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Abstract

Probabilistic forecasts in the form of ensemble of scenarios are required for complex deci-

sion making processes. Ensemble forecasting systems provide such products but the spatio-

temporal structures of the forecast uncertainty is lost when statistical calibration of the

ensemble forecasts is applied for each lead time and location independently. Non-parametric

approaches allow the reconstruction of spatio-temporal joint probability distributions at a

low computational cost. For example, the ensemble copula coupling (ECC) method rebuilds

the multivariate aspect of the forecast from the original ensemble forecasts. Based on the

assumption of error stationarity, parametric methods aim to fully describe the forecast de-

pendence structures. In this study, the concept of ECC is combined with past data statistics

in order to account for the autocorrelation of the forecast error. The new approach, called

d-ECC, is applied to wind forecasts from the high resolution ensemble system COSMO-

DE-EPS run operationally at the German weather service. Scenarios generated by ECC

and d-ECC are compared and assessed in the form of time series by means of multivariate

verification tools and in a product oriented framework. Verification results over a 3 month

period show that the innovative method d-ECC outperforms or performs as well as ECC in

all investigated aspects.

1 Introduction

Uncertainty information is essential for an optimal use of a forecast (Krzysztofowicz, 1983). Such

information can be provided by an Ensemble Prediction System (EPS) which aims at describing

the flow-dependent forecast uncertainty (Leutbecher and Palmer, 2008). Several deterministic

forecasts are run simultaneously accounting for uncertainties in the description of the initial
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state, the model parametrization and, for limited area models, the boundary conditions. Prob-

abilistic products are derived from an ensemble, tailored to specific user’s need. For example,

wind forecasts in the form of quantiles at selected probability levels are of particular interest for

actors in the renewable energy sector (Pinson, 2013).

However, probabilistic products generally suffer from a lack of reliability, the system

showing biases and failing to fully represent the forecast uncertainty. Statistical techniques

allow to adjust the ensemble forecast correcting for systematic inconsistencies (Gneiting et al.,

2007). This step known as calibration is based on past data and usually focuses on a single or

few aspects of the ensemble forecast. For example, calibration of wind forecast can be performed

by univariate approaches (Bremnes, 2004; Sloughter et al., 2010; Thorarinsdottir and Gneiting,

2010) or bivariate methods which account for correlation structures of the wind components

(Pinson, 2012; Schuhen et al., 2012). These calibration procedures provide reliable predictive

probability distribution of wind speed or wind components for each forecast lead time and

location independently. Decision making problems can however require information about the

spatial and/or temporal structure of the forecast uncertainty. Examples of application in the

renewable energy sector resemble the optimal operation of a wind-storage system in a market

environment, the unit commitment over a control zone or the optimal maintenance planning

(Pinson et al., 2009). In other words, scenarios that describe spatio-temporal wind variability

are relevant products for end-users of wind forecasts.

The generation of scenarios from calibrated ensemble forecasts is a step that can be per-

formed with the use of empirical copulas. The empirical copula approaches are non-parametric

and, in comparison with parametric approaches (Keune et al., 2014; Feldmann et al., 2015),

simple to implement and computationally cheap. Empirical copulas can be based on clima-

tological records (Schaake Shuffle (ScSh); Clark et al., 2004) or on the original raw ensemble

(ensemble copula coupling (ECC); Schefzik et al., 2013). ECC, which consists in the conserva-

tion of the ensemble member rank structure from the original ensemble to the calibrated one,

has the advantage to be applicable to any location of the model domain without restriction

related to the availability of observations. However, unrealistic scenarios can be generated by

the ECC approach when the post-processing indiscriminately increases the ensemble spread to a

large extent. Non-representative correlation structures in the raw ensemble are magnified after

calibration leading to unrealistic forecast variability. As a consequence, ECC can deteriorate

the ensemble information content when applied to ensembles with relatively poor reliability as

suggested, for example, by verification results in Flowerdew (2014).

In this paper, a new version of the ECC approach is proposed in order to overcome the

generation of unrealistic scenarios. Focusing on time series, a temporal component is introduced

in the ECC scheme accounting for the autocorrelation of the forecast error over consecutive
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forecast lead times. The assumption of forecast error stationarity, already adopted for the

development of fully parametric approaches (Pinson et al., 2009; Schölzel and Hense, 2011), is

exploited in combination with the structure information of the original scenarios. The new

approach based on these two sources of information, past data and ensemble structure, is called

dual ensemble copula coupling (d-ECC). Objective verification is performed in order to show

the benefit of the proposed approach with regard to the standard ECC.

