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Abstract—Using flexibility from the coordination of power
and natural gas systems helps with the integration of variable
renewable energy in power systems. To include this flexibility
into the operational decision-making problem, we propose a dis-
tributionally robust chance-constrained co-optimization of power
and natural gas systems considering flexibility from short-term
gas storage in pipelines, i.e., linepack. Recourse actions in both
systems, based on linear decision rules, allow adjustments to
the dispatch and operating set-points during real-time operation
when the uncertainty in wind power production is revealed. We
convexify the non-linear and non-convex power and gas flow
equations using DC power flow approximation and second-order
cone relaxation, respectively. Our coordination approach enables
a study of the mitigation of short-term uncertainty propagated
from the power system to the gas side. We analyze the results of
the proposed approach on a case study and evaluate the solution
quality via out-of-sample simulations performed ex-ante.

Index Terms—Linear decision rules, Distributionally robust
chance constraints, Linepack flexibility, Power and natural gas
coordination, Second-order cone program.

I. INTRODUCTION

Natural gas-fired power plants (NGFPPs) typically provide
operational flexibility to power systems with a high share of
intermittent renewable energy. Short-term gas storage in nat-
ural gas pipelines, known as linepack, provides an additional
source of flexibility [1] at no extra investment cost. Efficient
procurement of flexibility from the natural gas system during
day-ahead scheduling of power systems requires consideration
of the operational constraints of the natural gas system.
Further, with the increasing share of intermittent renewable
energy sources in the power system, the need for flexibility and
thereby, the interdependence between power and natural gas
systems is becoming stronger [2]. As a result, the coordination
between power and natural gas systems during the day-ahead
dispatch has been a topic of research interest in recent years.
For example, various levels of coordination and information
exchange between the systems are discussed in [3], [4], while
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[5], [6], [7], [8], [9] model full integration of the power
with the natural gas system. The value of gas system related
flexibility for the power system is quantified in [6] and [7] in
a deterministic manner.

Increasing interactions between power and natural gas sys-
tems, however, result in the propagation of short-term uncer-
tainty faced by power systems to the gas side. Prior works on
the coordinated operation of power and natural gas systems
have largely ignored this short-term uncertainty. This may
result in additional recourse actions necessary during the real-
time operation stage when the flexibility from the natural gas
system is not correctly anticipated. Affine policies, built on the
theory of linear decision rules, have been a preferred choice for
day-ahead decision making, wherein nominal dispatch sched-
ules along with the recourse actions for real-time operation
are optimally decided [10]. In this paper, we introduce a
unified framework to elicit flexibility based on affine policies
from agents, e.g., power producers, natural gas suppliers as
well as the network assets, i.e., linepack. Our affine policies
are decided based on the features of uncertainty drawn from
the historical measurements, with no distributional restriction
imposed on the random variables.

Previous works discussing uncertainty-aware coordination
between power and natural gas systems use stochastic pro-
gramming approaches such as scenario-based [5], robust [8],
and chance-constrained optimization [9]. Reference [5] pro-
poses a two-stage stochastic program for the day-ahead and
real-time operations of integrated power and natural gas sys-
tem under uncertainty from renewable generation. In a similar
direction, a robust dispatch framework is proposed in [8]
which models uncertainty through intervals and extreme sce-
nario approximation. Chance-constraints are introduced into
the planning problem of the integrated power and natural gas
system [9]. While scenario-based approaches [5] incur a high
computational expense due to a large number of scenarios
needed to characterize the uncertainty properly, robust ap-
proaches [8] often suffer from over-conservativeness of the
solution due to the design objective to minimize worst-case
cost. Distributionally robust chance-constrained formulation of
the problem [11] allows for a tunable probabilistic violation
of operational limits when facing extreme realizations of
uncertainty which is characterized by an ambiguity set.
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In this work, we adopt a distributionally robust chance-
constrained optimization technique, considering its advantages
over other stochastic programming approaches [11], to intro-
duce a coordinated day-ahead dispatch of power and natural
gas systems taking the flexibility provided by linepack into
account. To the best of our knowledge, this is the first paper
to bring linepack flexibility to the day-ahead dispatch problem,
while modeling and mitigating the short-term uncertainty
propagated from the power system to the natural gas system.
Studying this uncertainty propagation opens new pathways
for the endogenous valuation of the natural gas network as
a provider of short-term flexibility to power systems. This
could potentially result in the design of new market-based
coordination mechanisms and market products enabling gas
system agents and the network to play an active role in pro-
viding flexibility to the power system. From a methodological
perspective, our main contribution is a tractable reformulation
of distributionally robust chance constraints for the combined
power and gas dispatch problem considering linepack.

The rest of this paper is organized as follows: Section II
presents the distributionally robust chance-constrained power
and natural gas dispatch problem. Section III discusses the
solution methodology, which is then applied to a case study
in Section IV. Finally, conclusions are drawn and the avenues
for future work are discussed in Section V.

II. PROBLEM FORMULATION

A. Preliminaries

In the following, we introduce the operation of a coupled
power and natural gas system, wherein power generated from
dispatchable power plants i ∈ I and wind farms j ∈ J is used
to meet the inelastic electricity demand from a set of loads
d ∈ D. The dispatchable generators comprise of NGFPPs
i ∈ G and non-NGFPPs i ∈ C, such that G∩C = ∅ and G∪C =
I. On the gas side, natural gas suppliers k ∈ K, together with
available linepack in the gas network, are dispatched to meet
the natural gas demand from inelastic gas loads and the fuel
needed by NGFPPs. The non-linear and non-convex power
and gas flow equations are convexified using DC power flow
approximation and second-order cone relaxation, respectively.
We assume that wind power is available at zero marginal cost
of production. Power produced by wind farms during real-time
operation is the sole uncertainty source considered.

