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Abstract—This paper proposes a two-stage auction-based local
market mechanism to allocate physical storage rights (PSRs).
As a market product, PSRs are provided by a storage owner
and enable the local market participants (including renewable
producers, consumers and prosumers) to access the storage. That
is, they can book storage in the form of PSRs and dispatch it
at a given time aiming to maximize their utility function. The
business options we examine to evaluate the position of storage
in the market range from storage owner entirely participating
in day-ahead (DA) and real-time (RT) markets as an inter-
temporal arbitrager, to exclusively acting as a PSR provider in
DA only - this way, the storage owner is fully paid upfront in
DA. Considering the context above, we propose an equilibrium
model where each player optimizes its operational objective. We
prove that the equilibrium model can be substituted with an
equivalent optimization formulation which clears the proposed
market ensuring the same desirable market properties, such as
efficiency and revenue adequacy. Results suggest that the certain
revenues earned by the storage owner in DA when acting as
a PSR provider is equal to its expected profit as a regular
market participant, mitigating however its payoff uncertainty
and resulting in the same economic return.

Index Terms— Energy storage, local market design, physical
storage rights, equilibrium, optimization
I. INTRODUCTION

NERGY storage (ES) can improve power system eco-
nomics and reliability by providing various market re-
munerated and regulated services. The market remunerated
services include among others ancillary services (balancing
and contingency), energy services (ES can participate in
energy markets by arbitraging electricity prices), and capacity
services (ES can provide capacity similar to traditional gen-
erators, reducing the need for new generation investment) [1]],
[2]]. Regulated services refer to grid infrastructure investment
deferral. ES can support transmission and distribution systems
by mitigating congestion and improving power quality [1]].
Depending on storage ownership, it can be either a merchant
or a system asset. As a system asset, it provides services
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to support the whole system, e.g., peak shaving, voltage
profile improvement, ancillary service provision, increasing
the reliability of the system to meet critical loads [3], etc.
To this end, the work in [4] proposes an ES sizing approach
considering wind uncertainty to minimize the total power
system cost and improve voltage profiles. In [35]], installation
of ES is used as a possible voltage quality remedy in weak
distribution networks with increased wind penetration. The
proposed ES control aims at the system’s short-term voltage
quality improvement.

On the contrary, a merchant storage belongs to a market
participant who seeks to maximize its profit (or minimize its
cost) by directly arbitraging energy over time periods. In [6],
a merchant ES acts as a price-maker to maximize its expected
profit by determining the most beneficial trading actions in
day-ahead and balancing pool-based markets under real-time
net load uncertainty. Dictorato et al. [7] propose the planning
and operation of a combined wind-storage system which uses
ES to compensate for wind variability and maximize wind
farm’s expected profit. The operation of an ES providing
ancillary services to the system, such as frequency regulation
service, spinning and non-spinning reserves, etc., is examined
in [8]]. The proposed robust and stochastic optimization ap-
proaches take into account multiple uncertainties aiming at the
estimation of the ES potential profit. Existing literature also
addresses the action of merchant-oriented storage facilities in a
strategic way. To this end, [9] proposes a model where the ES
facility seeks to maximize its profit through strategic planning,
i.e., storage sizing, strategic offering and bidding decisions.
Similarly, a strategic bidding behaviour implemented in [[10]
seeks to maximize the expected profit of a virtual plant,
which among others includes an ES facility, using robust
optimization to deal with renewable production and market
price uncertainties.

The commercial availability of small battery capacities up
to 100 kWh (e.g., Tesla Powerpack) intended for small-
scale usage unfolds a new potential on sharing ES capacity
in local markets with prosumer communities. Storage could
be used for load shifting, backup power, demand response,
renewable power integration, etc. The focus of this paper is
on storage assets offered for merchant-related purposes to the
market participants, located in local energy communities [/11]].
However, apart from the direct way of profiting for the storage
owners (e.g., by arbitraging energy prices in energy markets),
we also investigate the possibility of storage owners profiting
indirectly from the provision of an additional market product,
whose value depends on price variations. The motivation
of this work is to explore business models for small-scale
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merchant storage systems through interaction with other local
market participants (e.g., renewables producers, prosumers and
consumers).

We specifically investigate a market product, the so-called
physical storage right (PSR), which enables local market
participants to access the storage, but in a systematic market-
based manner. Using the PSRs, market participants can book
storage and dispatch it at a given time aiming at maximizing
their own profit (or minimizing their cost). The potential PSR
holders do not necessarily have to bid for the entire ES asset;
they can place bids for partially booking ES to the extent their
needs are met. Note that these players need to bid separately
to earn access to charging, discharging and reservoir devices
of an ES. Therefore, PSRs include charging, discharging and
capacity rights. At the same time, storage owners obtain an
additional option for commercializing their ES assets apart
from participating in the market as regular arbitrageurs.

Financial storage rights (FSRs), i.e., another type of rights
that are mainly encountered at wholesale level, allow the
market operator to access the storage asset and dispatch it,
aiming at minimizing the system cost. The merchandising
surplus in this case (e.g., the storage congestion rent) is then
distributed among the financial right holders [12], [13]]. Both
FSRs and PSRs are market products that can lead to business
models. However, FSRs treat ES as a system asset managed by
the market operator. On the other hand, market participants can
obtain entire control of their booked ES through the acquisition
of PSRs.

A preliminary work introducing the concept of allocating
storage rights is carried out in [14] where the proposed
business model aggregates multiple revenue streams of ES by
coordinating a series of auctions. In these auctions, the right
to utilize the ES is determined upon different time horizons.
The first systematic study to implement PSRs is performed
in [[15] where a framework for shared ES resources through
a periodically organized auction is proposed. In addition,
[16] introduces the use of storage-capacity rights to surmount
the regulatory and cost-recovery issues that ES faces. These
issues are mainly associated with the multiple services storage
can provide and with some regulatory authorities suggesting
that storage developers must choose between classifying their
assets as providing competitively priced or unpriced services
[16]. The proposed solution disengages storage cost recovery
from the regulatory treatment of its end-use, demonstrating
how to price storage capacity rights efficiently.

