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Abstract—The large shares of wind power generation in
electricity markets motivate higher levels of operating reserves.
However, current reserve sizing practices fail to account for im-
portant topological aspects that might hinder their deployment,
thus resulting in high operating costs. Zonal reserve procurement
mitigates such inefficiencies, however, the way the zones are
defined is still open to interpretation. This paper challenges the
efficiency of predetermined zonal setups that neglect the location
of stochastic power production in the system, as well as the
availability, cost and accessibility of flexible generating units.
To this end, we propose a novel reserve procurement approach,
formulated as a two-stage stochastic bilevel model, in which the
upper level identifies a number of contiguous reserve zones using
dynamic grid partitioning and sets zonal requirements based on
the total expected operating costs. Using two standard IEEE
reliability test cases, we show how the efficient partitioning of
reserve zones can reduce expected system cost and promote the
integration of stochastic renewables.

Index Terms—Zonal reserve requirements, bilevel optimiza-
tion, stochastic programming, grid partitioning, transmission
capacity allocation.

NOMENCLATURE
A. Sets and Indices

n ∈ N Set of nodes.
` ∈ L Set of transmission lines.
g ∈ G Set of conventional generators.
j ∈ J Set of wind power generators.
z ∈ Z Set of partitions.
s ∈ S Set of scenarios.

B. Parameters

P g, P g Max/min generator’s output.
F` Line rating.
R+
g , R

−
g Up/down reserve capacity offer.

Λ+,Λ− Up/down deterministic reserve requirement.
Cg, C

+/−
g Generation and up/down reserve cost.

Csh, Cct Load shedding and wind curtailment cost.
H Incidence matrices.
M Power transfer distribution factor matrix.
Dn,D Nodal load demand.
πs Probability of scenario.
Ŵj ,Wj,s Wind power point forecast and realization.
χ Maximum withdrawn capacity from day-ahaed

market

C. Decision variables

xn,z Binary variable for grid partitioning.
yz Number of nodes per zone.
ϕ`,z Flowing units on line ` in zone z for expressing

zone connectivity.

cn,z Root node selection.
r+
g,z, r

−
g,z Up/down procured reserve.

λ+
z , λ

−
z Up/down zonal reserve requirement.

f̂`, f`,s Expected power flow and realization in scen. s.
pg,p Day-ahead dispatch of conventional generators.
p+
g,s, p

−
g,s Up/down reserve deployment per scenario.

wj , w
ct
j,s Scheduled and curtailed wind power.

dsh
n,s Nodal load shedding per scenario.
wct
j,s Wind power curtailment per scenario.

Γ` Capacity allocation margin at day-ahead market.

I. INTRODUCTION

Several studies indicate that high shares of wind power
generation require significantly more operating reserves to
accommodate the uncertainty and the variability arising from
forecast errors and inherent fluctuations in the wind regime
[1]. However, simply increasing the reserve capacity require-
ments does not guarantee that the system will have access to
sufficient flexible resources during real-time operation, since
the existing reserve capacity market is myopic about the grid
topology limitations. As a result, in cases when operating
reserves cannot be delivered due to network congestions,
system operators have to resort to more expensive corrective
actions, such as wind curtailment and load shedding.

An implicit way to account for network limitations is
to consider a zonal representation of the system. This ap-
proximation allows system operators to differentiate zonal
reserve requirements based on expected congestion patterns
and the location of stochastic power production. The impact
of network limitations on the procurement of zonal reserve
capacity has been investigated in [2] and [3], whereas authors
in [4] and [5] rely on injection shift factors to evaluate potential
congestions that would limit the deliverability of reserves. De-
spite being an approximation of the true network topology, the
zonal splitting approach is readily compatible with the current
market structure and allows to convey to the reserve market
more complete information about the balancing needs of the
system at specific locations. This is a fundamental property
of the more advanced energy and reserves co-optimization
models based on two-stage stochastic programming. This
methodology is adopted by authors of [6] for considering
contingencies and their associated probabilities on the reserve
procurement process, whereas [7] and [8] focus on wind power
uncertainty. While these approaches minimize by definition
the total expected costs of the system, this result comes at the
expense of violating the cost recovery and revenue adequacy
properties for some uncertainty realizations [9].
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This latter consideration has motivated several studies to use
a stochastic bilevel programming approach that preserves the
existing market structure and its desirable economic properties
not only in expectation, but for every uncertainty outcome.
Authors in [9] adopt this framework for optimally dispatching
wind power in an energy-only market, whereas authors in [10]
employ an analogous approach to define the optimal reserve
requirements in view of wind power uncertainty. In a similar
vein, [11] extends this model to account for the allocation
of cross-border transmission capacity between energy and
reserves. Although these models have shown to improve the
total expected cost in a sequential market-clearing architecture,
they still lack the ability to optimally position reserves in the
system, as the ideal stochastic model does. This stems from the
merit-order principle enforced by the existing market design,
which restricts the procurement of reserves from the cheapest
generators, regardless of their location in the system.

The aforementioned studies considered either a single zone
or a predefined zonal setup for the reserve procurement. This
paper proposes a novel Zonal Preemptive model, which does
not only define the zonal reserve requirements, but it also
considers the zone boundaries as decision variables. The main
goal of this model is to improve the positioning of reserves
in the system, while remaining compatible with the current
market structure. In this work, we build upon [10] and [11] and
we embed grid partitioning algorithms in the stochastic bilevel
problem in order to identify a number of zonal reserve markets
to be cleared independently. Grid partitioning algorithms have
been used already in power system research for intentional
islanding studies in [12] and [13]. However, to the best of
our knowledge, this is the first attempt to rely on them for
setting zonal reserve requirements. The proposed approach can
be used as a decision-support tool by grid operators taking
into consideration the location and forecast uncertainty of
stochastic power production, the asymmetry of balancing costs
as well as the reserve deliverability issues that may arise in
real-time operation due to network constraints.

While zonal reserve allocation is not a novel concept,
the way the zones are defined is still open to interpreta-
tion. Existing studies base the partitioning of the system on
heuristic methods that consider: active and reactive power
flow sensitivities [14]; data-driven clustering techniques [15];
weighted power transfer distribution factors (PTDFs) [16];
reserve market clearing prices [17] or simply use pre-defined
partitions [18] that can be based on geographical boundaries
or ownership. Alternatively, authors in [19] and [20] propose a
method to disqualify zonal reserves if transmission constraints
are likely to limit their deliverability and evaluate their perfor-
mance on the day-ahead market. On the contrary, the proposed
approach relies on a novel partitioning scheme that is solely
driven by the total expected system costs and a high quality
description of system uncertainties in the form of scenarios,
instead of a proxy metric that can only partially describe
the system states and the market outcomes under different
operating conditions.