B. Uncertainty Model

For wind farm j, the day-ahead point forecast for time
period t ∈ T is given by W PF

j,t . The forecast error observed
in real-time is assumed to be a random variable δj,t, such
that the overall system uncertainty can be characterized by
Ω = [δ11 δ21 . . . δ|J |t . . . δ|J ||T |]

> ∈ R|J ||T |, where R is
the set of real numbers and | · | is the cardinality operator over
a set. We consider that Ω follows an unknown multivariate
probability distribution P ∈ Π, where Π is an ambiguity set
defined as

Π = {P ∈ Π0(R|J |) : EP[Ω] = µΠ,EP[ΩΩ>] = ΣΠ}, (1)

such that the family of distributions, Π0(R|J |) contains all
probability distributions whose first and second-order mo-
ments are given by known parameters µΠ ∈ R|J ||T | and
ΣΠ ∈ R|J ||T |×|J ||T |, respectively. Further, EP[·] denotes
expectation with respect to the distribution P and (·)> is
the transpose operator. Without any loss of generality, we
assume that the mean µΠ = 0 and that the covariance
matrix ΣΠ can be empirically estimated from historical record
of wind forecast errors. The structure of the positive semi-
definite covariance matrix, ΣΠ is such that its diagonal blocks,
comprised of sub-matrices, ΣΠ

t ∈ R|J |×|J |,∀t ∈ T , capture
the spatial correlation among the wind forecast errors in period
t, while the off-diagonal blocks contain information about
spatio-temporal correlation of the uncertain parameters.

With this description of uncertain wind forecast errors, the
net deviation from the point forecasts of all wind farms in the
time period t is e>Ωt where e ∈ R|J | is a vector of all ones.
The temporally collapsed random vector is formed as: Ωt =
FtΩ, where Ft ∈ R|J |×|J ||T | is a selector matrix formed by
blocks of null matrices 0 ∈ R|J |×|J | and a single block of
identity matrix 1 ∈ R|J |×|J |, starting at column (|J |(t−1)+
1), ∀t ∈ T . As a sign convention, e>Ωt > 0 implies deficit of
wind power available in the system during real-time operation
stage as compared to the day-ahead forecast.

C. Uncertainty-Aware Power and Natural Gas Coordination

The proposed day-ahead coordinated electricity and natural
gas model is a stochastic program, presented in (2) in the
following. The objective function has a min-max structure such
that the total expected system dispatch cost is minimized while
the uncertain variable Ω draws from a probability distribution
P ∈ Π that results in maximizing the expected cost of dispatch,
i.e., the worst-case probability distribution.

min
Θ1

max
P∈Π

EP

[∑
t∈T

(∑
i∈C

CE
i p̃i,t +

∑
k∈K

CG
k g̃k,t

)]
(2a)

subject to

e>p̃t + e>(WPF
t − Ωt) = e>DE

t , ∀t, (2b)

P̃inj
t = ΨIp̃t + ΨJ(W

PF
t − Ωt)−ΨDDE

t , ∀t, (2c)

min
P∈Π

P[{ΨP̃inj
t }(n,r) ≥ −{F}(n,r)]

≥ (1− εnr), ∀(n, r) ∈ L, ∀t, (2d)

min
P∈Π

P[{ΨP̃inj
t }(n,r) ≤ {F}(n,r)]

≥ (1− εnr), ∀(n, r) ∈ L, ∀t, (2e)
min
P∈Π

P[p̃i,t ≥ P i] ≥ (1− εi), ∀i, ∀t, (2f)

min
P∈Π

P[p̃i,t ≤ P i] ≥ (1− εi), ∀i, ∀t, (2g)

min
P∈Π

P[g̃k,t ≥ Gk] ≥ (1− εk), ∀k, ∀t, (2h)

min
P∈Π

P[g̃k,t ≤ Gk] ≥ (1− εk), ∀k, ∀t, (2i)

min
P∈Π

P[p̃rm,t ≥ PRm] ≥ (1− εm), ∀m, ∀t, (2j)

min
P∈Π

P[p̃rm,t ≤ PRm] ≥ (1− εm), ∀m, ∀t, (2k)
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min
P∈Π

P[p̃ru,t ≤ Γm,u p̃rm,t] ≥ (1− εmu),

∀(m,u) ∈ Zc, ∀t, (2l)
min
P∈Π

P[q̃m,u,t ≥ 0] ≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (2m)

min
P∈Π

P[q̃in
m,u,t ≥ 0] ≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (2n)

min
P∈Π

P[q̃out
m,u,t ≥ 0] ≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (2o)

q̃2
m,u,t = K2

m,u(p̃r2
m,t − p̃r2

u,t), ∀(m,u) ∈ Z, ∀t, (2p)

q̃m,u,t =
q̃in
m,u,t + q̃out

m,u,t

2
, ∀(m,u) ∈ Z, ∀t, (2q)

h̃m,u,t = Sm,u
p̃rm,t + p̃ru,t

2
, ∀(m,u) ∈ Z, ∀t, (2r)

h̃m,u,t = H0
m,u + q̃in

m,u,t − q̃out
m,u,t,∀(m,u) ∈ Z, t = 1, (2s)

h̃m,u,t = h̃m,u,(t−1) + q̃in
m,u,t − q̃out

m,u,t,

∀(m,u) ∈ Z, t > 1, (2t)

min
P∈Π

P[h̃m,u,t ≥ H0
m,u] ≥ (1− εmu),

∀(m,u) ∈ Z, t = |T |, (2u)∑
k∈AK

m

g̃k,t −
∑
i∈AG

m

φi p̃i,t

−
∑

u:(m,u)∈Z

(q̃in
m,u,t − q̃out

u,m,t) = DG
m,t, ∀m, ∀t, (2v)

where the set of stochastic variables is Θ1={p̃i,t, g̃k,t, p̃rm,t,
q̃m,u,t, q̃in

m,u,t, q̃
out
m,u,t, h̃m,u,t}. The terms in objective (2a) are

the expected cost of power generation by non-NGFPPs and
the cost of natural gas supply by gas suppliers derived from
marginal production cost CE

i and CG
k , respectively.

