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Réunion, France
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Abstract

Accurate solar forecasts is one of the most effective solution to enhance grid operations. As
the solar resource is intrinsically uncertain, a growing interest for solar probabilistic forecasts
is observed in the solar research community. In this work, we compare two approaches for
the generation of day-ahead solar irradiance probabilistic forecasts. The first class of models
termed as deterministic-based models generates probabilistic forecasts from a deterministic
value of the irradiance predicted by a Numerical Weather Prediction (NWP) model. The sec-
ond type of models denoted by ensemble-based models issues probabilistic forecasts through
the calibration of an Ensemble Prediction System (EPS) or from information (such as mean
and variance) derived from the ensemble. The verification of the probabilistic forecasts is
made using a sound framework. The Continuous Ranked Probability Score is a numerical
score used to assess the overall performance of the different models. The decomposition of
the CRPS into reliability and resolution provides a further detailed insight into the quality
of the probabilistic forecasts. In addition, a new diagnostic tool which evaluates the con-
tribution of the statistical moments of the forecast distributions to the CRPS is proposed.
This tool denoted by MC-CRPS allows identifying the characteristics of an ensemble that
have an impact on the quality of the probabilistic forecasts. The assessment of the different
models is done on several sites experiencing very different climatic conditions.

::::
The

::::::
gain

::
in

:::::::::
forecast

::::::::
quality

::::::::::
measured

::::
by

::::
the

:::::::
CRPS

::::::::
ranges

:::::
from

::::
4%

:::
to

::::::
16%

:::::::::::
depending

:::
on

:::::
the

:::::
site.

Results show a general superior performance of ensemble-based models but this statement
needs to be tempered for sites that experience highly variable sky conditions.

Keywords: Day-ahead solar irradiance probabilistic forecast, Ensemble
prediction system, Non parametric methods, Ensemble calibration, CRPS

Contents1

1 Introduction 32

?Fully documented templates are available in the elsarticle package on CTAN.

Preprint submitted to Renewable Energy June 12, 2020

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


2 Building probabilistic forecasts 63

2.1 Statistical techniques used to generate probabilistic forecasts . . . . . . . . . 64

2.1.1 The linear quantile regession (LQR) technique . . . . . . . . . . . . . 65

2.1.2 The Analog Ensemble (AnEn) technique . . . . . . . . . . . . . . . . 86

2.1.3 The Nonhomogeneous truncated Gaussian Regression technique (t NGR) 97

2.1.4 The Nonhomogeneous Regression of Generalized Extreme Value tech-8

nique (NR GEV ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.2 Obtaining probabilistic forecasts from deterministic forecasts (Deterministic-10

based approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111

2.3 Obtaining probabilistic forecasts from ensemble forecasts (Ensemble-based12

approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113

2.3.1 From raw output of EPS . . . . . . . . . . . . . . . . . . . . . . . . . 1114

2.3.2 From information extracted from an EPS . . . . . . . . . . . . . . . . 1115

3 Veri�cation of the probabilistic forecasts 1216

3.1 Attributes for a skillful probabilistic model . . . . . . . . . . . . . . . . . . . 1217

3.2 Rank histogram for reliability assessment . . . . . . . . . . . . . . . . . . . . 1318

3.3 CRPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

3.3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420

3.3.2
:::::::
CRPS

:::::
Skill

::::::
Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421

3.3.3 Decomposition of the CRPS . . . . . . . . . . . . . . . . . . . . . . . 1422

3.4 Contributions of the statistical moments of the forecast distribution to the23

CRPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524

4 Data
::::::
Case

:::::::::
studies 1625

4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1726

4.2 Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1827

5 Results 1828

5.1 Reliability assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1829

5.2 Overall performance of the methods . . . . . . . . . . . . . . . . . . . . . . . 2030

5.3 Detailed insight through the decomposition of the CRPS . . . . . . . . . . . 2031

5.4 Comparisonbetweensites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2232

5.5 Detailed insight through the CRPS Moments-Contributions . . . . . . . . . . 2433

6 Discussion 2534

6.1 Deterministic-based approach versus ensemble-based approach . . . . . . . . 2535

6.2 Discussion related to CRPS Moments-Contributions . . . . . . . . . . . . . . 2736

7 Conclusions 3137

Appendix A Data quality check 3438

Appendix B Rank histograms 4139

2



Appendix C Bias and standard deviation of EPS members distribution40

and observations for the three
:::
six sites 4341

Appendix D Selection of the optimal � 4542

1. Introduction43

Operations of electrical power systems are becoming more challenging as the share of44

solar energy increases. In particular, due to the intrinsic variability of the solar resource,45

high penetration of solar power generation into the electrical grid may put in danger the46

grid supply-demand balance. Energy storage systems (EES) are one of the means used to47

ensure the grid stability. However, unlike EES, Accurate PV power forecasting is a cost-48

e�ective way to
::::::::::
dimension

:::::
and

:::::::::
operate

:::::
ESS

:::::::::::
optimally.

::::::::::::::::
Consequently,

::::
PV

:::::::
power

::::::::::
forecasts49

facilitate the large-scale integration of solar energy into the grid. In addition, for energy50

trading, accurate PV power forecasts are also required because penalties in proportion with51

the forecast errors are applied.52

In this study,
:::::::::
however, we focus on the global horizontal solar irradiance (GHI) fore-53

casts
:::::::
instead

::::
of

::::
PV

:::::::
power

:::::::::::
forecasts.

::::::
The

:::::::::
present

::::::
work

::::::::::::
constitutes

::::::
thus

::
a

:::::
�rst

:::::
step

::::
in54

:::::::::
assessing

::::
the

::::::::::::::
contribution

:::
of

::::
the

::::::::::
proposed

:::::::::::::::
methodologies

::::
for

:::::::::::
improving

:::::
the

::::::::
quality

::
of

:::::
the55

:::
PV

:::::::
power

::::::::::
forecasts

:::::
and

:::
of

::::::
their

::::::::::
potential

:::::
gain

::::
for

:::::::::::
improved

:::::
grid

::::::::::::
operations. since solar56

powergenerationis highly correlatedto the GHI. Day-ahead GHI forecasts are treated here57

as they have been considered essential to secure the power grid [1]. Moreover, we pro-58

pose to work on probabilistic forecasting in order to estimate the uncertainty associated to59

day-ahead GHI forecasts. This additional knowledge permits for instance grid operators to60

improve their decisions regarding the grid operations. The interested reader can refer to [2]61

or [3] to understand the bene�ts of a probabilistic forecast against a deterministic one.62

