
Integrated Bidding and Operating Strategies for 
Wind-Storage Systems 

Abstract—Due to their flexible charging and discharging 
capabilities, energy storage systems (ESS) are considered a 
promising complement to wind farms participating in electricity 
markets. This paper presents integrated day-ahead bidding and 
real-time operation strategies for a wind-storage system to 
perform arbitrage and to alleviate wind power deviations from 
day-ahead contracts. The strategy is developed with two-price 
balancing markets in mind. A mixed integer nonlinear 
optimization formulation is built to determine optimal offers by 
taking into account expected wind power forecasting errors and 
the power balancing capability of the ESS. A modified gradient 
descent algorithm is designed to solve this nonlinear problem. A 
number of case studies validate the computational efficiency and 
optimality of the algorithm. Compared to the existing strategies, 
the proposed strategies yield increased economic profit, 
regardless of the temporal dependence of wind power 
forecasting errors.  

Index Terms—Bidding strategy, electricity markets, energy 
storage system, real-time operation, wind farm 

I. NOMENCLATURE 
Index sets:  
t={1,2…T} Set of time intervals. 
k={1,2…K} Set of iterations for the algorithm. 
Functions:  

( )tS ⋅  Probabilistic profit for interval t. 

( )tw ⋅  Probabilistic density function of wind power 
forecast for interval t. 

( )tW ⋅  Cumulative distribution function of wind 
power forecast for interval t. 

( )1
tW − ⋅  Inverse function of ( )tW ⋅ . 

Variables: 
D
tB  Day-ahead bidding for interval t. 

,C D
t tBS BS  Charging and discharging reserve capacity 

of energy storage for interval t. 
tp  Wind power generation for interval t. 

,ch dis
t tp p  Charging and discharging power of energy 

storage for interval t. 
,  C D

t tu u  Binary variables indicating charging and 
discharging status of storage for interval t. 

tE  Residual energy of storage for interval t. 

γ  Step size of gradient descending algorithm. 
β  Back-tracking factor in the algorithm 
Constants:  

t∆  Duration of a time interval 
,  t twf wf  Upper and lower bounds of wind power 

forecast for interval t.  
D
tλ  Expected day-ahead price for interval t. 

,
up dw
t tλ λ  Expected up/down-regulation prices for 

interval t. 
T Maximal number of market time units. 

,c dη η  Energy efficiency of charging and 
discharging process. 

min max,E E  Minimal and maximal level of residual 
energy of energy storage. 

,C DBS BS  Upper bounds of charging and discharging 
reserve of ESS. 

WF ESSC −  Integration capacity of wind-storage system 
,WF ESSC C  Integration capacity of wind farm and 

energy storage  
II. INTRODUCTION 

ecent decades have witnessed the rapid development of 
wind power generation. To better accommodate wind 
energy in existing power systems, a consensus has been 

gradually reached such that the increasing capacity of wind 
power should be traded in day-ahead markets [1] [2]. Because 
of the limited predictability of wind power, optimal offering 
strategies for wind farms (WF) in day-ahead electricity 
markets have been widely studied. As a first representative 
example, Reference [1] proposes a closed-form optimal day-
ahead bidding strategy, considering stochastics in both prices 
and wind generation, which has advantages over LP-type 
models in terms of the transparency of results, computational 
efficiency and reduced data requirement. Moreover, 
Reference [3] extends the expected utility maximization (EUM) 
strategy with a more general loss function to express the 
economic loss of the WF resulting from potential deviations 
from day-ahead contracts. This loss function is also relevant 
in the cases where WFs coordinate with conventional 
generators, even though it overlooks temporal dependencies. 
The authors of [4] anchor the bidding amounts within a 
certain neighborhood of deterministic forecast values to 
account for risk aversion while improving the EUM strategy. 
This can alleviate risky bidding in electricity markets, which 
may result in large imbalances and endanger power system 
stability. 

