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Stochastic Control and Pricing for Natural Gas Networks
Vladimir Dvorkin, Anubhav Ratha, Pierre Pinson and Jalal Kazempour

Abstract—We propose stochastic control policies to cope with
uncertain and variable gas extractions in natural gas networks.
Given historical gas extraction data, these policies are optimized
to produce the real-time control inputs for nodal gas injections
and for pressure regulation rates by compressors and valves. We
describe the random network state as a function of control inputs,
which enables a chance-constrained optimization of these policies
for arbitrary network topologies. This optimization ensures the
real-time gas flow feasibility and a minimal variation in the
network state up to specified feasibility and variance criteria.
Furthermore, the chance-constrained optimization provides the
foundation of a stochastic pricing scheme for natural gas net-
works, which improves on a deterministic market settlement
by offering the compensations to network assets for their con-
tribution to uncertainty and variance control. We analyze the
economic properties, including efficiency, revenue adequacy and
cost recovery, of the proposed pricing scheme and make them
conditioned on the network design.

Index Terms—Chance-constrained programming, conic dual-
ity, gas pricing, natural gas network, uncertainty, variance.

I. INTRODUCTION

Deterministic operational and market-clearing practices of
the natural gas network operators struggle with the growing
uncertainty and variability of natural gas extractions [1].
Ignorance of the uncertain and variable extractions results
in technical and economical failures, as demonstrated by the
congested network during the 2014 polar vortex event in the
United States [2]. The recent study [3] shows that expanding
the network to avoid the congestion is financially prohibitive,
which encourages us to develop stochastic control policies to
gain gas network reliability and efficiency in a short run.

Since the prediction of gas extractions involves errors, a
gas network optimization problem has been addressed using
the methods from robust optimization [4], scenario-based
and chance-constrained stochastic programming [5]. Besides
forecasts, they require a network response model to uncer-
tainty, i.e., the mapping from random forecast errors to the
network state. The robust solutions [6] optimize the network
response to ensure the feasibility within robust uncertainty
sets, but result in overly conservative operational costs. To
alleviate the conservatism, scenario-based stochastic programs
[7] optimize the network response to provide the minimum
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expected cost and ensure feasibility within a finite number of
discrete scenarios. The major drawback of robust and scenario-
based programs is their ignorance of the network state within
the prescribed uncertainty set or outside the chosen scenarios.
The chance-constrained programs [8], [9], in turn, yield an
optimized network response across the entire forecast error
distribution (or a family of those [10]), thus resulting in more
advanced prediction and control of uncertain network state.

This work advocates the application of chance-constrained
programming to the optimal natural gas network control under
uncertainty. By optimal control, we imply the optimization of
gas injection and pressure regulation policies that ensure gas
flow feasibility and market efficiency for a given forecast error
distribution. Towards this goal, we require a network response
model with a strong analytic dependency between the network
state and random forecast errors. Since natural gas flows are
governed by non-convex equations, the design of network
response models reduces to finding convex approximations.
The work in [8, Chapter 6] enjoys the so-called controllable
flow model [11], which balances gas injection and uncertain
extractions but disregards pressure variables. It thus does
not permit policies for pressure control and corresponding
financial remunerations. The work in [9] preserves the integrity
of system state variables and relies on the relaxation of non-
convex equations. Although the relaxations are known to be
tight [12], [13], the results of [9] show that even a marginal
relaxation gap yields a poor out-of-sample performance of
the chance-constrained solution. Furthermore, the relaxations
involve the integrality constraints to model bidirectional gas
flows, which prevents extracting the dual solution and thus de-
signing an optimal pricing scheme. One needs to introduce the
unidirectional flow assumption to avoid integrality constraints,
which is restrictive for gas networks under uncertainty [9].

This work bypasses the simplifying assumptions on network
operations through the linearization of the non-convex natural
gas equations, and provides a convex stochastic network opti-
mization problem with performance guarantees. The problem
ensures the real-time gas flow feasibility, enables the control
of network state variability, and provides an efficient pricing
scheme. Specifically, we make the following contributions:

1) We propose stochastic control policies for gas injections
and pressure regulation rates that provide real-time con-
trol inputs for network operators. Through linearization,
we describe the uncertain state variables, such as nodal
pressures and flow rates as affine functions of control
inputs; thus capturing the dependency of the uncertain
network state on operator’s decisions. To establish perfor-
mance guarantees, we provide a sample-based method to
bound approximation errors induced due to linearization.

2) We introduce a chance-constrained program to optimize
the control policies and provide its computationally effi-
cient second-order cone programming (SOCP) reformu-
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lation. The policy optimization ensures that the network
state remains within network limits with a high prob-
ability and utilizes the statistical moments of the state
variables to trade-off between the expected cost and the
variance of the state variables.

3) We propose a conic pricing scheme that remunerates net-
work assets, i.e., gas suppliers, compressors and valves,
for their contribution to uncertainty and variance control.
Unlike the standard linear programming duality, the conic
duality enables the decomposition of revenue streams
associated with the coupling chance-constraints. We ana-
lyze the economic properties of the conic pricing scheme,
e.g. revenue adequacy and cost recovery, and make them
conditioned on the network design.

At the operational planning stage, the optimized policies
provide the best approximation (up to forecast quality) of
the real-time control actions. They can be augmented into
preoperational routines of network operators within the deter-
ministic steady-state [13] or transient [14], [15] gas models
in the form of gas injection and pressure regulation set-
points, while providing the strong foundation for necessary
financial remunerations. We corroborate the effectiveness of
the proposed policies using a 48-node natural gas network.

Outline: Section II explains the gas network modeling,
while Section III describes the stochastic network optimiza-
tion, control policies and tractable reformulations. Section IV
introduces the pricing scheme and its theoretical properties.
Section V provides numerical experiments, and Section VI
concludes. All proofs are relegated to Appendix.

Notation: Operation ◦ is the element-wise vector (matrix)
product. Operator diag[x] returns an n × n diagonal matrix
with elements of vector x ∈ Rn. For a n× n matrix A, [A]i
returns an ith row (1 × n) of matrix A, 〈A〉i returns an ith

column (n × 1) of matrix A, and Tr[A] returns the trace of
matrix A. Symbol > stands for transposition, vector 1 (0) is
a vector of ones (zeros), and ‖·‖ denotes the Euclidean norm.

II. PRELIMINARIES

A. Gas Network Equations

A natural gas network is modeled as a directed graph
comprising a set of nodes N = {1, . . . , N} and a set of
edges E = {1, . . . , E}. Nodes represent the points of gas
injection, extraction or network junction, while edges represent
pipelines. Each edge is assigned a direction from sending node
n to receiving node n′, i.e., if (n, n′) ∈ E , then (n′, n) /∈ E .
The graph may contain cycles, while parallel edges and self-
loops should not exist. The graph topology is described by a
node-edge incidence matrix A ∈ RN×E , such that

Ak` =





+1, if k = n
−1, if k = n′

0, otherwise
∀` = (n, n′) ∈ E .

Let ϕ ∈ RE be a vector of gas flow rates and let δ ∈ RN+ be
a vector of gas extractions, which must be satisfied by the gas
injections ϑ ∈ RN across the network given their injection
limits ϑ, ϑ ∈ RN+ . The gas conservation law is thus

Aϕ = ϑ− δ.

The gas flow rates in network edges relate to the nodal pres-
sures through non-linear, partial differential equations [16].
Under steady-state assumptions [13], however, the flows are
related to pressures through the Weymouth equation:

ϕ`|ϕ`| = w`
(
%2
n − %2

n′
)
, ∀` = (n, n′) ∈ E ,

where % ∈ RN is a vector of pressures contained within
technical limits %, % ∈ RN+ , and w ∈ RE+ are constants that
encode the friction coefficient and geometry of pipelines. To
avoid non-linear pressure drops, let πn = %2

n be the squared
pressure at node n with limits πn = %2

n
and πn = %2

n.
To support the desired nodal pressures, the gas network

operator regulates the pressure using active pipelines Ea ⊂ E ,
which host either compressors Ec ⊂ Ea or valves Ev ⊂ Ea, as-
suming Ec∩Ev = ∅. These network assets respectively increase
and decrease the gas pressure along their corresponding edges.
To rewrite the gas conservation law and Weymouth equation
accounting for these components, let κ ∈ RE be a vector
of pressure regulation variables. Pressure regulation is non-
negative κ` > 0 for every compressor edge ` ∈ Ec and it is
non-positive κ` 6 0 for every valve edge ` ∈ Ev . This informa-
tion is encoded in the pressure regulation limits κ, κ ∈ RE .
Pressure regulation involves an additional extraction of the
gas mass to fuel active pipelines. Let matrix B ∈ RN×E

relate the active pipelines to their sending nodes accounting
for conversion factors, i.e.,

Bk` =





b`, if k = n, k ∈ Ec
−b`, if k = n, k ∈ Ev

0, otherwise
∀` = (n, n′) ∈ E ,

where b` is a conversion factor from the gas mass to the
pressure regulation rate. The network equations become

Aϕ = ϑ−Bκ− δ, (1a)

ϕ ◦ |ϕ| = diag[w](A>π + κ), (1b)
ϕ` > 0, ∀` ∈ Ea. (1c)

Here, the gas extraction Bκ by compressor and valve edges in
(1a) is always non-negative. Equation (1b) is the Weymouth
equation in a vector form that accounts for both pressure loss
and pressure regulation. The absolute value operator in (1b)
is understood element-wise. Finally, equality (1c) enforces the
unidirectional condition for the gas flow in active pipelines,
because they permit the gas flow only in one direction.