Day-ahead GHI forecasts are classically generated by Numerical Weather Predictions63

models (NWPs). For instance, The Integrated Forecasting System (IFS) model of the Eu-64

ropean Centre of Medium-Range Weather Forecasts (ECMWF) provides day-ahead GHI65

forecasts [4]. The forecasts can take either the form of a deterministic forecast or an en-66

semble forecast denoted by the term Ensemble Prediction System (EPS). EPS consists in67

a set of several perturbed forecasts of irradiance, each representing a possible future state68

of the atmosphere. If an EPS gives an important information about the uncertainty associ-69

ated to a forecast, it requires a high computational cost. Thus, the added value of EPS for70

probabilistic forecasting needs to be determined to justify their computation.71

We propose below to conduct a bibliographic survey related to day-ahead solar forecasts72

with a special emphasis on the use of NWP outputs to generate probabilistic forecasts.73

One of the �rst approach used to generate day-ahead probabilistic irradiance forecasts was74

proposed by Lorenz et al. [5]. In this work, a Gaussian distribution of the error of the75

ECMWF-IFS deterministic irradiance forecast was used to generate prediction intervals.76

Alessandrini et al. [6] developed an analog statistical method approach applied to a set of77

explanatory weather variables (GHI, cloud cover, air temperature, etc.) provided by the78

NWP Regional Atmospheric Modeling System (RAMS) to generate probabilistic PV power79
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forecasts for three solar farms located in Italy. Zamo et al. [7] proposed two statistical80

approaches to generating probabilistic forecasts of daily PV production from information81

provided by M�et�eo France's EPS, PEARP. The �rst approach makes use of the PEARP82

control member as unique input to quantile regression methods while the second one averages83

the set of quantiles calculated from each of the 35 members of the PEARP ensemble. Bacher84

et al. [8] used a weighted quantile regression (WQR) technique to compute up to 24h ahead85

probabilistic PV forecasts. In addition to lagged PV measurements, the WQR model used86

also a NWP-based GHI deterministic forecast. Lauret et al. [9] used the IFS model to87

produce quantile forecasts of solar irradiance and Iversen et al. [10] introduces the idea of88

modeling uncertainty by stochastic di�erential equations from a NWP-based deterministic89

forecast provided by the Danish Meteorological Institute. Bakker et al. [11] proposed a90

comparison of seven statistical regression models to issue GHI probabilistic forecasts from91

the deterministic numerical weather prediction (NWP) model HARMONIE-AROME (HA)92

and the atmospheric composition model CAMS.93

It must be noted that the above cited works make use of deterministic information94

extracted from NWP models to generate probabilistic forecasts with the help of statistical95

techniques like quantile regression or analog ensemble. Others authors like Sperati et al.96

[12] proceeded di�erently. In their work, Sperati et al. [12] generated up to 72h probabilistic97

forecasts from the raw EPS provided by the ECMWF. In this study, two post-processing98

methods (also called calibration techniques) applied to the initial raw ensemble were used99

to further improve the quality of the probabilistic forecasts. Massidda and Marrocu [13]100

went a little bit further and proposed a methodology to combine ECMWF ensemble and101

the high-resolution IFS deterministic forecast.102

If we extend our bibliographic survey to the probabilistic predictions of other weather103

variables such as wind, temperature or precipitation, more publications can be found on104

how to use information from NWP models to generate probabilistic forecasts. For example,105

Pinson [14] and Pinson and Madsen [15] suggested a framework for the calibration of wind106

ensemble forecasts. Junk et al. [16] proposed an original calibration model for wind-speed107

forecasting applied to ECMWF-EPS based on the combination between Nonhomogeneous108

Gaussian Regression and Analog Ensemble Models. Likewise, Hamill and Whitaker [17]109

suggested an adaptation of the analog ensemble technique for the calibration of ensemble110

precipitation forecast, using the statistical moments of the distribution such as mean and111

spread of the members as predictors.112

Wilks [18], followed in his methodology by Williams et al. [19], compared several post-113

processing techniques of weather EPS forecasts, such as ensemble dressing, Logistic Re-114

gression, Nonhomogeneous Gaussian Regression (NGR) and Rank-Histogram recalibration.115

The reader can refer to [20] and [21][22] and [23] for more details regarding the parametric116

calibration of ensemble forecasts with techniques like NGR with a special emphasis on the117

choice of the type of the parametric distribution used by the regression technique. Finally,118

the interested reader should consult the following reference book : [24], who proposed a sum-119

mary of the common probabilistic forecasting ensemble-based models with their respective120

pros and cons.121

Based on this bibliographic survey, two di�erent approaches for day-ahead GHI proba-122
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bilistic forecasting with the help of NWP models can be identi�ed, which we denoted here123

by approaches 1 and 2 :124

1. Approach 1 referred herein asdeterministic-based models: the probabilistic forecast125

is computed from deterministic NWP predictors with the help of statistical methods.126

Linear Quantile Regression and Analog Ensemble techniques are particularly attractive127

to implement this methodology.128

2. Approach 2 referred herein asensemble-based models: the estimation of the forecast129

is made through the calibration of an EPS or from information (for example mean or130

spread) inferred from the ensemble. For instance, calibration techniques like Nonho-131

mogeneous Regression can be used to improve the raw ensemble EPS. Also, methods132

based on Linear Quantile Regression and Analog methods can be used to produce133

probabilistic forecasts from the mean and spread of the ensemble.134

It must be stressed however that, to the best of our knowledge, no previous works have135

been dedicated to the comparison of the two approaches and particularly in the realm of136

solar probabilistic forecasts. In this work, our main goal is therefore to assess the relative137

merits of each approach for day-ahead GHI probabilistic forecasts. Besides, we would like138

to highlight the possible added-value brought by EPS for probabilistic forecasting. Indeed,139

it is well known that the generation of such ensemble necessitates high computing capacities140

compared to a single deterministic forecast that is fed into a statistical method to produce141

the probabilistic forecasts. More precisely, it should be noted that the calculation cost is142

not the same to produce only the control member of EPS or the whole set of members.143

To understand the bene�ts associated with the usage of EPS, we propose in this paper a a144

sound and consistent methodology to evaluate the respective contribution of each approach.145

First, the quality appraisal of the di�erent models will be made according the veri�cation146

framework proposed by Lauret et al. [25]. This framework (which is not consistently pro-147

posed in the literature) is based on visual diagnostic tools and numerical scores like the148