The studies mentioned above refer to deterministic setups
without taking uncertainty into account, which is endemic in
local energy communities. Specifically, by uncertainty we refer
to renewables and electricity price unpredictability. However,
uncertainty especially in such small-scale local market is a
key point, and it is of high interest from an ES perspective
to explore its potential business models in a two-stage setup
which links day-ahead (DA) scheduling with real-time (RT)
operation. The available business options for storage range
from entirely participating in DA and RT markets as an inter-
temporal arbitrager, to exclusively acting as a PSR provider in
DA only — this way, the storage owner is fully paid upfront in
DA, and its payoff in RT is zero. In this paper, we investigate

the impact of these market participation choices on storage
owner’s profit (in expectation and its standard deviation), while
at the same time we also explore the social impacts deriving
from each choice, e.g., effect on local system cost, and the
payoff of other market participants.

Considering the context above, the main contributions of
this paper are as follows. We propose a two-stage auction-
based market-clearing setup to design an efficient platform
for trading PSRs in a local energy market under uncertainty.
The resulting model is a Nash equilibrium problem (NEP),
i.e., a set of interconnected optimization problems in which
each market participant maximizes its expected profit. We then
prove that it is possible to exactly reformulate this equilibrium
model with a more computationally tractable optimization
problem ensuring the same desirable economic properties in
the market. That is (i) market efficiency, which means that
the system is dispatched at the minimum social cost and
no one is motivated to unilaterally deviate from the market-
clearing outcomes, and (ii) revenue adequacy, which implies
that the market operator never incurs a budget deficit. All the
necessary proofs are provided in the online Appendix [17] and
in Appendix B.

Numerical results suggest that for a storage owner, its
certain DA profit as a PSR provider is equal to its expected
profit as an arbitrageur in DA and RT markets, reducing its
profit uncertainty and offering a possibility to hedge against
RT price volatility. While the total system cost decreases with
the introduction of storage in either form, when ES operates
as a PSR provider, the majority of market participants gets
involved more actively in RT market. We numerically verify
the aforementioned remarks by performing an ex-post out-
of-sample simulation. Moreover, we take the grid constraint
(i.e., the one connecting the local structure to the distribution
system) into account evaluating how a possible line congestion
could cause additional system cost.

The remainder of this paper is structured as follows. Section
[ provides preliminaries on the general structure of the market
including the local setup and the market participants, and then
lists our assumptions. Section presents the mathematical
formulation for the proposed equilibrium and optimization
market models and explains why they are equivalent. Section
[[V]provides a comprehensive case study based on two different
business options for storage utilization. Section [V] concludes
the paper. Appendix A presents the nomenclature. The revenue
adequacy of the proposed local market is proven in Appendix
B, while Appendix C provides technical information required
throughout the paper.

II. GENERAL STRUCTURE AND ASSUMPTIONS
A. Market Participants and Preliminaries

The following market participants are considered in con-
structing the equilibrium and the optimization models: individ-
uals arbitraging DA and RT market prices; wind producers fo-
cusing on portfolio management; consumers; prosumers (i.e., a
customer that can consume but also produce energy); the grid
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operator; and the storage ownelﬂ The arbitrageur (either as a
storage owner or as a PSR holder) seeks to benefit from hourly
price differences in the DA and RT market. The wind producer
can either inject its produced energy back to the grid and/or use
the ES resources to increase the market value of its renewable
generation. The consumer, whose daily load must be served,
could use the ES for peak shaving and/or load shifting. It
could, for example, defer some of its peak period consumption
by charging the ES during periods when electricity is cheap,
and by discharging it during peak periods when electricity
price is high. The prosumer functions in a similar way with
the consumer being able though to produce a small amount
of energy which usually comes from photovoltaic (PV). The
grid owner, for instance the distribution system operator, has
no access to the shared storage resources but it can benefit
when the network is congested by performing spatial arbitrage
between the local market and the distribution network.

To operate the local market, we propose a non-profit entity
such as a local community manager [18] which would be
responsible for clearing the market. That is, it would decide
for the optimal dispatch of the production and consumption
resources, the energy storage charge/discharge scheduling pro-
files, as well as the DA allocation of the PSRs. In addition, the
interaction with the grid owner (either this is the distribution
system operator or some other entity) assumes the commu-
nication to the community manager of information such as
the capacity of lines. On the contrary, the interaction of the
community manager with the wholesale market operator is
only price-wise, as we assume that the distribution-level price
reflects the wholesale market price.

Note that we do not propose a new market for the PSRs,
on top of the energy market. On the contrary, we suggest the
integration of a new market product (i.e., the PSRs) to the
existing market operation. Thus, the duties of the community
manager would be in line with the duties of the existing market
operator

We propose a local market design not due to a fundamental
limitation emerging from wholesale level but because we
envision that such local markets could soon emerge [11]]. The
consideration of storage in local communities offers access
to ES resources to smaller individuals (a household, a small
business, etc.) broadening their energy options.

B. The Local Market Setup

The market participants described in section are either
profit maximizers (arbitrageurs, wind producers and storage
owner) or cost minimizers (consumers and prosumers). They
formulate a NEP, where each player aims to optimize the value
of its objective function taking the decisions of all rivals into

'In this paper we assume that, depending on the business case, storage is
either owned or offered exclusively by a single entity. However, it is possible
to modify the proposed market mechanism so as storage is owned by multiple
market participants. This way, in addition to directly using storage for their
own interest, the market participants who own storage would further seek to
indirectly maximize their profit (or minimize their cost) by providing their
unused storage capacity in the form of PSRs as an additional market product.

2The proposed local market is revenue adequate, as proven in Appendix
B. Therefore, the market operator (the local community manager in our case)
never incurs a financial deficit.

account. The hourly market clearing process results, for both
models, in a single uniform PSR price per storage offered. One
should also note that this is characterized as a non-cooperative
game, as they are driven by the competition between individual
players. We describe below the equilibrium and optimization
models of the local market model setupf}

Equilibrium model: In this two-stage stochastic NEP, the
decision process of each player is represented through its
particular optimization problem which is subject to its individ-
ual constraints. That is, each participant optimizes its payoff,
which is a function of energy and PSR prices. These prices
are parameters in their problems, while they are variables
for the whole equilibrium problem. The equilibrium model
embodies all optimization problems, one per participant, as
well as sharing constraints which impose balance equalities
for energy and rights.