The manuscript is organized as follows: Section 2 describes the dataset used to illustrate

the manuscript as well as the calibration method applied to derive calibrated quantile forecasts

from the raw ensemble. Sections 3 and 4 introduce the empirical copula approaches for the

generation of scenarios and discuss in particular the ECC and d-ECC methods. Section 5

describes the verification process for the scenario assessment. Section 6 presents the results

obtained by means of multivariate scores and in a product oriented verification framework.

2 Data

2.1 Ensemble forecasts and observations

COSMO-DE-EPS is the high resolution ensemble prediction system run operationally at DWD.

It consists of 20 COSMO-DE forecasts with variations in the initial conditions, the boundary

conditions and the model physics (Gebhardt et al., 2011; Peralta et al., 2012). COSMO-DE-

EPS follows the multi-model ensemble approach, with 4 global models driving each 5 physically

perturbed members. The ensemble configuration implies a clustering of the ensemble members

as a function of the driving global model when large scale structures dominate the forecast

uncertainty.

The focus is here on wind forecasts at 100 meter height above ground. The post-processing

methods are applied to forecasts of the 00UTC run with an hourly output interval and a forecast

horizon of up to 21 hours. The observation dataset comprises quality controlled wind measure-

ments from 7 stations: Risoe, FINO1, FINO2, FINO3, Karlsruhe, Hamburg and Lindenberg, as

plotted in Figure 1. The verification period covers a 3 month period: March, April and May

2013.

Figure 2(a) shows an example of a COSMO-DE-EPS wind forecast at hub-height. The

forecast is valid on day March 2, 2013, at station FINO1 (see Figure 1). The ensemble members

are drawn in grey while the corresponding observations are drawn in black. In Figure 2(b), the

raw ensemble forecast is interpreted in the form of quantiles.

Formally, a quantile qτ at probability level τ (with 0 ≤ τ ≤ 1) is defined as:

qτ := F−1(τ) = inf{y : F (y) ≥ τ} (1)
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Figure 1: Map of Germany and neighboring areas (approximately the COSMO-DE domain)
with latitude/longitude axes. Location of the 7 wind stations used in this study. The station
FINO1 is highlighted with a grey mark.
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Figure 2: Wind speed at 100 meter height above ground, on March 2, 2013, at station FINO1:
(a) COSMO-DE-EPS forecast (grey lines), (b) raw ensemble forecast in the form of quantiles
(sorted members, see text), (c) calibrated quantile forecasts, and the corresponding observations
(black lines).
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where F is the cumulative probability distribution of the random variable Y ∈ ℜ:

F (y) = P(Y ≤ y). (2)

In practice, at each forecast lead time, the member of rank n can be interpreted as a quantile

forecast at probability level τn:

τn =
n

Ne + 1
(3)

where Ne is the number of ensemble members.

In the example of Figure 2, the raw ensemble is not able to capture the observation

variability. Calibration aims to correct for this lack of reliability by adjusting the mean and

enlarging the spread of the ensemble forecast.

2.2 Calibrated ensemble forecasts

Since COSMO-DE-EPS forecasts have shown to suffer from statistical inconsistencies (Ben Bouallègue,

2013; Ben Bouallègue, 2015), calibration has to be applied in order to provide reliable forecasts

to the users. The method applied in this study is the bivariate Non-homogeneous Gaussian

Regression (EMOS, Schuhen et al., 2012). The mean and variance of each wind component as

well as the correlation between the two components characterize the predictive bivariate nor-

mal distribution. Corrections applied to the raw ensemble mean and variance are optimized

by minimizing the continuous ranked probability score (CRPS; Matheson and Winkler, 1976).

The calibration coefficients are estimated for each station and each lead time separately (local

version of EMOS), based on a training period being defined as a moving window of 45 days.

The final calibrated products considered here are Ne equidistant forecasts of wind speed

estimated for each location and each forecast lead time separately, where theNe probability levels

associated to the forecast quantiles follow Eq. (3). Calibrated quantile forecasts are shown in

Figure 2(c). The spread of the ensemble is increased with respect to Figure 2(b) and thus

the observation variability is now captured by the forecast. From a statistical point of view

the calibration method provides reliable ensemble marginal distributions and reliable quantile

forecasts as checked by means of rank histograms and quantile reliability plots (not shown).

The performance of the applied calibration technique is similar to the one obtained by other

methods such as quantile regression (Koenker and Bassett, 1978; Bremnes, 2004).

Information about spatial and temporal dependence structures, which are crucial in many

applications, are however not available any more after this calibration step (see Figure 2(c)).

The next post-processing step consists then in the generation of consistent scenarios based on

the calibrated samples.
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3 Generation of scenarios

The generation of scenarios with empirical copulas is here briefly described. For a deeper insight

into the methods, the reader is invited to refer to the original article of Schefzik et al. (2013),

or to Wilks (2014) and references within.