Continuous ranked Probability Score (CRPS) which permits to objectively rank the com-149

peting forecasting methods. However, this classical veri�cation framework is not su�cient to150

completely explain the contribution of the statistical moments of the forecast distributions151

to the forecast quality. That is why we propose in a second step a new tool that evaluates152

the accuracy of all moments of the forecast distribution and its contribution to the CRPS153

score. We hope that this new diagnostic tool will provide a more in-depth understanding154

of the performance of each approach. To this end, we evaluate models that generate day-155

ahead GHI probabilistic forecasts on 3 sites that experience di�erent sky conditions. The156

probabilistic models are built :157

1. With only the control member of the EPS as a deterministic predictor (deterministic-158

based approach),159

2. With a deterministic predictor inferred from the whole set of EPS's members The160

�rst statistical moment (mean of the members) can be such a deterministic predictor161

(ensemble-based approach),162
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3. With several predictors inferred from the ensemble like the mean and the variance of163

the ensemble (ensemble-based approach).164

We propose the following structure for the paper. Section 2 introduces the di�erent165

forecasting models while section 3 brie
y presents the diagnostic tools used for the veri�ca-166

tion of probabilistic forecasts. Section 4
::::::::
presents

::::
the

:::::
case

::::::::
studies

::::
and details the data used167

to evaluate the di�erent probabilistic models. Section 5 provides a detailed assessment of168

the performance of the di�erent methods. Finally, a discussion will be conducted in sec-169

tion 6, trying to understand the pros and cons of each forecasting methods and the factors170

impacting the forecast quality.171

2. Building probabilistic forecasts172

Regarding probabilistic forecasts of continuous predictand like GHI, a probability state-173

ment i.e. either a Probability Distribution Function (PDF) f or a Cumulative Distribution174

Function (CDF) F encodes the uncertainty of the forecast. In this work, three ways to175

estimate this CDF or PDF are considered: parametric PDFs, discrete quantile estimates of176

a CDF via a non-parametric method and CDF derived from EPS.177

Regarding this last case, EPS can be seen as discrete estimates of a CDF when they178

are sorted in ascending order. Lauret et al. [25] discussed three ways to associate these179

sorted members to cumulative probabilities. In this work, we chose the uniform distribution180

which consists in an uniform spacing of the members and a linear interpolation between181

the members. More precisely, this choice assigns a probability mass of 1=(M + 1) between182

two members and for events that fall outside of the ensemble. Using this de�nition, thei th
183

ensemble member can be interpreted as a quantile forecast with a probability level equal184

to � = i
M +1 . Put di�erently, the ensemble forecasts are in the form of 51 equally spaced185

quantiles with probability levels � = 1
52; 2

52; � � � ; 51
52. This construction is illustrated in Figure186

1, for an EPS with 4 members. In the following, we present �rst the di�erent statistical187

techniques used to estimate the uncertainty of the forecasts. Secondly, we detail the two188

approaches introduced in section 1.189

2.1. Statistical techniques used to generate probabilistic forecasts190

2.1.1. The linear quantile regession (LQR) technique191

This method estimates the quantiles of the cumulative distribution functionF of some
response variableY (also called predictand) by assuming a linear relationship between the
quantiles ofY;

:::::::
namely (q� ( and a set of explanatory variablesX (called predictors):

q� = � � X + �; (1)

where� � is a vector of parameters to optimize for each probability level� and � represents192

a random error term.193

6



Figure 1: Illustration of an uniform construction of a CDF from an ensemble of M = 4 members. The
tails of the CDF are bounded by e0 and eM +1 which correspond to the minimum and the maximum of the
climatology.

Following Koenker [26], thequantiles q� = F � 1(� ) can be estimated as the solution of194

the optimization problem :195

q̂� = arg min
�

NX

i =1

	 � (Yi � q� ); (2)

vector �̂ � :::::
that

::::::::
de�nes

:::::
each

:::::::::
quantile is obtained as the solution of the following mini-

mization problem:

�̂ � = arg min
�

NX

i =1

	 � (Yi � �X i ): (3)

where
:::
N

::
is

::::
the

:::::::::
number

::
of

::::::
pairs

:::
of

::::::::::
observed

:::::::::::
predictand

::::
Yi , ::::

set
::
of

:::::::::::
predictors

::::
X i ::::::

taken
::::::
from196

:::
the

:::::::::
training

::::
set. 	 � (u) is the quantile loss function de�ned as :197

	 � (u) =

(
u� if u � 0;

u(� � 1) if u < 0;
(4)

with � representing the quantile probability level. Hence, in quantile regression, the quantiles198

are estimated by applying asymmetric weights to the mean absolute error.199

Thus, the quantity q̂� = �̂ � X is the estimation of the � th quantile obtained by the LQR200

method. The pairs of observedpredictand and the set of predictors, Yi and X i , for the201

estimation of the �̂ � parametersare taken from the training set.202

It must be noted that the quantile regression method estimates each quantile separately203

(i.e. the minimization of the quantile loss function is made for each� separately). As a204

consequence, one can obtain quantile regression curves that may intersect, i.e ^q� 1 > q̂� 2 when205

� 1 < � 2. To avoid this issue during the model �tting, we used the rearrangement method206

described by Chernozhukov et al. [27].207
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Figure 2plots an exampleof the observedirradianceversusday-aheadpredictedirradiance208

and showsthat uncertainty dependson the level of the forecastedirradiance. The lines209

correspondto
::::::
shows

::::::
some quantiles estimates of the CDF ofday-ahead

:::
the

::::::::::::
predictand

:::
Y210

:::::
(here GHI) as a function of

:::
the day-ahead forecasted GHI. Hence, in this case, the preditorX211

is the predicted irradianceand the responsevariable Y whosequantileshaveto beestimated212

is the day-aheadGHI.
::::::
which

:::::
will

:::
be

::::::::::::
represented

:::
in

::::
this

::::::
work

:::::::
either

:::
by

::::
the

::::::::::
ECMWF

::::::::
control213

::::::::
member

:::
or

:::::
the

::::::
mean

:::
of

::::
the

::::::::::
ensemble

:::::
(see

:::::::
Table

::
2

::::::::
below).

:::::
This

:::::::::
example

:::::::
shows

:::::
that

:::::
the214

::::::::
forecast

::::::::::::
uncertainty

:::::::::
depends

:::
on

::::
the

::::::
level

::
of

::::
the

::::::::::
predicted

::::::::::::
irradiance.