The limited accuracy of wind power forecasts results in 
revenue loss for wind power producers because they should 
buy up-regulation (additional energy sold by other 
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participants) or sell down-regulation (energy bought by other 
participants) in balancing markets to settle their deviations 
between day-ahead offers and actual power output [5], [6]. 
Energy storage systems (ESS) can hence be regarded as a 
suitable complement to wind power because they allow 
flexible charging and discharging to accommodate 
imbalances. ESS can coordinate with WF in two ways. On 
one hand, because ESS make arbitrage with variable prices, 
the overall profit of WF and ESS can increase in day-ahead 
markets compared with the situation where they are 
considered separately. The coordination of WF and ESS to 
make arbitrage in regulated electricity markets has been 
studied in [7] and [8] (among others), with and without 
intraday markets considered, respectively. More specifically, 
the ability of pumped storage plants to reduce the wind 
spillage and make arbitrage is studied in [9]. However, the 
formulation does not consider market penalties for imbalances, 
which is different from current rules in deregulated electricity 
markets. On the other hand, ESS can help flatten the 
variations of WF output in real-time operation [10]–[12]. A 
filter operation strategy is stated in [13], which utilizes ESS 
to compensate for the imbalance from day-ahead offering [14]. 
Similarly, the so-called reserve operation strategy is proposed 
in [15], which also uses the EUM strategy at the offering 
stage but then sets contracts for ESS to cover the shortfalls of 
WFs. The work in [16] shows that WFs and ESS can both be 
better off through contracts for compensation of wind power 
deviations by ESS. The concavity of objective functions 
based on the greedy control strategy of ESS is studied. 
Although the potential arbitrage strategy of ESS is overlooked, 
it certainly influences day-ahead offerings and resulting 
market revenues.  

The main contributions of this paper consist of proposing 
integrated day-ahead bidding and real-time operation 
strategies for wind-storage systems (abbreviated WF-ESS) as 

a price taker. The cooperative strategy is that ESS sets 
charging or discharging reserve capacities at each time 
interval up to which the ESS can compensate for potential 
imbalances from the wind farm. Although sometimes ESS 
cannot compensate for imbalance due to the presetting 
operation mode, fixing the charging/discharging status for 
each hour can avoid the frequent mode switching of ESS. 
Furthermore, the cooperative strategy is simple such that it is 
suitable for integrating it into day-ahead bidding optimization. 
Based on this cooperative strategy and using a price-taker 
assumption, a stochastic optimization model is proposed to 
maximize the expected profit. The method could be extended 
in the future to relax the price-taker assumption used here. 
Similarly, degradation costs are not accounted for in the 
design of offering strategies (as for most of the literature on 
this topic), even though it could be readily included in the 
future. An additional contribution relates to the proposal of a 
computationally efficient algorithm to solve the optimization 
problem resulting from our formulations. Furthermore, a 
number of case studies are used to study the influence of the 
temporal dependence structure of wind power errors on 
revenues from the market.  

This paper is organized as follows. Section III gives a 
brief introduction regarding day-ahead and balancing markets. 
Based on existing market rules, day-ahead bidding and real-
time operation strategies are formulated. Section IV proposes 
a modified gradient descent algorithm to solve the 
optimization problem. In Section V, an illustrative case study 
with three market time units only and simplified assumptions 
on wind power forecast uncertainty are first employed to 
demonstrate the computational efficiency and optimality of 
the proposed solving method. Subsequently, another case 
study based on realistic data compares the profit from the 
application of our proposed strategies with other common 
ones from the literature. Conclusions and perspectives for 
future work are gathered in Section VI.  
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Fig. 1 Schematic illustration of day-ahead bidding strategy and real-time operating strategy of wind farm and energy storage system  

 
III. OPTIMAL BIDDING AND CONTROL STRATEGY 

A. Imbalance Management in Electricity Markets 
In most deregulated electricity energy markets such as the 

Scandinavian Nord Pool, participants should trade in both 

day-ahead and balancing markets. Intra-day markets (or 
adjustment markets) also exist between day-ahead and 
balancing stages, which provide a platform for transactions on 
renewable energy generation [17]. However, because the 
trading amount in these markets is relatively small, it is not 



considered in this paper. Recent work on intra-day markets 
for wind power producers can be found in [18]. 

In the day-ahead market, power plants bid for their 
generation schedule that covers the following day with 12 to 
14 hours prior to actual operation [19]. The cleared schedules 
are subject to deviation penalties, which means that the 
participants need to buy or sell up/down regulation services 
for any deviation in actual output from schedules in the 
balancing market. Balancing markets can be divided into two 
categories according to whether the balancing price changes 
with the overall imbalance sign [20]. The deviation is traded 
at a unique price in one-price balancing markets, which is 
adopted in markets such as the Dutch APX [21]. In the two-
price markets such as Nord Pool and the Iberian market, 
deviation that is opposite to the system imbalance is traded at 
the day-ahead price while the imbalance of the same sign with 
that of the system is traded at the cleared balancing price. The 
model proposed in this paper is based on the second one 
because it is more comprehensive. 
B. Day-ahead Bidding Strategy 

The day-ahead bidding strategy of WF-ESS is usually the 
same as what is utilized by WF when it works alone [10]–[12]. 
The ESS is only used to compensate for the deviation 
between day-ahead offers and real-time output. The WF-ESS 
can then be regarded as a conventional generation plant. In 
fact, ESS has the ability to make arbitrage in combination 
with compensating for imbalances. Consequently, the 
arbitrage and balancing functions of ESS are both considered 
in our day-ahead optimization model. In the present approach, 
it is the WF-ESS union that bids in the day-ahead market 
rather than the WF or ESS alone as in [13]. Therefore, the 
optimal bidding of the union will no longer be the specific 
quantile of the wind power probabilistic forecast [3]. As 
shown in Fig. 1, the inputs of the optimization model for day-
ahead bidding include wind power probabilistic forecasts, 
day-ahead prices (including up and down-regulation prices) 
forecasts and operational constraints of the ESS. The model 
then determines the optimal bidding in the market and the 
reserve from the ESS for the various market time units. 