First, consider the multivariate cumulative distribution function (cdf ) G defined as:

G(y1, ..., yL) = P[Y1 ≤ y1, ..., YL ≤ yL] (4)

of a random vector (Y1, ..., YL) with y1, ..., yL ∈ R. As in Eq. (2), we define the marginals Fi as:

Fi(yi) = P[Yi ≤ yi]. (5)

The Sklar’s theorem (Sklar, 1959) states that G can be expressed as:

G(y1, ..., yL) = C(F1(y1), FL(yL)) (6)

where C is a copula that links an L-variate cumulative distribution function G to its univariate

marginal cdf s F1, ..., FL.

In Eq. (6), a joint distribution is represented as univariate margins plus copulas. The

problem of estimating univariate distributions and the problem of estimating dependence can

therefore be treated separately. Univariate calibration marginal cdf s F1, ..., FL are provided by

the calibration step described in the previous section. The choice of the copula C depends on the

application and on the size L of the multivariate problem. We focus here on empirical copulas

since they are suitable for problems with high dimensionality.

We denote H the empirical copula. H is based on a multivariate dependence template,

a specific discrete dataset z defined in R
L. The chosen dataset is described formally as:

z :=
{

(z11 , ..., z
N
1 ), ..., (z1L, ..., z

N
L )
}

(7)

consisting of L tuples of size N with entries in R. In other words, L is the dimension of the

multivariate variable and N is the number of scenarios. The rank of znl for n ∈ {1, ..., N} and

l ∈ {1, ..., L} is defined as:

Rn
l :=

N
∑

i=1

I(zil ≤ znl ) (8)

where I(·) denotes the indicator function taking value 1 if the condition in parenthesis is true
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and zero otherwise. The empirical copula H induced by the dataset z is given by:

H(
j1

N
, ...,

jL

N
) :=

1

N

N
∑

i=1

I(Ri
1 ≤ j1, ..., R

i
L ≤ jL) (9)

=
1

N

N
∑

i=1

L
∏

l=1

I(Ri
l ≤ jl) (10)

for integers 0 ≤ j1, ..., jL ≤ N .

In practice, N equidistant quantiles of Fl with l ∈ {1, ..., L} are derived from the univari-

ate calibration step:

q :=
{

(q11, ..., q
N
1 ), ..., (q1L, ..., q

N
L )
}

(11)

with

qnl := F−1
l (τn) ; n ∈ {1, .., N} (12)

where τn is defined in Eq. (3). The sample q is rearranged following the dependence structure

of the reference template z. The permutations πl(n) := Rn
l for n ∈ {1, .., N} are derived from

the univariate ranks R1
l , ..., R

N
l for l ∈ {1, .., L} and applied to the univariate calibrated sample

q. The post-processed scenarios x̃1l , ..., x̃
N
l for each margin l is expressed as:

x̃1l := q
πl(1)
l , ..., x̃Nl := q

πl(N)
l (13)

The multivariate correlation structures are generated based on the rank correlation struc-

tures of a sample template z. The empirical copulas presented here only differ in the way z is

defined. In the following, let t ∈ {1, . . . , T} be a lead time and let L := T . For simplicity, we

consider here a single weather variable and a single location.

3.1 Ensemble copula coupling

The rank structure of the ensemble is preserved after calibration when applying the standard

ensemble copula coupling approach (ECC). The raw ensemble forecast is denoted x:

x :=
{

(x11, ..., x
Ne

1 ), ..., (x1L, ..., x
Ne

L )
}

(14)

where Ne is the ensemble size. ECC applies without restriction to any multivariate setting. The

number of scenarios generated with ECC is however the same as the size of the original ensemble

(N = Ne). The transfer of the rank structure from the raw ensemble forecast to the calibrated

one consists then in taking x as the required template in Eq. (7).

Based on COSMO-DE-EPS forecasts of Figure 3(a) (identical to Figure 2(a)), an example
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Figure 3: Same example as in Figure 2: (a) COSMO-DE-EPS scenarios, (b) ECC derived
scenarios, (c) d-ECC derived scenarios, and the corresponding observations (black lines).

of scenarios derived with ECC is provided in Figure 3(b). The increase of spread after the

calibration step implies a larger step-to-step variability in the time trajectories. Figure 4 focuses

on a single scenario highlighting the difference between the original and post-processed scenarios.