B. Deterministic Gas Network Optimization

The gas network optimization seeks the minimum of gas
injection costs while satisfying gas flow equations and network
limits. Let c1 ∈ RN+ and c2 ∈ RN+ be the coefficients of a
quadratic gas injection cost function. With a perfect extraction
forecast, the deterministic gas network optimization is

min
ϑ,κ,ϕ,π

c>1 ϑ+ ϑ>diag[c2]ϑ (2a)

s.t. Aϕ = ϑ−Bκ− δ, (2b)

ϕ ◦ |ϕ| = diag[w](A>π + κ), (2c)

π 6 π 6 π, ϑ 6 ϑ 6 ϑ, (2d)
κ 6 κ 6 κ, ϕ` > 0, ∀` ∈ Ea. (2e)
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Despite the non-convexity of (2), it has been solved suc-
cessfully using algorithmic solvers [13], [17] or general-
purpose solvers [18] when all optimization parameters are
known. These solvers no longer apply when the parameters are
uncertain, because one needs to establish a convex dependency
of optimization variables on uncertain parameters [19]. This
convex dependency is established in this work by means of
the linearization of the Weymouth equation (2c).

C. Linearization of the Weymouth Equation

Let W(ϕ, π, κ) = 0 denote the non-convex constraint (2c),
and let J (x) ∈ RE×n denote the Jacobian of (2c) w.r.t. an
arbitrary vector x ∈ Rn. The relation between the gas flow
rates, nodal pressures, and pressure regulation rates can thus
be approximated by the first-order Taylor series expansion:

W(ϕ, π, κ) ≈W(ϕ̊, π̊, κ̊) + J (ϕ̊)(ϕ− ϕ̊)

+ J (̊π)(π − π̊) + J (̊κ)(κ− κ̊) = 0, (3)

where (ϕ̊, π̊, κ̊) is a stationary point retrieved by solving non-
convex problem (2). As W(ϕ̊, π̊, κ̊) = 0 at a stationary point,
equation (3) implies the affine relation:

ϕ− ϕ̊ = J (ϕ̊)−1J (̊π)(̊π − π) + J (ϕ̊)−1J (̊κ)(̊κ− κ)

⇔ ϕ = J (ϕ̊)−1(J (̊π)̊π + J (̊κ)̊κ) + ϕ̊

γ1(ϕ̊,̊π,̊κ)

−J (ϕ̊)−1J (̊π)

γ2(ϕ̊,̊π)

π −J (ϕ̊)−1J (̊κ)

γ3(ϕ̊,̊κ)

κ

⇔ ϕ = γ1(ϕ̊, π̊, κ̊) + γ2(ϕ̊, π̊)π + γ3(ϕ̊, κ̊)κ, (4)

where γ1 ∈ RE , γ2 ∈ RE×N and γ3 ∈ RE×E are coefficients
encoding the sensitivity of gas flow rates to pressures and
pressure regulation rates. These coefficients depend on the sta-
tionary point. For notational convenience, this dependency is
dropped but always implied. In what follows, the Greek letter
γ denotes sensitivity coefficients and their transformations.

Remark 1 (Reference node): Since rank(γ2) = N − 1,
system (4) is rank-deficient. Since the graph is connected, we
have E > N − 1, thus resulting in infinitely many solutions
to system (4). A unique solution is obtained by choosing a
reference node (r) and fixing the reference pressure πr = π̊r.
The reference node does not host a variable injection or
extraction, nor should be a terminal node of active pipelines. In
practice, this is a node with a large and constant gas injection.

III. GAS NETWORK OPTIMIZATION UNDER UNCERTAINTY

A. Chance-Constrained Formulation

At the operational planning stage, well ahead of the real-
time operations, the unknown gas extractions are modeled as

δ̃(ξ) = δ + ξ, (5)

where δ ∈ RN is the mean value of the gas withdrawal rates
and ξ ∈ RN is a vector of zero-mean random forecast errors.
Equation (5) suffices to model disturbances in gas extractions
without an explicit modeling of gas consumption by gas-fired
power plants in adjacent electrical power grids. We assume

that the forecast error distribution Pξ of ξ and covariance
Σ = E[ξξ>] can be estimated from the historical observations
of electrical loads and renewable power generation, that are
known to obey Normal, Log-Normal and Weibull distributions
[20]. Though, more complex distributions may be envisaged
for double-bounded stochastic processes of interest.

Regardless of the type and parameters of the uncertainty
distribution, the chance-constrained counterpart of the deter-
ministic gas network optimization in (2) writes as

min
ϑ̃,κ̃,ϕ̃,π̃

EPξ [c>1 ϑ̃(ξ) + ϑ̃(ξ)>diag[c2]ϑ̃(ξ)] (6a)

s.t.

Pξ



Aϕ̃(ξ) = ϑ̃(ξ)−Bκ̃(ξ)− δ̃(ξ),
ϕ̃(ξ) = γ1 + γ2π̃(ξ) + γ3κ̃(ξ),

π̃r(ξ) = π̊r


 a.s.

= 1, (6b)

Pξ

[
π 6 π̃(ξ) 6 π, ϑ 6 ϑ̃(ξ) 6 ϑ,

κ 6 κ̃(ξ) 6 κ, ϕ̃`(ξ) > 0, ∀` ∈ Ea

]
> 1− ε, (6c)

which optimizes stochastic network variables ϑ̃, κ̃, ϕ̃ and π̃ to
minimize the expected value of the cost function (6a) subject
to probabilistic constraints. The almost sure (a.s.) constraint
(6b) requires the satisfaction of the gas conservation law and
linearized Weymouth equation with probability 1, while the
chance constraint (6c) ensures that the real-time pressures
together with the injection, pressure regulation and flow rates
remain within their technical limits. The prescribed violation
probability ε ∈ (0, 1) reflects the risk tolerance of the gas
network operator towards the violation of network limits.

B. Control Policies and Network Response Model

The chance-constrained problem (6) is computationally in-
tractable as it constitutes an infinite-dimensional optimization
problem. To overcome its complexity, it has been proposed to
approximate its solution by optimizing stochastic variables as
affine, finite-dimensional functions of the random variable [4].
This functional dependency constitutes the model of the gas
network response to uncertainty.

The explicit dependency on uncertainty is enforced on the
controllable variables through the following affine policies

ϑ̃(ξ) = ϑ+ αξ, κ̃(ξ) = κ+ βξ, (7a)

where ϑ and κ are the nominal (average) response, while
α ∈ RN×N and β ∈ RE×N are variable recourse decisions of
the gas injections and pressure regulation by active pipelines,
respectively. When optimized, policies (7a) provide control
inputs for the network operator to meet the realization of
random forecast errors ξ. As the state variables, such as flow
rates and pressures, are coupled with the controllable variables
through stochastic equations (6b), they implicitly depend on
uncertainty through the control inputs.

Lemma 1: Under control policies (7a), the random gas
pressures and flow rates are given by affine functions

π̃(ξ) = π + γ̆2(α− γ̂3β − diag[1])ξ, (7b)
ϕ̃(ξ) = ϕ+ (γ̀2(α− diag[1])− γ̀3β)ξ, (7c)
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both including the nominal and random components, and
where γ̆2, γ̂2, γ̀2, γ̂3, γ̀3 are constants of proper dimensions.

Equations (7) constitute the desired model of the network
response to uncertainty. The model is said to be admissible if
the stochastic gas conservation law and linearized Weymouth
equation in (6b) hold with probability 1, i.e., for any realization
of random variable ξ. This is achieved as follows.

Lemma 2: The model of the gas network response (7) is
admissible if the nominal and recourse variables obey

Aϕ = ϑ−Bκ− δ (8a)

(α−Bβ)>1 = 1, (8b)
ϕ = γ1 + γ2π + γ3κ, (8c)

πr = π̊r, [α]>r = 0, [β]>r = 0. (8d)

Remark 2: The model of the gas network response (7) does
not make an assumption on the uncertainty distribution.

C. Expected Cost Reformulation

The expected value of the gas network cost function in (6a)
is computationally intractable as it involves an optimization
of infinite-dimensional random variable ϑ̃(ξ). Under control
policy (7a), however, we show that the computation of the
expected cost reduces to solving an SOCP problem.

Due to definition of ϑ̃(ξ), function (6a) rewrites as

EPξ [c>1 (ϑ+ αξ) + (ϑ+ αξ)>diag[c2](ϑ+ αξ)],

where the argument of the expectation operator is separable
into nominal and random components. Due to the linearity of
the expectation operator, it equivalently rewrites as

c>1 ϑ+ ϑ>diag[c2]ϑ+ EPξ [c>1 αξ + (αξ)>diag[c2]αξ].