The inequalities (2d)-(2o) and (2u) are modeled as distribu-
tionally robust chance constraints. This means that at the op-
timal solution to problem (2), the probability of meeting each
individual constraint inside the square brackets P[·] is modeled
to have a confidence level of at least (1 − ε(·)), where each
ε(·) lies within 0 and 1, i.e., ε(·) ∈ [0, 1]. Subscripts (·) take
the appropriate indices from the set {i, (n, r), k, m, (m,u)}
depending on the individual constraint.

Constraints (2b)-(2g) pertain to the power system. These
constraints include the power balance (2b), limits on the
stochastic power flows in the transmission lines (2c)-(2e) and
the upper (P i) and lower bounds (P i) on the stochastic power
production of generators (2f) and (2g). Vectors p̃t ∈ R|I|,
WPF

t ∈ R|J | and DE
t ∈ R|D| represent the power produced

by generators, wind forecasts for wind farms and electricity
demand from loads in period t, while Ωt is the random vector
of forecast errors, as previously defined. Vector coefficients,
e in (2b) are of appropriate dimensions such that the total
supply and demand are balanced in each period t. The matrix
Ψ ∈ R|L|×|N| represents the Power Transfer Distribution
Factor (PTDF) matrix, derived from the reactances of power
transmission lines [12], which maps the injections P̃inj

t ∈ R|N |
at the electricity nodes to the power flows in each of the
power lines (n, r) ∈ L respecting capacity limits F in the
network. Similarly, matrices ΨI ∈ R|N |×|I|, ΨJ ∈ R|N |×|J |,

and ΨD ∈ R|N |×|D| map generators, wind farms and loads
to the electricity nodes, such that (2c) gives the nodal power
injections for all electricity nodes in the system.

Natural gas system constraints are given in (2h)-(2u). While
constraints (2h) and (2i) limit the stochastic gas supply g̃k,t by
supplier k in time period t to Gk and Gk, (2j) and (2k) limit
the nodal gas pressure p̃rm,t at each gas node m ∈M to be
within the physical limits PRm and PRm. For the natural gas
pipelines with compressors, Zc ⊂ Z , compression is modeled
linearly in (2l), which relate the inlet and outlet pressures
of two adjacent nodes through compression factor Γm,u.
We consider that the direction of gas flow in each pipeline
(m,u) ∈ Z is predetermined and (2m)-(2o) enforce this flow
direction in real-time. As remarked in [1], this assumption is
non-limiting for the high-pressure, gas transmission networks
when considering day-ahead operational problems. On the
contrary, it can be a limiting assumption while considering
a network expansion planning problem or a gas distribution
system wherein injections from distributed gas producers (e.g.,
biogas plants) cannot be neglected1. Equality constraints (2p),
known as Weymouth equation, describe the flow q̃m,u,t (given
by (2q) as the average of inflow, q̃in

m,u,t and outflow, q̃out
m,u,t)

along pipeline (m,u) as a quadratic non-convex function of
the pressures p̃rm,t and p̃ru,t at the inlet (m) and outlet
(u) nodes of the pipeline scaled by the pipeline resistance
constant Km,u. Constraints (2r) define the amount of linepack
in the pipelines as the average of inlet and outlet pressures,
scaled by the pipeline parameter Sm,u. Following the modeling
approach in [7], (2s)-(2u) describe the evolution of the amount
of linepack h̃m,u,t in a pipeline over time, with (2u) ensuring
that the linepack is not depleted at the end of the simulation
horizon beyond initial linepack amount H0

m,u. Supply-demand
balance of natural gas at each node is ensured in real-time
by equality constraints (2v) which also couple the power and
natural gas systems through the fuel consumed by the NGFPPs
scaled by a fuel conversion factor φi. The sets AK

m ⊂ K and
AG
m ⊂ G collect gas suppliers and NGFPPs that are located at

node m, respectively, while DG
m,t is the nodal gas demand.

The requirement to solve the stochastic program (2) during
the day-ahead stage renders the problem infinite dimensional,
as the optimization variables are a function of uncertain
parameters that are only revealed during real-time operation
on the next day. To enable solvability of the problem, we
adopt recourse actions based on linear decision rules [13]
for the sources of flexibility in the coupled system, i.e.,
flexible power generation and natural gas supply and linepack.
The assumption of affine response to uncertainty by flexible
agents, although somewhat limiting in light of the non-linear
dynamics of natural gas flow in the network, provides an
intuitive understanding of the methodology behind uncertainty
propagation from power system to natural gas system at a
lower complexity of exposition. Generalized decision rules,
for instance as discussed in [14], are left for future work.

1The assumptions on fixed gas flow directions may be violated in extreme
uncertainty realizations.
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D. Affine Policies

When solving the day-ahead dispatch problem, flexible and
adjustable agents in the coupled system, i.e., power producers
and gas suppliers, are assigned optimal affine policies in addi-
tion to the nominal schedule. These affine policies govern their
response to the realizations of uncertainty in wind forecast
errors during the real-time operation.

a) Power producers: The affine response from dispatch-
able power plants (NGFPPs and non-NGFPPs) is given by

p̃i,t = pi,t + (e>Ωt)αi,t, ∀i ∈ I, ∀t (3)

where p̃i,t is the stochastic power production of unit i in real-
time, pi,t is the nominal power production schedule if the
uncertainty were absent (perfect forecasts) and αi,t ∈ [−1, 1]
denotes the participation factor of the unit towards mitigation
of the deviation.

b) Gas suppliers: The stochastic natural gas supply by
supplier k is given by

g̃k,t = gk,t + (e>Ωt)βk,t, ∀k ∈ K, ∀t (4)

where gk,t is the nominal gas supply and βk,t is the partici-
pation factor of the supplier towards uncertainty mitigation.