3.2 Dual ensemble copula coupling

ECC assumes that the ensemble prediction system correctly describes the spatio-temporal de-

pendence structures of the weather variable. This assumption is quite strong and cannot be valid

in all cases. On the other side, based on the assumption of error stationarity, parametric meth-

ods have been developed focusing on covariance structures of the forecast error (Pinson et al.,

2009; Schölzel and Hense, 2011). We propose a new version of the ECC approach which is an

attempt to combine both information: the structure of the original ensemble and the error auto-

correlation estimated from past data. Therefore, the new scheme is called dual ensemble copula

coupling (d-ECC) as the copula relies on a dual source of information.

For this purpose, we denote e the forecast error defined as the difference between ensemble

mean forecasts and observations:

e := {e1, ..., eT } (15)

= {y1 −m(x1), ..., yT −m(xT )} (16)

where m(xt) and yt are the ensemble mean and the corresponding observation at lead time

t ∈ {1, ..., T}, respectively. The temporal correlation of the error is described by a correlation
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matrix Re defined as:

Re =













ρe1,e1 ρe1,e2 · · · ρe1,eT

ρe2,e1 ρe2,e2 · · · ρe2,eT
...

...
. . .

...

ρeT ,e1 ρeT ,e2 · · · ρeT ,eT













(17)

where ρet1 ,et2 is the correlation coefficient of the forecast error at lead times t1 and t2. The

empirical correlation matrix R̂e is estimated based on the training samples used for the uni-

variate calibration step at the different lead times. In our setup, R̂e is regularly updated on

a daily basis from the moving windows of 45 days defined as training datasets for the EMOS

application.

Again here, we aim at constructing a template (Eq. 7) in order to establish the correlation

structures within the calibrated ensemble q :=
{

(q11, ..., q
Ne

1 ), ..., (q1T , ..., q
Ne

T )
}

. In the d-ECC

approach, the template is built performing the following steps:

1. Apply ECC with the original ensemble forecast x as reference sample template, in order

to derive a post-processed ensemble of scenarios x̃:

x̃ :=
{

(x̃11, ..., x̃
Ne

1 ), ..., (x̃1T , ..., x̃
Ne

T )
}

, (18)

2. Derive the error correction ci imposed to each scenario i (i ∈ 1, ..., Ne) of the reference

template by this post-processing step:

ci :=
{

ci1, ..., c
i
T

}

(19)

=
{

x̃i1 − xi1, ..., x̃
i
T − xiT

}

, (20)

3. Transformation step: Apply a transformation to the correction ci of each scenario based

on the estimate of the error autocorrelation R̂e and its eigendecomposition R̂e = UΛU−1

in order to derive the adjusted corrections c̆i:

c̆i = R̂e

1

2ci (21)

= UΛ
1

2U−1ci, (22)

4. Derive the so-called adjusted ensemble x̆:

x̆ :=
{

(x̆11, ..., x̆
Ne

1 ), ..., (x̆1T , ..., x̆
Ne

T )
}

(23)

where a scenario x̆i =
{

x̆i1, ..., x̆
i
T )
}

of x̆ is defined as a combination of the original member
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and the adjusted error correction:

x̆i = xi + c̆i, (24)

5. Take x̆ as reference template in Eq. (7) so that the new empirical copula is based on the

adjusted ensemble.

The d-ECC reference template x̆ combines the raw ensemble structure and the autocorrelation

of the forecast error reflected in the adjusted member corrections. The transformation of the

scenario corrections in Eq. (22) adjusts their correlation structure based on the error correlation

matrix R̂e. Taking the square root of the correlation matrix (Eq. 22) resembles a signal process-

ing technique which is described as a coloring transformation of a vector of random variables

(Kessy et al., 2015).

4 Illustration and discussion of d-ECC

Focusing on a single member, the d-ECC steps are illustrated in Figure 4. First, the correction

associated to each ECC scenario with respect to the corresponding original ensemble member is

computed (black line in Figure 4(b), Eq. 20). This scenario correction is adjusted based on the

assumption of temporal autocorrelation of the error (dashed line in Figure 4(b), Eq. 22). This

adjusted scenario correction is then superimposed on the original ensemble forecast before to

draw again the correlation structure of the adjusted ensemble.

The new scheme reduces to the standard ECC in the case where rank(xit) = rank(x̆it) for

all i ∈ {1, ..., Ne} and t ∈ {1, . . . , T}, which means that the additional terms c̆i do not have any

impact on the rank structure of the ensemble. This case occurs if:

• R̂e = I where I is the identity matrix, which means that there is no temporal correlation

of the error in the original ensemble,

• c = 0 where 0 is the null vector, which means that the calibration step does not impact

the forecast, the forecast being already well calibrated.

• c = h ·J where h is a constant and J an all-ones vector, which means that the calibration

step corrects only for bias errors and the system is spread bias free.