A zero-mean assumption made on distribution Pξ factors out
the first term under the expectation operator. The reformulation
of the second term is made recalling that the expectation of
the outer product of the zero-mean random variable yields its
covariance, i.e., E[ξξ>] = Σ. Thus, the expected value of cost
function (6a) reduces to a computation of

c>1 ϑ+ ϑ>diag[c2]ϑ+ Tr[α>diag[c2]αΣ],

which is a convex quadratic function in variables ϑ and α.
To bring it to an SOCP form, let vectors cϑ ∈ RN and cα ∈
RN substitute the quadratic terms of the gas injection and
recourse costs. Moreover, let F ∈ RN×N be a factorization
of covariance matrix Σ, such that Σ = FF>, and c̀2 ∈ RN be
the factorization of vector c2, such that diag[c2] = c̀2c̀

>
2 . Then,

for any fixed values of nominal ϑ and recourse α decisions, the
expected value of the cost is retrieved by solving the following
SOCP problem

min
cϑ,cα

c>1 ϑ+ 1>cϑ + 1>cα (9a)

s.t. ‖c̀2nϑn‖2 6 cϑn, ∀n ∈ N , (9b)

‖F [α]>n c2n‖2 6 cαn, ∀n ∈ N , (9c)

where (9b) and (9c) are rotated second-order cone constraints.
Hence, the co-optimization of variables ϑ, α, cϑ and cα re-
sults in the minimal expected cost. As problem (9) acts on

a distribution-free response model (Remark 2), it does not
require any assumption on the uncertainty distribution.

D. Variance of State Variables

The optimization of response model (7) using the criterion
of the minimum expected cost involves the risks of producing
highly variable solutions for the state variables. See, for
example, the evidences in the power system domain [21], [22].
However, since the state variables (7b) and (7c) are affine in
control inputs, they can be optimized to provide the minimal-
variance solution. To achieve the desired result, however, it is
more suitable to optimize the standard deviations of the state
variables as they admit conic formulations.

Let sπ ∈ RN and sϕ ∈ RE be the variables modeling the
standard deviations of pressures and flow rates, respectively.
For any fixed values of recourse decisions α and β, the
standard deviations of pressures and flows rates are retrieved
by solving the following SOCP problem

min
sπ,sϕ

1>sπ + 1>sϕ (10a)

s.t. ‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 sπn, (10b)

‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖ 6 sϕ` , (10c)
∀n ∈ N ,∀` ∈ E ,

where (10b) and (10c) are second-order cone constraints,
which are tight at optimality. Therefore, the co-optimization of
variables α, β, sπ and sϕ yields the optimized system response
(7) that ensures the minimal-variance solution for the state
variables. We finally note that this co-optimization is also
distribution-free.

E. Tractable Chance-Constrained Formulation

It remains to reformulate the joint chance constraint (6c)
to attain a tractable reformulation. Given network response
model (7), one way to satisfy (6c) is to enforce all its N6

inequalities on a finite number of samples from Pξ [23].
The sample-based reformulation, however, does not explicitly
parameterize the problem by the risk tolerance ε of the
network operator. We thus proceed by enforcing individual
chance constraints with the explicit analytic parameterization
of the risk tolerance through individual violation probabilities
ε̂ ∈ R

N6

+ . This approach admits the Bonferroni approximation
of the joint chance constraint in (6c) when 1>ε̂ 6 ε. The
joint feasibility guarantee is provided even when the choice
of the individual violation probabilities is sub-optimal [24],
e.g. ε̂i = ε

N6
, ∀i = 1, . . . , N6.

From [19] we know that a scalar chance constraint

Pξ[ξ
>x 6 b] > 1− ε̂ (11a)

analytically translates into the second-order cone constraint

zε̂‖Fx‖ 6 b− Eξ[ξ
>x], (11b)

where zε̂ > 0 is a safety parameter in the sense of [19],
and the left-hand side of (11b) is the margin that ensures
constraint feasibility given the parameters of the forecast errors
distribution. Consequently, larger safety parameter zε̂ improves
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system security. The choice of zε̂ depends on the knowledge
about distribution Pξ [19], yet it always increases as the risk
tolerance ε̂ reduces.

Given the network response model (7) and the reformu-
lations in (8)–(11), a computationally tractable version of
stochastic problem (6) with the variance awareness formulates
as the following SOCP problem:

min
P

c>1 ϑ+ 1>cϑ + 1>cα + ψπ>sπ + ψϕ>sϕ (12a)

s.t. λc : Aϕ = ϑ−Bκ− δ, (12b)

λr : (α−Bβ)>1 = 1, (12c)
λw : ϕ = γ1 + γ2π + γ3κ, πr = π̊r, (12d)

λπn : ‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 sπn, (12e)

λϕ` : ‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖ 6 sϕ` , (12f)

λπn : zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 πn − πn, (12g)

λπn : zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖ 6 πn − πn, (12h)

λ
ϕ

` : zε̂‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖ 6 ϕ`,
∗ (12i)

zε̂‖c̀2nϑn‖2 6 cϑn, (12j)

zε̂‖F c̀2n[α]>n ‖2 6 cαn, (12k)

zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (12l)

zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (12m)

zε̂‖F [β]>` ‖ 6 κ` − κ`, (12n)

zε̂‖F [β]>` ‖ 6 κ` − κ`, (12o)
∀n ∈ N , ∀` ∈ E , ∗∀` ∈ Ea,

in variables P = {ϑ, κ, ϕ, π, α, β, cϑ, cα, sπ, sϕ}. Problem
(12) optimizes the system response model (7) to meet a trade-
off between the expected cost and the standard deviation of
the state variables up to the given penalties ψπ ∈ RN+ and
ψϕ ∈ RE+ for pressures and gas flow rates, respectively.
Notice, that the constraints on the optimal recourse with
respect to the reference node in (8d) are implicitly accounted
for through the conic constraints on the gas injection and
pressure regulation (12l)–(12o).

In formulation (12), the Greek letters λ denote the dual
variables of the coupling constraints. In the next Section IV,
we invoke the SOCP duality theory to establish an efficient
pricing scheme for gas networks under uncertainty.

F. Approximation Errors and Performance Guarantees
Lemma 1 hypothesizes the linear dependency of state vari-

ables on random forecast errors. Although the linear depen-
dency enables a computationally tractable chance-constrained
optimization in (12), it also leads to approximation errors due
to non-convex relation between pressures, flows, and uncertain
gas extraction rates. To ensure that the optimization of control
policies in (7a) makes use of reliable state predictions, we
develop a priori worst-case performance guarantees that the
approximation errors do not exceed a certain threshold.

Since gas network congestions are mostly explained by
pressure limits, we specifically focus on approximation errors
associated with stochastic pressure variables. Let π̃?(ξ) be the
vector of the optimized stochastic pressures in (7b), i.e.,

π̃?(ξ) = π? + γ̆2(α? − γ̂3β
? − diag[1])ξ, (13)

which models the linear dependency on the optimal solution
of problem (12), denoted by ?, and random forecast error ξ.

For some realization ξ, let π?(ξ) be the actual pressure
variables under control inputs from the optimized policies

ϑ̃?(ξ) = ϑ? + α?ξ, κ̃?(ξ) = κ? + β?ξ, (14)

where the optimal values are from the solution of problem
(12). Pressure variables π?(ξ) can be then retrieved by project-
ing the optimized control inputs from (14) to the non-convex
feasible region specific to realization ξ, i.e, by solving

π?(ξ) ∈ argmin
ϑ,κ,ϕ,π

‖ϑ̃?(ξ)− ϑ‖+ ‖κ̃?(ξ)− κ‖ (15a)

s.t. Aϕ = ϑ−Bκ− (δ + ξ), (15b)

ϕ ◦ |ϕ| = diag[w](A>π + κ), (15c)
Constraints (2d)− (2e). (15d)

For any node n ∈ N , the stochastic pressure approximation
error can be then pre-computed as an Euclidean distance

∆πn(ξ) = ‖π̃?n(ξ)− π?n(ξ)‖ (16)

between the approximation π̃?n(ξ) and the actual pressure
variable π?n(ξ) for some forecast error realization ξ.

To provide the worst-case bound on the approximation error,
we formulate the following optimization problem

min
t

t (17a)

s.t. ∆πn(ξ)− t 6 0, ∀ξ ∈ Pξ (17b)

in single variable t, which identifies that realization ξ from
Pξ, that results in the largest distance between the linear
and non-convex stochastic pressure spaces. Observe, however,
that constraint (17b) is infinite as it requires infinitely many
samples from Pξ. Using a sample-based approach from [25],
we provide the following finite counterpart of (17)

min
t

t (18a)

s.t. ∆πn(ξ̂s)− t 6 0, ∀s = 1, . . . , S, (18b)

where ξ̂s is a discrete sample from Pξ, and constraint (18b) is
enforced on a finite S number samples (sample complexity),
which is chosen to provide probabilistic performance guaran-
tees with high confidence, as per the following Lemma.

Lemma 3 (Adapted from Corollary 1 in [25]): For some
p ∈ [0, 1] and v ∈ [0, 1], if sample complexity S is such that

S > 1

pv
− 1,

then with probability (1−p) and confidence level (1−v), the
pressure approximation error at node n under the linear law in
(7b) will not exceed the optimal solution t? of problem (18).