Optimization model: This is a two-stage stochastic model,
where the market operator solves a two-stage stochastic
problem minimizing the total expected system cost, while
scheduling the PSRs provision, the storage power profile, and
the generation/demand in both DA and RT. The constraints of
the market participants in this model are identical to those of
Equilibrium model.

C. Assumptions

We now review some general assumptions about the market
participants’ behaviour, information and costs. All participants
act competitively, and they are assumed to be price takers
with a common underlying probability distribution of the
uncertainty. We also make the simplifying assumption that
in the RT market, the real-time conditions for the entire
day, such as hourly wind, prosumer’s PV production, and
RT prices, are represented by a set of possible scenarios
(w € Q) with their corresponding probability m,. While the
set of scenarios and their probabilities are known in DA,
which one actually occurs in RT is not. This is a common
approach in literature to provide a sufficient representation of
uncertainty in two-stage optimization programming [19]. In
terms of modeling, this implies that all sources of uncertainty
have been aggregated into one. Moreover, although technically
simultaneous charge and discharge actions are allowed within
our models, due to the different (dis)charge efficiencies con-
sidered and the optimization functions, we prompt (dis)charge
variables not taking non-zero values at the same time step.
The use of auxiliary binary variables contributes to a more
accurate modeling of the ES dis(charge) process but does not
maintain convexity which is necessary in our study to derive
optimality conditions. This approach is commonly followed in
literature [[15]], [20]]. We also exclude the grid within the local
market, and consider a single connection between the whole
local market and the distribution system, managed by a grid
operator. Lastly, although in practice retail electricity rates tend

3We prove later that the proposed equilibrium and the optimization models
are equivalent, and thus they hold the same market properties. However, they
are not equivalent from an information sharing point of view. Indeed, optimiza-
tion problems with centrally defined objectives require from agents to reveal
some of their information to the market operator (e.g., production/demand
curves, DA forecasts/RT scenarios, nominal values of storage, capacity of
distribution lines, etc.).
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to be highly regulated, different across types of distribution
customers, and varied depending on the utility provider, for
the sake of simplicity we assume that all market participants
face the same (marginal) electricity rates.

III.

The mathematical formulation of the two local market
models is presented in this section. Although all notation are
defined throughout the paper, a nomenclature is provided in
Appendix A for further clarity. Note also that dual variables
are listed alongside each constraint.

A. Equilibrium Model

In Equilibrium Model, comprising (Ta)-(Ig), six sets of
optimization problems (one per market participant) and the
set of sharing constraints are provided. First, we present the
optimization problem of the purely financial arbitrageur i € A,
who owns no physical asset:

MATHEMATICAL FORMULATION
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ables. The arbitrageur aims to use storage resources to take

advantage of price differences over time. The access to ES is
achieved through the acquisition of PSRs.
Objective function maximizes the profit of the ar-

bitrageur. More spec1ﬁcally, it buys charge right py’["!™ DA,

discharge right p{"% P4 ma, DA

i st and capacity right e
e, DA

t from storage s at prices 11 DA, pg P A and ey in DA mar-

ket, respectively. Note that these prices are market outcomes
(variables for the equilibrium), while parameters within (Ta).
One should also notice that the obtained PSRs operate as the
upper bounds for the maximum levels of charging, discharging
and energy capacity of storage s booked by the arbitrageur.
Subsequently, according to the total PSRs obtained in DA,
the arbitrageur can exploit it in both DA and RT. In DA, it
charges power pZ A ? or discharges power p’i’g tA at local price
Moe:DA "1 RT, it is able to modify the final ES (dis)charge
quantities by adjusting the charge pf’thTw or discharge pff‘tT w

loc,RT l()(, RT
t,w

free variables at price . Note that ——=— refers to the
RT probability-adjusted local market price ‘at time ¢ under
scenario w. This price is obtained by dividing each dual
variable )\loc BT by its associated probability . This way,
the DA local market prices and the RT probability-adjusted
local prices are of the same order of magnitude [19], [21].

The local prices AL°“P* and /\l{‘:” , like the PSR prices, are
variables for the equilibrium, while paremeters within (Ta).
Unlike most studies where residual energy at the end of the
scheduling horizon is either kept equal to the initial state-of-
charge (SOC) or anchored within an acceptable deviation from
initial level, the concept of energy value is used here to reflect
the value of the residual energy in ES. The residual energy
has the potential to yield profits by generating (discharging)
in the following horizons. Therefore, a price A s assigned
to the final energy level (state-of-energy) of the ES at the
end of the time horizon considered, i.e = T to reflect
its value [22]. The resulting energy value is considered in
the objective function. Constraints (Tab)-(Tad) impose that the
actual storage (dis)charge power and the SOC in DA are non-
negative and bounded by the corresponding PSR Variables.
Storage day-ahead SOC eP2, is calculated by (Tad
Parameter EZlnl expresses the initial SOC and 775,773 are the
(dis)charge efficiencies for storage s. Constraints
state that the adjusted storage (dis)charge power and SOC in
RT must be non-negative and respect the corresponding day-
ahead PSR variables. Finally, constraints (Taj)-(Tak) calculate
the adjusted real-time SOC el St

Likewise, the profit-maximization problem for each wind
produceiﬂi € P is given by (Ib) below. This market par-
ticipant does not own any ES, but it is willing through the
acquisition of PSRs to gain access to ES and increase the
market value of its renewable generation:

loc,DA _g,DA loc,DA _d,DA
Max1mizeg [)\OC p? —l—E ()\OC fst

4Optimization (TB) can be extended to cover other types of intermittent
renewable energy sources, as long as a sufficient number of scenarios is
selected in order to adequately describe the underlying uncertainty, as opposed
to non-intermittent, which due to their deterministic nature can be trivially
modeled.
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primal variables. Constraint implies that the produced
wind power (GP*) can either directly be sold to the grid

(pf’tD A) or stored in the ES (pf?f whose rights are

being bought in DA. Note that unlike the rest of market
participants, the charging power potential of the wind producer
at every time step is bounded not only from PSR constraints,
but also from its maximum wind production. This way, the
wind producer uses only its renewable, “cost-free” energy to
charge the storage. Constraint (Ibd) enforces that the total
adjusted power to be sold to the grid (p::{’tDA + pf,’tl? T ) in RT
must be less than the underlying wind production scenario
realization minus the total adjusted power (pf?f + p(i::ff,w
to be charged in all ES. Note that (Tbd) implicitly allows the
excessive wind power to be spilled at no cost.