::::::
More

::::::::::
precisely,

:::::
and

:::
as215

::::::
shown

::::
by

:::::::
Figure

:::
2,

::::
the

:::::::::::
dispersion

:::
of

:::::::
points

::
is

::::::
lower

::::
for

:::::::
values

:::
of

::::::::::
predicted

:::::::::::
irradiance

::::::
close216

::
to

::
0

:::::::
W=m2

:::::
and

::::::::
greater

:::
for

:::::::
values

:::::::::
between

::::
40

::::
and

:::::
100

:::::::
W=m2.217

Figure 2: Observed GHI vs. the predicted day-ahead GHI. The lines are the estimates of the quantiles
with probability levels of 0.2, 0.4, 0.6 and 0.8. Data are from the training period of Hawaii. Observed and
predicted GHI are averaged on the 3-hour window[5h-8h]

::::::::
[17h-20h] local time.

2.1.2. The Analog Ensemble (AnEn) technique218

The analog ensemble technique is now quite a standard in the energy meteorology fore-219

casting community [28, 29, 17, 30]
:::::::
[29, 17]. Similarly to the LQR method, the analog tech-220

nique is a non-parametric method that can be used to estimate the predictive CDF
:
of

:::::
the221

:::::::::::
predictand.222

Considering a
::::::::
training set ofN ordered

:::::
pairs

:::
of

:::::
GHI

::::::::::::::::::
observations/GHI

::::::::::
forecasts

::::::::::::::
(Yi ; Ŷi ) i =1 ;��� ;N223
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calculatedover a training period and the set of the correspondingobservationsf Yi gi =1 ;��� ;N224

sorted in a similar manner as for the forecasts, the procedure for determining the forecast225

CDF is as follows:226

1. For a new forecast
:::::
taken

::::::
from

::
a

::::::::
testing

::::
set, calculate its distance from every past227

forecast and �nd the rank R of the past forecast that is closest to the new forecast.228

2. Form an ensemble by selecting the 2� + 1 past
::::::::
training observations

::
Yk having their229

ranks
::
k inside the interval [R � �; R + � ].230

3. Compute the predictive CDF
::
at

::
a

::::::::
speci�c

::::::
value

::
y

:::
of

:::
the

::::::::::::
predictand using the following

equation:

F̂ (xy
:
) = P(X Y: � xy

:
) =

1
2� + 1

2� +1X

k=1

H (xy
:

� Yk); (5)

where
::
Y

::
is

::::
the

:::::::::
random

::::::
value

::::::::
related

:::
to

::::
the

::::::::::::
predictand

::::::
(here

::::::
GHI)

:::::
and H is the Heaviside231

or step function. The e�ectiveness of the method is strongly dependent on the value of� .232

It is proposed here to take� = 0:02N . This choice has been motivated by a preliminary233

study made on the training period. Appendix D details the selection of the optimal value234

of � .
::::::::
Finally,

:::
as

::::
for

::::
the

:::::::
linear

:::::::::
quantile

:::::::::::::
regresssion,

:::::::
notice

:::::
that

::::
the

:::::
GHI

::::::::::
forecasts

::::::
used

:::
in235

:::
the

::::::::
AnEn

::::::::::
technique

:::::
will

:::
be

::::::
given

:::::::
either

::::
by

::::
the

::::::::::
ECMWF

::::::::
control

:::::::::
member

:::
or

::::
the

:::::::
mean

:::
of236

:::
the

::::::::::
ensemble

:::::
(see

::::::
Table

::
2

:::::::::
below).

:
237

2.1.3. The Nonhomogeneous truncated Gaussian Regression technique (t NGR)238

The NGR technique also called in some studies "Ensemble Model Output Statistics"
(EMOS) has been introduced by Gneiting et al. [20] for probabilistic forecasting of weather
variables. This technique is dedicated to the post-processing of ensemble forecasts produced
by an EPS. The NGR technique builds the predictive PDF

::
of

::::
the

:::::::::::
predictand

:::
Y from a normal

PDF. As such, this kind of model can be termed as a parametric model. The predictive pdf
f̂ estimated by the NGR method is given by:

f̂ � N (a +
MX

k=1

(bkm:: X k); c+ dS2); (6)

whereM is the number of members,X k :::
mk is the kth member andS2 is the variance of the239

ensemble members distribution. The free parametersa, b1; � � � ; bM::
, c and d are determined240

with the help of an optimization procedure. In this work, and following Gneiting et al.241

[20], these parameters are calculated by minimizing (over a training period) an evaluation242

metric for probabilistic forecasts called CRPS (see section 3.3 for details regarding CRPS).243

:::::::::::::
Furthermore,

:::
as

::::::
GHI

::
is

::
a

::::::::::::
necessarily

:::::::::
positive

::::::::::
quantity,

:::
we

::::::::::
propose,

::
in

:::::
this

:::::::
work,

::
a

::::::::
variant244

::
of

::::
the

::::::
NGR

:::::::::::
technique

::::::::
namely

::
a

:::::::::::
truncated

::::::::
version

::::
(at

:::
0)

:::
of

::::
the

::::::::::::::::::
nonhomogeneous

::::::::::
gaussian245

:::::::::::
regression.

:::
In

::::
the

:::::::::::
following,

::::
the

:::::::::::::::
corresponding

:::::::
model

::
is

:::::::::
denoted

:::
as

:::::::::
t NGR.

:
246
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2.1.4. The Nonhomogeneous Regression of Generalized Extreme Value technique (NR GEV )247

One can question the choice of a Gaussian distribution in thet NGR technique. Indeed,248

the distributions of observations for a �xed forecasting level are actually non-Gaussian. Two249

examples for the studied sites are presented in Figure 3.250

(a) 6 th decile for Hawaii
levels of forecasting from 484 to 584 W=m2 (b) 1 st decile for Desert Rock

levels of forecasting from 0 to 38 W=m2

Figure 3: Example of distributions of observations for a �xed forecasting level

On these speci�c examples, the distributions of observations are clearly non-Gaussian251

and the consideration of other types of distributions may improve the skills of the forecast.252

As pointed out in [21] and [22], other types of parametric distributions can be used253

to deal with this issue. Here, a Non homogeneous Regression approach with Generalized254

Extreme Value distributions is proposed
::
to

::::::::::
estimate

::::
the

::::::
PDF

:::
of

::::
the

::::::::::::
predictand

:::
Y. The255

PDF of a generalized Extreme value distribution
:::
for

::
a

:::::::::
speci�c

::::::
value

::
y

:::
of

:::::
the

::::::::::::
predictand256

::::
GHI is de�ned as :257

f̂ (y) =

8
>>>><

>>>>:

1
�

�
1 + � ( y� �

� )
� (� 1

� )� 1

exp
�

�
�
1 + � ( y� �

� )
� � 1

�

�
� 6= 0;

1
� exp(� y� �

� )exp
�

� exp(� y� �
� )

�

::::::::::::::::::::::::::::::::

� = 0:
(7)

The parameters� , � and � are to be determined by optimizing the CRPS over the training258

period. We followed the framework of [31] and [32] to set these coe�cients. Following this259

procedure, the mean� and the scale parameter� of the �nal distributions are determined by260

linear regression, and depends only on variables inferred from the EPS. The mean is a linear261

combination of the mean of the members and the fraction of members which predict exactly262

zero. The scale parameter� depends on the \Gini's mean di�erence" (a measure of the263
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variability closely related to the spread of the members, see [33] for details).
:::::::
Notice

:::::
that

::::
the264

::::::
shape

:::::::::::
parameter

::
is

::::::
taken

:::
as

:
a

::::::::::
constant.