IV. PRICING GAS NETWORKS UNDER UNCERTAINTY

From program (12), we know that network assets participate
in the satisfaction of the gas network equations (12b)–(12d),
in state variance reduction (12e)–(12f), and in ensuring the
feasibility of the state variables (12g)–(12i). In this section,
we establish a pricing scheme that remunerates network assets
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based on the combination of the classic linear programming
duality [26], [27] and the SOCP duality [22], [28]. We refer
the interested reader to Appendix C for a brief overview on
SOCP duality. For presentation clarity, however, we should
stress that for each second-order cone constraint in (12e)–
(12i) with a dual variable λ ∈ R1 there exists a vector
of dual prices u ∈ RN , corresponding component-wise to
random vector ξ ∈ RN , such that ‖u‖ 6 λ. With a set of
prices λ, u1, . . . , uN , each conic coupling constraint becomes
separable, thus enabling the revenue decomposition associated
with constraints (12e)–(12i).

We first show that the primal and dual solutions of program
(12) solve a partial competitive equilibrium. This equilibrium
consists of a price-setting problem that seeks the optimal
prices associated with the coupling constraints (12e)–(12i), a
set of profit-maximizing problems of gas suppliers n ∈ N ,
active pipelines ` ∈ Ea, and a rent-maximization problem
solved by the network operator, as we establish in the proof
of the following result; see Appendix D for details. Note, as
program (12) does not model consumer preferences explicitly,
we provide the results for partial equilibrium only.

Theorem 1 (Partial equilibrium payments): Let P and D be
the sets of the optimal primal and dual solutions of problem
(12), respectively. Then, both sets P and D solve a partial
competitive network equilibrium with the following payments:
• Each gas supplier n ∈ N maximizes the expected profit

when receiving the revenue of Rsup
n as in (19a).

• Each active pipeline ` ∈ Ea maximizes the expected profit
when receiving the revenue of Ract

` as in (19b).
• The network operator minimizes the expected network

congestion rent, which amounts to Rrent as in (19c).
• The payment of each consumer n ∈ N is minimized

when they are charged with Rcon
n as in (19d).

Similarly to a deterministic market settlement, the nominal
gas injection or extraction is priced by associated locational
marginal price λc, while the nominal pressure regulation is
priced by the dual variable λw of the Weymouth equation.
The pricing scheme of Theorem 1, however, goes beyond the
deterministic payments and provides three additional revenue
streams for network assets (19). First, each network asset is
paid with the dual variable λr to remunerate its contribution
to the feasibility of the gas network equations for any real-
ization of uncertainty; see Lemma 2. The dual variables of
the reformulated chance constraints (12g)–(12i) are used to
compensate network assets for maintaining gas pressures and
flow rates within network limits. Observe, this revenue stream
is proportional to the safety parameter zε̂, which increases as
risk tolerance ε̂ reduces. The last revenue streams for network
assets come from the satisfaction of the variance criteria set by
the network operator. From the stationarity conditions (28e)
from Appendix D, the variance prices are λπ = ψπ and
λϕ = ψϕ, and from the SOCP dual feasibility condition (24)
from Appendix D we know that ‖[uπ]n‖ 6 λπn, ‖[uϕ]`‖ 6 λϕ` ,
∀n ∈ N , ` ∈ E . Thus, these revenue streams are proportional
to the variance penalties ψπ and ψϕ set by the network
operator. The consumer charges, motivated by their individual
contributions to uncertainty and state variance, are explained

similarly. Finally notice that, in contrast to the deterministic
rent, revenue (19c) additionally includes the variance control
rent, which is non-zero whenever constraints (12e)–(12f) are
binding, i.e., ψπ, ψϕ > 0.

The results of Theorem 1, and thus the equivalence between
the centralized optimization (12) and its equilibrium counter-
part (25)–(27), hold under certain assumptions. First, there
exists at least one strictly feasible solution to SOCP problem
(12) or to its dual counterpart to ensure that Slater’s condition
holds [28]. Second, the market is perfectly competitive and the
equilibrium agents act according to their true preferences, i.e.,
no exercise of market power. Finally, the information on the
uncertainty distribution must be consistent among equilibrium
problems [29]. Under these assumptions, we analyze the
revenue adequacy and cost recovery of payments (19) and
make them conditioned on the network design.

Corollary 1 (Revenue adequacy): Let γ1 = 0 and π = 0.
Then, the payments established by Theorem 1 are revenue
adequate, i.e.,

∑N
n=1Rcon

n >
∑N
n=1R

sup
n +

∑E
`=1Ract

` .

As a result, the natural gas system does not incur a financial
loss when the payments are distributed from consumers to
network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If γ1 6= 0,
there exists an extra revenue term λw>γ1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

The surplus of consumer payments in Corollary 1 amounts
to the congestion rent minimized by the network operator;
see Appendix E for details. The consumer payments are
thus implicitly minimized by problem (12) to only cover the
congestion rent and compensate network assets for incurred
costs. With our last result, we show that the cost recovery for
network assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let ϑ = 0, κ` = 0,∀` ∈ Ec,
and κ` = 0,∀` ∈ Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0,∀` ∈ Ea, and Rsup

n − c1nϑn − cϑn − cαn > 0,∀n ∈ N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 1. The network parameters are
sourced from [30] with a few modifications to enable large
uncertainty and variability of gas extraction rates and provide
more variance control opportunities. Specifically, the pressure
limits at nodes 1 and 3 are homogenized with those at the
rest of network nodes, two injections are added in the demand
area at nodes 32 and 37, and two valves are installed in the
pipelines connecting nodes (28, 29) and (43, 44). The 22 gas
extractions are modeled as δ̃(ξ) = δ + ξ, where δ is the
nominal extraction rate reported in [30] and ξ is the zero-mean
normally distributed forecast error. The safety parameter zε̂ is
thus the inverse CDF of the standard Gaussian distribution
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Rsup
n , λcnϑn

nominal
balance

+ [λr]>[α]>n
recourse
balance

+ zε̂
(
〈γ̆2〉>n (uπ + uπ) + 〈γ̀2〉>n uϕ

)
F [α]>n

gas pressure and flow limits

+
(
〈γ̆2〉>n uπ + 〈γ̀2〉>n uϕ

)
F [α]>n

gas pressure and flow variance

(19a)

Ract
` ,

(
〈γ3〉>` λw − λc>〈B〉`

)
κ`

nominal pressure regulation

− 1>〈B〉`λr>[β]>`
recourse balance

− zε̂
(
〈γ̆2γ̂3〉>` (uπ + uπ) + 〈γ̀3〉>` u

ϕ)F [β]>`
gas pressure and flow limits

−
(
〈γ̆2γ̂3〉>` uπ + 〈γ̀3〉>` uϕ

)
F [β]>`

gas pressure and flow variance

(19b)

Rrent ,
(
λϕ> − λw> − λc>A

)
ϕ

flow congestion rent

+
(
λw>γ2 + λπ> − λπ>

)
π + λπ>π − λπ>π

pressure congestion rent

+ λϕ>sϕ + λπ>sπ

variance rent

(19c)

Rcon
n , λcnδn

nominal
balance

+ λrn

recourse
balance

+ zε̂[F ]n
(
uϕ>〈γ̀2〉n + (uπ + uπ)>〈γ̆2〉n

)

gas pressure and flow limits

+ [F ]n
(
uϕ>〈γ̀2〉n + uπ>〈γ̆2〉n

)

gas pressure and flow variance

(19d)

Table I
DETERMINISTIC VERSUS CHANCE-CONSTRAINED OPTIMIZATION OF CONTROL POLICIES

Parameter Unit Deterministic
control policies

Chance-constrained control policies

Variance-
agnostic

Pressure variance-aware, ψπ Flow variance-aware, ψϕ

10−3 10−2 10−1 1 101 102

Expected cost $1000 80.9 82.5 (100%) 100.5% 105.6% 113.8% 100.1% 102.5% 112.6%∑
n Var[%̃n(ξ)] MPa2 217.5 63.4 (100%) 44.2% 18.9% 12.8% 92.8% 46.7% 24.7%∑
` Var[ϕ̃`(ξ)] BMSCFD2 26.1 58.0 (100%) 83.4% 64.1% 59.2% 93.4% 44.8% 25.9%

∑
`∈Ec

√
κ` kPa 1939 3914 3570 3734 3661 3914 4030 3888∑

`∈Ev
√
κ` kPa 0 0 0 150 576 0 1 500

Constraint inf. % 53.7 0.04 0.02 0.02 0.02 0.03 0.02 0.03
Average Pinj MMSCFD 960.91 0.01 0.03 0.02 0.02 0.02 0.04 0.04
Average Pact kPa 121.68 0.19 0.08 0.10 0.05 0.28 0.04 0.04
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control policies

Chance-constrained control policies

Variance-
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Pressure variance-aware,  ⇡ Flow variance-aware,  '
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`2Ec
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Average Pact kPa 121.68 0.19 0.08 0.10 0.05 0.28 0.04 0.04
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Figure 2. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for " = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1 � " = 99% and require a minimal effort to restore
the real-time gas flow feasibility. The variance-agnostic policy
requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

Next, we show how the cost-variance trade-offs change
with different assignments of control policies (7) to network
assets. Figure 1 illustrates the cost-variance trade-offs when
the control policies are assigned to gas injections only (↵ 2
free,� = 0), to gas injections and compressors (↵,� 2
free, [�]>` = 0, 8` 2 Ev), and to all network assets including
valves (↵,� 2 free). Observe that the variance reduction
is achieved more rapidly and at lower costs as more active
pipelines are involved into uncertainty and variance control.
Hence, the stochastic control becomes more available as the
network operator deploys more pressure regulation action by
compressors and valves.