Furthermore, the cost-minimization problem for each con-
sumer ¢ € C is given by (Ic). Similarly, no ES belongs to this
consumer, but it bids to buy PSRs from the storage owners:
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where the set of primal variables is denoted by Z, =
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Di st €t it ,qi,tyw,piyt’w}. Constraint binds the
total shedding power (p°]) to be non-negative and less
than or equal to the total load (D; ;). Constraint defines
the consumer’s net energy generation q}?ﬁ (if positive) and
consumption (if negative) in DA. Variable qﬁ?w expresses
the adjusted energy generation in RT. Parameter V; declares
the value of lost load. Note that the total load D;: is not
scenario-dependent and that only the net energy variables
thA, qz‘gw are directly associated with the local electricity
prices in the objective function of the consumer.

In addition, the cost-minimization problem of each pro-
sumer ¢ € R who is willing to buy PSRs is given by (Id)
below:

Minimize (Ical) (1da)
Zr
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sumer operates in a similar way as the consumer, but it has
access to an additional source of energy coming from its PV
installation. Variable piy’DA expresses the utilized PV power
in DA and is bounded by its corresponding PV forecast
G]Z-?tA. Variable pEXL’URT refers to the adjusted PV power in RT
according to each PV scenario realization.

We now provide the profit-maximization problem of a
storage owner who supplies PSRs and possesses s units of
storage. This problem is given by (T€):
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; d,DA
0 gpd,rl,DA S Psd,max . qul)A’qs Vt78 (lec)
DA
0<elPh < B goPA G0 Vi s (led)
where pg i‘ bA, pf DA and egltDA are the primal variables

expressing the provided charge, discharge, and capacity PSRs,
respectively. The storage owner profits from selling the PSRs
in DA, as declared by its objective function (Iea). Note
that when the storage owner operates as a PSR supplier, its
payoff comes exclusively from selling the rights. The provided
PSRs are bounded by their corresponding maximum charge
(Pemax) | discharge (P2™2*), and capacity (E™**) storage
limits.

Lastly, the profit-maximization problem for the grid owner
who is indeed a spatial arbitrageur [19] is given by (Tf) below:

Maximize
flow, DA flow,RT
Dy t,w

Z [p?ow,DA (A?A B Aioc,DA)
t

/\loc,RT
flow,RT RT t,w

w ’ Ay — —— 1f:
+zw:7r Ptw ( tw T ﬂ (1fa)
subject to:

flow,DA . oDA —DA
L<pf <L :B" 3, (1fb)
— L <plPA o R < BT BT V(1)

where parameter L is the capacity of the grid (equivalent to
a single line) to connect the local market to the distribution
system. Variables pf°™P* and pﬂow T denote the power flow
through that line (positive if the local market transfers power
to the distribution system, negative if otherwise) in DA and
RT, respectively. Objective function (Ifa) maximizes the profit
of the grid owner. It performs spatial arbitrage between the
distribution-level market and the local market in DA at prices
APA and A°“P2, and/or in RT at prices AL and A0,
respectively. The distribution-level and local market prices are
expected to be different when the line is congested. More
specifically, for a congested line and positive power flow it
is anticipated that )\loc bA < APA while for a negative power
flow Alee-PA /\DA. The same applies to the RT electricity
price.

Finally, the shared linking constraints related to PSRs, as
well as the power balance constraint are given by below:

c,max,DA |

,ri,DA ,DA
D W Y T TN (1ga)
i€ (AUPUCUR)
d,ri,DA _ d,max,DA d,DA
s? i;iﬁax luet VS,t (1gb)
i€ (AUPUCUR)
w =Y et st (lge)
1€ (AUPUCUR)
flow,DA __ d,DA c,DA
Dy _Z(pi,s,t - 1st)+zq
i€A,s 1€(CUR)
DA d,DA loc,DA
+ Z (ngt + Zpi,s,t > PS¢ vt (1gd)
i€P s
flow,RT __ d,RT c,RT
Pt 72 (pi,s,t,w - zétw) Zqztw

i€A,s 1€(CUR)

+ Z (p‘zqtRE Zpl,s,t,w
i€P s
Constraints (Tga)-(Igc), that correspond to charge, discharge
and capacity rights respectively, imply that for each storage
and in each hour, the total purchased PSRs by all the players
should be equal to the total ones sold. Constraint
enforces the power balance in DA, while imposes such
a balance in RT. Note that the shadow prices of (Ig) provide

the PSR and the DA/RT local energy prices.

The solution of the equilibrium problem can be obtained
by simultaneously solving the Karush-Kuhn-Tucker (KKT)
conditions of all optimization problems of the players involved
together with the shared linking constraints [23]]. The resulting
models are characterized as mixed-linear complementarity
problems (MLCP) and can be solved using the PATH solver
[24] or any other MLCP solver. The optimality conditions of
the Equilibrium Model (i.e., the collection of the KKT and

linking conditions) are provided in the online Appendix [17].

f"RT> AT Yhwo o (ge)

B. Equivalent Optimization Model

This is a linear optimization model in which the objective
is to minimize the local system cost in expectation. The model
is given by (@) below:

Minimize Z —\Papflow.DA Z A eZ . AL

=Opt—MP

i€Z,s
ﬂ RT
s Zm< AR o S, pf;fg)
t,w i€(CUR)
5 RT
= mA e, (2a)
i€Z,s,w
subject to:

(Tab) — (Tak; (Tbb) — (Tbd); (Tcb) — (Tce); (Tdb) — (Idi);
(Leb) — (Ted); (ITB) — (Ifc); (Tga) — (Lge) (2b)

where Z = {A,P,C,R}. The set of decision variables of
problem @ ie., ZOPt—MP includes all variables stated in
problems (Ta)-(Id), and (Tf) of the Equilibrium Model.
Furthermore, the set of constraints stated in @I) contains
identical constraints to the ones considered by the players in
the Equilibrium Model, as well as the same shared linking
constraints.