:::::::
Thus,

::::
the

:::::::::::::
optimization

:::
of

:::::::
CRPS

:::::::::::
determine

:::
the

:::::::
linear265

::::::::::
regression

::::::::::::
coe�cients

:::
of

:::
� ,

::::
the

:::::::
linear

:::::::::::
regression

::::::::::::
coe�cients

::
of

:::
�

::::
and

:::::
the

::::::
shape

::::::::::::
parameter266

:
� . Notice that the two techniques namelyt NGR discussed above andNR GEV discussed267

here are part of a family of parametric methods named Nonhomogeneous Regression (NR).268

2.2. Obtaining probabilistic forecasts from deterministic forecasts (Deterministic-based ap-269

proach)270

The
:::::
Some

:::
of

::::
the techniques presented in section 2.1, namely the Linear Quantile Re-271

gression (LQR) and the Analog Ensemble(AnEn) techniques, are capable of generating a272

probabilistic forecast from a deterministic predictor.273

In our study, and regarding the deterministic-based approach, the control member of274

ECMWF-EPS is the predictor variableX of the LQR technique and it will be the forecast275

used in the AnEn procedure. The corresponding probabilistic models are denoted respec-276

tively as LQR c and AnEn c in the following.277

2.3. Obtaining probabilistic forecasts from ensemble forecasts (Ensemble-based approach)278

2.3.1. From raw output of EPS279

Given a raw ensemble forecast ofM membersf X m:: i gi =1 ;��� ;M , it seems natural to de�ne280

directly a forecast CDF from this EPS as illustrated in Figure 1. Notice that this de�nition281

corresponds to the \uniform" de�nition of a CDF derived from an ensemble" discussed in282

Lauret et al. [25].283

2.3.2. From information extracted from an EPS284

An EPS di�ers from a deterministic forecast by the multiplicity of predictors. In this285

work, we propose to assess the quality of two variants of probabilistic models built with286

information extracted from an EPS.287

The �rst variant will make use of the mean of the ensemble members of the EPS. The288

usage
:::
use of the mean of members as a deterministic predictor is justi�ed by Table 1.289

:::
For

:::::
the

:::
all

::::
the

::::::::::::
considered

:::::
sites

::::::::::
depicted

:::
in

::::::
Table

:::
3,

::::::
Table

:::
1

:::::
lists,

:::
in

:::::::::
addition

:::
to

:::::
the

::::::
Root290

::::::
Mean

:::::::
Square

:::::::
Error

:::::::::
(RMSE)

:::
of

::::
the

::::::::
control

:::::::::
member,

:
the RMSEs oftwo

::::::
three deterministic291

predictors extracted from an EPS.comparedto the RMSE of the control member of the292

EPS.
::
As

:::::::
shown

:::
by

:::::::
Table

::
1, the mean of all the members turns out to be the best predictor for293

deterministic forecasting.
::::::
Hence,T

:
to quantify the improvement brought by the �rst moment294

estimation (i.e. the mean), two models denoted byLQR m and AnEn m based respectively295

on the LQR and AnEn techniques will be evaluated.296

The second variant will include, in addition to the mean of the members, the spread (i.e.297

the variance) of the members of the EPS. Thet NGR and the NR GEV models described298

in sections 2.1.3 and 2.1.4 use the �rst and second moment of the EPS distribution to build299

the predictive distributions. Furthermore, we also propose to use the LQR technique with300

a vector X of predictors given by301

X = [ �; S 2]; (8)
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Site HAW DR SP
:::::
PAL

::::
TIR

:::::
LAN

Any
::::::::::
perturbed member 138 75.3 126.5 97.7 110.7 98.8

Control member 135 72.8 91.9 102.9 100.8 93.2
Mean of the members 129.7 67.9 113.8 81.8 92.6 84.3

:::::::
Median

:::
of

::::
the

::::::::::
members 133.9 69.4 115.5 84.1 94.7 85.6

Table 1: RMSE of 3
:
4 deterministic forecasts that can be inferred from an EPS: any of the

::
50

::::::::::
perturbed

exchangeable members
::
of

:::::::::
ECMWF

::::::::
ensemble

::::::::
forecast, the control member

::::::::::::
(unperturbed) and

:
, the mean

of the members
::::
and

:::
the

:::::::
median

:::
of

:::
the

:::::::::
members.

::::
See

::::::
Table

::
3

:::
for

::::
the

:::::::::::
signi�cation

::
of

::::
the

:::::::::
acronyms

::
of

::::
the

:::::::
di�erent

:::::
sites.

Approach Deterministic-based Ensemble-based
Predictors Control member Mean of members Mean and spread of members

Model
:::::::::::
Technique AnEn LQR AnEn LQR LQR NR

::::::
Model Abbreviation AnEn c LQR c AnEn m LQR m LQR s t NGR NR GEV

Table 2: Summary of all considered forecasting models with AnEn: Analog Ensemble, LQR: Linear Quantile
Regression, NR: Nonhomogeneous Regression

where� represents the mean of members andS2 the variance of the ensemble. This method302

will be referred in this study asLQR s.303

Finally, Table 2 summarizes the di�erent probabilistic models that will be evaluated in304

this study.305

3. Veri�cation of the probabilistic forecasts306

In this section, we detail some of the veri�cation tools proposed by Lauret et al. [25]307

that will be applied to assess the quality of GHI probabilistic forecasts. Following this308

work, we will use �rst rank histogramsto evaluate visually the reliability of the proposed309

forecastingtechniques. Second, we will rely on a quantitative score namely the continuous310

ranked probability score (CRPS)
::::
and

:::
its

::::::::
related

::::
skill

::::::
score

::::::::::
(CRPSS)

:
to rank objectively the311

di�erent methods. Moreover, and based on the recommendations of [25], we will provide the312

decomposition of the CRPS into the main attributes that a�ect the quality of the forecasts.313