 
Fig. 2 Real-time operating strategy of ESS 

C. Real-time Operating Strategy 
Only compensating for the imbalance by ESS in real-time 

operation may risk charging at high prices but discharging at 
low prices. Moreover, the imperfect round-trip efficiency of 
ESS would further reduce the potential profit of the union. It 

is natural to consider that the situation will be improved if 
there are some constraints on the charging and discharging 
power at each time interval. 

In this paper, a reserve-based operating strategy is 
proposed. As shown in Fig. 1, the charging or discharging 
status of the ESS at each time interval is optimized in advance, 
which means the ESS works only if the real-time imbalance 
sign of the WF output goes with the predetermined working 
status. Furthermore, it also sets constraints on the charging 
and discharging power, which can be considered as the 
operational reserve provided for the WF by the ESS. This 
means that even if the deviation of WF exceeds the reserve 
capacity, the ESS can charge or discharge at most to the 
predetermined upper bounds, which are often lower than the 
ones determined by the operational constraints. By this 
method, the ESS can avoid charging at high-price intervals or 
discharging at low-price periods.  

The detailed flow chart of the real-time operating strategy 
of ESS is depicted in Fig. 2. Take the decision procedure of 
charging for example. When the generated wind power at 
interval t is higher than the bidding value, it is referred to as 
the positive imbalance of WF (symbolized as ‘+’), while the 
opposite situation is called the negative imbalance 
(symbolized as ‘− ’). In positive imbalance cases, if the ESS 
has predetermined the charging reserve from the day-ahead 
optimization, the charging power of ESS can be set as the 
minimum of the imbalance and reserve. Otherwise, the ESS 
takes no action. The decision procedure of the discharging 
action is similar to that of the charging action. 
D. Formulations of Bidding and Operating Strategies 

Based on the aforementioned bidding and operating 
strategies, the optimal bidding and charging/discharging 
reserve can be generally formulated as 

 

( )
( )
( )

max    
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          0

f

h

g

≤

≤

θ
θ

θ
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where { }= D C Dθ B , BS , BS  are decision variables. 

Sequentially, D C DB , BS , BS  are vectors of day-ahead 
bidding D

tB , charging reserve C
tBS  and discharging reserve 

D
tBS . The objective function ( )f θ  is the expected profit 

from the WF-ESS, while ( ) 0h ≤θ and ( ) 0g ≤θ  are 
constraints on the bidding and operation of the ESS.  

The objective of the ESS operation is to make arbitrage and 
to compensate for the potential imbalances of the wind farm. 
Wind power generation tp  at time interval t follows a 
distribution described by its probability density function 

( )t tw p . Then, the expected profit ( )f θ  at all T intervals can 
be written as, 

 ( ) ( )
1

 , , ,
T

D up dw
t t t t t

t
f E S p tλ λ λ θ

=

 = ∆ ∑θ   (2) 
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∫
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In (3), t∆  is the time duration of each time interval (i.e., a 
market time unit), and ( )tS p  is the probabilistic profit for 
that time interval depending upon day-ahead and regulation 
prices { }, ,D up dw

t t tλ λ λ , wind power generation tp , day-ahead 

bidding D
tB  and reserves ,C D

t tBS BS . As the WF-ESS union is 
assumed to be a price taker in the electricity market, the day-
ahead energy prices and up/down regulation prices are 
independent of its bidding and output. Consequently, the 
stochastic prices can be replaced by their expected value, and 
the expected profit at each interval can be expressed in the 
form of (3).  