So the d-ECC typically takes effect if calibration corrects the spread and if this correction is

correlated in time at the member level.

Some more insight can be gained by looking at the following equations. Let the observa-

tion yt and the postprocessed ensemble members x̃it be realizations of random variables Y and

10
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Figure 4: Illustration of the concept of d-ECC based on the example of Figure 3 showing (a)
one among the 20 scenarios and (b) the correction applied to the original scenario after post-
processing. The raw ensemble forecast (here the member 13) is represented in grey, the ECC
scenario in black, and the d-ECC scenario in black with dots. The dashed line represents the
scenario correction adjusted by the transformation step (see text).
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X̃ . Consider the covariance of the forecast error denoted k and defined as:

kt1,t2 := E[(Yt1 −m(X̃t1))(Yt2 −m(X̃t2))] (25)

where t1 and t2 are two lead times and E[·] the expectation operator. It is assumed that the

postprocessed ensemble mean m(x̃t) is fully bias-corrected so that E[Yt −m(X̃t)] = 0.

After post-processing, the forecast scenarios and observation time series are considered

as drawn from the same multivariate probability distribution, so the forecast error covariance

can also be expressed as:

kt1,t2 = E[(X̃t1 −m(X̃t1))(X̃t2 −m(X̃t2))] (26)

= ρx̃t1
,x̃t2

σx̃t1
σx̃t2

(27)

where ρx̃t1
,x̃t2

refers to the correlation between x̃t1 and x̃t2 and σx̃t
refers to the square root of

the variances between the members of the calibrated ensemble (x̃1, ..., x̃Ne ) at lead time t. The

corresponding estimators are the following:

k̂t1,t2 =
1

Ne − 1

Ne
∑

i=1

[(x̃it1 −m(x̃t1))(x̃
i
t2
−m(x̃t2))] (28)

and

σ̂x̃t
=

√

√

√

√

1

Ne − 1

Ne
∑

i=1

(x̃it −m(x̃t))2 (29)

and

ρ̂x̃t1
,x̃t2

=
k̂t1,t2

σ̂x̃t1
σ̂x̃t2

. (30)

From Eq. (20) recall that

x̃it = xit + cit (31)

so we can rewrite the expression in Eq. (27) as

ρx̃t1
,x̃t2

σx̃t1
σx̃t2

= ρxt1
,xt2

σxt1
σxt2

+ ρct1 ,ct2σct1σct2 + ǫ (32)

where ρxt1
,xt2

is the error autocorrelation in the original ensemble, ρct1 ,ct2 the autocorrelation

of the corrections, σxt
and σct the standard deviation of the original ensemble and the standard

deviation of the correction at lead time t, respectively. The term ǫ corresponds to the estimated

covariances of x and c, and is considered as negligible assuming that the original forecast and

the corrections are drawn from two independent random processes.
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Furthermore, the stationarity assumption of d-ECC implies that the correlation ρx̃t1
,x̃t2

can also be estimated from past error statistics:

ρx̃t1
,x̃t2

= E[ρ̂et1 ,et2 ] (33)

where the notation ρ̂et1 ,et2 refers to the elements of the estimated correlation matrix R̂e. The

stationarity assumption takes effect in the transformation step of d-ECC (Eq. 22) which modifies

the correlation of the scenario corrections ρct1 ,ct2 and pushes it towards the estimated correlation

ρ̂et1 ,et2 . In other words, the transformation affects ρct1 ,ct2σct1σct2 (second term in Eq. 32).

We expect d-ECC to have a relevant impact if ρct1 ,ct2σct1σct2 dominates the sum in Eq. (32).

Typically, this is the case when the spread σxt
of the original ensemble is small compared to

the spread σx̃t
after calibration. In a previous statement, we already noted that d-ECC takes

effect if the calibration corrects the spread. Regarding Eq. (32), we can refine the statement

and argue that d-ECC especially takes effect if the calibration increases the spread.

Another important aspect of d-ECC is the estimation of the correlation matrix R̂e. By

means of this matrix, the assumption of error autocorrelation is checked and adjusted. The

matrix is estimated from the training datasets used for calibration at the different lead times.

Based on the dataset described in Section 2, Figure 5 shows the lagged correlation of the forecast

error derived from R̂e. The correlation is decreasing as a function of the time lag, reaching near

zero values for lags greater than 10 hours. However, for short and very short time lags, the

correlation is high and stable over the rolling training datasets. In particular, focusing on a time

lag of 1 hour, the correlation ranges between 60% and 80%. The correlation variability shown

in Figure 5 is estimated over a 3 month period. Similar results are obtained when checking

the variability of the correlation within each training dataset (not shown). The exhibited low

variability indicates that the temporal correlation of the forecast error is not flow dependent.