The response to uncertainty by flexible network asset, i.e.,
linepack, is not directly adjustable as it depends on the
allocation of the above affine policies, subject to the topology
of the gas network and the physical gas flow constraints.

E. Uncertainty Response by Power and Gas Networks

Here, we discuss how uncertainty affects the flows in the
power and gas networks. We consider the case of imperfect
forecasts, i.e., e>Ωt 6= 0.

During the real-time operation, power flows in the trans-
mission lines, modeled by (2c)-(2e) change depending on
the realized uncertainty Ωt, the affine responses of power
producers αi,t, and the spatial configuration of wind farms
and power producers. Moreover, given the response from
dispatchable power plants αi,t, the power balance constraint
(2b) holds true for any realization of uncertainty Ωt iff

e>pt + e>WPF
t = e>DE

t , ∀t, (5a)

e>αt = 1, ∀t. (5b)

Constraints (5) are derived from (2b) by separating the nominal
and uncertainty-dependent terms.

On the gas side, the uncertainty in gas flows, in response to
changes in gas supply βk,t and in fuel demand from NGFPPs
φiαi,t, ∀i ∈ G, is mitigated by the flexibility provided by
linepack. It is vital to note that the real-time natural gas flows
and nodal pressures are functions of βk,t and αi,t, ∀i ∈ G.
However, the analytical derivation of this relationship is not
straightforward, given the non-linear gas flow dynamics and
the inter-temporal linkages associated with the linepack model.
As a simplification, we model the flow and pressure changes

as affine functions of uncertainty2. We model the real-time
natural gas flows in the pipelines as

q̃m,u,t = qm,u,t + (e>Ωt)γm,u,t, ∀(m,u) ∈ Z, ∀t, (6a)

q̃in
m,u,t = qin

m,u,t + (e>Ωt)γ
in
m,u,t, ∀(m,u) ∈ Z, ∀t, (6b)

q̃out
m,u,t = qout

m,u,t + (e>Ωt)γ
out
m,u,t, ∀(m,u) ∈ Z, ∀t, (6c)

where qm,u,t, qin
m,u,t, q

out
m,u,t denote the average flow rate, in-

flow and outflow rate of natural gas in the pipeline connecting
nodes m and u, in absence of forecast errors and the variables
γm,u,t, γ

in
m,u,t, γ

out
m,u,t represent the auxiliary variables which

model changes in these flow rates during real-time.
Consequently, the nodal balance constraint for natural gas

(2v) holds true for any realization of uncertainty Ωt iff∑
k∈AK

m

gk,t −
∑
i∈AG

m

φi pi,t

−
∑

u:(m,u)∈Z

(qin
m,u,t − qout

u,m,t) = DG
m,t, ∀m, ∀t, (7a)

∑
k∈AK

m

βk,t −
∑
i∈AG

m

φiαi,t

−
∑

u:(m,u)∈Z

(γin
m,u,t − γout

u,m,t) = 0 ∀m, ∀t. (7b)

Constraints (7) are derived by separating the nominal and
uncertainty-dependent terms in (2v). Following a similar ap-
proach, (2q), ∀(m,u) ∈ Z, ∀t, decomposes into

qm,u,t =
qin
m,u,t + qout

m,u,t

2
; γm,u,t =

γin
m,u,t + γout

m,u,t

2
. (8)

We model real-time pressures at gas nodes as

p̃rm,t = prm,t + (e>Ωt)ρm,t, ∀m, ∀t, (9)

where prm,t and ρm,t denote the nominal pressure and the
auxiliary variable that models the change in pressure at node
m in real-time, respectively. This allows us to expand the
Weymouth equation in (2p) as, ∀(m,u) ∈ Z, ∀t,

(q2
m,u,t + (e>Ωt)

2γ2
m,u,t + 2(e>Ωt)γm,u,tqm,u,t) =

K2
m,u(pr2

m,t − pr2
u,t) + (e>Ωt)

2K2
m,u(ρ2

m,t − ρ2
u,t)

+ 2(e>Ωt)K
2
m,u(ρm,tprm,t − ρu,tpru,t). (10)

Separating terms that are independent of, quadratically- and
linearly-dependent on uncertainty in (10), it can be replaced
by the equalities (11) that must hold true for any realization
of the uncertainty3. For pipelines ∀(m,u) ∈ Z, ∀t,

q2
m,u,t = K2

m,u(pr2
m,t − pr2

u,t), (11a)

γ2
m,u,t = K2

m,u(ρ2
m,t − ρ2

u,t), (11b)

γm,u,tqm,u,t = K2
m,u(ρm,tprm,t − ρu,tpru,t). (11c)

2In future works, the simplified approach adopted in this paper must be
enhanced by considering the true, non-linear analytical relationship of changes
in real-time flows and nodal pressures to the affine policies.