The expected profit at time interval t consists of three 
parts. The first part is the day-ahead bidding profit D D

t tBλ . 
The second part is the cost of purchasing up-regulation, which 
is negative in value, and the third part is the profit of selling 
down-regulation. To ensure the validity of the integral lower 
and upper limits, the bidding constraint 
( ) 0h ≤D C DB , BS , BS  reads: 

 ( ) { }0      1, 2...C C D
t t t tBS u wf B t T≤ ≤ − ∀ ∈   (4) 

 ( ) { }0      1, 2...D D D
t t t tBS u B wf t T≤ ≤ − ∀ ∈   (5) 

There are also several operational constraints for the ESS, 
( ) 0g ≤C DBS , BS , i.e., 

 { }0      1, 2...C C C
t tBS u BS t T≤ ≤ ∀ ∈   (6) 

 { }0      1, 2...D D D
t tBS u BS t T≤ ≤ ∀ ∈   (7) 

 { } { }1      , 0,1      1, 2...C D C D
t t t tu u u u t T+ ≤ ∈ ∀ ∈   (8) 

{ }
1 1

0
1 1

/      1, 2...
t t

C D
t j C j D

j j
E E BS t BS t t Tη η

− −

= =

= + ⋅ ⋅∆ − ⋅∆ ∀ ∈∑ ∑   (9) 

 { }min max      1, 2...tE E E t T≤ ≤ ∀ ∈   (10) 
 0TE E=   (11) 
where (6) and (7) constrain the charging and discharging 
power at time interval t within the charging and discharging 
capacity. Simultaneous charging and discharging is prevented 
by (8). The energy transition of the ESS is expressed in (9), 
and the residual energy should be within an allowable range 
[ ]min max,  E E  at any time interval with (10). As the model here 
is for daily operation, the residual energy deviation of ESS 
between the beginning and end of a day has great impact on 
daily profit. To evaluate the effect of the flexible charging and 
discharging capability of ESS on WF profit, the residual 
energy in ESS is constrained to be the same at the beginning 
and end of the day [8], as shown in (11). This strict constraint 
could be revisited in the future to provide more flexibility to 
the charging and discharging profiles for the ESS. Moreover, 
the ESS degradation effect is not included because we only 
consider daily operation. For long-term investment, the 

degradation can be complemented in the objective function as 
a cost, which relates to operation power and state of charge. It 
should also be noted that we propose the coordination 
strategies from the perspective of the wind-storage system, 
which is a participant in electricity markets, rather than from 
the perspective of a system operator. For example, 
participants in European zonal electricity markets usually do 
not pay special attention to network congestion. In case 
network constraints should be considered, the proposed model 
can be extended. In some situations, the wind farm and 
storage are co-located and connected to the same network bus. 
Then, constraints limiting joint output below the integration 
capacity WF ESSC −  can be added as, 

,  D C
t WF ESS t t WF ESSB C wf BS C− −≤ − ≤  

Otherwise, the wind farm and storage are connected to 
different network buses, where similar constraints for output 
of wind farm WFC  and storage ESSC  can be added separately 
as follows, 

, ,  D C D
t WF t ESS t ESSB C BS C BS C≤ ≤ ≤  

IV. SOLUTION METHOD 
Instead of using scenarios, we adopt a probabilistic 

distribution to model wind power uncertainty in a more 
accurate way. As integration is included in the objective 
function (3) and binary variables are included in (4) through 
(8), the formulation is a mixed integer non-linear model and 
cannot be solved directly. In this paper, the gradient descent 
algorithm is modified according to the characteristics of the 
formulation. It should be noted that as the problem may be 
nonconvex, in that case, the proposed algorithm will only 
obtain the nearest local optimal solution rather than the global 
solution. The situation is the same for other popular 
algorithms such as the interior-point method. However, the 
computational effort required for the proposed algorithm is 
considerably less than metaheuristic algorithms, e.g., genetic 
algorithms, which can only theoretically obtain global optimal 
solutions. On the contrary, the stable and computation-
friendly characteristics of the modified gradient descent 
algorithm make it easy to use in application and suitable for 
integration into rolling optimization. More importantly, by 
choosing proper initial points, the algorithm can obtain a 
satisfactory solution in an effective way. Another way is to try 
different initial solutions. As the proposed algorithm is 
computationally friendly, a number of initial solutions can be 
tried to obtain a better solution. 
A. Framework of the Algorithm 
The proposed algorithm is illustrated as follows. 

Algorithm: Modified Gradient descent Algorithm 
Begin:  

{ } ,0,0  
    =      

D dw
D0 D0 C0 -1

up dw

λ - λB ,BS ,BS W
λ - λ

  