As a consequence, d-ECC can be seen as a ”universal” approach that does not suffer restriction

related to the forecasted weather situation.

Considering again our case study, the scenarios generated with d-ECC based on the

COSMO-DE-EPS forecasts are shown in Figure 3(c). The d-ECC derived scenarios are smoother

and subjectively more realistic than the ones derived with ECC in Figure 3(b). In Figure 4,

focusing on a single scenario, it is highlighted that the difference between the original and the

d-ECC time trajectories varies gradually from one time interval to the next one while abrupt

transitions occur in the case of the ECC scenario, as in this example between hours 15 and 17.

Note that d-ECC does not give the same result as a simple smoothing of the calibrated

scenarios x̃. Smoothing in time would modify the values q of the calibrated ensemble and

possibly deteriorate its reliability. Instead, d-ECC affects the time variability of the scenarios

by constructing a template (Eq. 7) based on x̆ (Eq. 24) while preserving the calibrated values
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Figure 5: Temporal lagged correlation coefficients summarizing the error correlation matrix
R̂e used in the d-ECC approach. The boxplots indicate the variability within the 3 month
calibration period.

q.

The discussion and illustration of d-ECC could certainly be extended by idealized studies

and a rigorous mathematical framework. This would be welcomed as further research and would

add further evidence to the expected behavior of d-ECC.

5 Verification methods

5.1 Multivariate scores

Verification of scenarios is first performed assessing the multivariate aspect of the forecast by

means of adequate scores. The scores are applied focusing on scenarios in the form of time series.

Considering an ensemble with Ne scenarios x(n) with n ∈ {1, ..., Ne} and an observed scenario

y, the energy score (ES; Gneiting et al., 2008) is defined as:

ES =
1

Ne

Ne
∑

n=1

‖y − x(n)‖ −
1

2N2
e

Ne
∑

m=1

Ne
∑

p=1

‖x(m) − x(p)‖ (34)

where ‖.‖ represents the Euclidean norm. ES is a generalization of the CRPS to the multivariate

case.

ES suffers from a lack of sensitivity to misrepresentation of correlation structures (Pinson and Tastu,

2013). We consider therefore additionally the p-variogram score (pV S; Scheuerer and Hamill,
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2015), which has better discriminative property in this respect. Based on the geostatistical

concept of variogram, pV S is defined as:

pV S =
∑

i 6=j

ωij

(

| yi − yj |
p −

1

Ne

Ne
∑

n=1

| x
(n)
i − x

(n)
j |p

)2

(35)

with p the order of the variogram and where ωij are weights and the indices i and j indicate

the i-th and the j-th components of the marked vectors, respectively. In order to focus on rapid

changes in wind speed, the weights ωij are chosen proportional to the inverse square distance in

time such:

ωij =
1

(i− j)2
, i 6= j, (36)

since i and j are here forecast lead time indices.

5.2 Multivariate rank histograms

The multivariate aspect of the forecast is in a second step assessed by means of rank histograms

applied to multi-dimensional fields (Thorarinsdottir et al., 2014). Two variants of the multivari-

ate rank histogram are applied: the averaged rank histogram (ARH) and the band depth rank

histogram (BDRH). The difference of the two approaches lies in the way to defined pre-ranks

from multivariate forecasts. ARH considers the averaged rank over the multivariate aspect while

BDRH assesses the centrality of the observation within the ensemble based on the concept of

functional band depth.

The interpretation of ARH is the same as the interpretation of a univariate rank his-

togram: ∪-shaped, ∩-shaped, and flat rank histograms are interpreted as underdispersiveness,

overdispersiveness, and calibration of the underlying ensemble forecasts, respectively. The in-

terpretation of BDRH is different: a ∪-shape is associated to a lack of correlation, a ∩-shape

to a too high correlation in the ensemble, a skewed rank histogram to bias or dispersion errors

and a flat rank histogram to calibrated forecasts.

5.3 Product oriented verification

Besides multivariate verification of time series scenarios, the forecasts are assessed in a product

oriented framework. This type of scenario verification follows the spirit of the event oriented ver-

ification framework proposed by Pinson and Girard (2012). Probabilistic forecasts that require

time trajectories are provided and assessed by means of well-established univariate probabilistic

scores.

Two types of products derived from forecasted scenarios are here under focus. The first
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one is defined as the mean wind speed over a day (here, a day is limited to the 21 hour forecast

horizon). The second product is defined as the maximal upward wind ramp over a day, a

wind ramp being defined as the difference between two consecutive forecast intervals. For both

products, 20 forecasts are derived from the 20 scenarios at each station and each verification

day.