With the density plots in Fig. 2, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic
gas extractions. This solution further allows the probability
of the gas flows reversal up to 11% for certain pipelines,
thus making the prediction of flow directions difficult. The
variance-aware solution with the joint penalization of pressures
and flows variance, in turn, drastically reduces the variation of
the state variables and localizes the most of the variation only
at nodes 34 and 35. Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

B. Revenue Analysis

Figure 3 depicts the total revenues of active pipelines and
gas injections as well as the total charges of gas consumers.
It further shows their decomposition into revenue streams
defined by the pricing scheme in (13). Relative to the de-
terministic payments, the chance-constrained policies lead to
a substantial increase in payments that further increase due to
the variance awareness. Besides the nominal supply revenues,
the chance-constrained policies produce the compensations
for the uncertainty and variance control that together exceed
deterministic payments by 37.3%. Moreover, the payments for

Figure 1. Comparison of the variance-agnostic (left) and the variance-aware (right) chance-constrained control policies in terms of the state variables variance
for ε = 10%. The red values show the probability of flow reversal. The inset plot shows the correlation between the pressures at nodes 34 and 35.

at (1 − ε̂)−quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint
constraint violation probability ε is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [31] contains the input data and
code implementation in the JuMP package for Julia [32].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control

policies (7a). The deterministic policies are optimized by set-
ting the safety factor zε̂ in problem (12) to zero. The policies
are compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

∑
n Var[%̃n(ξ)] and∑

` Var[ϕ̃`(ξ)], respectively, and the total pressure regulation
by compressors

∑
`∈Ec
√
κ` and valves

∑
`∈Ev
√
κ`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization. The policies are also compared
in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
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where ⇡̃n(b⇠s) and ⇡�n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and
t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t� of problem (4).

1% 2.5% 5% 10%

10�6

10�4

10�2

100

102

101

102

forecast error standard deviation, �

w
or

st
-c

as
e

er
ro

r,
%

Changes to the paper:

Comment 6: I think the paper can potentially also benefit from exploring di�erent network struc-
tures, even simple ones and the impact of such structures on the optimal response and costs (even
numerically). As of now, the paper provides no clue about it, even if the paper is about gas networks.

Authors response:

@Vlad Anubhav, here goes your part

Changes to the paper:

9

summarize error statistics
when the chance-constrained control policies are implemented, and red
boxplots

s.t. t > k⇡̃n(b⇠s) � ⇡�n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡�n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and
t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t� of problem (4).

1% 2.5% 5% 10%

10�6

10�4

10�2

100

102

101

102

forecast error standard deviation, �

w
or

st
-c

as
e

er
ro

r,
%

Changes to the paper:

Comment 6: I think the paper can potentially also benefit from exploring di�erent network struc-
tures, even simple ones and the impact of such structures on the optimal response and costs (even
numerically). As of now, the paper provides no clue about it, even if the paper is about gas networks.

Authors response:

@Vlad Anubhav, here goes your part

Changes to the paper:

9

provide the summary of the deterministic solution.
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Rsup
n , �c

n#n

nominal
balance

+ [�r]>[↵]>n
recourse
balance

+ z"̂
�
h�̆2i>n (u⇡ + u⇡) + h�̀2i>n u'�F [↵]>n

gas pressure and flow limits

+
�
h�̆2i>n u⇡ + h�̀2i>n u'

�
F [↵]>n

gas pressure and flow variance

(13a)

Ract
` ,

�
h�3i>` �w � �c>hBi`

�
`

nominal pressure regulation

� 1>hBi`�r>[�]>`
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h�̆2�̂3i>` (u⇡ + u⇡) + h�̀3i>` u'�F [�]>`
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gas pressure and flow variance
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flow congestion rent
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pressure congestion rent
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n , �c
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Figure 1. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty  ⇡ 2 [10�3, 10�1].

network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#n � c↵n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z"̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

P
n Var[%̃n(⇠)] andP

` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors

P
`2Ec

p
` and valves

P
`2Ev

p
`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
#s,s,'s,⇡s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.

Figure 3. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty  ⇡ 2 [10�3, 10�1].

in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
convex gas equations, by solving the projection problem (15)
for all realizations ⇠s, 8s = 1, . . . , S. A control input is
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the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
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active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1� " = 99% and require a minimal effort to restore the
real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (� = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(� = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (↵ 2 free,� = 0), to gas
injections and compressors (↵,� 2 free, [�]>` = 0, 8` 2 Ev),
and to all network assets including valves (↵,� 2 free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually brake cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge

Figure 2. The worst-case stochastic pressure approximation errors summa-
rized across 48 nodes, for p = v = 0.9 in Lemma 3, and for different
uncertainty penetration levels. The blue boxplots

s.t. t > k⇡̃n(b⇠s) � ⇡?n(b⇠s)k, 8s = 1, . . . , S, (4b)

where ⇡̃n(b⇠s) and ⇡?n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and
t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t? of problem (4).
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Figure 1. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty  ⇡ 2 [10�3, 10�1].

network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#n � c↵n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z"̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates

P
n Var[%̃n(⇠)] andP

` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors

P
`2Ec

p
` and valves

P
`2Ev

p
`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
#s,s,'s,⇡s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.

Figure 3. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty ψπ ∈ [10−3, 10−1].

convex gas equations, by solving the projection problem (15)
for all realizations ξs,∀s = 1, . . . , S. A control input is
considered feasible if (15a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

∑
s‖ϑ̃(ξs) − ϑs‖/S for gas injections and

Pact =
∑
s‖κ̃(ξs)− κs‖/S for active pipelines.

The results are reported in Table I. Disregarding uncertainty,
the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1− ε = 99% and require a minimal effort to restore the
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where ⇡̃n(b⇠s) and ⇡�n(b⇠s) are parameters as in (2) estimated for each forecast error sample, and
t models the maximum distance (error). Then, by imposing the sample complexity requirement
(minimum number of samples S from P⇠), we statistically upper-bound the approximation error
associated with the stochastic pressure variables at node n. This requirement is inspired from the
robust optimization theory and is explicitly given by to the following result.

Lemma 1 (Sample complexity, adapted from [10]). For some parameters ↵ 2 [0, 1] and � 2 [0, 1],
if a sample complexity S is such that

S > 1

↵�
� 1,

then with probability (1�↵) and with confidence level (1��), the stochastic pressure approximation
error under linear law (7b) will not exceed the optimal solution t� of problem (4).
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Figure 1. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty  ⇡ 2 [10�3, 10�1].

network assets. The first condition in Corollary 1 is motivated
by the linearization of the Weymouth equation. If �1 6= 0,
there exists an extra revenue term �w>�1. As consumers are
inelastic, this payment can be thus allocated to consumer
charges, however its distribution among the customers remains
an open question. Finally, the second condition in Corollary
1 allows pressures to be zero at network nodes, which is too
restrictive for practical purposes. In the next Section V we
show that the revenue adequacy holds in practice even when
this condition is not satisfied.

Our last result is to show that the cost recovery for network
assets is also conditioned on the network design.

Corollary 2 (Cost recovery): Let # = 0, ` = 0, 8` 2 Ec,
and ` = 0, 8` 2 Ev . Then, the payments of Theorem 1 ensure
cost recovery for suppliers and active pipelines, i.e., Ract

` >
0, 8` 2 Ea, and Rsup

n � c1n#n � c#n � c↵n > 0, 8n 2 N .

V. NUMERICAL EXPERIMENTS

We run numerical experiments using a 48-node natural
gas network depicted in Fig. 2. The network parameters are
sourced from [28] with a few modifications: we homogenize
the pressure limits across network nodes, add two injections
in the demand area at nodes 32 and 37, and install two valves
in pipelines connecting nodes (28, 29) and (43, 44). The 22
gas extractions are modeled as �̃(⇠) = � + ⇠, where � is the
nominal extraction rate reported in [28] and ⇠ is the zero-mean
normally distributed forecast error. The safety parameter z"̂ is
thus the inverse CDF of the standard Gaussian distribution
at (1 � "̂)�quantile [19]. The standard deviation of each
gas extraction is set to 10% of the nominal rate. The joint

constraint violation probability " is set to 1% by default. To
retrieve the stationary point in (4), the non-convex problem (2)
is solved for the nominal gas extraction rates using the Ipopt
solver [18]. The repository [29] contains the input data and
code implementation in the JuMP package for Julia [30].

A. Analysis of the Optimized Network Response

We first study the optimized gas network response to
uncertainty under deterministic and chance-constrained control
policies (7). The deterministic policies are optimized by setting
the safety factor z"̂ in problem (12) to zero. The policies are
compared in terms of the expected cost (9a), the aggregated
variance of gas pressures and flow rates
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` Var['̃`(⇠)], respectively, and the total pressure regulation
by compressors
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`2Ec
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`. Note, we

discuss the natural pressure quantities, not their squared coun-
terparts used in optimization.