( )0S f= D0 D0 C0B ,BS ,BS   

for k=1 : K 
        Execute ESS module { } ⇒  

Dk CkΔBS ,ΔBS  

        Execute Bidding module { }⇒ DkΔB  

        Dk D(k -1) DkB = B + ΔB  



        ）Dk D(k -1 DkBS = BS + ΔBS  

        （ ）Ck C k -1 CkBS = BS + ΔBS  

        ( )kS f= Dk Dk CkB ,BS ,BS  

     if ( 1) 0k kS S −− <  
Execute back-tracking procedure: 
   1γ = , ( )1k kS S=  

          while ( ) 1k kS Sγ −≤  
             γ βγ=  

             ( )( ) 1 (1 )γ γ= + − −Dk D(k -1) Dk DkBS BS u ΔBS  

             ( )( ) 1 (1 )γ γ= + − −）Ck C(k -1 Ck CkBS BS u ΔBS  

             ( )γ γ= +（ ）Dk D k -1 DkB B ΔB  
               ( )( ) ( ) ( ) ( )kS fγ γ γ γ= Dk Dk CkB ,BS ,BS  

          end 
( )γDk DkBS = BS , ( )γCk CkBS = BS  

    ( )γDk DkB = B , ( )k kS S γ=  

     else if ( 1)0 k kS S ε−≤ − ≤  
          stop  
     else 
           continue the loop 
      end 
end 

D DkBS = BS , C CkBS = BS , D DkB = B  
end 

In the algorithm, the initial bidding is the optimal quantile 
from wind power predictive densities, as performed in [3]. 

( )⋅-1W  is the vector of ( )1
tW − ⋅ . The parameter γ  is the step 

size, whose initial value is one. The back-tracking factor β  
shortens the step size. The key point is that the modified 
back-tracking will not change the value of C

tu  and D
tu . Take 

C
tu  for example. If ( )1 0C

tu = , then ( )Ck
tBS γ  = (1)Ck

tBS 0= , 

and ( ) 0C
tu γ = . Otherwise, ( )Ck

tBS γ  = ( 1)C k Ck
t tBS BSγ− + ∆ >0 

and ( ) 0C
tu γ > . In the following subsections B to D, the ESS 

and bidding modules are introduced.  
B. Linear Approximation of the Objective Function 

In (3), when the expected prices and wind power 
distributions are available through predictions, then 

( )  , , ,D up dw
t t t tE S p λ λ λ θ    is a function of , ,D D C

t t tB BS BS , 

denoted by ( ), ,D D C
t t tS B BS BS . At any time interval t, the 

expected profit ( ), ,D D C
t t tS B BS BS  can be linearly 

approximated as: 

 
( ) ( )0 0 0

0 0 0

   , , , ,

  , , , ,

D D C D D C
t t t t t t

TD D C
t t tD D C

t t t

S B BS BS S B BS BS

S S S B BS BS
B BS BS

≈

 ∂ ∂ ∂  + ⋅ ∆ ∆ ∆   ∂ ∂ ∂ 

  (12) 

and  

( ) ( )1
D up dwD D D Ct
t t tt t t t t tD

t

S
W B BS W B BS

B
∂  = − − − − + ∂

λ λ λ  

( )up D Dt
t t t tD

t

S
W B BS

BS
∂

= −
∂

λ , 

( )1
dw D Ct
t t t tC

t

S
W B BS

BS
∂  = − − + ∂

λ  

The first part of (12) is fixed, so the optimal solution of (12) 
can be obtained by solving the second part. Moreover, 
equations (4) and (5) are quadratic but can be converted to 
linear equations via an iterative procedure on the decision 
variables involved. More specifically, D

tB  is a decision 
variable in the bidding module, where the value of ,  C D

t tu u  is 
derived from application of the ESS module at previous 
iterations. Similarly, ,C D

t tu u  are decision variables in the ESS 
module, while D

tB  is obtained from the previous iteration of 
the ESS module. 
C. ESS Module 

In this module, the decision variables all regard charging 
and discharging of the ESS. The superscript k stands for the 
iteration number k, where all of the parameters with 
superscript (k-1) are constants. The original formulations (2) 
through (11) can be re-interpreted as follows in this module, 

 
( 1) ( 1)

1
max    

T
Dk Ckt t
t tD k C k

t t t

S S
BS BS

BS BS− −
=

 ∂ ∂
∆ + ∆ ∂ ∂ 

∑   (13) 

s.t. ( 1)0 C k Ck Ck C
t t tBS BS u BS−≤ + ∆ ≤   (14) 

 ( 1)0 D k Dk Dk D
t t tBS BS u BS−≤ + ∆ ≤   (15) 

 ( )( 1) ( 1)0 C k Ck Ck D k
t t t t tBS BS u wf B− −≤ + ∆ ≤ −   (16) 

 ( )D( 1) ( 1)0 k Dk Dk D k
t t t t tBS BS u B wf− −≤ + ∆ ≤ −   (17) 

 1Ck Dk
t tu u+ ≤   (18) 

 
1 1

1

1 1
/

t t
k k Ck Dk
t t t C t D

j j
E E BS t BS tη η

− −
−

= =

= + ∆ ⋅ ⋅∆ − ∆ ⋅∆∑ ∑   (19) 

 min max
k
tE E E≤ ≤   (20) 