In addition to this decomposition, it is worth noting that we will propose in this work a new314

way to have detailed insight into the performance of the methods. This new methodology is315

based on the contribution of the moments (mean, variance, etc.) of the forecast distribution316

to the CRPS (see section 3.4 below).317

3.1. Attributes for a skillful probabilistic model318

We recall here brie
y the two main attributes that characterize the quality of the prob-319

abilistic models namely reliability and resolution [34, 35]. Reliability or calibration evalu-320

ates the statistical consistency between the forecasts and the observations. In the case of321

a continuous variable like GHI, a high reliability is obtained if predictive distributions and322

distributions of observations agree. Resolution refers to the ability of the probabilistic model323

12



to discriminate among di�erent forecast situations. More precisely, the more distinct the324

observed frequency distributions for various forecast situations are from the full climatolog-325

ical distribution, the more resolution the forecast model has. A high quality probabilistic326

model should issue reliable forecasts with high resolution. In other words, high reliability is327

a necessary but not a su�cient condition for a high quality probabilistic forecast. The fore-328

cast should also exhibit high resolution. For instance, climatological forecasts are perfectly329

reliable but exhibit no resolution.330

3.2. Rank histogram for reliability assessment331

Following the recommendationsof Lauret et al. [25], rank histogram (RH) has been332

chosenfor the visual assessmentof reliability of the di�erent probabilistic models. Initially333

designedfor assessingreliability of EPSforecasts[34], rank histogramscanbeusedheresince334

the quantile forecastsproduced by the proposedstatistical methods are evenly spaced.1335

Over an evaluation set, RH plots the histogram of the ranks of the observationswhen336

pooledwithin the orderedset of forecasts.Theoretically, the statistical consistencybetween337

forecastsand observations is met if the histogram of the ranks is uniform with relative338

frequencyof 1
M +1 (in our case,we recall that M = 51). Put di�erently, a 
at or uniform RH339

is an indication for statistical consistencyi.e. the forecastsarestatistically indistinguishable340

from the observations. However, as suggestedby Lauret et al. [25], we plot the RH with341

consistencybars in order to deal with the issuesof the �niteness of the data and possible342

presenceof serial correlation in the sequenceof observation/forecastpairs. Indeed, these343

issuescan causedeviations from the ideal 
at line evenfor reliable forecasts[36]. In other344

words, a forecast can be stated as reliable if the histogram of the ranks remains inside345

the consistencybars. In the casewhere statistical consistencyis not veri�ed, the di�erent346

possibleother interpretations of a RH are given below. A U-shapeRH correspondsto an347

over-con�dent probabilistic model(i.e. under-dispersionof the setof forecasts)meaningthat348

the observation is often an outlier in the distribution of forecasts. Conversely,a RH with349

hump shapemeansan under-con�dent model (i.e. distribution of forecastsconsistently too350

large). It indicatesthat the observationmay too often bein the middle of the setof forecasts.351

Also, asymmetric (or triangle shape)RHs is an indication of unconditional forecastbiases352

Furthermore, overpopulation of the smallest (resp. highest) ranks will correspondto an353

overforecasting(resp. underforecasting)bias.354

3.3. CRPS355

In the veri�cation framework proposed by Lauret et al. [25], the authors recommend the356

computation of a score like the Continuous Ranked Probability Score (CRPS) to evaluate357

the overall quality of the probabilistic models. We recall here the de�nition of the CRPS.358

1For quantile forecasts, reliability diagrams constitute the natural visual diagnostic tool to evaluate the
calibration property - See [25] for details.
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3.3.1. De�nition359

The CRPS measures the di�erence between the predicted and observed cumulative dis-
tributions functions (CDF) [37]. The CRPS reads as

CRPS =
1
N

NX

i =1

Z + 1

�1

h
F̂ i

fcst (xy
:
) � F i

xyobs
(xy

:
)
i 2

dxy
:
; (9)

whereF̂fcst (xy
:
) is the predictive CDF of the predictandxY: (here GHI) and Fxyobs (xy

:
) is a360

cumulative-probability step function that jumps from 0 to 1 at the point where the
:::::
value

:::
of361

:::
the

:
predictand xy

:
equals the observationxy

:
obs (i.e. Fxyobs (xy

:
) = 1 f xy� xyobs g). The squared362

di�erence between the two CDFs is averaged over theN forecast/observation pairs. The363

CRPS score rewards concentration of probability around the step function located at the364

observed value [34]. In other words, the CRPS penalizes lack of resolution of the predictive365

distributions as well as biased forecasts. Notice that the CRPS is negatively oriented (smaller366

values are better) and it has the same dimension as the forecasted variable. CRPS is a proper367

score meaning that it obtains the best expected value when the forecast distribution is equal368

to the true distribution of probability of the observation. Besides, using proper scoring rules369

allows the decomposition of the score into the two important attributes of the quality of a370

forecasting probabilistic model namely resolution and reliability. This permits to understand371

more precisely the characteristics of the quality of the forecast.372

3.3.2.
::::::
CRPS

::::::
Skill

::::::
Score373

::
In

::
a

::::::::
similar

:::::::::
manner

:::::
that

:::::::
scores

:::::
are

:::::
used

:::
to

::::::::
assess

::::
the

:::::::::
forecast

:::::
skill

:::
of

:::::::::::::::
deterministic

:::::::::
forecasts

:::::
[38],

::::
[39]

:::::
used

::::
the

:::::::
CRPS

:::::
Skill

::::::
Score

::::::::::
(CRPSS)

::
to

:::::::
gauge

:::
the

::::::::
quality

:::
of

:::::
their

:::::::::::::
probabilistic

:::::::::::
forecasting

::::::::
models

::::::::
against

::
a

::::::::::
reference

:::::::::
method.

:::::
The

:::::::::
CRPSS

:::::::
metric

::::
(in

:::
%)

::::::
reads

:::
as

:

CRPSS = 100�
�

1 �
CRPSm

CRPSr

�
; (10)

::::::
where

::::::::
CRPSr :::::::::

denotes
::::
the

:::::::
CRPS

:::
of

::::
the

::::::::::
reference

:::::::::
method

::::
and

:::::::::
CRPSm ::::::

refers
:::
to

:::::
the

:::::::
model374

::::::
under

:::::::::::
evaluation

:::::
(see

::::::
Table

::::
2).

:::
A

:::::::::
negative

::::::
value

:::
of

::::::::
CRPSS

::::::::::
indicates

:::::
that

::::
the

::::::::::::::
probabilistic375

::::::::
method

:::::
fails

::
to

::::::::::::
outperform

::::
the

::::::::::
reference

:::::::
model,

:::::::
while

:
a

:::::::::
positive

::::::
value

::
of

:::::::::
CRPSS

:::::::
means

:::::
that376

:::
the

::::::::::::
forecasting

:::::::::
method

::::::::::
improves

:::
on

::::
the

::::::::::
reference

::::::::
model.