It is straightforward to verify that the Optimization Model
is equivalent to the the Equilibrium Model. That is because
the KKTs of Equilibrium Model are identical to the KKTs of
Optimization Model, as described in the electronic companion
[17]. The advantage of this mathematical proof is the con-
clusion that instead of the Equilibrium Model, we can solve
its equivalent Optimization Model. Contrary to an equilibrium
model which its settlement requires the concurrent solution
of a set of multiple (and often numerous) linear equations,
an optimization model solves a centrally defined operational
objective which usually requires less computational resources,
and thus it is faster to solve. At the same time, this proof
suggests that all desirable market properties that hold in the
Equilibrium Model are preserved in the Optimization Model
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as well. However, we need to point out that economic equi-
librium models posed as complementarity ones do not always
have an equivalent single optimization model, as discussed in
[23]]. Usually, diverse expressions of market distortion prevent
equilibrium models from achieving the minimum social cost
or being transformed to equivalent single optimization models.
These expressions may include feed-in premium tariffs, market
power, risk aversion of players, etc. [[25].

I'V. NUMERICAL RESULTS

In this section, we demonstrate the functioning of the
proposed PSR auction mechanism in a two-stage market setup
through the numerical evaluation of the methods presented
earlier. We examine how the storage owner’s payoff is affected
depending on its participation in the market (as arbitrageur
or as PSR provider) and we also assess the effect of this
decision on system’s outcomes and each player’s results. We
also examine each market participant’s financial performance
and their individual interaction with the PSR provider in terms
of exchanged rights. To perform this kind of analysis and for
tractability purposes, we have selected a limited number of
representative market participants in the case studies. In reality,
however, the market would consist of many more participants
and scale to more agents.

We consider three different cases in total. Case 1 consists
of eight participants: two wind producers, two consumers, two
prosumers, the storage owner, and the grid owner. Specifically,
in Case 1 the ES owner uses the storage at its own interest
participating in both DA and RT markets (as the rest of
the market participants). One can easily apprehend that in
such a format, the rest of the market participants have no
access to ES resources. Case 2 corresponds to the Optimization
Model and consists of the same participants as in Case 1 with
the addition of an extra participant, the arbitrageur (owning
though no physical asset itself). In this case, the participants
(apart from the grid owner) compete for the PSRs provided
exclusively by the storage owner in DA market. Therefore,
the ES owner participates only in DA market and its revenue
comes exclusively from selling the PSRs. The obtained results
are compared with those of a benchmark, called Base Case. In
this case, storage (in either form) is entirely excluded from the
system. In all cases, a positive payoff indicates profit, while a
negative one implies the cost for a market participant.

In all cases, the total available (dis)charge and capacity
nominal values remain constant for each storage type. We
have assumed two different storage types, type 1 and type
2, with type 2 having better (dis)charge efficiencies. All the
cases have been modeled assuming zero initial SOC for the
ES. As input data, Fig. [T]depicts the DA forecasts for wind and
PV power production, as well as for the distribution-level DA
energy price AP# for the next 24 hours. The distribution-level
DA price reflects the hourly wholesale market price [26]. All
the rest technical details and input data (storage capacities,
efficiencies, RT scenarios, etc.) related to the case studies
are provided in Appendix C. In particular, we consider 40
scenarios for in-sample analysis, and 365 scenarios for ex-post
out-of-sample verification. All linear optimization problems
are solved by CPLEX/GAMS using a usual desktop, and

14 70.36
Wind prod. 1

= = Wind prod. 2 10.3a
12F |7 Prosumer 1

—-—=Prosumer 2
Price

10 -

[kw]

[$/kWh]

0.18
25

time [h]

Fig. 1. DA forecasts for wind-PV power production and energy price

CPU time for different case studies varies between 1 and 147
seconds.

The main criterion with which the case studies evaluate the
local market model is the total expected system cost (TESC),
as given in Table[l] It is interesting to note that the participation
of ES, either as regular market player (Case 1) or as PSR
provider (Case 2), decreases the total expected system cost.
One might also note that the TESC for Cases 1 and 2 are
equal. It is also of interest that the expected payoff of each
individual participant in both Cases 1 and 2 is identical (see
Table [TI).

TABLE I
TOTAL EXPECTED SYSTEM COST [$] FOR ALL CASES
Base (no ES) 2 (ES as PSR provider)
98.81 90.39

1 (ES as arbitrageur)
90.39

This is mainly due to the unlimited access to flexibility
the distribution system grants to the local market participants,
even if it is acquired at a premium price (i.e., when the line is
congested). The benefits of local flexibility which is provided
by the access to storage facilities through the concept of PSRs,
would be more profound to the economic results of the market
participants if a limitation to the flexibility offered by the
distribution system was established. In addition, although the
expected payoff of each market participant is the same across
the cases, the volatility of its payoff over scenarios in the two
cases is different.