3Modeling of uncertainty propagation to physical variables such as q̃m,u,t

and p̃rm,t by estimating sensitivities using Taylor series expansion around the
forecast has recently been applied to AC optimal power flow (see, e.g., [15]).
Since we solve the dispatch problem in day-ahead, wherein uncertainty around
the forecast point is non-negligible, we cannot justify such a sensitivity-based
approach.
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Fig. 1. Coordinated power and natural gas day-ahead dispatch

In addition to the Weymouth equations, the auxiliary variables
for flow changes (γm,u,t, γin

m,u,t, γ
out
m,u,t) and pressure changes

(ρm,t) are coupled by the equality constraints (2r)-(2t) that
govern the amount of linepack and evolution of linepack in the
pipelines. On separating nominal and uncertainty-dependent
terms, these constraints should hold true for any realization of
Ωt iff the equalities (12) hold. For pipelines ∀(m,u) ∈ Z ,

hm,u,t = H0
m,u + qin

m,u,t − qout
m,u,t, t = 1, (12a)

hm,u,t = hm,u,(t−1) + (qin
m,u,t − qout

m,u,t), t > 1, (12b)
Sm,u

2
(ρm,t + ρu,t − ρm,(t−1) − ρu,(t−1))

= (γin
m,u,t − γout

m,u,t), t > 1, (12c)

where hm,u,t is the nominal linepack in the pipeline in case
perfect forecasts of wind power production were to be realized.
It is worth noting that, considering the initial linepack amount
H0
m,u is uncertainty-independent, constraint (2s) decomposes

solely as (12a). Whereas the linepack amount in hours t > 1,
given by (2t), decomposes as nominal (12b) and uncertainty-
dependent (12c) equalities, which govern the change in nom-
inal linepack amount and the response to uncertainty during
real-time operation, respectively.

F. Power and Natural Gas Coordination with Affine Policies

In the following we present a finite-dimensional solvable
approximation of the stochastic program (2), under the strategy
of affine response to uncertainty. As shown in Fig. 1, this day-
ahead problem is solved by a central system operator.

min
Θ2

∑
t∈T

(∑
i∈C

CE
i pi,t +

∑
k∈K

CG
k gk,t

)
(13a)

subject to

min
P∈Π

P[pi,t + (e>Ωt)αi,t ≥ P i] ≥ (1− εi), ∀i, ∀t, (13b)

min
P∈Π

P[pi,t + (e>Ωt)αi,t ≤ P i] ≥ (1− εi), ∀i, ∀t, (13c)

min
P∈Π

P[gk,t + (e>Ωt)βk,t ≥ Gk] ≥ (1− εk), ∀k, ∀t, (13d)

min
P∈Π

P[gk,t + (e>Ωt)βk,t ≤ Gk] ≥ (1− εk), ∀k, ∀t, (13e)

min
P∈Π

P[prm,t + (e>Ωt)ρm,t ≥ PRm] ≥ (1− εm),∀m,∀t, (13f)

min
P∈Π

P[prm,t + (e>Ωt)ρm,t ≤ PRm]

≥ (1− εm), ∀m, ∀t, (13g)

min
P∈Π

P[(pru,t − Γm,u prm,t) + (e>Ωt)(ρu,t (13h)

− Γm,u ρm,t) ≤ 0] ≥ (1− εmu), ∀(m,u) ∈ Zc, ∀t, (13i)

min
P∈Π

P[qm,u,t + (e>Ωt)γm,u,t ≥ 0]

≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (13j)

min
P∈Π

P[qin
m,u,t + (e>Ωt)γ

in
m,u,t ≥ 0]

≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (13k)

min
P∈Π

P[qout
m,u,t + (e>Ωt)γ

out
m,u,t ≥ 0]

≥ (1− εmu), ∀(m,u) ∈ Z, ∀t, (13l)

min
P∈Π

P[hm,u,t + Sm,u(e>Ωt)
ρm,t + ρu,t

2
≥ H0

m,u]

≥ (1− εmu), ∀(m,u) ∈ Z, t = |T |, (13m)
(2c) - (2e), (5), (7), (8), (11), (12), (13n)

where the optimization variables are Θ2 = { pi,t, αi,t, gk,t,
βk,t, prm,t, ρm,t, qm,u,t, γm,u,t, q

in
m,u,t, γ

in
m,u,t, q

out
m,u,t, γ

out
m,u,t,

hm,u,t}. The expectation term in objective (2a) reduces to
(13a) on account of the zero-mean assumption of Ωt. As
discussed in [16] for programs with a similar structure, the
stochastic program (13) is computationally intractable due
to the probabilistic distributionally robust chance constraints.
To achieve tractability, a convex second-order cone (SOC)
approximation of the non-convex individual distributionally
robust chance constraints is adopted. Furthermore, the non-
convex quadratic equality constraints (11) representing the
Weymouth equation for the uncertainty-aware gas flows re-
quire convexification. The approach towards solving (13) along
with its final tractable form is discussed in the next section.

III. SOLUTION APPROACH

A. SOC Reformulation of Probabilistic Constraints
For distributionally robust individual chance constraints

under the assumption of known first and second-order mo-
ments of the underlying probability distribution, [17, Theorem
2.2] provides a SOC approximation based on a variant of
Chebyshev’s Inequality. While interested readers are directed
to [17] for a proof, convex reformulation of constraint (13c)
is presented below as an illustration.

With ΣΠ
t ∈ R|J |×|J | as the t-th diagonal sub-matrix of the

covariance matrix ΣΠ in time period t and e ∈ R|J | denoting
a vector of all ones, the probabilistic chance constraints (13c)
can be approximated by the following SOC constraints:√

1− εi
εi

∥∥∥αi,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −pi,t + P i, ∀i, ∀t. (14)

Similar reformulation is performed for the other distribution-
ally robust chance constraints in (13). References [18] and [19]
remark that such conic reformulation based on Chebyshev’s
Inequality results in over-conservative solutions as εi → 0
while approaching infeasibility for εi ≈ 0. Exact reformulation
of such chance constraints improving on this issue has been
recently proposed in [18]. However, since the focus of this
work is on uncertainty-aware coordination between electricity
and natural gas systems, our formulation is limited to the conic
approximation. We ensure that large enough risk measures
ε(·) are considered in the case study (Section IV) such that
infeasibility is avoided.
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TABLE I
VARIABLE BOUNDS FOR MCCORMICK RELAXATION.