In addition to the reserve zones configuration our formula-
tion is able to perform an optimal allocation of the inter-zonal
transmission capacity between energy and reserve services as

in [11]. Setting aside part of the transmission capacity for
reserve exchange between adjacent zones has shown to lower
the total operating costs [21] and it is a measure considered
in practice by grid operators [22]. In view of the dynamic
configuration of reserve zones, our methodology is capable
to redefine accordingly the set of cross-zonal lines eligible for
reserve exchange, by adapting the grid partitioning constraints.
Our simulation results are showcased based on both IEEE
RTS-24 and IEEE RTS-96 systems, where we benchmark
our methodology against a sequential approach, the stochastic
energy and reserve co-optimization and the stochastic bilevel
with a single or predefined zones.

The main contributions of the paper are the following:
(i) We combine a grid partitioning algorithm with a stochas-

tic bilevel optimization problem, introducing an addi-
tional degree of freedom in the allocation of zonal reserve
capacity, i.e., the definition of reserve zones boundaries.

(ii) The proposed methodology allows to further approximate
the ideal stochastic energy and reserve co-optimization
model, without resorting to generator-specific reserve
procurement that violates the merit-order principle. In-
stead, by dynamically defining reserve zones, reserve
requirements and cross-zonal transmission capacity, our
methodology is able to improve the deliverability of
reserves, while remaining compatible with existing Eu-
ropean market structure.

(iii) Finally, our work contributes to the ongoing discussion on
the integration of European reserve and balancing markets
in [23], [24] and [25] pointing to the need for a dynamic
redefinition of reserve zones as soon as the procurement
of flexible generation capacity extends beyond national
borders and embraces a regional or continental scale.

The remainder of the paper is organized as follows. The
existing reserve procurement and dispatch models of the
current sequential market architecture as well as the stochastic
energy and reserves co-optimization model that establishes
an ideal benchmark in terms of expected system cost are
reviewed in Section II. The proposed Zonal Preemptive model
is presented in Section III, whereas the reformulation of the
bilevel model as a tractable Mixed-Integer Linear Program
(MILP) and a more computationally efficient solution scheme
based on Benders decomposition are presented in Section IV.
Lastly, Section V elaborates on simulation results based on the
IEEE RTS-24 and IEEE RTS-96 test systems and Section VI
concludes the paper.

II. RESERVE PROCUREMENT AND DISPATCH MODELS

We first provide the mathematical formulation of the exist-
ing European market design, based on the sequential clearing
of the reserve capacity, day-ahead energy and balancing mar-
kets. We then provide a compact formulation of the stochastic
energy and reserve co-optimization model, emphasizing its
main differences compared to the sequential approach.

A. Sequential Approach
Let Λ+ and Λ− indicate the upward and downward reserve

requirements. These are provided as exogenous parameters to
the reserve market clearing algorithm that is formulated as
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min
ΞR

CR =
∑
g∈G

(
C+
g r

+
g + C−g r

−
g

)
(1a)

s.t.
∑
g∈G

r+
g ≥ Λ+,

∑
g∈G

r−g ≥ Λ−, (1b)

0 ≤ r+
g ≤ R+

g , 0 ≤ r−g ≤ R−g , ∀g ∈ G, (1c)

where ΞR = {r+
g , r

−
g ,∀g} is the set of optimization variables,

i.e., up- and downward reserve capacity procured from each
generator. Constraints (1b) guarantee that the pre-determined
reserve requirements Λ are met, whereas (1c) limit the amount
of reserve that can be procured to generators’ capacity offers.

Having reserve capacity procurement r+,∗
g and r−,∗g from

model (1) as fixed parameters, the optimal day-ahead energy
schedule for conventional pg and stochastic wj generators is
obtained solving the following problem

min
ΞD

CD =
∑
g∈G

Cgpg (2a)

s.t.
∑
g∈G

pg +
∑
j∈J

wj =
∑
n∈N

Dn, (2b)

P g + r−,∗g ≤ pg ≤ P g − r+,∗
g , ∀g ∈ G, (2c)

0 ≤ wj ≤ Ŵj , ∀j ∈ J , (2d)

f̂` = M(`,·)
(
H>G p + H>J w −D

)
, ∀` ∈ L, (2e)

− F` ≤ f̂` ≤ F`, ∀` ∈ L (2f)

where ΞD = {pg,∀g; wj ,∀j} is the set of optimization vari-
ables, comprising day-ahead energy quantities for each con-
ventional and stochastic generator. The day-ahead power bal-
ance is enforced by constraint (2b), whereas the production of
conventional units is bounded by the minimum and maximum
generation limits and procured reserves in constraint (2c).
Without loss of generality, stochastic producers are assumed
to be wind power generators only, whose dispatch is limited to
the available point forecast Ŵj in constraint (2d). While this
paper focuses on wind power generation only, the formulations
included in this section and the proposed methodology can
include additional sources of uncertainty, such as solar power
or uncertain demand. Employing a DC network approximation,
power flows are modelled by (2e) using the PTDF matrix M
and are in turn restricted by the corresponding transmission
capacity limits in (2f). Appropriate incidence matrices HG
and HJ map conventional and stochastic generators to the
respective buses in the system.

Approaching the hour of the delivery when wind power
realization Wj,s′ is known, the balancing market is cleared
using the following model to ensure that any deviation from
the day-ahead schedule p∗g, w

∗
j is balanced by appropriate re-

dispatch actions for the uncertainty realization s = s′.

min
ΞB,s’

CB,s′ =
∑
g∈G

Cg

(
p+
g,s′ − p

−
g,s′

)
(3a)

+
∑
j∈J

Cctwct
j,s′ +

∑
n∈N

Cshdsh
n,s′

s.t.∑
g∈G

(
p+
g,s′ − p

−
g,s′

)
+
∑
j∈J

(
∆Wj,s′ − wct

j,s′
)

+
∑
n∈N

dsh
n,s′ = 0

(3b)

0 ≤ p+
g,s′ ≤ r

+,∗
g , ∀g ∈ G, (3c)

0 ≤ p−g,s′ ≤ r
−,∗
g , ∀g ∈ G, (3d)

0 ≤ dsh
n,s′ ≤ Dn, ∀n ∈ N , (3e)

0 ≤ wct
j,s′ ≤Wj,s′ , ∀j ∈ J , (3f)

− F` ≤ f`,s′ ≤ F`, ∀` ∈ L, (3g)

f`,s′ = M(`,·)
[
H>G

(
p∗ + p+

s′ − p−s′
)

+ H>J
(
Ws′ −wct)− (D − dsh

s′
) ]
, ∀` ∈ L (3h)

where ΞB,s′ = {p+
g,s′ , p

−
g,s′ ,∀g; wct

j,s′ ,∀j; dsh
n,s′ ,∀n} is the set

of re-dispatch decisions, which comprises the deployment of
upward and downward reserves, load shedding, wind spillage
and ∆Wj,s′ = Wj,s′ − w∗j denotes system imbalance. The
objective function (3a) includes a cost Cg for the activation
of reserves from those generators that were cleared to pro-
vide reserves and have already received a capacity payment.
Additionally, we assume that the grid operator has to face
a cost Cct and Csh for wind power curtailment and load
not supplied, respectively. Constraint (3b) is the real-time
power balance, whereas constraints (3c)-(3d) limit the reserves
activation to the procured values in (1). The use of corrective
actions is limited by constraints (3e) and (3f), which model
load shedding and wind curtailment, respectively. Finally,
constraints (3g) enforce power flow limits, where real-time
power flows in each scenario are modelled in (3h).