Fig. 2| breaks down the total expected payoff of a number
of players to their payoff in DA and RT. It also illustrates
the 10th and 90th percentile of payoffs in RT. Several ob-
servations emerge from the comparison of the case studies.
Starting with the storage owner (SO), one may notice that
the profit ($8.33) of the storage owner as a PSR provider
(coming exclusively from DA market in Case 2) is equal to
its expected profit (-$7.43 in DA plus $15.76 in RT, Case
1) as a regular market participant. However, contrary to the
former, completely volatility-free option, the latter engages
some uncertainty coming from the RT that involves renew-
ables and price volatility. For example, the 10th percentile
of ES owner in Fig. 2] indicates that in 10% of all possible
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TABLE II
EXPECTED PAYOFF OF EACH MARKET PARTICIPANT ACROSS ALL CASE
STUDIES [$]
Case | WP1 | WP2 | CON1 | CON2 | PROI | PRO2 | SO | ARB | GO
Base | 51.99 | 42.6 | -52.58 | -46.69 | -39.38 | -54.76 | N/A | N/A 0
1 51.99 | 42.6 | -52.63 | -46.73 | -39.42 | -54.83 | 8.33 | N/A | 0.29
2 5199 | 42.6 | -52.63 | -46.73 | -39.42 | -54.83 | 8.33 0 |029

[| WP stands for wind producer, CON for consumer, PRO for prosumer, SO
for storage owner, ARB arbitrageur and GO for grid owner.

10th perc. Wind Producer 1 90th perc.
Case 2 | &/ RT exp. profit
'€ DA profit
Case 11 E—%
Base Case [- B—%‘
I I I 1 L 1
-10 0 10 20 30 40 50
Cost / revenue [$]
Consumer 2
Case 2 [ -
Case 1 .
Base Case |- ;
-50 40 -30 -20 -10 0 10
Cost / revenue [$]
Prosumer 1
Case 2 [ ; Q}EI—EI
Case 1 . o—=—90
Base Case [ . C—=—o
n n n n ! .
-50 -40 -30 -20 -10 0 10
Cost / revenue [$]
Storage Owner
Case 2 [ DA cost [ <— Profit only from DA
Case 1 %
A RT exp. profit
-10 -5 0 5 10 15 20 25

Cost / revenue [$]
Fig. 2. Players’ individual expected profit/cost in Cases 1, 2 and Base Case
(8]

scenario realizations, the storage owner’s RT revenue is less
than $12.4 resulting in a significantly smaller total expected
profit compared to its certain profit from DA only in Case
2. Considering that a player with conservative preferences is
willing to accept a profit smaller than the expected value but
with greater certainty, the PSR format is ideal for such a player,
not only because it removes all uncertainty associated with RT,
but it also delivers a total revenue upfront which is equal to
the expected one. This result is significant as it suggests that
the PSR format is more attractive for storage owners who are
reluctant to take risks associated with low profit due to the
potential realization of undesirable scenarios in RT. On the
other hand, a storage owner who requires a profit greater than
the expected value, would choose to act as a regular market
player, anticipating RT revenue higher than the 50th percentile.
Finally, less conservative storage owners who simply want to
maximize their expected value would be indifferent, since both
PSR and RT market setups would deliver the same results.
Profit volatility does not disappear from the market, it
rather passes from the storage owner to a certain category of
market participants within the PSR format. This is reflected
on the results illustrated in Table [l] and Fig. 2] According to

Table [I] the players’ total revenue (excluding storage owner)
is only slightly modified along the case studies. However,
for a specific group of market participants (consumers and
prosumers), we observe an increase in their DA cost which
is offset by anticipating a higher RT profit. For instance,
while in Base Case and Case 1 both consumers participate
in DA market only, in Case 2 they also get involved in RT
market. Similarly, the prosumers increase their involvement in
RT market under the PSR format, a fact that is expressed by
their raised expected profit in RT. A common remark for both
consumers and prosumers is that their increased exposure in
RT is accompanied with a concurrent increase in their DA
cost. Further analysis of the results suggests that this increase
in DA cost for the players, is mainly due to the acquisition
of ES resources through the PSRs (which are only traded
in DA) aiming to improve their RT expected cost, either by
arbitraging or by exploiting the ES residual energy. However,
not all market participants are affected by the format that
storage participates in the market. The wind producers are
rather indifferent and behave similarly in all cases, regardless
the manner ES takes part in the market. Finally, the grid owner
reports a very small profit in Cases 1 and 2 and only in DA,
indicating that in RT the line is never congested.
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Fig. 3. Individual acquisition of charge rights (upper plot), discharge rights
(intermediate plot), capacity rights (lower plot) for market participants and
their clearing prices (ES type 1)

Figs. 3] and [] show the PSRs acquired by the market
participants’ in a daily auction with the hourly market-clearing
prices for both types of storage offered. The price of an

hourly allocated auctioned right (ug:?A, Mi’? A, #::?A only

takes a non-zero value when the inequalities (Teb)-(Ted) are
binding. A non-zero price reflects the willingness-to-pay as
expressed by the demand bid of the marginally cleared player
for a specific PSR. One may notice a similar pattern in the
demand and the price of PSRs for both storage types. The
charge rights are mainly granted during the morning hours
leading to an increased provision of capacity rights for the
same period. This happens because it is essential for players to

Price [cents/kW] Price [cents/kW]

Price [cents/kWh]
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Fig. 4. Local market outcomes (as in Fig. B) for ES type 2

maintain the ownership of the ES resources (through capacity
rights) they have already charged, until they decide to fully
discharge it; otherwise they might not be able to gain from
their stored energy. The discharge rights are in higher demand
mainly during the hours that it is more favourable to sell the
energy back into the grid based on the local price scheme.
As expected, the price for the capacity rights surge again
during the time periods prior discharging, as the players try to
secure their stored energy until they profit from it. Finally, the
increased provision of charge and capacity rights during the
late hours of the day is due to the players’ intention to profit
from the value of residual energy at the end of daily horizon.

The findings regarding the PSR auction (as also illustrated
in Figs. 3] and [d) provide us with two remarks. First, during
the time periods of a day where competition is low, PSRs
can be granted at zero price. Second, as we expected, the
higher dis(charge) efficiencies of ES type 2 result in higher
PSR prices for this type of storage.

To demonstrate the effectiveness of the stochastic optimiza-
tion approach, we perform additional out-of-sample simula-
tions. Specifically, the RT market is cleared for 365 daily data
vectors (including renewable generation values and RT prices),
while the DA decisions are fixed to those obtained from
stochastic optimization. Then, we compute the actual system
cost that consists of the fixed DA system cost plus the expected
system cost obtained from the deterministic out-of-sample
simulations. The individual market participants’ revenue is
calculated in a similar way. One should note that, contrary
to the stochastic optimization approach where all expected
RT results are calculated based on the probability-weighted
scenarios, in the out-of-sample approach we calculate the RT
results assigning a probability equal to Wls to each of the
365 simulations. Table [ITl] shows the percentage change of the
total average system cost and the individual players’ revenue
in the out-of-sample approach compared to the stochastic
optimization one for all case studies.