::::::::::
Further,

::::
the

:::::::
higher

::::
the

::::::::::
CRPSS,377

:::
the

:::::::
better

::::
the

:::::::::::::::
improvement.

::::
In

::::
this

:::::::
work,

:::::
and

::::::::::
following

::::
the

:::::::::::::::::::
recommendations

::
of

:::::
[40],

:::::
the378

::::
raw

:::::::
output

:::
of

::::
the

::::::::::::::::
ECMWF-EPS

::::::::::::
constitutes

::::
the

:::::::::
reference

:::::::::::::
benchmark

:::::::
model.

:
379

3.3.3. Decomposition of the CRPS380

The decomposition of the CRPS is given by :

SCRPS::::::: = REL � RES + UNC; (11)

where REL, RES and UNC are respectively the reliability part, the resolution part and the381

uncertainty part of the CRPS. The interested reader is referred to [25] for details regarding382

the computation of the di�erent components of the CRPS.383

14



In addition to reliability and resolution, the uncertainty term accounts for the variability384

of the observations. It is an indication of the di�culty to forecast the variable of interest and385

cannot be modi�ed by the forecasting model. It is also worth noting that the uncertainty386

part UNC corresponds to the score of the climatology. For scores like CRPS that are387

negatively oriented, the goal of a forecasting model is to minimize (resp. maximize) as much388

as possible the reliability term (resp. the resolution term). In fact, a forecasting model with389

a high resolution term means that the model has captured the maximum of the variability390

present in the data (which variability is measured by the uncertainty term).391

3.4. Contributions of the statistical moments of the forecast distribution to the CRPS392

In this study, a new methodology for a better understanding of the skills of a probabilistic393

forecast in relation with the CRPS score is developed. The main idea is to assess separately394

the contribution of the statistical moments (mean, variance, etc.) of the predictive distribu-395

tions to the CRPS and consequently to the quality of a probabilistic forecasting model. The396

principle of the method is to create two virtual forecasts which show the contribution of the397

statistical moments of the actual forecast to the CRPS. Let us illustrate the methodology398

with 3 forecast PDFsseealso(
:::::::::
depicted

:::
in Figure 4 ). f represents the actual forecast PDF399

and f m1 and f m2 the associated virtual PDF forecasts.400

The �rst virtual forecast f m1 is derived from the �rst moment (mean) of the actual
forecastf . Let m1 be the �rst moment of f and � the Dirac distribution (corresponding to
the dotted vertical in Figure 4), the PDF of f m1 is thereby de�ned by:

f m1(xy
:
) � � (xy

:
� m1): (12)

Notice that this de�nition implies that the second, third and further moments of f m1 are401

equal to 0.402

The second virtual forecastf m2 is given by a Gaussian distribution with �rst and second
moments equal to those off . Let m2 be the second moment off , f m2 is de�ned as:

f m2 � N (m1; m2): (13)

Being a Gaussian distribution, the third, fourth and further moments off m2 are equal to 0.403

The contribution of the statistical moments of the distribution to the CRPS is computed
as follows. First, the CRPS of each forecast namelyCRPSf , CRPSfm 1 and CRPSfm 2

are averaged over theN forecast/observation pairs. This leads to the corresponding values
CRPS, CRPSm1 and CRPSm2. Second, the di�erenceG2 = CRPSm1 � CRPSm2 and
G+ = CRPSm2 � CRPS are calculated. Note that one can therefore rewrite the CRPS as:

CRPS = CRPSm1 � G2 � G+ : (14)

::::::
Notice

:::::
that

::::
the

:::::::::::
CRPSm1 :::

of
::::
the

::::::::::::
determistic

:::::::::
foreacst

::::
f m1:::

is
:::::::::
actually

:::
its

:::::::
Mean

::::::::::
Absolute404

::::::
Error

::::::::
(MAE)

::::
(see

:::::
[37]

:::
for

:::::::::
details).405

15



Figure 4: Illustration of the virtual forecasts f m 1 and f m 2 related to the forecast PDF f

G2 is the measure of the gain in CRPS or equivalently in forecast quality that results406

from the additional information brought by the second moment of the distribution. G+407

represents the gain resulting from the other statistical moments.G2 is assumed to be408

positive. If it is found negative, then the probabilistic forecast has no added value compared409

to a deterministic forecast
:
,

::
as

::::
the

:::::::
CRPS

:::
of

:::
the

::::::::::::::
probabilistic

::::::::
forecast

:::::::
would

:::
be

:::::::
higher

:::::
than

::::
the410

::::::
CRPS

:::
of

::::
the

::::::::::::::
deterministic

::::
one

::::::::::::
(CRPSm1),

:::::
thus

::::::::::
denoting

:
a

:::::
loss

::
of

::::::::
quality

::
of

::::
the

::::::::::::::
probabilistic411

::::::::
forecast. In the other hand,G+ is generally positive. It can be null or negative if the forecast412

distribution is lessadapted
:::::::
obtains

::
a

:::::::
higher

:::::::
CRPS

:::::
score

::::::
than

:
a

::::::::::
Gaussian

:::::::::::::
distribution

::::::::
de�ned413

::
by

::::::::::::::
N (m1; m2).

::::::
This

:::::::
would

:::::::::
indicate

:::::
that

:::::
the

:::::::::
forecast

:::::::::::::
distribution

::
is

:::::
less

:::::::::
suitable

:::::
than

:::
a414

:::::::::
Gaussian

:::::::::::::
distribution .415

In section 5.5 below, we propose to present this diagnostic tool under the form of a416

bar-plot, where CRPS, G+ and G2 are stacked in this order.
:::
G2 ::

is
:::::::::

denoted
::::

by
::::
the

::::::
pink417

::::
part

:::
of

::::
the

:::::
bar,

::::
G+ :::

by
::::
the

::::::
green

:::::
part

:::::
and

::::::::
CRPS

:::
by

::::
the

:::::
blue

:::::
part. Notice that a black line418

::
on

:::::
the

::::
top

::
of

:::::
the

:::::
blue

:::::
part is used to better highlight the value of the CRPS and a dotted419

black line indicatesCRPSm1. In the following, we refer to this diagnostic tool based on the420

contribution of the moments of the forecast distributions to the CRPS as \MC-CRPS".421

4. Data
::::::
Case

:::::::::
studies422

Three
:::
Six sites are chosen to test the selected models. The �rst one, Desert Rock, which423

is part of the SURFRAD network, is located in an arid area. It experiences a high occurrence424

of clear skies and consequently a very low variability. The two other sites, the airport of425