 0
k
TE E=   (21) 

where only the ESS-related variables ,  Dk Ck
t tBS BS∆ ∆  are 

included in the objective function. Moreover, optimized 
bidding { }( 1)D k

tB −  of iteration (k-1) is used in (16) and (17). It 
can help avoid quadratic formations because the parameters 
of iteration (k-1) are constants in iteration k.  
D. Bidding Module 

In this module, the decision variables are bidding-related 
variables, and the objective function only contains the day-
ahead bidding profit. This translates into the following 
optimization problem, 

 ( 1)
1

max    
T

Dkt
tD k

t t

S
B

B −
=

∂
∆

∂∑   (22) 

s.t. ( 1) 1D k Dk Ck Ck
t t t t tB B wf BS BS− −+ ∆ ≤ − − ∆   (23) 

 ( 1) ( 1) .D k Dk D k Dk
t t t t tBS BS wf B B− −+ ∆ + ≤ + ∆    (24) 

Here, the latest information on charging and discharging, 
namely, the optimized charging and discharging reserve 
capacity from iteration k in the ESS module, is considered in 
the bidding block to accelerate the computation. The 
accelerating effect will be illustrated in Section V.B. 

V. CASE STUDIES 
In this section, two case studies, which will be introduced 

in subsection V.A, are performed. The first study is a three-



interval case, which is used to validate the proposed gradient 
descent algorithm in computation efficiency and optimality. 
Detailed results are gathered in V.B. Furthermore, the second 
case is based on realistic data from the Nord pool market and 
a wind farm in Denmark. The influence of wind power 
correlation on the profit brought by the proposed strategy is 
analyzed in V.C, and the profit of the proposed strategy is 
compared with some other commonly adapted strategies in 
V.D. 
A. Case Design 

1) Case 1: 
In the first case, only three time intervals are considered for 

the sake of simplicity and transparency. The data are given in 
Table I and Table II. 

Table I Parameters of the WF-ESS union 

Cη   Dη  [ ]min  E MWh  [ ]max  E MWh  

0.9 0.9 1 10 
[ ]0  E MWh  [ ] CBS MW  [ ] DBS MW  β  

5 10 10 0.1 

Table II Parameters of the market prices 

Time interval [ ]/
D

DKK kWhλ  [ ]/
dw

DKK kWhλ  

1 0.4 0.2 
2 0.8 0.7 
3 0.6 0.5 

[ ]/
up

DKK kWhλ  [ ] Wf MW  [ ] Wf MW  

0.5 90 0 
1.0 60 0 
0.7 75 0 

It is assumed that potential wind power generation obeys a 
uniform distribution. Because there is no limit on the 
distribution in (12), other distributions can also be adapted to 
the proposed method. The assumption of uniformity is not 
very grounded, but it is the simplest, especially when 
integrated into objective functions. The main purpose of 
employing a uniform distribution here is to compare the 
optimality of the proposed algorithm with commercial 
software such as CPLEX. Substituting ( ),t tp U wf wf→  into 

(3), the objective function is  

( ) ( )22
.

2 2

up dw
D t tD D D D C
tt t t t t t t

t t

S B B BS wf B BS
wf wf

= − − + − −
λ λλ  (25) 

Together with constraints (4) through (11), a quadratic 
formulation is built and solved by CPLEX. 

2) Case 2: 
In this case, wind power probabilistic forecasts are based on 

the forecast data for wind farms in Denmark. Details of the 
scenario generation methods can be found in [22] and [23], 
and data from wind scenarios can be downloaded from the 
website [24]. The original data have per-unit values and can 
be transferred to actual values by multiplying the capacity of 
the wind farm, which is set as 100 MW in this case. The day-
ahead prices and up/down regulation prices for the DK-West 
area in the Nord Pool market on January 1st, 2014 are used. 
The price data are available at [25], and the data for the ESS 
are the same as in Table I. 

B. Validation of the Proposed Algorithm 
The optimal solutions for Case 1 are listed in Table III. It 

can be seen from Table III that with the coordination of ESS 
and WF, the union tends to bid a higher amount in the day-
ahead market. As the price in period 2 is higher, the ESS sets 
some discharging reserve in this period and charging reserve 
in periods 1 and 3. The increasing amount of bidding in 
period 2 is also considerably higher than that of periods 1 and 
3. 