B. Stochastic Energy and Reserve Co-Optimization

An improved method based on two-stage stochastic pro-
gramming allows the grid operator to jointly co-optimize
energy and reserves. In this framework, the first stage models
reserve as well as day-ahead energy scheduling, whereas
the second stage corresponds to the balancing market under
each uncertainty realization contained in the scenario set S.
The stochastic energy and reserve co-optimization model is
formulated as

min
ΞS

CS = CR + CD +
∑
s∈S

πs CB,s (4a)

s.t. (1c), Reserve market
(2b)− (2e), Day-ahead market
(3b)− (3h), Balancing market, ∀s ∈ S

where ΞS = {ΞR ∪ ΞD ∪ ΞB,s,∀s} is the set of optimization
variables. The stochastic co-optimization of energy and re-
serves attains perfect temporal coordination, as opposed to the
sequential model that separates the day-ahead and balancing
decisions. Each generator is pre-positioned even out of merit
order in a way that allows optimal delivery to the system
in case of deviations from the day-ahead schedule. For this
reason, we use the stochastic co-optimization approach as a
benchmark to our proposed methodology, since it provides a
lower bound to the total operating costs.

III. RESERVE AND CAPACITY ALLOCATION MODELS

This section introduces the concepts and the mathematical
formulations that underpin the contributions of this work. The
bilevel models in [10] and [11] are enhanced with a set of
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upper-level grid partitioning constraints described in III-A.
These enable the operator to identify a pre-specified number
of zones in the system, where zonal reserve markets can be
cleared following the problem formulation in III-B.The model
is complemented with a set of upper-level decision variables
that account for the optimal allocation of transmission capac-
ity between energy trading and re-dispatch actions in III-C.
Finally, the full problem formulation of the proposed Zonal
Preemptive methodology is presented in III-D.

A. Grid Partitioning

Let Θ = (N ,L) be a directed graph with N nodes and L
edges describing the direct sequence equivalent topology of a
power system. The partition of such a graph into Z connected
sub-graphs or zones can be achieved by assigning as many
binary variables xn,z ∈ {0, 1} as the number of zones to each
node. If node n belongs to zone z, then xn,z = 1; otherwise
xn,z = 0. Two important properties need to be satisfied in
order to get the desired partition: (1) each node belongs to one
and only zone; (2) the sub-graphs determined by the partition
are connected, i.e., whichever two points are selected inside a
zone, there always exists a path connecting them within the
same zone. The first property is satisfied with∑

z∈Z
xn,z = 1, ∀n ∈ N , (5)

whereas, to achieve the second property, this paper adopts the
single-commodity flow method presented in [12]. As discussed
in [26], the relevant literature includes a variety of methods
that ensure sub-graph connectivity in similar problems, how-
ever, the single-commodity flow has been selected here due to
its simplicity and intuitive understanding. This method relies
on flowing units, which bear no physical meaning, but allow
to express the connectivity as the ability to reach all nodes in a
zone, while staying within its boundaries. This method works
by injecting yz units, i.e., as many as the number of nodes in
the z-th zone, into a single arbitrary node of each sub-graph
and enforcing

yz =
∑
n∈N

xn,z, y
z
≤ yz ≤ yz, ∀z ∈ Z, (6)

where the quantity yz can be bounded by y
z

and yz in order
to require a minimum or a maximum size of each zone in the
system, respectively. A sub-graph is then connected if all the
injected units can flow to the nodes in that sub-graph, without
violating nodal flow balance and branch flow limit constraints.
Nodal flow balance is expressed in a matrix notation as

H>(·,n)ϕ(·,z) + cn,zyz = xn,z, ∀n ∈ N , ∀z ∈ Z, (7)

where H(·,n) indicates the n-th column of the branch inci-
dence matrix, whose `-th value is 1 if line ` enters node n, -1
if it leaves it, or 0 otherwise. The flow of units injected in
zone z over all branches in the system is collected in ϕ(·,z).
Therefore, the scalar product H>(·,n)ϕ(·,z) describes the net in-
or out-coming flow of units to or from node n in zone z. The
bilinear term cn,zyz represents instead the injection of yz flow

units into the root nodes defined by cn,z , whereas the right-
hand-side acts as a sink, i.e., if node n is included in zone z,
it retains one unit.

Note that unlike [12], this modified version of the single-
commodity flow method does not require the root nodes cn,z to
be pre-specified. This requirement would limit the degrees of
freedom of the partitioning algorithm, as it relies on the choice
of the initial nodes, from which the sub-graphs are generated.
This last step is not necessary here, since cn,z is treated as
a binary variable, which selects a node where the units are
injected. The following constraints are added to ensure that
the selected root nodes are mutually exclusive and that only
one node per zone is selected as the root, i.e,∑

z∈Z
cn,z ≤ 1, ∀n ∈ N , (8)∑

n∈N
cn,z = 1, ∀z ∈ Z. (9)

Finally, the branch flow limits are specifically defined to
restrict the flow of units ϕ`,z to those lines that have both
ends included in the same sub-graph. This aspect is modelled
using the following constraints

− ΦF`,z ≤ ϕ`,z ≤ ΦF`,z , ∀` ∈ L, ∀z ∈ Z, (10)
− ΦT`,z ≤ ϕ`,z ≤ ΦT`,z , ∀` ∈ L, ∀z ∈ Z, (11)

ΦF`,z = yz
(
HF(`,·)x(·,z)

)
, ∀` ∈ L, ∀z ∈ Z, (12)

ΦT`,z = yz
(
HT(`,·)x(·,z)

)
, ∀` ∈ L, ∀z ∈ Z. (13)

where HF and HT indicate “from” and “to” incidence ma-
trices, respectively. For any given sub-graph, the maximum
flow of units on each branch is bounded both by ΦT`,z
and ΦF`,z . These are equal to the injected quantity yz , if
the line is fully within the sub-graph, or 0, otherwise. This
condition is modelled with the scalar products HF(`,·)x(·,z)
and HT(`,·)x(·,z), whose values are either 1, if the “from”
or “to” node of line ` is included in zone z, or 0, if not.
Therefore, the flow of units is prevented, unless both scalar
products in (12)-(13) are equal to 1. In this case, ϕ`,z is limited
by yz , which always represents an upper bound to the highest
possible flow of units.

To summarize, the grid partitioning requires the set of deci-
sion variables ΞG = {xn,z, cn,z,∀n, ∀z; yz,∀z; ϕ`,z,∀`,∀z}
constrained by (5) - (13) in the upper-level problem of the pro-
posed bilevel methodology. Section IV of the paper describes
in detail the linearization of the bilinear terms that appear in
constraints (7), (12) and (13) using the Big-M approach [27].