The policies are also compared in terms of network con-
straints satisfaction. We first sample control inputs from (7)
for S = 1, 000 realizations of forecast errors and count the
violations of network limits (6c). Second, we assess the quality
of the control inputs (7a) for the non-convex gas equations,
by solving the projection problem

min
#s,s,'s,⇡s

k#̃(⇠s) � #sk + k̃(⇠s) � sk (14a)

s.t. A's = #s � Bs � �s � ⇠s, (14b)
Constraints (2c) � (2e), (14c)

for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (14a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
active pipelines by 12.7% of the nominal rates on average.

Figure 3. Expected cost versus pressure variance for different assignments
of control polices to network assets. Pressure penalty  ⇡ 2 [10�3, 10�1].

in terms of network constraints satisfaction. We first sample
control inputs from (7) for S = 1, 000 realizations of forecast
errors and count the violations of network limits (6c). Second,
we assess the quality of the control inputs (7a) for the non-
convex gas equations, by solving the projection problem (15)
for all realizations ⇠s, 8s = 1, . . . , S. A control input is
considered feasible if (15a) is zero for a given realization. To
characterize this infeasibility numerically, consider the average
metrics Pinj =

P
sk#̃(⇠s) � #sk/S for gas injections and

Pact =
P

sk̃(⇠s) � sk/S for active pipelines.
The results are reported in Table I. Disregarding uncertainty,

the deterministic policies optimize the network operation for
the nominal gas extraction rates and thus result in the mini-
mum of cost at the operational planning stage. However, the
produced control inputs are infeasible for most of the forecast
error realizations. The projections Pinj and Pact of deterministic
policies require the real-time correction of gas injections by
31.3% and the real-time correction of pressure regulation by
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Figure 4. Expected cost versus pressure variance under three network
structures. Pressure penalty  ⇡ 2 [10�3, 10�1].

active pipelines by 12.7% of the nominal rates on average.
The chance-constrained policies, on the other hand, produce
the control inputs that remain feasible with a probability at
least 1� " = 99% and require a minimal effort to restore the
real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (� = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(� = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (↵ 2 free,� = 0), to gas
injections and compressors (↵,� 2 free, [�]>` = 0, 8` 2 Ev),
and to all network assets including valves (↵,� 2 free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually brake cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge

Figure 4. Expected cost versus pressure variance under three network
structures. Pressure penalty ψπ ∈ [10−3, 10−1].

real-time gas flow feasibility. This real-time effort is non-zero
due to approximation errors induced by linear pressure and
flow equations of Lemma 1. Figure 2 illustrates the worst-case
stochastic pressure approximation errors obtained according to
the approach in Section III-F. The errors significantly depend
on the amount of uncertainty: with probability 90% and at high
confidence, the errors approach 0% for a small uncertainty
penetration level (σ = 1%), and they will not exceed 5.8%
on average for the extremely large uncertainty penetration
(σ = 10%). The errors under the deterministic solution, which
ignores gas extraction uncertainty, are larger by at least an
order of magnitude on average.

Table I further demonstrates that the variance-agnostic pol-
icy requires only a slight increase of the expected cost relative
to the deterministic solution by 1.6%, while the variance-
aware policies allow to trade-off the expected operational cost
for the smaller variations of pressures and flow rates. The
variance of gas pressures and flow rates can be reduced by
63.8% and 7.2%, respectively, without any substantial impact
on the expected cost. Observe that the subsequent variance
reduction is achieved also due to the activation of valves in
two active pipelines, that are not operating in the deterministic
and variance-agnostic solutions.

With the density plots in Fig. 1, we demonstrate the uncer-
tainty propagation through the network. The variance-agnostic
solution results in the large pressure variance in the eastern
part of the network with a large concentration of stochastic gas
extractions. This solution further allows the probability of the
gas flows reversal up to 11% for certain pipelines, thus making
the prediction of flow directions difficult. The variance-aware
solution with the joint penalization of pressures and flows
variance, in turn, drastically reduces the variation of the state
variables and localizes the most of the variation only at nodes
34 and 35. Failure to minimize the pressure variance at these
two nodes is due to relatively large approximation errors
compared to the rest of the nodes (see the top quantiles of
blue boxplots in Fig. 2). Although this variation remains large,
the pressures at these nodes are highly correlated. Thus, by
Weymouth equation (2c), the flow variance and the probability
of flow reversal in edge (34, 35) remain small.

Next, we analyze the contribution of network assets to the
variance control through the cost-variance trade-offs in Fig. 3.
The figure illustrates these trade-offs when the control policies
are assigned to gas injections only (α ∈ free, β = 0), to gas
injections and compressors (α, β ∈ free, [β]>` = 0,∀` ∈ Ev),
and to all network assets including valves (α, β ∈ free).
Observe that the variance reduction is achieved more rapidly
and at lower costs as more active pipelines are involved into
uncertainty and variance control. Hence, the stochastic control
becomes more available as the network operator deploys more
pressure regulation action by compressors and valves.

Last, we analyze structural network impacts on the cost-
variance trade-offs. We gradually break cycles C1 (by remov-
ing edges (13, 14) and (14, 19)) and C2 (by removing edge
(29, 30)) in Fig. 1 to change the network to a tree-like topol-
ogy, leaving only those cycles that are mandatory for feasible
operation. Figure 4 summarizes the cost-variance trade-offs
and points on the ambiguous role of network cycles. Breaking
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Figure 3. Total payments for active pipelines Ract, suppliers Rsup and
consumers Rcon under deterministic, chance-constrained variance-agnostic
and chance-constrained variance-aware ( ⇡ = 0.1, ' = 100) policies.

the nominal supply under stochastic policies also increase due
to several reasons. First, as shown in Table I, the stochastic
policies require a larger deployment of gas compressors and
valves that extract an additional gas mass for fuel purposes, up
to 4.2% of the network demand, thus increasing the marginal
cost of gas suppliers. Second, to provide the security margins
for chance constraints (12g)–(12i) and (12l)–(12o), the op-
timized policies require withholding less expensive injections
from the purposes of the nominal supply. Last, with increasing
assignments of penalty factors  ⇡ and  ', the optimality of
the nominal injection cost is altered in the interest of reduced
variance of state variables. Finally, the mismatch between the
consumer charges and the revenues of gas injections and active
pipelines is non-negative, thus satisfying the revenue adequacy
in all three instances.

VI. CONCLUSIONS & OUTLOOK

This work has established the stochastic control policies and
pricing scheme for the non-convex steady-state gas network
operations under gas extraction uncertainty. The work offers
an uncertainty- and variance-aware policy optimization that
ensures the gas flow feasibility with a high probability and
minimal variance of the state variables. Moreover, the work
challenged the deterministic market settlement and offered fi-
nancial remunerations to network assets for their contributions
to uncertainty and variance control.

The definition and optimization of gas storage control
policies under uncertainty constitute the relevant direction for
a future work. In addition, the uncertainty- and variance-aware
coordination and financial contracts between the gas and power
network operators are valid research directions.

APPENDIX

A. Proof of Lemma 1

The substitution of the linearized Weymouth equation from
(6b) and policies (7a) into the gas conservation law in (6b)
yields stochastic pressures as

A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠)

, A(�1 + �2⇡̃(⇠) + �3(+ �⇠))

= #+ ↵⇠ � B(+ �⇠) � � � ⇠

, A�2

�̂2

⇡̃(⇠) = #� (B + A�3)� � � A�1

from (2b),(4) : A�2⇡=�̂2⇡

+ (↵� (B + A�3)

�̂3

� � diag[1])⇠

, �̂2⇡̃(⇠) = �̂2⇡ + (↵� �̂3� � diag[1])⇠

, ⇡̃(⇠) = ⇡ + �̂�1
2 (↵� �̂3� � diag[1])⇠,

where �̂2 2 RN⇥N and �̂3 2 RN⇥E are auxiliary constants.
As �̂2 = A�2, it is only invertible for the tree network
topology. For generality, consider a reference node (r), see
Remark 1, and let �̂2\r be a reduced matrix �̂2 without the rth

row and column in �̂2. The invertible counterpart of �̂2 is

�̆2 =


�̂�1
2\r 0

0| 0

�
,

and the stochastic pressures become

⇡̃(⇠) = ⇡ + �̆2(↵� �̂3� � diag[1])⇠, (15a)

⇡r = ⇡̊r, [↵]>r = 0, [�]>r = 0, (15b)

for an arbitrary network topology. Here, equation (15b) is
enforced to satisfy the reference node definition.

To obtain the stochastic flow rates, substitute (15a) into the
linearized Weymouth equation in (6b) and rearrange, i.e.,

'̃(⇠) = �1 + �2⇡̃(⇠) + �3̃(⇠)

, '̃(⇠) = �1 + �2⇡ + �3

from (4) : '

+ �2�̆2

�̀2

(↵� diag[1])⇠

� (�2�̆2�̂3 � �3)

�̀3

�⇠

, '̃(⇠) = '+ (�̀2(↵� diag[1]) + �̀3�)⇠,

where �̀2 2 RE⇥N and �̀3 2 RE⇥E are constants.

B. Proof of Lemma 2

Consider the stochastic gas conservation law in (6b):

A'̃(⇠) = #̃(⇠) � B̃(⇠) � �̃(⇠).