The performances of the ensemble forecasts for the two types of products are evaluated by

means of the CRPS. The CRPS is the generalization of the mean absolute error to predictive

distributions (Gneiting et al., 2008), and can be seen as the integral of the Brier score (BS;

Brier, 1950) over all thresholds or the integral of the quantile score (QS; Koenker and Bassett,

1978) over all probability levels. Considering an ensemble forecast, the CRPS can be calculated

as a weighted sum of QS applied to the sorted ensemble members (Bröcker, 2012). For a deeper

insight in the forecast performance in terms of attributes, the CRPS is decomposed following

the same approach (Ben Bouallègue, 2015): the CRPS reliability and resolution components

are calculated as weighted sums of the reliability and resolution components of the QS at the

probability levels defined by the ensemble size (see Eq. 3), respectively. Formally, we write:

CRPSreliability =
2

Ne

Ne
∑

n=1

QS
(τn)
reliability

(37)

CRPSresolution =
2

Ne

Ne
∑

n=1

QS
(τn)
resolution (38)

where QS
(τn)
reliability

and QS
(τn)
resolution

are the reliability and resolution components of the QS

applied to the quantile forecasts at probability level τn, respectively. The QS decomposition is

performed following Bentzien and Friederichs (2014). The CRPSreliability is negatively oriented

(the lower the better) while the CRPSresolution is positively oriented (the higher the better).

5.4 Bootstrapping

The statistical significance of the results are tested applying a block-bootstrap approach. Boots-

trapping is a resampling technique which provides an estimation of the statistical consistency

and is commonly applied to meteorological datasets (Efron and Tibshirani, 1986).

A block-bootstrap approach is applied in the following which consists in defining a block

as a single day of the verification period (Hamill, 1999). Each day is considered as a separate

block of fully independent data. The verification process is repeated 500 times using each time

a random sample with replacement of the 92 verification days (March, April, May, 2013). The

derived score distributions illustrate consequently the variability of the performance measures

over the verification period and not between locations. Boxplots are used to represent the
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Figure 6: Spectral analysis of the scenarios from the raw ensemble (black lines), of the scenarios
derived with ECC (dashed grey lines) and with d-ECC (grey lines). Each line corresponds to
one scenario among the 20. The spectrum of the observed time series is represented by the
dashed dotted line.

distributions of the performance measures, where the quantile of the distributions at probability

levels 5%, 25%, 50%, 75 % and 95% are highlighted.

6 Results and discussion

Before applying the verification methods introduced in the previous section, we propose to

explore statistically the time series variability by means of a spectral analysis, an analysis of the

time series in the frequency domain. Such an analysis is useful in order to describe statistical

properties of the scenarios but has also direct implications for user’s applications (see below;

Vincent et al., 2010). A Fourier transformation is applied to each forecasted and observed

scenario and the contributions of the oscillations at various frequencies to the scenario variance

examined (Wilks, 2006). In Figure 6, the mean amplitude of the forecast and observation

time series over all stations and verification days is plotted as a function of their frequency

components.

As already suggested by the case study, this analysis confirms that the ECC considerably

increases the variability of the time trajectories with respect to the original ensemble, in partic-

ular at high frequencies. ECC scenario fluctuations are also much larger than the observed ones.

Indeed, the amplitude is on average about two times larger at high frequencies in ECC time

series than in the observed ones which explains the visual impression that ECC scenarios are
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unrealistic. Conversely, scenarios derived with the new copula approach do not exhibit such fea-

tures. While the original ensemble shows a deficit of variability with respect to the observations,

the d-ECC approach allows improving this aspect of the forecast. This first result, showing that

d-ECC scenarios have a similar mean spectrum as the observation one, is complemented with

an objective assessment of the forecasted scenarios based on probabilistic verification measures.

Figure 7 shows the performance of the forecasted time trajectories by means of multi-

variate scores. The post-processed scenarios perform significantly better than the raw members

in terms of ES (Figure 7(a)). In terms of pV S, the d-ECC scenarios are better than the ECC

ones and significantly better than the raw ones when p = 0.5 (Figure 7(b)). For higher orders of

the variogram (here p = 1, Figure 7(c)), the forecast improvement after post-processing is still

clear when using d-ECC while the ECC results are slightly worse than the ones of the original

forecasts.

Figure 8 depicts the results in terms of multivariate rank histograms, ARH (upper panel)

andBDRH (lower panel). The raw ensemble shows clear reliability deficiencies (Figures 8(a) and

8(d)) which motivated the use of post-processing techniques. Forecasts derived with ECC show

still underdispersiveness but also too little correlation (Figures 8(b) and 8(e)) while forecasts

derived with d-ECC are better calibrated according to the rank histograms in Figures 8(c) and

8(f). Indeed, both plots indicate good reliability of the d-ECC derived scenarios.