B. Dynamic Reserve Procurement

The proposed methodology allows the grid operator to
identify and clear Z independent reserve markets, each of
them corresponding to a zone of the partition. Although the
objective remains to minimize the total expected system cost,
zonal requirements can be differentiated while respecting the
merit order of generators that participate in each reserve
market. The dynamic reserve procurement model constitutes
one of the two lower-level problems in the bilevel structure of
the proposed methodology and it is formulated as
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min
ΞRz

CR,z =
∑
g∈G

(
C+
g r

+
g + C−g r

−
g

)
(14a)

s.t.∑
g∈G

r+
g,z ≥ λ+

z , ∀z ∈ Z, (14b)∑
g∈G

r−g,z ≥ λ−z , ∀z ∈ Z, (14c)

0 ≤ r+
g,z ≤ R+

g

(
HG(g,·)x(·,z)

)
, ∀z ∈ Z, ∀g ∈ G, (14d)

0 ≤ r−g,z ≤ R−g
(
HG(g,·)x(·,z)

)
, ∀z ∈ Z, ∀g ∈ G, (14e)

r+
g =

∑
z∈Z

r+
g,z, ∀g ∈ G, (14f)

r−g =
∑
z∈Z

r−g,z, ∀g ∈ G (14g)

where ΞRz = {r+
g,z, r

−
g,z,∀g,∀z} is the set of decision vari-

ables: r+
g,z and r−g,z represent up- and downward reserve from

generator g in zone z, respectively. Note that since xn,z is
an upper-level variable, it enters (14) as a parameter, thus
rendering model (14) a linear programming problem. This
structure allows to use the associated Karush-Kuhn-Tucker
(KKT) conditions to reformulate the bilevel structure into a
mathematical problem with equilibrium constraints (MPEC).
The upward and downward zonal requirements λ+

z and λ−z
imposed through (14b)-(14c) also enter this formulation as pa-
rameters, since they are upper-level decision variables. Zonal
reserve requirements λz are fulfilled by generators that belong
to the corresponding zones. The scalar product in (14d)-(14e)
between HG(g,·) and x(·,z) indicates whether generator g is
eligible for providing reserve to zone z. Finally, (14f)-(14g)
define the overall reserve to be acquired from each generator.

C. Transmission Capacity Allocation

In cases when flexible resources are concentrated in a cer-
tain zone of the system, the grid operator could set aside part
of the cross-zonal transmission capacity in order to facilitate
the exchange of reserves. This aspect is modelled in the
proposed formulation by means of an additional set of upper-
level decision variables ΞC = {h`,z,Γ`,z,Γ`}, which defines
the available capacity for energy trading on each cross-zonal
line. Consider Fig. 1 where a 4-bus system is partitioned in
two possible configurations. Note that as the zones are defined

W1

n1 n2

n4ℓ4

ℓ2ℓ3

ℓ1

n3

zone 1 zone 2

W1

n1 n2

n4ℓ4

ℓ2ℓ3

ℓ1

n3

zone 1

zone 2

(a) (b)

Fig. 1. Illustrative case of two possible configurations of grid partitioning on
a 4-bus system. Thicker lines indicates cross-zonal interconnections.

dynamically, so are the cross-zonal lines eligible for reserve
exchange, i.e., lines `1 and `4 in Fig. 1(a) as opposed to lines
`2 and `4 in Fig. 1(b). Therefore, the partitioning identifies
endogenously the lines whose capacity can be set aside for
reserve exchange. This aspect is modelled with an auxiliary
integer variable h`,z , defined as the number of nodes that a
line ` has in zone z, according to the following expression

h`,z = HF(`,·)x(·,z) + HT(`,·)x(·,z), ∀` ∈ L, ∀z ∈ Z. (15)

The values that h`,z can take are: 0, 1 or 2 and they reflect
all possible configurations between lines and zones. In the
first case h`,z = 0, the line is totally outside the considered
zone, e.g., line `2 with respect to zone 1 in Fig. 1(a); in the
second case h`,z = 1, the line is cross-zonal because only one
of the two nodes is included in a zone, e.g., line `1 in Fig.
1(a); in the third case, h`,z = 2 indicates a line that is fully
included in the considered zone, e.g., `1 in Fig. 1(b). Only
when h`,z = 1 a portion of the capacity of line ` is set aside,
while the other cases identify domestic lines whose capacity is
entirely allocated for energy trading in the day-ahead market.
The following set of constraints limits the capacity allocation
for reserve exchange Γ`,z to or from zone z on line `,

Γ`,z ≤ χF` h`,z, ∀` ∈ L, ∀z ∈ Z, (16)
Γ`,z ≤ χF` (2− h`,z) , ∀` ∈ L, ∀z ∈ Z, (17)

where a predefined parameter χ is included in order to limit
the maximum capacity that can be withdrawn from day-ahead
market and F` indicates the line rating. When h`,z is either
0 or 2, one of the above constraints binds Γ`,z to be zero,
thus preventing any capacity of that line to be set aside. In
the remaining case, h`,z = 1, both (16) and (17) state that the
share of capacity can be up to the χ% of the line rating. The
remaining constraints include

0 ≤ Γ`,z ≤ Γ`, ∀` ∈ L, ∀z ∈ Z, (18)

Γ` =
1

2

∑
z

Γ`,z, ∀` ∈ L, (19)

that serve a twofold purpose. The first is to enforce non-
negativity of Γ`,z , the second is to define Γ`, which is used to
define uniquely the value of capacity to be set aside on each
line `, regardless of the zone considered. Note how the use of
1
2 prevents counting the line capacity twice in (19).

Using the above transmission capacity allocation scheme,
day-ahead power flows are bounded by F` − Γ`, instead of
F` as in the conventional day-ahead market of the sequential
approach. This limits the expected power flows at the day-
ahead stage, in order to ensure that enough transmission
capacity is available during real-time operation.

D. Zonal Preemptive Problem Formulation

The proposed methodology builds upon the recent work in
[10] and [11] that also adopts a stochastic bilevel framework
for setting reserve requirements. While previous studies con-
sidered either a single zone or a predefined zonal setup, we
improve the positioning of reserves by defining zone bound-
aries together with their reserve requirements. The complete
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problem formulation, where both reserve and transmission
capacity are dynamically allocated, is formulated as

min
ΞMz

CMz = CR + CD +
∑
s∈S

πs CB,s (20a)

s.t. (r+
g , r

−
g ) ∈ arg


minimize

Ξ′Rz

CRz

subject to
constraints (14b)− (14g)

 , (20b)

(pg, wj) ∈ arg


minimize

Ξ′D
CD

subject to
constraints (2b)− (2f)

 , (20c)

λ+
z ≥ 0, λ−z ≥ 0, ∀z ∈ Z, (20d)

(3b)− (3h), Balancing market, ∀s ∈ S,
(5)− (13), Grid partitioning,
(15)− (19), Capacity allocation,

where ΞMz = {λ+
z , λ

−
z ,∀z ∪ ΞR ∪ ΞD ∪ ΞB,s,∀s ∪ ΞG ∪ ΞC}

is the set of upper-level decision variables. This comprises:
zonal reserve requirements λz; reserve, day-ahead and bal-
ancing market decision variables, which are constrained by
the corresponding lower-level problems; grid partitioning and
transmission capacity allocation variables ΞG and ΞC, respec-
tively. Lower-level problem (20b) accounts for the dynamic
reserve allocation strategy described in III-B, whereas (20c)
is the same day-ahead market clearing model as in model (2)
where line ratings F` are substituted with (F` − Γ`).