Variable Lower bound Upper bound

prm,t PRm PRm

ρm,t −(PRm − PRm)/Ŵ (PRm − PRm)/Ŵ

qm,u,t 0 Q

γm,u,t −Q/Ŵ Q/Ŵ

B. Convex Relaxation of Weymouth Equation

The non-convex quadratic equality constraints in (11a) can
be equivalently written as

q2
m,u,t ≤ K2

m,u(pr2
m,t − pr2

u,t), ∀(m,u) ∈ Z, ∀t, (15a)

q2
m,u,t ≥ K2

m,u(pr2
m,t − pr2

u,t), ∀(m,u) ∈ Z, ∀t. (15b)

To relax (11a), we adopt the convex SOC constraints (15a) and
drop the non-convex constraints (15b)4. The tightness of this
relaxation is analyzed in [20] and will be further examined
in Section IV. Note that (11b) can be convexified in the
same manner. However, this convexification strategy cannot
be applied to (11c). We adopt McCormick relaxation [21],
defining rectangular envelopes around the bi-linear terms in
(11c) based on the known and estimated bounds on variables.
We first define auxiliary variables νm,t for gas nodes m ∈M
and λm,u,t for the pipelines (m,u) ∈ Z, ∀t and then replace
(11c) by the following set of constraints:

λm,u,t −K2
m,uνm,t +K2

m,uνu,t = 0, ∀(m,u) ∈ Z, ∀t, (16a)
λm,u,t = qm,u,tγm,u,t,∀(m,u) ∈ Z,∀t, (16b)
νm,t = prm,tρm,t, ∀m, ∀t, (16c)

νu,t = pru,tρu,t, ∀u : (m,u) ∈ Z, ∀t. (16d)

To illustrate the McCormick relaxation, the inequalities that
replace the non-convex constraints (16c) are

∀m, t


ρLm,tprm,t + prLm,tρm,t ≤ νm,t + prLm,tρ

L
m,t

ρUm,tprm,t + prUm,tρm,t ≤ νm,t + prUm,tρ
U
m,t

ρLm,tprm,t + prUm,tρm,t ≥ νm,t + prUm,tρ
L
m,t

ρUm,tprm,t + prLm,tρm,t ≥ νm,t + prLm,tρ
U
m,t,

(17)

where superscripts L and U indicate lower and upper bounds
of the variables, respectively. Constraints (16b) and (16d) are
treated similarly. The variable bounds used to construct the
McCormick envelopes are listed in Table I. Parameter Ŵ is
the total installed wind capacity in the system and parameter
Q denotes the upper bound on gas flow in the pipelines, which
we obtain by solving a deterministic version of problem (2)
with e>Ωt = 0. The bounds for network response variables,
γm,u,t and ρm,u,t are trivially deduced from equations (6a)
and (9), respectively.

Following the convex approximation of probabilistic con-
straints and relaxation of Weymouth equations, the tractable

4Linear approximations of the dropped non-convex constraints, as proposed
by [1] in a deterministic setting, may also be included to the problem.

form of the distributionally robust chance-constrained day-
ahead coordinated power and natural gas dispatch is presented
in Appendix A. Problem (20) is a convex second-order cone
program (SOCP) and is solvable using off-the-shelf convex
optimization solvers.

IV. CASE STUDY

A. Input Data

A coupled power and natural gas system consisting of a
12-node gas network connected to the IEEE 24-bus reliability
test system [5] is used to evaluate our proposed coordinated
dispatch. The installed wind capacity reaches one-thirds of
the peak demand in the simulation horizon of 24 hours. Data
for the parameters of the power and natural gas networks
and for the operational characteristics of all assets in the
system are provided in online appendix [22]. A dataset of
1,000 zero-mean wind forecast error scenarios based on actual
measurements recorded in Western Denmark [23] is used to
empirically estimate the covariance matrix ΣΠ. The param-
eters ε(·) for all distributionally robust chance constraints in
(20) are set to identical values.

The problem is implemented in Julia v1.1.1 modeled with
JuMP v0.2 and solved to optimality by Mosek v9.0 with an
average CPU time of 1.67 seconds on a personal computer
with 8GB memory running on Intel Core i5 clocked at 2.3
GHz. The optimal solution provides nominal dispatch schedule
as well as affine policies that quantify the response to uncertain
wind realizations during real-time.

B. Optimal Affine Policies

In Fig. 2, we show the optimal allocations from the dis-
tributionally robust chance-constrained day-ahead coordinated
power and natural gas model (20) for violation probabilities
ε(·) set to 0.05. Fig. 2(a) shows the nominal dispatch of NGF-
PPs and non-NGFPPS to meet the forecasted net electricity
demand, i.e., load minus wind production forecast, while Fig.
2(b) shows their affine responses to uncertainty. Similarly,
Figs. 2(c)-(d) present the nominal schedule and the response
policies for the three gas suppliers. We highlight our main
observations in the following.

First, when power producers and gas suppliers are either
dispatched not at all or at full capacity, they are not eligible to
adjust their output to mitigate uncertainty. Thus, the response
policies for these units are zero. As a result, expensive
generators, which are not dispatched in hours with low net
demand, are assigned zero αi in these hours. Similarly, the
most expensive gas supplier (k3) is not expected to respond to
uncertainty in hours 1-13, while not dispatched. On the other
hand, the least expensive gas supplier (k1) cannot provide a
response to uncertainty in hours 1-10, because her nominal
dispatch is already at maximum capacity.