TABLE 111
PERCENTAGE CHANGE IN OUT-OF-SAMPLE SIMULATIONS FOR LOCAL
SYSTEM COST AND INDIVIDUAL PLAYER REVENUE COMPARED TO
IN-SAMPLE ANALYSIS [%]

Case | TESC | WP1 | WP2 | CON1 | CON2 | PRO1 | PRO2 | SO | ARB | GO

Base | -4.43 | -1.02 | 7.89 0 0 265 | 095 | NJ/A | NJA| O
1 -3.15 | -1.02 | 7.90 0 0 265 | 095 |-1841| N/A | O
2 | -3.02|-1.01|7.89 | -0.41 | -0.89 | 1.97 | 0.28 0 INF | O

The out-of-sample findings need to be interpreted with
caution and within the context they are obtained. First, aligned
with the in-sample analysis, the introduction of storage in
the system in either form decreases the total average system
cost, as seen in Table However, the revenues of market
participants seem to be affected in a diverse way. For example,
the profit for WP1 is lower in the out-of-sample approach,
while the profit of WP2 is comparatively increased. This is
mainly due to the impact of each one’s DA decisions in
relation with the possible RT outcomes. It also shows that WP2
had a relatively unpropitious DA forecast compared to the
actual RT realizations. In addition, we notice a zero alteration
in consumers’ cost for Base Case and Case 1. The reason
is that, like in stochastic programming approach, in out-of-
sample setup the consumers do not participate in RT market
in these two cases. Therefore, their cost remained the same,
expressed only by the DA fixed decisions. The grid owner’s
profit also comes from DA only, showing thus zero change in
out-of-sample simulations.

The storage owner on the other hand, is among the market
participants with the heaviest financial losses within a specific
market format (Case 1). Indeed, the total expected profit of the
SO is almost 20% less in the out-of-sample setup compared
to the stochastic programming approach ($6.79 instead of
$8.33). On the contrary, since the profit of the SO in the PSR
format (Case 2) comes exclusively from the DA market, the
out-of-sample simulations (with which only the RT market is
cleared) leave its revenue unaffected. These results indicate the
potential risk involved when the SO acts as a regular market
player and not as a PSR provider. However, one must take
into account that the findings in this work are excessively
dependant on the considered scenarios for RT in stochastic
programming and also on the quality of DA forecasts each
player has. Finally, as occurred with the case of the SO, the
out-of-sample simulations resulted in a final negative profit for
the arbitrageur.

Coupled with the PSRs, passive storage extends the process
through which ES owners profit: instead of directly arbitraging
temporal price variations, they profit through the provision
of physical storage rights, whose value depends on price
variations. Storage owners who are reluctant in taking risk
can beneficially enter this process and hedge against RT price
volatility. On the other hand, risk-seeking market participants
gain access to ES resources through the PSRs anticipating
a higher expected profit in RT market. The aforementioned
remarks are also supported by the conducted out-of-sample
analysis. Our proposed model through the suggested auc-
tion design, generates PSR prices that are intuitively clear
and transparent. In addition, these prices are equilibrium-
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supporting in the sense that each PSR holder would want to
follow the (dis)charge actions specified by the PSR allocation.

V. CONCLUSION

This paper proposes a local market design where the PSRs
are allocated for a period of 24 hours based on periodical
(daily) market clearing auctions. We first prove that the initial
Nash equilibrium model can be substituted with its equiva-
lent optimization one ensuring the same desirable economic
properties in the market. The potential added value of the ES
to the system is numerically evaluated by our models and
their computational applications. Furthermore, we examine
two different market formulations under which a storage asset
could participate in DA and RT markets. We find out that
the certain profit of a storage owner in DA when acting as
a PSR provider is equal to its expected profit as a regular
market participant providing a risk-free option with the same
economic return. At the same time, the PSRs grant access
to the rest market players who can exploit it at their best
interest. Additional out-of-sample simulations are in line with
the results obtained from stochastic programming.

Future work will concentrate on the introduction of a risk
measure (e.g., the conditional value-at-risk) to quantify the
average loss for the market participants over a specified time
period of unlikely renewables and price scenarios.

APPENDIX A: NOMENCLATURE

A. Indices:
i Index for all market players
s Index for storage units
t Index for operating hours
w Index for renewable generation and electricity
price scenarios in real-time market
B. Sets
A Set of arbitrageurs with no physical storage asset
C Set of consumers with no physical storage asset
P Set of wind producers with no physical storage
asset
R Set of prosumers with no physical storage asset

C. Parameters

Dy Load demand of player ¢ in hour ¢ [kW]

Eex Nominal capacity of storage s [kWh]

E;nsl Initial energy of storage s accessed by player
[kWh]

GEtA Maximum renewable production of player ¢ in
hour ¢ that can be scheduled at the scheduling
stage [kKW]

ijzw Renewable production realization of player 7 in

hour ¢ under scenario w [kW]
L Line capacity [kW]
Maximum charge rate of storage s [kW]
Maximum discharge rate of storage s [kW]
Vi Value of lost load for player ¢ [$/kWh]
A Value of storage residual energy [$/kWh]

DA Forecast in day-ahead market for distribution-
level electricity price in hour ¢ [$/kWh]

ARE Realization in real-time market for distribution-
level electricity price in hour ¢ under scenario w
[$/kWh]