The mathematical structure of model (20), ensures that the
reserve capacity and day-ahead energy markets are cleared
independently, while none of these markets can foresee the
future re-dispatch actions. This modelling approach allows to
replicate the European market architecture and in the mean-
time the upper-level problem can still anticipate the effect of
reserve market parameters, i.e. zonal setting, inter-area trans-
mission allocation and reserve requirements, on every market
and on the total expected system cost. In particular, the grid
partitioning constraints embedded in the upper-level problem,
enable to define the optimal reserve zone configuration such
that the total expected system cost is minimized.

For the sake of clarity, Fig. 2 illustrates the structure and
the different components of the Zonal Preemptive model.

Scenario
 set

Number of 
zones 

Upper level

Reserve
market 

Day-ahead 
market

Lower level Lower level

Grid partitioning..................
Reserve requirements.......... 
Capacity allocation..............
Balancing market constraints

Fig. 2. Conceptual representation of the proposed methodology.

This structure establishes a closed-loop feedback between
the upper-level problem, defining the optimal reserve market
parameters (i.e. reserve zones x, reserve requirements Λ and
transmission capacity allocation Γ) and the lower-level prob-
lems, accounting for their impact on the day-ahead and bal-
ancing markets. According to this structure, the reserve zones
defined by the upper-level problem are fed as fixed parameters
in the reserve capacity market. Then, the procured reserved
quantities are transmitted to the day-ahead and balancing mar-
kets that are cleared for every uncertainty realization s ∈ S .
As opposed to the existing sequential approach, in which all
reserve market parameters are exogenously defined, the Zonal
Preemptive model intrinsically optimizes these values in order
to minimize the total expected system cost.

Despite that our Zonal Preemptive model shares the same
objective function and constraints as the stochastic energy
and reserve co-optimization model presented in Section II-B,
our formulation guarantees that the reserve capacity and day-
ahead energy markets respect the merit-order principle, such
that the cost recovery and revenue adequacy properties hold
for any uncertainty realization. The previous works in [10]
and [11] were aiming to improve the efficiency of the reserve
procurement process by tuning the zonal reserve requirements
and inter-zonal transmission capacity allocation that allows the
exchange of reserve products. However, both models still re-
quire the ex-ante definition of reserve zones that is a source of
inefficiency if energy market reaction and network congestions
are not taken into consideration during the decision-making
process. To this end, our Zonal Preemptive model comes to fix
precisely this design flaw of the previous models by accounting
for an additional degree of freedom, i.e., the definition of
reserve zones, accounting for the structure of forecast errors,
the impact of reserve market setting on the energy trading and
the deliverability of reserves in real-time operation.

IV. SOLUTION APPROACH

All bilinear terms that appear in the grid partitioning con-
straints can be expressed as a product between a binary and
an integer variable, i.e., yz

(
HF(`,·)x(·,z)

)
, yz

(
HT(`,·)x(·,z)

)
and cn,zyz . The linearization of these terms is illustrated for
the latter case, by introducing an auxiliary variable un,z that
replaces the product cn,zyz in (7) according to the Big-M
approach [27]. The following constraints are added

yz −M (1− cn,z) ≤ un,z ≤ yz −m (1− cn,z) (21)
m · cn,z ≤ un,z ≤M · cn,z (22)

where m = 1 and M = N , i.e., the number of nodes in the
system. Note that the specific values of m and M are used
for all the bilinear terms that appear in the grid partitioning
constraints. These values are straightforward to derive: each
bilinear term is either 0 or equal to the sub-graph cardinality
yz , thus 1 and N always represent valid bounds.

For any feasible partition of the system defined by the upper
level variables, each lower level problem is linear and convex.
Thus, the bilevel problem is reformulated as an MPEC, where
each lower-level problem is replaced by the corresponding
KKT conditions. This step introduces additional auxiliary
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binary variables in order to linearize the complementarity
slackness constraints in the KKT conditions. The MPEC
problem is then recast as a single-level MILP by using the Big-
M method. This solution approach is typically used in power
systems research, although authors of [28] recently pointed
out some critical limitations.

As already mentioned, we envision the utilization of the
proposed Zonal Preemptive model mainly as decision-support
tool for the network operators rather than as an online market-
clearing algorithm. Hence, the computational requirements
regarding the maximum solution time of the model are not
strict. Nevertheless, to reduce the computational burden of
the proposed model, we take advantage of the special struc-
ture of the bilevel problem, whose second-stage constraints
are independent per scenario, and we implement a multi-
cut Bender’s decomposition scheme [29]. The complete set
of KKT conditions of the lower-level problems, along with
the formulations of the Bender’s master problem and sub-
problems, are provided in Appendix A and Appendix B,
respectively.

V. RESULTS

A. Wind Power Scenarios

In this paper, probabilistic forecast errors of wind power
generation are assumed to follow a Beta distribution, whose
parameters are calculated according to [30] and the error vari-
ance follows a quadratic function of the per unit point forecast.
The spatial correlation structure in wind power generation
at different locations is modelled by means of a Gaussian
copula function with a rank correlation matrix based on actual
wind power realizations from the Danish system [31]. A
large number of scenarios is then generated by sampling the
resulting multivariate joint probabilistic forecast for a single
time-period. In order to keep computational tractability in the
stochastic programs, scenario sets Si are reduced accordingly
to 100 realizations using the fast-forward scenario reduction
technique [32]. The number of 100 realizations has been
chosen on the basis of an in-sample stability analysis, where
for each tested set size, the proposed methodology has been
simulated 10 times, in order to observe the variability of
the objective function in terms of the maximum pairwise
difference between different runs. Table I lists the results of
the in-sample stability analysis for the RTS24 system and it
shows that increasing the set size beyond 100 does not show

TABLE I
MAXIMUM OBJECTIVE FUNCTION PAIRWISE DIFFERENCE.

VALUES IN PERCENTAGE OF THE MEAN VALUE.

Scenario set size

10 50 100 150 200

Stochastic 10.58 5.19 2.90 2.97 2.14

Z
on

al

Z = 1 10.81 5.37 2.86 2.80 2.29
Z = 2 11.13 6.21 2.94 2.84 2.59
Z = 3 10.97 6.20 2.86 2.83 2.57
Z = 4 10.97 6.21 2.90 2.87 2.55
Z = 5 10.98 6.20 2.90 2.85 2.55

considerable improvement compared against the increased
computational time.