From the properties of the edge-node incidence matrix A, we
know that 1>A'̃(⇠) = 0. By summing up N equations above
and by substituting equations (7a), we arrive to equation

1>#� 1>B� 1>� + 1>↵⇠ � 1>B�⇠ � 1>⇠ = 0,

which is separable into nominal and random components:

1>#� 1>B� 1>� = 0, (16a)

1>↵⇠ � 1>B�⇠ � 1>⇠ = 0, (16b)

where equation (16a) is the deterministic gas conservation law,
which is alternatively expressed through (1a), thus providing
the first condition in (8a). The second condition in (8b) is
provided from (16b), which holds for any realization of ⇠ if
the recourse variables ↵ and � obey (↵� B�)>1 = 1.

To obtain condition (8c), substitute (7) into the stochastic
linearized Weymouth equation in (6b):

' = �1 + �2⇡ + �3� ↵(�̀2 � �2�̆2)⇠

+ �(�̀3 � �2�̆2�̂3 + �3)⇠ + (�̀2 � �2�̆2)diag[1]⇠

= �1 + �2⇡ + �3,

Figure 5. Total payments for active pipelines Ract, suppliers Rsup and
consumers Rcon under deterministic, chance-constrained variance-agnostic
and chance-constrained variance-aware (ψπ = 0.1, ψϕ = 100) policies.

cycle C1 in the supply concentration area causes congestion,
which prevents deploying western suppliers to minimize the
pressure variance in the east, substantially increasing the cost
of operations. On the other hand, the subsequent removal of
cycle C2 weakens the graph connectivity and allows for more
economical and more drastic variance reduction in the east.
This agrees with equation (7b), which relates pressures and
forecast errors through parameters γ̆2 and γ̂3, that encode
graph connectivity. We notice, the trade-offs in Fig. 3 and
4 motivate the problem of the variance-aware network design.

B. Revenue Analysis

Figure 5 depicts the total revenues of active pipelines and
gas injections as well as the total charges of gas consumers.
It further shows their decomposition into revenue streams
defined by the pricing scheme in (19). Relative to the de-
terministic payments, the chance-constrained policies lead to
a substantial increase in payments that further increase due to
the variance awareness. Besides the nominal supply revenues,
the chance-constrained policies produce the compensations
for the uncertainty and variance control that together exceed
deterministic payments by 37.3%. Moreover, the payments for
the nominal supply under stochastic policies also increase due
to several reasons. First, as shown in Table I, the stochastic
policies require a larger deployment of gas compressors and
valves that extract an additional gas mass for fuel purposes, up
to 4.2% of the network demand, thus increasing the marginal
cost of gas suppliers. Second, to provide the security margins
for chance constraints (12g)–(12i) and (12l)–(12o), the op-
timized policies require withholding less expensive injections
from the purposes of the nominal supply. Last, with increasing
assignments of penalty factors ψπ and ψϕ, the optimality of
the nominal injection cost is altered in the interest of reduced
variance of state variables. Finally, the mismatch between the
consumer charges and the revenues of gas injections and active
pipelines is non-negative, thus satisfying the revenue adequacy
in all three instances.

VI. CONCLUSIONS & OUTLOOK

This work has established the stochastic control policies and
pricing scheme for the non-convex steady-state gas network
operations under gas extraction uncertainty. The work offers
an uncertainty- and variance-aware policy optimization that

ensures the gas flow feasibility with a high probability and
minimal variance of the state variables. Moreover, the work
challenged the deterministic market settlement and offered fi-
nancial remunerations to network assets for their contributions
to uncertainty and variance control.

The definition and optimization of gas storage control
policies under uncertainty constitute the relevant direction for
a future work. In addition, a price-responsive modeling of
stochastic gas extraction rates, by means of co-optimization of
control policies and the stochastic gas consumption models,
is a valid research direction. This would lead, for example,
to uncertainty- and variance-aware coordination and financial
contracts between the gas and power network operators.

APPENDIX

A. Proof of Lemma 1

The substitution of the linearized Weymouth equation from
(6b) and policies (7a) into the gas conservation law in (6b)
yields stochastic pressures as

Aϕ̃(ξ) = ϑ̃(ξ)−Bκ̃(ξ)− δ̃(ξ)
⇔ A(γ1 + γ2π̃(ξ) + γ3(κ+ βξ))

= ϑ+ αξ −B(κ+ βξ)− δ − ξ
⇔ Aγ2

γ̂2

π̃(ξ) = ϑ− (B +Aγ3)κ− δ −Aγ1

from (2b),(4) : Aγ2π=γ̂2π

+ (α− (B +Aγ3)

γ̂3

β − diag[1])ξ

⇔ γ̂2π̃(ξ) = γ̂2π + (α− γ̂3β − diag[1])ξ

⇔ π̃(ξ) = π + γ̂−1
2 (α− γ̂3β − diag[1])ξ,

where γ̂2 ∈ RN×N and γ̂3 ∈ RN×E are auxiliary constants.
As γ̂2 = Aγ2, it is only invertible for the tree network
topology. For generality, consider a reference node (r), see
Remark 1, and let γ̂2\r be a reduced matrix γ̂2 without the rth

row and column in γ̂2. The invertible counterpart of γ̂2 is

γ̆2 =

[
γ̂−1

2\r 0

0> 0

]
,

and the stochastic pressures become

π̃(ξ) = π + γ̆2(α− γ̂3β − diag[1])ξ, (20a)

πr = π̊r, [α]>r = 0, [β]>r = 0, (20b)

for an arbitrary network topology. Here, equation (20b) is
enforced to satisfy the reference node definition.

To obtain the stochastic flow rates, substitute (20a) into the
linearized Weymouth equation in (6b) and rearrange, i.e.,

ϕ̃(ξ) = γ1 + γ2π̃(ξ) + γ3κ̃(ξ)

⇔ ϕ̃(ξ) = γ1 + γ2π + γ3κ

from (4) : ϕ

+ γ2γ̆2

γ̀2

(α− diag[1])ξ

− (γ2γ̆2γ̂3 − γ3)

γ̀3

βξ

⇔ ϕ̃(ξ) = ϕ+ (γ̀2(α− diag[1]) + γ̀3β)ξ,

where γ̀2 ∈ RE×N and γ̀3 ∈ RE×E are constants.
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B. Proof of Lemma 2

Consider the stochastic gas conservation law in (6b):

Aϕ̃(ξ) = ϑ̃(ξ)−Bκ̃(ξ)− δ̃(ξ).
From the properties of the edge-node incidence matrix A, we
know that 1>Aϕ̃(ξ) = 0. By summing up N equations above
and by substituting equations (7a), we arrive to equation

1>ϑ− 1>Bκ− 1>δ + 1>αξ − 1>Bβξ − 1>ξ = 0,

which is separable into nominal and random components:

1>ϑ− 1>Bκ− 1>δ = 0, (21a)

1>αξ − 1>Bβξ − 1>ξ = 0, (21b)

where equation (21a) is the deterministic gas conservation law,
which is alternatively expressed through (1a), thus providing
the first condition in (8a). The second condition in (8b) is
provided from (21b), which holds for any realization of ξ if
the recourse variables α and β obey (α−Bβ)>1 = 1.

To obtain condition (8c), substitute (7) into the stochastic
linearized Weymouth equation in (6b):

ϕ = γ1 + γ2π + γ3κ− α(γ̀2 − γ2γ̆2)ξ

+ β(γ̀3 − γ2γ̆2γ̂3 + γ3)ξ + (γ̀2 − γ2γ̆2)diag[1]ξ

= γ1 + γ2π + γ3κ,

yielding a deterministic equation due to the definition of
constants γ̀2 and γ̀3. Finally, the stochastic equation for the
reference node is satisfied by equations (20b).

C. Dualization of Conic Constraints

The results presented in this section are due to [28, Chapter
5]. Consider the SOCP problem of the form

min
x∈Rn

c>x, s.t. ‖Aix‖ 6 b>i x, ∀i = 1, . . . ,m, (22a)

with c ∈ Rn, Ai ∈ Rni×n, bi ∈ Rn. To dualize the second-
order cone constraint, we use the fact that for any pair λi ∈ R1

and ui ∈ Rni it holds that

max
ui,λi:

‖ui‖6λi

− u>i Aix− λib>i x = max
λi>0

− λi(‖Aix‖ − b>i x)

=

{
0, if ‖Aix‖ 6 b>i x,
−∞, otherwise. (22b)

Therefore, the Lagrangian of the SOCP problem writes in
variables x ∈ Rn, λ ∈ Rm and u ∈ Rni×n as

max
‖ui‖6λi

min
x

L(x, u, λ) = c>x−
m∑

i=1

(u>i Aix+ λib
>
i x).

(22c)

Consider another SOCP problem of the form

min
x∈Rn

c>x, s.t. ‖Aix‖2 6 b>i x, ∀i = 1, . . . ,m, (22d)

with the rotated second-order cone constraint. To dualize this
constraint, we use the fact that for any set of variables µi ∈ R1

, λi ∈ R1 and ui ∈ Rni it holds that

max
ui,µi,λi:

‖ui‖26µiλi

− u>i Aix− 1/2λi − µib>i x

= max
λi>0

− λi(‖Aix‖2 − b>i x) =

{
0, if ‖Aix‖2 6 b>i x,
−∞, otherwise.

