can potentially decrease with information sharing as it has been already
reported in Table 3. This reduction of total actual cost in sharing cases happens
because less balancing sources are needed in RT.
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Table 8: Value of Sensitivity Factor: Dual Variable Corresponding to the Upper Bound of
Constraint (2d) in Step 2 [$/MWHh]

Analysis Set 1 Set 2 Set 3
Non-Sharing 0 -12.498 0
Sharing -1.786 -22.909 -2.26

4. Conclusion

In this paper, the value of sharing wind power forecasts between a single
wind power producer and a market operator is analyzed. This potential value
is numerically evaluated in terms of system cost. To this purpose, a three-step
evaluation framework is proposed. In the first step, a stochastic bi-level op-
timization model is formulated, which allows the wind producer to derive its
most beneficial quantity offer. In the second step, the market operator clears
stochastically the DA market considering all foreseen wind power realizations
in real time. In the last step, the RT market is cleared deterministically for
a large number of wind power realizations constrained by fixed DA schedules.
This framework is applied for two cases: (i) the wind producer and the mar-
ket operator use different wind power scenarios (non-sharing analysis), and (ii)
the wind producer and the market operator share their wind power scenarios
(sharing analysis). In addition, the impact of sharing wind power forecasts
on strategic offering of wind producer is analyzed using a relevant sensitivity
analysis.

For a large case study, it is numerically concluded that sharing forecasts may
decrease the expected system cost while it may increase the expected profit
of wind producer. However, the expected profit of conventional producers is
subject to the strategic behavior of wind producer and the quality of shared
scenarios. On the one hand, wind producer may exert more market power,
having access to more information. This will lead to higher market-clearing
prices and, thus, higher profits for all producers. On the other hand, profits may
decrease since sharing information can reduce the need for balancing resources
in the RT stage. The sensitivity analysis also shows that sharing forecasts may
help the wind producer to alter the market-clearing outcomes to its own benefit
(strategic behavior).

The consideration of multiple wind producers yields a stochastic equilibrium
problem with equilibrium constraints (EPEC) [35, 55] and is left for future
research. In addition, it is relevant to analyze how sharing wind power forecasts
affects the market equilibria.
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