B. Stability Analysis (IEEE RTS-24 System)

The proposed methodology is showcased on a modified ver-
sion of the IEEE RTS-24 system, whose detailed parameters
are available in [33]. In particular, three lines are de-rated and
six wind farms with 200 MV installed capacity are included
in the system at selected locations. Simulation results are
benchmarked against the stochastic co-optimization of energy
and reserve (4) and the conventional approach of sequentially
cleared markets, i.e., (1), (2) and (3). Reserve requirements Λ
in model (1) are calculated as

Λ+ = Ŵtot − F̂−1
W (q) (23)

Λ− = F̂−1
W (1− q)− Ŵtot; (24)

where Ŵtot and F̂W represent the expected value and the
predictive Cumulative Density Function (CDF) of the total
wind power probabilistic forecast, respectively, while the pre-
determined quantile q of the distribution is chosen in line with
grid operator’s risk aversion. The proposed methodology is
tested either with or without transmission capacity allocation,
considering three values of the parameter χ and a minimal
zonal size of 4 nodes.

In order to test the stability of the considered models against
small deviations in the uncertain wind power generation, up-
and downward reserve levels obtained with scenario set S1 are
plugged into (2) and (3), where the uncertainty is described
by 10 different scenario sets Si (i = 2, . . . , 11), based on
the same multivariate probabilistic forecast. Figure 3 shows
the corresponding total cost, which are normalized with the
solution of the stochastic model obtained with each set Si. It
stands out that the zonal approach outperforms the sequential
one both in terms of stability and cost effectiveness, regardless
of the chosen quantile q for setting reserve levels. The zonal
model shows an improvement with just 2 zones, whereas it
coincides with model [10] if a single zone is considered.

Sequential

Fig. 3. Stability analysis in the RTS 24 bus system. Asterisks represent the
mean values, upper and lower edges of rectangles represent max and min
values, respectively.
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TABLE II
COST BREAKDOWN OF SELECTED MODELS

Reserve
cost
[k$]

Day-ahead
cost
[k$]

Balancing
cost
[k$]

Total
cost
[k$]

Sequential 6.015 24.41 0.322 30.75
Stochastic 3.135 25.53 -0.960 27.70

No capacity allocation
χ = 0%

Z
on

al

Z = 1 3.810 24.34 0.432 28.59
Z = 2 3.861 24.09 0.455 28.40
Z = 3 3.903 24.02 0.440 28.36
Z = 4 3.901 24.01 0.434 28.35

Capacity allocation
χ = 100%

Z
on

al

Z = 1 3.810 24.34 0.432 28.59
Z = 2 3.160 25.54 -0.997 27.70
Z = 3 3.216 25.48 -0.990 27.70
Z = 4 3.169 25.54 -1.003 27.70

The effect of allowing transmission capacity allocation on
cross-zonal lines is to lower the costs further, provided that
more than 60% of eligible line capacities is withdrawn from
the day-ahead market. This result resembles the line-switching
approach, where the cost effectiveness of a dispatch can
be improved if power flows are re-routed by switching off
selected lines. In this case, reducing the capacity allocated
to the day-ahead market ensures that enough headroom is
available for balancing the system, thus avoiding bottlenecks
that would result in expensive corrective actions.

C. Cost Breakdown

Table II shows the cost breakdown of selected models solved
with the same scenario set S1. The conventional model in
this case relies on the top and bottom 3% of the total wind
power distribution for setting reserve requirements. This ap-
proach results in higher cost for reserves, as it cannot account
neither for their location in the system nor for the network
constraints that might hinder their accessibility. Instead, the
preemptive model with a single zone is able to regulate reserve
requirements based on expected re-dispatch actions. Although
improving the results considerably, this approach still relies
on a single reserve market and thus it follows the merit order
of generators’ reserve capacity offers. The implication is that
while total reserve levels can be fine-tuned, their location and
position in the system cannot.

This aspect motivates the introduction of a zonal setup
that provides the grid operator with additional flexibility to
approximate the ideal solution. As the number of zones
increases, so does the ability to lower the costs towards the
stochastic model and to optimally allocate reserves. Note that
the partitioning in the proposed methodology is solely driven
by the total expected costs and it does not require any root
node to be pre-specified, which could introduce a degree of
arbitrariness in the partition. Therefore, it inherently considers
the availability of reserves in the system, their procurement
and their activation costs given the network limitations. Table
III summarizes the zonal reserve costs referring to the case of 3

TABLE III
ZONAL RESERVE COST OF GRID PARTITIONS IN FIG. 4

(a) No capacity allocation
χ = 0%

(b) Capacity allocation
χ = 100%

Reserve volume
[MW]

Avg.
cost

[$/MW]

Reserve volume
[MW]

Avg.
cost

[$/MW]

Up Dw Total Up Dw Total

Zone 1 60.0 35.7 95.7 15 0 67.9 67.9 8.54
Zone 2 75.9 112.1 188.0 12 27.5 143.9 171.4 9.72
Zone 3 40.0 0 40.0 14.3 30.0 30.0 60.0 13.33

Total 175.9 147.8 323.7 12.7 57.5 241.8 299.3 10.23

  1   2

  3

  4   5

  6

  7

  8

  9   10

  11   12

  13  14  15

  16

  17

  18

  19   20

  21   22

  23

  24

  1   2

  3

  4   5

  6

  7

  8

  9   10

  11   12

  13  14  15

  16

  17

  18

  19   20

  21   22

  23

  24

(a) (b)

Zone 1 
Zone 2 
Zone 3

Fig. 4. Partition of the RTS-24 system into 3 zones without (a) and with
(b) transmission capacity allocation on selected lines. Triangles indicate wind
power, large markers indicate the presence of generators.

zones in Fig. 4. The zonal setup allows to procure nearly 60%
of total requirements from zone 2, where the cost per MW
is lower. Zone 3 instead procures less reserve, but from more
expensive generators ensuring that enough balancing power is
located close to wind farms at nodes 3 and 5.

Two effects are evident as we allow for transmission ca-
pacity allocation on cross-zonal lines: the first is that reserve
costs decrease, since more power can be reserved from cheaper
generators, while ensuring that they can deliver it to the grid;
the second is that day-ahead costs increase, as we reduce the
network capacity available for energy trading. A consequence
of this latter aspect is that less wind power will be dispatched
at this stage. To compensate for that and to avoid expensive
wind curtailment penalties, more downward reserve needs to
be procured and activated, as can be seen from Table III.