Figure 9 focuses on two products drawn from the time series forecasts: the daily mean

wind speed (upper panel) and the daily maximal upward ramp (lower panel). The performances

are assessed in terms of CRPS, CRPS reliability and CRPS resolution, from left to right,

respectively. Looking at the results in terms of CRPS, we note the high similarity of Figures 9(a)

and 9(d) with Figures 7(a) and 7(c), respectively. As for the ES, post-processing significantly

improves the forecasts of the daily mean product. As for pV S with p = 1, d-ECC improves

the ramp product with respect to the original one while ECC does not generate improved

products. The CRPS decomposition allows detailing the origin of these performances. We see

in Figures 9(b) and 9(e) that the CRPS results are mainly explained by the impact of the

post-processing on the CRPS reliability components. However, focusing on the results in terms

of CRPS resolution in Figures 9(c) and 9(f), we note that the resolution of the original and

d-ECC products are comparable while ECC deteriorates the resolution of the ramp product

with respect to the original one.

Those verification results are interpreted as follows. Calibration corrects for the mean of

the ensemble forecast and this is reflected, after the derivation of scenarios, by an improvement of

the ES and daily mean product skill. Calibration also corrects for spread deficiencies increasing

the variability of the ensemble forecasts. This increase of spread associated with a preservation

of the rank structure of the original ensemble, as it is the case in the ECC approach, enlarges
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Figure 7: Multivariate scores of time series: energy score (a) and p-variogram score for p =
0.5 (b) and p = 1 (c) in the form of box plots drawn from the application of a 500-block
bootstrapping.

indiscriminately the temporal variability of the forecasts and leads to a slight deterioration of

the pV S and ramp product results.

The d-ECC approach provides scenarios with a temporal variability comparable to the

one of the observation. In that case, the benefit of the calibration step in terms of reliability (at

single forecast lead times) persists at the multivariate level (looking at time trajectories) after

the reconstruction of scenarios with d-ECC. The multivariate reliability, or the reliability of

derived products, is significantly improved after post-processing, though not perfect for specific

derived products. Moreover, d-ECC scenarios perform as well as the original ensemble forecast

in terms of resolution. So, unlike ECC, d-ECC is able to generate reliable scenarios with a level

of resolution that is not deteriorated with respect to the original ensemble forecasts.

7 Conclusion and outlook

A new empirical copula approach is proposed for the post-processing of calibrated ensemble

forecasts. The so-called dual ensemble copula coupling approach is introduced with a focus

on temporal structures of wind forecasts. The new scheme includes a temporal component in

the ECC approach accounting for the error autocorrelation of the ensemble members. The

estimation of the correlation structure in the error based on past data allows adjusting the

dependence structure in the original ensemble.

Based on COSMO-DE-EPS forecasts, the scenarios derived by d-ECC prove to be qualita-

tively realistic and quantitatively of superior quality. Post-processing of wind speed combining

EMOS and d-ECC improves the forecasts in many aspects. In comparison to ECC, d-ECC

drastically improves the quality of the derived scenarios. Applications that require temporal

trajectories will fully benefit of the new approach in that case. As for any post-processing tech-
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Figure 8: Multivariate rank histograms: (a,b,c) average rank histograms and (d,e,f) band depth
rank histograms for time series from the raw ensemble (a,d) and derived with ECC (b,e) and
d-ECC (c,f).
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Figure 9: Product oriented verification of scenarios: (a,b,c) daily means at station, (d,e,f)
maximal upward ramps within a day at station. Results are shown in terms of CRPS (a,d),
CRPS reliability component (b,e) and CRPS resolution component (c,f). The box plots indicate
confidence intervals estimated with block bootstrapping. The arrows in the right corners indicate
whether the performance measure is positively or negatively oriented.
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nique, the benefit of the new copula approach can be weakened by improving the representation

of the forecast uncertainty with more efficient member generation techniques and/or by improv-

ing the calibration procedure correcting for conditional biases. Meanwhile, at low additional

complexity and computational costs, d-ECC can be considered as a valuable alternative to the

standard ECC for the generation of consistent scenarios.

Though only the temporal aspect has been investigated in this study, the dual ensemble

copula approach could be generalized to any multivariate setting. Further research is however

required for the application of d-ECC at scales that are unresolved by the observations. For

example, geostatistical tools could be applied for the description of the autocorrelation error

structure at the model grid level. Moreover, the mathematical interpretation of the d-ECC

scheme developed here would benefit from further theoretical investigations based on idealized

case studies.
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