Second, NGFPPs are the main providers of flexibility in
response to wind uncertainty during hours 8-24, see Fig. 2(b).
Although the volatility of gas demand from NGFPPs can
be mitigated by linepack, gas suppliers are also required to
respond to uncertainty, especially in hours 14-24, see Fig. 2(d).
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Fig. 2. Optimal dispatch and affine policies for ε(·) = 0.05 for the simulation
horizon of 24 hours.

Not only the availability and cost structure of power and gas
supply, but also network effects impact the optimal response.
The spatial correlations of uncertain wind forecasts and loca-
tion of flexibility providers in both power and gas networks
affect the response policies. An example of network effects is
the allocation of affine policies in hour 4 in Fig. 2(b). Here,
flexibility is provided not only with respect to cost efficiency,
but also considering locational benefits and preferable energy
flow effects.

C. Choice of Violation Probabilities ε(·)
To evaluate the quality of the solution obtained and to make

an informed choice for ε(·), we perform ex-ante simulations
using a test dataset of wind realization scenarios, distinct
from those used to estimate the covariance matrix. With
fixed day-ahead decisions, i.e., nominal production schedules
and affine policies, we compute the violation probability of
the distributionally robust chance constraints (13b)-(13m) and
(2d)-(2e) for a choice of ε(·) as

ηε =
1

Ns

Ns∑
s=1

Is. (18)

The indicator function Is takes a value 1 if at least one of these
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Fig. 3. Day-ahead dispatch cost (left y-axis) with values of ε(·) chosen for
the distributionally robust chance constraints is shown by line with markers .
The ex-ante violation probability (right y-axis) of these constraints, evaluated
for 1,000 test samples, is shown in bars.

constraints is violated for the wind realization that corresponds
to scenario s. Referring to the left-hand y-axis, the lineplot
in Fig. 3 shows the expected cost of day-ahead dispatch
at various values of confidence levels (1 − ε(·)) imposed
on the probabilistic constraints. With a higher confidence
of meeting the constraints, the expected cost of day-ahead
dispatch increases. The bars, which refer to the right-hand
y-axis, show the ex-ante violation probability computed at
selected confidence level values. For ε(·) = 0.05, an ex-
ante violation probability of 0.003 is expected at a day-ahead
expected dispatch cost of $1,580,000.

D. Ex-Ante Violation Probabilities

Next, we analyse the violation probabilities (18) for each
of the following chance-constraints: I. generator bounds (13b)
and (13c), II. line flow limits (2d) and (2e), III. non-depletion
of linepack in pipelines requirement (13m), IV. natural gas
flow direction constraints (13j)-(13l), V. nodal gas pressure
bounds (13f) and (13g), and VI. gas supplier bounds (13d)
and (13e). Fig. 4 shows the probability of violation of these
individual constraints for different choices of ε(·).

Power generation limits (13b) and (13c) are most susceptible
to violation at all values of ε(·). Power transmission lines
are not prone to reaching their operational limits. We do not
observe any violation probability of power flow limits until
decreasing the confidence level to 0.75. On the gas side, the
constraints of gas flow directions (13j)-(13l) are susceptible
to violations, causing the dependent nodal pressure limits
(13f) and (13g) to be violated as well. On the one hand,
this can be explained by the relaxation gap for the gas flow
equations, which is discussed in detail in the following. On
the other hand, this motivates future work to consider bi-
directional gas flows, specially in the context of flexibility
provision by linepack, albeit at the cost of losing convexity
due to introduction of integer variables. The non-depletion of
linepack constraints are, however, satisfied even at ε(·) = 0.25.
This indicates that there is enough short-term gas storage
available in the gas pipelines such that they are not depleted
at the end of the day while providing flexibility to the power
system. Notably, these outcomes and resulting inferences are
system-specific.
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(c) McCormick Relaxation of (11c)
Fig. 5. Normalized relaxation gap for the convex relaxations adopted for
Weymouth equation in (11) for ε(·) = 0.05.

E. Tightness of Convex Relaxations

We examine the tightness of the relaxation for the non-
convex Weymouth equation (11) by comparing the left-hand
and right-hand sides of each of these equality constraints. We
define the normalized root mean square relaxation gap Ξ for
the original equality constraint Xm,u,t = Ym,u,t,∀(m,u) ∈
Z, ∀t relaxed to Xm,u,t ≤ Ym,u,t,∀(m,u) ∈ Z, ∀t as

Ξ =

[
1

|Z||T |
∑
t∈T

∑
z∈Z

(
Y ∗m,u,t −X∗m,u,t

Y ∗m,u,t

)2
] 1

2

, (19)

where superscript ∗ indicates values obtained at optimality.
For ε(·) = 0.05, we observe a Ξ-value of 0.78, 1.67 and 2.87
for (11a), (11b) and (11c), respectively.

Fig. 5 presents heatmaps of the normalized root mean square
relaxation gap Ξ for each gas pipeline in each hour of the sim-
ulation horizon for ε(·) = 0.05. The occurrence of relaxation
gap is lower for constraint (11a) than for (11b). While the
relaxation of constraint (11a) seems to be sufficiently tight in
Fig. 5(a), the relaxation of (11b) is not always exact, see Fig.
5(b). The relaxation gap is particularly extant in hours 1-6. The
structure of the gas network, which is non-radial and cyclical,
and the inter-temporal dynamics of linepack contribute to the

lack of tightness of the relaxations. Conditions for exactness
of the relaxation of the Weymouth equation can be found
in [20] and [24], while approaches for tightening these SOC
relaxations are proposed in [1] and [25]. For the McCormick
relaxation of constraint (11c) the relaxation gap occurs very
frequently and with high severity, see Fig. 5(c). Adversely
negative values of γ and/or ρ in the bilinear terms lead to
normalized relaxation gaps even larger than 1. Improvements
on this approach, such as iterative tightening of the bounds or
by convex quadratic enhancement of McCormick relaxation as
proposed in [26], will be considered in future works. However,
in the context of the proposed coordinated day-ahead dispatch,
the tightness of the relaxation is of limited importance, since
an additional gas flow feasibility problem [24] is expected to
be solved closer to real-time by the gas network operator.