D. RTS-96 Case Study

The proposed methodology is also tested in the 3-area RTS-
96 system, for which relevant data is taken from [34]. The
system is considered during the peak hour with a total demand
of 7.5 GW, 18% of which is covered by wind power located
in 5 locations. Original line ratings are used, whereas the
minimum power output of controllable units is set to zero.
In order to exclude the generator-specific resolution of the
stochastic approach, a minimal zonal size of 10 nodes has
been enforced in this system.
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Figure 5 shows the resulting total expected costs, where
we compare the proposed methodology to the sequential ap-
proach with varying reserve requirements (i.e. corresponding
to different quantiles q in (24) and (23)) and a zonal model
with a predetermined partitioning variable xn,z , according to
the standard partitioning of this system into three zones. This
approach allows us to isolate the contribution of the flexible
zone boundaries definition provided by the proposed Zonal
Preemptive approach. The partition into 3 zones is shown in
Fig. 6 together with the common subdivision of the RTS-
96 system into 3 areas. The total expected costs indicate
that tuning reserve requirements while considering a single
reserve market, i.e., Z = 1, does not result in significant
savings, as opposed to the sequential approach. The Zonal
Preemptive approach with a fixed partition that adheres to the
3 areas in Fig. 6 corresponds the methodology in [10] and it
performs better than the single zone. However, as the zones
are dynamically determined by the partitioning variables xn,z ,
the total costs fall near the lower bound represented by the
stochastic co-optimization of energy and reserve. It suffices to
split the system into 2 zones to stay within the 0.1% increase
from the lower bound, even without allocating transmission
capacity on cross-zonal lines. The resulting large-scale MILP
problem is solved with Gurobi setting a 0.1% optimality gap
on a quad-core laptop with 8 GB of RAM and 2.4 GHz of
CPU. Bender’s decomposition converged in 3.50 · 102 s with
1 zone, 2.15 ·103 s with 2 zones and 4.04 ·104 s with 3 zones.

E. Policy implications for reserve zones configuration

As discussed in [23] and emphasized forcefully in Article
37 of [35], European system operators are setting the ground
for increased cross-border cooperation. Tasks for regional
coordination centers include regional sizing of reserve capacity
and the facilitation of regional procurement of balancing
services. However, as it is shown in our case studies, simply
enlarging the pool of reserves might not be sufficient to
improve overall market efficiency, if network constraints are
not taken into account. From a policy perspective, the results
from the RTS96 system, point to the fact that as reserve and
balancing markets move from national to regional scale in
order to pool more flexible resources and mitigate risks, the
need for redefining zonal boundaries becomes increasingly
important. To this end, our methodology clearly indicates the
need for ‘smart’ splitting of reserve capacity markets into a
number of zones, in order to enable the optimal allocation
of generation resources between energy and reserve services.
In addition, our case study shows how the ideal lower bound
can be approximated with a dynamic definition of zones, as
opposed to a single large zone or smaller predefined zones
that obey conventional boundaries such as national borders,
geographical location or ownership.

As previously explained in Section IV, we do not advocate
for the adoption of the proposed methodology as an online
market-clearing mechanism, but rather as decision-support
tool for different stages of operational planning, e.g., on a
daily, weekly or seasonal basis. In this case, the frequency
of updating the reserve zones configuration should take into

q=1% q=3% q=5% Z=1 Z=2 Z=3 Z=3
Stoch.

+1%

+2%

+3%

+4%

+5%

+6%

+7%

In
cr

ea
se

 in
 to

ta
l c

os
ts

Sequential
Zonal - Dynamic
Zonal - Fixed

Fig. 5. Increase in total expected costs for the load demand peak hour in the
RTS-96 system. Costs normalized with the stochastic solution.
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Fig. 6. Partition of the 3-area IEEE RTS-96 system according to the Zonal
Preemptive model with χ = 0. Triangles indicate wind farms.

consideration operators’ requirements but also facilitate the
operations of the various stakeholders who participate in
the electricity markets. On the one hand, updating the zone
boundaries on a daily basis should yield the highest cost
reductions, since the process would benefit from the most
recent information and day-ahead forecasts. The downside of
a frequent redefinition of zones, however, would be increased
uncertainty and volatility for those flexible units that provide
the balancing services, as they might be frequently re-assigned
to different zones. On the other hand, a seasonal partition of
the system could mitigate the organizational burden for market
participants, but it would unavoidably rely on a more coarse
description of the system and lower quality forecasts that will
undermine a portion of the potential cost savings.

Considering the above discussion, it becomes apparent that
the proposed methodology provides the operators with the
mathematical tools to perform a dynamic configuration of
the zonal reserve setup. However, the frequency of this zonal
reconfiguration involves also some regulatory consideration in
order to ensure a fair compromise between the preferences of
the system operator and the market participants.

VI. CONCLUSION

This paper described a novel methodology for reserve
procurement that further approximates the efficiency of the
stochastic co-optimization of energy and reserves in terms of
total operating costs, while still respecting the existing market
principles. Building upon recent work on stochastic bilevel
optimization, we embed grid partitioning constraints in the
upper-level problem and use them to determine not only the
zonal reserve requirements but the zonal boundaries as well.
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Unlike other partitioning schemes, our methodology is
solely driven by the total expected system costs and the most
recent uncertainty forecasts, instead of relying on historical
data that may not reflect the actual system state. The proposed
model allows grid operators to perform a dynamic zoning of
the system for reserve procurement, depending upon gener-
ation uncertainty and network limitations. In addition, this
Zonal Preemptive model can contribute to the ongoing pol-
icy discussion towards a common European reserve capacity
market, where reserve zones are dynamically defined upon
system conditions instead of geographical borders. Simulation
results on the RTS96 system show that the stochastic lower
bound can be adequately approximated within the 0.1% with
only two zones, even if a minimal zonal size of 10 nodes is
required. This result suggests that the computational burden of
the proposed approach can be reduced by limiting the number
of reserve zones, without a major efficiency loss in terms of
expected system cost. Moreover, the combination of dynamic
reserve procurement with cross-zonal transmission capacity
allocation has shown to be beneficial in highly congested sys-
tems. Setting aside part of the available transmission capacity
grants the grid operator additional flexibility to approach the
efficiency of the stochastic dispatch.

Future work will address the current limitations of the
proposed methodology considering inter-temporal constraints,
which may affect the partitioning of the system and the
deployment of reserves. Extending the proposed methodology
to a multi-period formulation would further improve the po-
sitioning of flexible generation capacity in the system, as it
would allow a more accurate representation of power system
dynamics. Ramping rates of generators as well as energy
storage devices may significantly affect the definition of zones
in the system and the corresponding reserve requirements.

APPENDIX A

This section presents the KKT conditions of the dynamic re-
serve procurement problem in Section III-B and the day-ahead
market clearing in Section II. The corresponding optimization
problems are repeated in a standard notation to ease the
identification of dual variables, which are indicated as γ∗ for
constraint (∗). Lastly, symbol ⊥ indicates the complementarity
conditions between the constraints.

A. Zonal reserve market

1) Problem formulation:
min
ΞRz

CR,z =
∑
g∈G

(
C+
g r

+
g + C−g r

−
g

)
(25a)

s.t.