T Probability of scenario w

D. Primal variables (day-ahead market):

e?,;ft Stored energy of storage s accessed by player @
in time ¢ [KWh]
;f‘sa’t"DA Maximum capacity right of storage s owned by
7 player ¢ in time ¢ [kWh]
e;i”tDA Total capacity right offered from storage s in
time t [kWh]
pf”gf Charge power of storage s accessed by player ¢
in time ¢ [KW]
pf”?fX’DA Maximum charge right of storage s owned by
l player ¢ in time ¢ [kW]
pg’ji’DA Total charge right offered from storage s in time
t [kW]
f’SDtA Discharge power of storage s accessed by player
- i in time ¢ [KW]
i’;ﬁax’DA Maximum discharge right of storage s owned by
l. player ¢ in time ¢ [kW]
i’f’DA Total discharge right offered from storage s in
time t [KW]
p! ’tDA Power from wind producer ¢ directly sold to the
7 grid in time ¢ [kW]
pzy DA Photovoltaic power utilized from prosumer ¢ in
time t [kKW]
P P2 Total power flow through distribution line in
time ¢t [KW]
thA Net power consumption/generation of player 7 in
' time ¢ [kW]

E. Primal variables (real-time market):

EST’MI Stored energy adjustment of storage s accessed
by player ¢ in time ¢ under scenario w [kWh]
pff‘fTw Charge power adjustment of storage s accessed
by player ¢ in time ¢ under scenario w [kKW]
pff”tT w Discharge power adjustment of storage s ac-
o cessed by player ¢ in time ¢ under scenario w
(kW]
pf:ff Power adjustment from wind producer 7 directly
sold to the grid in time ¢ under scenario w [kW]
pzx ;JRT Photovoltaic power adjustment utilized from
prosumer ¢ in time ¢ under scenario w [kW]
EZW’RT Total power flow adjustment through distribution
line in time ¢ under scenario w [kW]
pied Shed power of player i in time ¢ under scenario
w [kW]
q})j;f’w Net power consumption/generation adjustment

of player ¢ in time ¢ under scenario w [kKW]

F. Dual variables:

ui:PA Day-ahead price of charge right offered by stor-

age s in time ¢ [$/kW]
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u’si P A Day-ahead price of discharge right offered by
storage s in time t [$/kW]

MZ ? A Day-ahead price of capacity right offered by
storage s in time ¢t [$/kWh]

)\}fOC’DA Local market day-ahead price in time ¢ [$/kWh]

/\t‘?jj’RT Probability-weighted local market real-time

price in time ¢ under scenario w [$/kWh]

APPENDIX B: REVENUE ADEQUACY

This Appendix proves that the Equilibrium Model is
revenue-adequate. To this purpose, at the optimal solution,
we multiply each expression within the physical storage
rights equalities ( Tgd) by g DA ug:? A and ui:? A
respectively. Simllarly, all expressions within the power flow
equalities (Tgd) and are multiplied by A°“P4 and
)\f:j’RT at the optimal solution, respectively. Afterwards, we
sum all the obtained equalities, i.e.

c,ri,DAx ¢, DAx d,ri,DA* d,DAx ri,DAx e,DAx
ps,t /j’s,t +ps,t /'Ls,t + es,t us,t
s

ﬂow,RT*)\loc RTx* _

flow,DAx \ loc,DAx
)‘t + t,w -

+ Dy

w

c,max,DA*x ¢, DAx d,max,DAx d,DAx
pzst lu’st +pzst Mst +

i€Z,s
max,DAx e, DAx d,DAx c,DAx loc,DAx
i,8,t lu’s,t >+§ :|:(pzst pzst ))\ :|+
i€A,s

g,DAx d,DAx loc DA% DAx yloc,DAx
Z (pl t + Z Pist + Z q; ¢ )\
i€EP S CUR)

d,RT* c,RT* loc RT* DAx 1 loc,RTx*
+§: (pzetw p7€fw) :|+§ qz w>‘
i€A,s,w i€(CUR),w
§ : g,RT* § : d,RT* loc,RT*
+ (pi,,t,w + L,e,t w) vt
1€P,w

3)
where superscript * stands for the optimal values.

According to (3)), the total payment of the players for their
obtained physical storage rights and the their purchased energy
to the market operator for DA and RT, i.e., the right-hand
side, equals to the total payment of the market operator to
the physical storage rights supplier and to the grid owner.
Therefore, the market operator never incurs a financial deficit,
i.e., the market is revenue-adequate. Similarly, we can prove
the revenue-adequacy for Optimization Model.

APPENDIX C: PARAMETERS AND TECHNICAL DATA FOR
THE CASE STUDIES

We provide here the technical data and the parameter values
used in the case studies in Section IV of the main paper. Table
provides the storage (dis)charge efficiencies, the nominal
(dis)charge and capacity rates, the value of lost load, as well
as the remaining parameters used in the case studies.

Fig. [3] illustrates the 40 scenarios for production (wind
and PV) and energy price (RT), which were generated from
historical time series. Specifically, the PV production is a

TABLE IV
PARAMETER VALUES
Parameter Value
Charge efficiency storage type 1 1S 0.81
Discharge efficiency storage type 1 ng 0.85
Charge efficiency storage type 2 1S 0.91
Discharge efficiency storage type 2 ng 0.95
Nominal dis(charge) rate (same for type 1 and 2 ) PS8, Psd'max [kW]| 10
Nominal capacity (same for type 1 and 2 ) ET"®* [kWh] 20
Grid line capacity L [kW] 59
Value of lost load V; [$/kWh] 4
Value of storage residual energy A [$/kWh] 0.28

source of uncertainty related with the prosumers. One should
notice that the scenarios are not equiprobable but probability-
weighted. The scenarios and their probabilities form a discrete
approximation of the probability distribution of the data pro-
cess.

In this work, we used a scenario reduction technique based
on the study of Growe-Kuska et al. [27]. Specifically, we used
this technique to aggregate all five sources of uncertainty into
one. That is, a discrete probability has been assigned to each
one of the 40 scenarios. Every scenario comprises five 24-hour
vectors where each vector corresponds to a specific profile
(two vector profiles for wind, two for PV production, and one
for the price).

The data used for the out-of-sample simulations are pre-
sented in Fig.[6] Specifically, the RT market is cleared for each
one of the 365 data vectors (including renewable generation
values and RT prices) keeping fixed the DA values obtained
from the in-sample analysis in stochastic optimization.
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