V. CONCLUSION AND FUTURE PERSPECTIVES

A. Conclusion

We proposed a distributionally robust chance-constrained
coordination of power and natural gas systems to study the
propagation of uncertainty from the power to the gas side.
Our tractable reformulation of the stochastic program, using
recourse actions from the flexible agents in the coupled system
and adopting a simplified model for real-time gas flows and
nodal pressures, results in a convex SOCP. Ex-ante out-of-
sample evaluations are used to demonstrate the quality of
the solution while highlighting a trade-off between dispatch
cost and violation probability, which influences the choice of
allowable violation probabilities. The proposed coordination
model enables efficient harnessing of short-term flexibility
from the assets in natural gas networks for power systems
facing uncertainty. Analysis of the optimal affine policies
highlights that our proposed approach enables cost-efficient
dispatch and allocation of flexibility across energy sectors
facing spatio-temporal effects of uncertainty.

B. Future Perspectives

For future works, detailed out-of-sample simulation studies
should be undertaken to better understand the quality of
optimal affine responses. Studying the impact of the response
policies on the feasibility of the physical constraints of power
and natural gas networks in real-time operation and testing
the severity of allowed constraint violations are of interest.
Convexity-preserving algorithms that tighten the relaxation of
gas flow equations can be employed in future works. Further,
power-to-gas units that provide additional inter-sectoral flexi-
bility could be included in the model.

Analyzing the proposed coordination in a market context
wherein payments for the provision of flexibility-as-a-service
are considered, is an interesting topic to investigate in future.
Moreover, the impact of limited information sharing among
sectors as opposed to the central dispatch considered in this
work would be highly insightful. Finally, a market clearing
mechanism involving auctions that elicit flexibility from the
natural gas sector is a viable pathway towards real-world
implementation that is opened up by this paper.
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APPENDIX A
The final tractable form of the proposed distributionally

robust chance-constrained coordination of power and natural
gas systems is the SOCP presented below:

min
Θ2∪{λm,u,t, νm,t}

∑
t∈T

(∑
i∈C

CE
i pi,t +

∑
k∈K

CG
k gk,t

)
(20a)

subject to

ξi

∥∥∥−αi,te>(ΣΠ
t )1/2

∥∥∥
2
≤ pi,t − P i, ∀i, ∀t, (20b)

ξi

∥∥∥αi,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −pi,t + P i, ∀i, ∀t, (20c)

ξnr

∥∥∥{Ψ(ΨIαte
> −ΨJ)}(n,r)(ΣΠ

t )1/2
∥∥∥

2
≤ {F

+Ψ(ΨDDE
t −ΨIpt −ΨJW

PF
t )}(n,r), ∀(n, r) ∈ L, ∀t, (20d)

ξnr

∥∥∥−{Ψ(ΨIαte
> −ΨJ)}(n,r)(ΣΠ

t )1/2
∥∥∥

2
≤ {F

−Ψ(ΨDDE
t −ΨIpt −ΨJW

PF
t )}(n,r), ∀(n, r) ∈ L, ∀t, (20e)

ξk

∥∥∥−βk,te>(ΣΠ
t )1/2

∥∥∥
2
≤ gk,t −Gi, ∀k, ∀t, (20f)

ξk

∥∥∥βk,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −gk,t +Gi, ∀k, ∀t, (20g)

ξm

∥∥∥−ρm,te>(ΣΠ
t )1/2

∥∥∥
2
≤ prm,t − PRm, ∀m, ∀t, (20h)

ξm

∥∥∥ρm,te>(ΣΠ
t )1/2

∥∥∥
2
≤ −prm,t + PRm, ∀m, ∀t, (20i)

ξmu

∥∥∥(ρu,t − Γm,uρm,t)e
>(ΣΠ

t )1/2
∥∥∥

2

≤ Γm,uprm,t − pru,t, ∀(m,u) ∈ Zc, ∀t, (20j)

ξmu

∥∥∥−γm,u,te>(ΣΠ
t )1/2

∥∥∥
2
≤ qm,u,t,∀(m,u) ∈ Z,∀t, (20k)

ξmu

∥∥∥−γin
m,u,te

>(ΣΠ
t )1/2

∥∥∥
2
≤ qin

m,u,t,∀(m,u) ∈ Z,∀t, (20l)

ξmu

∥∥∥−γout
m,u,te

>(ΣΠ
t )1/2

∥∥∥
2
≤ qout

m,u,t,∀(m,u) ∈ Z,∀t, (20m)

γ2
m,u,t ≤ K2

m,u(ρ2
m,t − ρ2

u,t), ∀(m,u) ∈ Z, ∀t, (20n)

ξmu

∥∥∥∥−(ρm,t + ρu,t)(
Sm,u

2
)

1
2 e>(ΣΠ

t )1/2

∥∥∥∥
2

≤ hm,u,t −H0
m,u, ∀(m,u) ∈ Z, t = |T |, (20o)

McCormick envelopes of (16b) and (16d), (20p)
(12), (7), (5), (15a), (16a), (17), (20q)

where ξi =
√

1−εi
εi
, ξnr =

√
1−εnr

εnr
, ξk =

√
1−εk
εk

, ξm =√
1−εm
εm

, ξmu =
√

1−εmu

εmu
are parameters.
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