λ+
z −

∑
g∈G

r+
g,z ≤ 0, ∀z ∈ Z, (25b)

λ−z −
∑
g∈G

r−g,z ≤ 0, ∀z ∈ Z, (25c)

r+
g,z −R+

g

(
HG(g,·)x(·,z)

)
≤ 0, ∀z ∈ Z, ∀g ∈ G, (25d)

r−g,z −R−g
(
HG(g,·)x(·,z)

)
≤ 0, ∀z ∈ Z, ∀g ∈ G, (25e)

− r+
g,z ≤ 0 ∀z ∈ Z, ∀g ∈ G, (25f)

− r−g,z ≤ 0 ∀z ∈ Z, ∀g ∈ G, (25g)

r+
g −

∑
z∈Z

r+
g,z = 0, ∀g ∈ G, (25h)

r−g −
∑
z∈Z

r−g,z = 0, ∀g ∈ G (25i)

2) KKT conditions:
C+
g − γ(25b)

z + γ(25d)
g,z − γ(25f)

g,z + γ(25h)
g = 0, ∀g, ∀z, (26)

C−g − γ(25c)
z + γ(25e)

g,z − γ(25g)
g,z + γ(25i)

g = 0, ∀g, ∀z, (27)

0 ≥ λ+
z −

∑
g∈G

r+
g,z ⊥ γ(25b)

z ≥ 0, ∀z (28)

0 ≥ λ−z −
∑
g∈G

r−g,z ⊥ γ(25c)
z ≥ 0, ∀z (29)

0 ≥ r+
g,z −R+

g

(
HG(g,·)x(·,z)

)
⊥ γ(25d)

g,z ≥ 0, ∀g,∀z (30)

0 ≥ r−g,z −R−g
(
HG(g,·)x(·,z)

)
⊥ γ(25e)

g,z ≥ 0, ∀g,∀z (31)

0 ≥ −r+
g,z ⊥ γ(25f)

g,z ≥ 0, ∀g,∀z (32)

0 ≥ −r−g,z ⊥ γ(25g)
g,z ≥ 0, ∀g,∀z (33)

r+
g −

∑
z∈Z

r+
g,z = 0, ∀g, (34)

r−g −
∑
z∈Z

r−g,z = 0, ∀g. (35)

B. Day-ahead market

1) Problem formulation:
min
ΞD

CD =
∑
g∈G

Cgpg (36a)

s.t.∑
g∈G

pg +
∑
j∈J

wj −
∑
n∈N

Dn = 0, (36b)

P g + r−,∗g − pg ≤ 0 ∀g ∈ G, (36c)

pg − P g + r+,∗
g ≤ 0, ∀g ∈ G, (36d)

− wj ≤ 0, ∀j ∈ J , (36e)

wj − Ŵj ≤ 0, ∀j ∈ J , (36f)

M(`,·)
(
H>G p + H>J w −D

)
− F` ≤ 0, ∀` ∈ L, (36g)

− F` −M(`,·)
(
H>G p + H>J w −D

)
≤ 0, ∀` ∈ L, (36h)

2) KKT conditions:
Cg + γ(36b) − γ(36c)

g + γ(36d)
g . . .

+
∑
`∈L

(γ(36g)
` − γ(36h)

` )M(`,·)H
>
G 1g = 0, ∀g ∈ G, (37)

γ(36b) − γ(36e) + γ(36f) . . .

+
∑
`∈L

(γ(36g)
` − γ(36h)

` )M(`,·)H
>
J 1j = 0, ∀j ∈ J , (38)

∑
g∈G

pg +
∑
j∈J

wj −
∑
n∈N

Dn = 0 (39)

0 ≥ P g + r−,∗g − pg ⊥ γ(36c)
g ≥ 0, ∀g ∈ G, (40)

0 ≥ pg − P g + r+,∗
g ⊥ γ(36d)

g ≥ 0, ∀g ∈ G, (41)

0 ≥ −wj ⊥ γ(36e)
j ≥ 0, ∀j ∈ J , (42)

0 ≥ wj − Ŵj ⊥ γ(36f)
j ≥ 0, ∀j ∈ J (43)
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0 ≥M(`,·)
(
H>G p + H>J w −D

)
− F`

⊥ γ(36g)
` ≥ 0,

∀` ∈ L, (44)

0 ≥ −F` −M(`,·)
(
H>G p + H>J w −D

)
⊥ γ(36h)

` ≥ 0,
∀` ∈ L. (45)

APPENDIX B

The master problem of the multi-cut Bender’s decomposi-
tion scheme at iteration η is formulated as

min
ΞMP

CR + CD +
∑
s∈S

πsϑs (46a)

s.t. (26) - (35), KKT of zonal reserve market
(37) - (45), KKT of day-ahead market
(20d), Zonal reserve requirements,
(5)− (9), Grid partitioning,
(15)− (19), Capacity allocation,
ϑs ≥ ϑ0 ∀s ∈ S (46b)

ϑs ≥ C(k)
B,s +

∑
g

γ(47b)(k)
g,s

(
r+
g − r+;(k)

g

)
. . . (46c)

+
∑
g

γ(47c)(k)
g,s

(
r−g − r−;(k)

g

)
+
∑
g

γ(47d)(k)
g,s

(
pg − p(k)

g

)
. . .

+
∑
j

γ(47e)(k)
j,s

(
wj − w(k)

j

)
, ∀s ∈ S, ∀k = 1, . . . , η − 1

where γ(∗)(k) are the dual variables of constraints (∗) in the
sub-problem, whose formulation for scenario s = s′ and
iteration η is the following

min
ΞSP

CB,s′ =
∑
g∈G

Cg

(
p+
g,s′ − p

−
g,s′

)
(47a)

+
∑
j∈J

Cctwct
j,s′ +

∑
n∈N

Cshdsh
n,s′

s.t. r+
g = r+;(η)

g : γ(47b)(η)

g,s′ (47b)

r−g = r−;(η)
g : γ(47c)(η)

g,s′ (47c)

pg = p(η)
g : γ(47d)(η)

g,s′ (47d)

w+
j = w

(η)
j : γ(47e)(η)

j,s′ (47e)

(3b)− (3h), Balancing market, s = s′,

where first-stage decision variables r+
g , r−g , pg and wj are fixed

to the solution of the master problem at the current iteration.
As the problem has complete recourse, no need for feasibility
cuts is required and S new optimality cuts are added to the
master problem at each iteration. The algorithm converges to
a solution when the condition |

∑
s πsϑs −

∑
s πsC

(η)
B,s | ≤ ε is

satisfied for a predefined tolerance ε.
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[32] J. Dupačová, G. Consigli, and S. W. Wallace, “Scenarios for Multistage
Stochastic Programs,” Ann. Oper. Res, vol. 100, no. 1-4, pp. 25–53,
2000.

[33] C. Ordoudis, P. Pinson, and M. Zugno, “An updated version of the IEEE
rts 24-bus system for electricity market and power system operation
studies,” Technical University of Denmark (DTU), pp. pp. 1–5, 2016.

[34] H. Pandzic, Y. Dvorkin, T. Qiu, Y. Wang, and D. Kirschen,
“Unit Commitment under Uncertainty - GAMS Models,” Library of
the Renewable Energy Analysis Lab (REAL). [Online]. Available:
http://www.ee.washington.edu/research/real/gams code.html

[35] “Regulation (eu) 2019/943 of the european parliament and of the
council of 5 june 2019 on the internal market for electricity,” 2019.
[Online]. Available: http://data.europa.eu/eli/reg/2019/943/oj

Nicola Viafora (S’18) received the B.Sc in Energy
Engineering and the M.Sc in Electrical Energy En-
gineering from the Università degli Studi di Padova,
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