Table III Comparison of the bidding results 
Interval 1 2 3 
Bidding without ESS [MW] 60.0 20.0 37.5 
Bidding with ESS [MW] 63.7 47.0 48.5 
Charging reserve of ESS [MW] 5.6 0 4.4 
Discharging reserve of ESS [MW] 0 8.1 0 
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Fig. 3 Comparison on the converging process between conventional and 
modified gradient descent algorithms 

 

As the latest information { },  Ck Dk
t tBS BS∆ ∆  of charging and 

discharging reserve is utilized in the bidding module, the 
converging speed of the proposed algorithm is considerably 
faster than the conventional gradient descent algorithm, which 
only uses the information of ( 1) ( 1),  C k D k

t tBS BS− −  in iteration k 
(replace ,  Ck Dk

t tBS BS∆ ∆  by ( 1) ( 1),  C k D k
t tBS BS− −∆ ∆  in (23) and 

(24)). As shown in Fig. 3, it takes the modified gradient 
descent algorithm fewer than six iterations to reach 
convergence, and its value is 60.41 kDKK. Meanwhile, it 
takes the conventional algorithm over 40 iterations, with an 
objective value of 60.34 kDKK. The numeric results show 
that the proposed solving method is advantageous compared 
to the conventional gradient descent both in terms of 
converging speed and optimality.  

The Hessian matrix of the objective function (25) is:  

 
0

0

up dw up dw
t t t t

up up
t t

t

dw dw
t t

wf wf wf

H
wf wf

wf wf

 −
 −
 
 

− − =  
 
 
 
  

λ λ λ λ

λ λ

λ λ

. (26) 

As the third-order leading principal minor is positive, the 
Hessian matrix is not negative definite, so the problem is 
nonconvex. CPLEX only receives the upper bound, which is 
60.60 kDKK. Meanwhile, the solution obtained with our 
proposed algorithm is 60.41 kDKK, which is quite close to 
that upper bound.  



C. Influence of Wind Power Correlation 
In the optimization model, wind power generation at 

different intervals is assumed to obey specific distributions 
independently of each other. However, the wind power output 
at interval t will partially depend on that at interval (t-1). To 
consider the influence of correlation on wind power 
generation, two types of scenarios are generated for 
comparison based on the data of the second case. For the first 
type, wind power at each interval is sampled independently 
and only obeys the predictive distributions for each time 
interval. The second type of scenario accounts for not only 
properties of predictive distributions at each time interval but 
also correlation between intervals. The method proposed in 
[26] and [27] can satisfy the requirement but can only 
simulate the scenarios with positive correlation. The first-
order autoregressive process applied in [28] can set positive 
or negative values for the correlation of wind power forecast 
errors between intervals. In this paper, we combine the 
advantages of these two methods and generate scenarios 
satisfying the distribution and the correlation. The generation 
method is as follows: 
i). One uses a Gaussian random number generator to have 

K realizations { }t
kε  for each of the T intervals, which are 

independent and identically distributed, ( )2~ ,t
k Nε µ σ  

ii). Based on the uncorrelated realizations of step i), 
correlated realizations 

t
kε  can be generated through: 

 


 

1 1

1 21

k k
t t t
k k k

ε ε

ε ρε ρ ε
−

=

= + −
  (27) 

        where the autoregressive factor ρ  can be set from [-1,1]. 
iii). For each interval t, apply the inverse probit function 

       ( )
( )

2
/ 2

/2

0

1 1 21 1
2 22

terf e dt
ε µ σε µφ ε

σ π

−
−

  −   = + = +        
∫  

to each of { }t
kε , and K realizations { }tkY  can be 

obtained. 
iv). Apply the inverse cumulative distribution function of the 

day-ahead probability forecast ( )1
tW − ⋅  to each 

component of { }tkY , and simulated wind power { }t
kp  

can be obtained. 
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Fig. 4 Wind scenarios of different correlation factors 

In the scenarios generation method, information on 
predictive distributions at each time interval ( )tw p  and the 
autoregressive factor ρ  are necessary. Predictive 
distributions are fitted from the realistic data available, and 
the autoregressive factor ρ  is uniformly sampled from [-1,1] 
to examine the influence of correlation on profit. Taking ρ  
equal to -0.8 and 0.8 for example, the corresponding wind 
power generation trajectories for the 24 market time units of 
the Nord Pool are illustrated in Fig. 4. It can be observed that 
the higher the correlation factor is, the smoother the resulting 
wind power trajectory is. 