Therefore, the Lagrangian of the SOCP problem writes in
variables x ∈ Rn, µ, λ ∈ Rm and u ∈ Rni×n as

max
‖ui‖26µiλi

min
x

L(x, u, µ, λ) = c>x

−
m∑

i=1

(u>i Aix+ 1/2λi + µib
>
i x). (22e)

D. Proof of Theorem 1

Consider the problem of finding an equilibrium solution
among the following set of agents. First, consider a price-
setter who seeks the optimal prices to coupling constraints
(12b)–(12i) in response to their slacks by solving

maxλc,λr,λw,λϕ,λπ,λϕ,λπ,λπ λc> (Aϕ− ϑ+Bκ+ δ)

+ λr>
(
1− (α−Bβ)>1

)
+ λw> (ϕ− γ1 − γ2π − γ3κ)

+
∑E
`=1 λ

ϕ
`

(
sϕ` − ‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖

)

+
∑N
n=1 λ

π
n

(
sπn − ‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖

)

+
∑E
`=1 λ

ϕ

`

(
ϕ` − zε̂‖F [γ̀2(α− diag[1])− γ̀3β]>` ‖

)

+
∑N
n=1 λ

π
π

(
πn − πn − zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖

)

+
∑N
n=1 λ

π
π

(
πn − πn − zε̂‖F [γ̆2(α− γ̂3β − diag[1])]>n ‖

)
.

(23)

Problem (23) adjusts the prices respecting the slack of each
constraint, e.g., λc ↓ if Aϕ−ϑ+Bκ > δ, and λc ↑ otherwise.
From SOCP property (22b), we know that the last five terms
associated with the conic constraints rewrite equivalently as

− λϕ>sϕ − λπ>sπ − λϕ>ϕ− λπ> (π − π)− λπ> (π − π)

−∑E
`=1[uϕ + zε̂u

ϕ]`F [γ̀2(α− diag[1])− γ̀3β]>`
−∑N

n=1[uπ + zε̂u
π + zε̂u

π]nF [γ̆2(α− γ̂3β − diag[1])]>n ,

which is linear and separable, and where the dual variables
uϕ, uϕ ∈ RE×N and uπ, uπ, uπ ∈ RN×N are subject to the
following dual feasibility conditions

‖[uπ]n‖ 6 λπn, ‖[uπ]n‖ 6 λπn, ‖[uπ]n‖ 6 λπn, (24a)
‖[uϕ]`‖ 6 λϕ` , ‖[uϕ]`‖ 6 λϕ` ,∀n ∈ N ,∀` ∈ E . (24b)

By separating the terms with respect to the variables of
network assets, network operator, and free terms associated
with each consumer, we obtain the revenue functions in (19).
Consider next that each gas supplier n ∈ N solves

max
ϑn,[α]n,cϑn,c

α
n

Rsup
n (ϑn, [α]n)− c1nϑn − cϑn − cϑα (25a)

s.t. λϑn : zε̂‖c̀2nϑn‖2 6 cϑn, (25b)

λαn : zε̂‖F c̀2n[α]>n ‖2 6 cαn, (25c)

λϑn : zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (25d)

λϑn : zε̂‖F [α]>n ‖ 6 ϑn − ϑn, (25e)

to maximize the profit in response to equilibrium prices. Next,
consider that each active pipeline ` ∈ E solves

max
κ`,[β]`

Ract
` (κ`, [β]`) (26a)



11

s.t. λκ` : zε̂‖F [β]>` ‖ 6 κ` − κ`, (26b)

λ
κ
` : zε̂‖F [β]>` ‖ 6 κ` − κ`, (26c)

to maximize the revenue in response to equilibrium prices.
Finally, consider a gas network operator which solves

min
π,ϕ,sπ,sϕ

Rrent(π, ϕ, sπ, sϕ) (27a)

s.t. λπ̊r : πr = π̊r (27b)

to maximize the network rent in response to equilibrium prices.
By taking the path outlined in Appendix C, the first-order
optimality conditions (FOC) of equilibrium problems (25)–
(27) are given by the following equalities

ϑ : c1 − uϑ ◦ c̀2 − λc + λϑ − λϑ = 0, (28a)

κ : [λc>B]> − [λw>γ3]> + λκ − λκ = 0, (28b)

π : λπ − λπ − [λw>γ2]> − Ir ◦ λπ̊ = 0, (28c)

ϕ : [λc>A]> + λw − λϕ = 0, (28d)
sπ : λπ = ψπ, sϕ : λϕ = ψϕ, (28e)

cϑ : µϑ = 1, cα : µα = 1, (28f)

[α]n : F
(
uϕ>〈γ̀2〉n + uπ>〈γ̆2〉n + zε̂[u

ϑ + uϑ]>n
)

+ F [uα]>n c̀2 + λr = 0, (28g)

[β]` : F
(
uϕ>〈γ̀3〉` + uπ>〈γ̆2γ̂3〉` − zε̂[uκ + uκ]>`

)

+ 1>〈B〉`λr = 0, (28h)

where vector Ir ∈ RN takes 1 at position corresponding to the
reference node, and 0 otherwise. Conditions (28) are identical
to those of centralized problem (12), while the set of FOC of
problem (23) yields primal constraints (12b)–(12i). Together
with the primal constraints of problems (25)–(27), they are
identical to the feasibility conditions of the centralized prob-
lem. Hence, problem (12) solves the competitive equilibrium.

E. Proof of Corollary 1

From the feasibility conditions (12b)–(12d) and com-
plementarity slackness conditions associted with constraints
(12e)–(12i), we know that the objective function of the price-
setting problem in (23) is zero at optimum. By rearranging the
terms of (23), we have
∑N
n=1Rcon

n −
∑N
n=1R

sup
n −

∑E
`=1Ract

` = Rrent + λw>γ1.

If let γ1 = 0, it remains to show that the congestion rent
accumulated by the network is non-negative, i.e.,
(
λϕ> − λw> − λc>A

)
ϕ

Term A

+
(
λw>γ2 + λπ> − λπ>

)
π

Term B

+ λπ>π − λπ>π
Term C

+ λϕ>sϕ + λπ>sπ

Term D

> 0.

From optimality condition (28d), we know that term A is zero.
Due to (28c), the term B is zero for all nodes but the reference
one, and for the reference node it is λπ̊π̊ > 0 from the dual
objective function of problem (27). Term D is non-negative,
because from (28e) we have that the dual prices λϕ and λπ

are non-negative, and variables sϕ and sπ are lower-bounded

by zero as per (12e) and (12f). In term C, λπ>π and λπ>π
are non-negative due conditions (24a). Thus, the rent is always
non-negative if and only if the network design allows π = 0.

F. Proof of Corollary 2

We need to show that the functions (25a) and (26a) are
non-negative. Both (25a) and (26a) are lower bounded by their
corresponding dual functions, i.e.,

(25a) > 1/2(λϑn + λαn) + λϑnϑn − λϑnϑn, ∀n ∈ N ,
(26a) > λκ` κ` − λκ` κ`, ∀` ∈ Ea.

From the complementary slackness of constraints in (25) and
(26), we know that λϑ, λα, λϑ, λϑ > 0 and λκ, λκ > 0. As
injection limits are all non-negative, function (25a) is non-
negative if and only if the network design allows ϑ = 0.
As pressure regulation limits for compressors and valves are
respectively non-negative and non-positive, function (26a) is
non-negative if and only if the network design allows κ` =
0,∀` ∈ Ec and κ` = 0,∀` ∈ Ev .

NOMENCLATURE

Sets
E Set of pipelines.
Ea, Ec, Ev Set of active, compressor-, valve-hosting pipelines.
N Set of nodes.
Parameters
δ Vector of nominal gas extraction rates.
γ, γ̂, γ̆, γ̀ Linearization coefficients (and their transformations)

associated with the Weymouth equation.
c̀2 Factorization of the 2nd-order cost coefficients.
R(·) Revenue associated with network agent (·).
ψπ Vector of pressure variance penalty factors.
ψϕ Vector of flow variance penalty factors.
Σ, F Forecast errors covariance matrix and its factorization.
κ, κ Vectors of min. and max. squared regulation limits.
π, π Vectors of min. and max. squared pressure limits.
ρ, ρ Vectors of min. and max. pressure limits.
ϑ, ϑ Vectors of min. and max. gas injection limits.
ε, ε̂ Joint and individual constraint violation parameters.
A Node-edge incidence matrix.
B Sending node - active pipeline incidence matrix.
b Vector of gas mass - pressure conversion factors.
c1, c2 Vectors of the 1st- and 2nd-order cost coefficients.
p Probability of violating performance guarantee.
S Sample complexity in out-of-sample analysis.
v Confidence level of performance guarantee.
w Vector of pipeline friction coefficients.
zε̂ Safety parameter in chance constraint reformulation.
Variables
α Matrix of gas injection recourse decisions.
β Matrix of pressure regulation recourse decisions.
κ Vector of pressure regulation rates.
λ, u Vectors and matrices of dual variables.
π Vector of nodal pressures.
ϕ Vector of gas flows.
ϑ Vector of nodal gas injections.
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cϑ, cα Vectors of 2nd-order nominal and recourse costs.
sπ Vector of pressure standard deviations.
sϕ Vector of flow standard deviations.
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[18] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

[19] A. Nemirovski and A. Shapiro, “Convex approximations of chance
constrained programs,” SIAM J. Optim., vol. 17, no. 4, pp. 969–996,
2007.

[20] K. N. Hasan, R. Preece, and J. V. Milanović, “Existing approaches and
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