 
Fig. 5 The influence of wind power output correlation on unit profit as an 
average over all scenarios 

 

As the wind power scenarios are generated randomly, the 
total wind energy may not be the same. For the sake of 
fairness, a new index, unit profit, is applied, which is defined 
as the overall profit from market participating per unit of 
wind energy generated. To study the influence of wind power 
correlation on profit brought by the proposed strategy, the 
autoregressive factor ρ  increases from -1 to 1, with an 
increment of 0.05. For each value of ρ , 25,000 scenarios are 
generated to obtain the test results, consisting of the average 
outcome over this large number of scenarios. As shown in Fig. 
5, the unit profit fluctuates slightly but remains steady 
regardless of ρ . This means that although the proposed 
strategy is based on the assumption of the non-correlation of 
wind power, it is still quite robust with respect to potential 
temporal dependence in wind power generation and forecast 
errors. 
D. Comparison of Methods 

Researchers in this field have already proposed several 
bidding and operation strategies on the coordination of WF 
and ESS. In this subsection, the proposed strategy is tested 
based on the realistic data for case 2 and is compared with the 
other three common strategies. These include: 
 Strategy 1: Expected Utility Maximization Strategy [3]: 

the WF works alone, and the optimal bidding at interval 

t is 1
D dw
t t

t up dw
t t

W −
  −    −   

λ λ

λ λ
. The WF does not control its 

output and receives a penalty based on the imbalances. 
 Strategy 2: Filter Operation Strategy: The WF-ESS 

union bids as Strategy 1 and uses the ESS to compensate 



for the imbalance from WF as much as possible [13]. 
 Strategy 3 Reserve Operation Strategy: The WF-ESS 

union bids as Strategy 1 but sets the operation reserve 
for the ESS [15]. 

 Strategy 4: Proposed Bidding and Operation Strategy: 
WF-ESS determines the day-ahead offering and 
operation reserve of ESS in an integrated way. 

There are two types of tests used for that comparison, 
depending on whether the wind power correlation between 
intervals is considered in scenario generation. For both types 
of tests, one million scenarios are generated to obtain the test 
results. 

 
Fig. 6 The distributions of unit profit over uncorrelated scenarios for all 
strategies 

 

 
Fig. 7 The average unit profit over correlated scenarios for all strategies as a 
function of the autoregressive parameter 

From Fig. 6, one can also observe that in the test that does 
not consider the correlation between the wind power output at 
neighboring intervals, strategies with ESS can obtain higher 
profit than Strategy 1, where the WF works alone. It is 
reasonable that for strategies with ESS, the ESS can help 
balance the deviation between wind power output and bidding, 
which reduces the deviation penalty. The situation is even 
better for Strategy 4 because ESS can also help make 
arbitrage to gain more profit. Consequently, Strategy 4 has a 
higher unit profit than other strategies. 

 

Fig. 7 gathers the test results in cases where the wind 
power correlation is considered. The unit profit for the filter 
operating strategy (Strategy 2) decreases with an increase in 
correlation because when correlation becomes more positive, 
successive periods of similar positive or negative wind power 
deviations will happen more often. Then, the ESS will 
continuously charge or discharge, and the residual energy of 
the ESS will reach its upper or lower bounds more frequently. 
The ESS will fail in its imbalance compensation function 
eventually. It is natural that Strategy 1 is insensitive to the 
correlation because the ESS is not accounted for at the time of 
offering. 

 Combining the bidding strategy of Strategy 1 and the 
operation strategy of Strategy 4, Strategy 3 also has a slightly 
descending but steady unit profit with an increase in wind 
power correlation. This result comes from the hedge effect of 
the reserve-based real-time operation strategy because the 
charging and discharging power of ESS is determined by 
wind power deviation and is also constrained by 
predetermined reserve capacity. In all cases, Strategy 4 
obtains the best results among all of the strategies. The 
comparison results inform us that (i) the correlation in wind 
power forecast errors has an influence on the performance of 
ESS (as Strategy 2) [28], and (ii) the proposed strategy 
appears to be robust, i.e., it is not negatively affected by these 
correlation effects. 

VI. CONCLUSIONS  
Integrated bidding and operation strategies for WF-ESS 

were proposed and evaluated. Meanwhile, a mixed integer 
nonlinear formulation was obtained and a modified gradient 
descent algorithm was designed for the practical numerical 
solution to these problems. Compared with the conventional 
gradient descent algorithm, the algorithm proposed in this 
paper converges faster and obtains better optimality. More 
importantly, the proposed bidding and operation strategies 
proved advantageous, in terms of unit profit and based on 
realistic data, compared to the three commonly used strategies 
from the literature. Case studies analyzing the potential 
impact of temporal correlation in wind power generation 
show that the proposed bidding and operating strategy is 
robust to these temporal dependence structure considerations.  

Future work should naturally focus on improving the real-
time operation strategy of ESS and WF (for instance, linear 
decision rules), while potential temporal dependence 
structures in wind power generation could be further 
considered in the bidding strategy. Moreover, the price-maker 
assumption of [29], [30] can be adopted, and ESS degradation 
should be considered. Furthermore, we plan to study the 
optimal sizing of ESS based on the proposed strategy to 
coordinate with wind farms. 
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