Hawaii, where the NREL set up a radiometric network, and Saint-Pierre, which is located426

on the coastal part of the island La R�eunion, are insular sites. Both present a high yearly427

solar irradiation but also an important variability due to frequent partly cloudy skies. These428

di�erences between the two types of sites will permit testing the models under di�erent sky429

conditions. For an extensive study on the multiple factors that impact the climatology and430
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sky conditions in the speci�c case of Saint-Pierre and La R�eunion, see Badosa et al. [41]431

or Kalecinski [42].
:::
As

:::::
the

::::::::::::::::
aforementioned

::::::
sites

::::::::
exhibit

::
a

::::::::
similar

:::::
level

:::
of

::::::::::::
irradiation,

:::::::
three432

:::::
other

::::::::
BSRN

:::::
sites

::::::::
namely

:::::::::::
Palaiseau,

::::::::::::
Tiruvallur

::::
and

:::::::::
Langley

::::::::::
complete

:::::
this

:::::::
table.

::::
As

::::::
seen,433

:::
the

::::::::
chosen

:::::
sites

::::::::::::
experience

:::::::::
di�erent

:::::::
levels

:::
of

:::::::
annual

::::::
solar

::::::::::::
irradiation.

::::::
This

::::::::
adding

:::
is

:::::
also434

::
an

::::::::::
attempt

:::
to

:::::
have

::
a

::::
list

:::
of

:::::
sites

::::::::::::::::
representative

::
of

:::::
the

::::::::
various

:::::::::
climates

::::::::
around

::::
the

::::::::
world.435

The main characteristics of thesethree
:::
six sites are given in Table 3. The solar variability,436

presented in the last line of Table 3, is de�ned as the standard deviation of the changes in437

the clear sky index [43].438

4.1. Measurements439

The measured data used in this work are global horizontal irradiance (GHI) time series440

recorded at thethree
:::
six considered sites. These datasets have been prepared for previous441

works related to the development and the benchmarking of probabilistic solar forecasts442

[44, 45]. They correspond to two years of data divided in a training set (the �rst year)443

and test set (the second year). As the ensemble forecasts used here are provided with a444

3-hour time step, the recorded time series, initially formatted with a 1-hour granularity,445

were averaged with a 3-hour time step. A quality check and several test were performed on446

the recorded GHI time series. The results are given in Appendix A.447

Desert Rock
(USA)

Hawaii
(USA)

Saint-Pierre
(Reunion)

::::::::::
Acronym

:::
DR

:::::
HAW

:::
SP

Provider SURFRAD NREL PIMENT
Position 36.6N, 119.0W 21.3N, 158.1W 21.3S, 55.5E
Elevation (m) 1007 11 75
Climate type Desert Insular tropic Insular tropic
Years of record 2012 - 2013 2010-2011 2012 - 2013
Annual solar irradiation (MWh=m2) 2.105 1.969 2.053
Solar variability 1-h (� � kt �

1hour ) 0.146 0.209 0.241

:::::::::::
Palaiseau
(France)

::::::::::::
Tiruvallur

(India)
:::::::::
Langley
(USA)

::::::::::
Acronym

::::
PAL

::::
TIR

:::::
LAN

Provider BSRN BSRN BSRN
Position 48.7N, 2.2E 13.1N, 80.0E 37.1N, 76.4W.
Elevation (m) 156 36 3
Climate type Mild oceanic Monsoon Humid
Years of record 2016-2017 2018-2019 2015-2016
Annual solar irradiation (MWh=m2) 1.172 1.835 1.685
Solar variability 1-h (� � kt �

1hour ) 0.281 0.190 0.186

Table 3: Main characteristics of time series of recorded global horizontal irradiance (GHI) used to test the
models
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4.2. Forecasts448

The initial day-ahead ensemble forecasts, covering the same period as the measurements,449

are provided by the European Centre of Medium-Range Weather Forecasts (ECMWF). They450

correspond to 50 perturbed members and a control run (unperturbed member) [4]. This leads451

to a total of M = 51 members. The EPS is released by ECMWF at 12:00 for the 72 next452

hours
:::::
with

::
a

::::::::
3-hours

:::::::::
timestep which allows it to be used for day-ahead scheduling or trading453

purposes.454

5. Results455

Based on the veri�cation framework proposed by Lauret et al. [25],weassess�rst visually456

the reliability property with the help of rank histograms. Second, the overall performance457

of the di�erent probabilistic methods is measured by the CRPS
::::
and

::::
the

::::::::
CRPSS. Detailed458

insight in the quality of the models is obtained through the decomposition of the CRPS459

and the new \MC-CRPS" method. Notice that this section is dedicated to the presentation460

of the main results of the study. The next section will be devoted to in-depth discussion461

related to the pros and cons of each approach and the added-value brought by the MC-CRPS462

methodology.463

5.1. Reliability assessment464

Appendix B gives the rank histograms(RHs) of the di�erent probabilistic models. As465

shownby Figure B.17, raw ensembles(regardlessthe siteunderstudy) exhibit a characteristic466

U-shapethat correspondsto over-con�dent models.This under-dispersedcharactercon�rms467

the needfor calibration proceduresthat canbeimplementedthrough ensemble-basedapproach.468

Appendix C gives more details about the necessityof calibration of raw EPS forecasts.469

Compared to raw EPS forecasts,both approachesimprove the reliability of the forecast470

as population (or equivalently the relative frequency) of the two extreme ranks of the471

correspondingRHs has clearly diminished. However,the visual analysisof the RHs cannot472

lead to the conclusionthat a particular model is reliable because,whatever the site, the473

frequenciesof someranks are outside the consistencybars. An in-depth analysis by site474

showsthat for Hawaii the RHs tend to beuniform exceptfor the t NGR calibration method.475

For almost all the models,onecan notice an asymmetricshape(overpopulation of the right476

part of the RH) for St Pierre which is a sign of an under-forecastingbias. RHs of Desert477

Rock exhibit no predominant shape.Someconditional biasescanbedetectedfor the AnEn c478

and AnEn m .Finally, notice that, contrary to the t NGR method,theNR GEV model leads479

to better calibrated forecastsalbeit the extreme ranks for Desert Rock and St Pierre are480

still overpopulated. Therefore, it appearsthat for parametric approacheslike t NGR and481

NR GEV , the choiceof the underlying distribution has an impact on the reliability of the482

generatedforecasts.At this point, the reliability assessmentbasedon RHs may appearnot483

conclusivebut let us stressthat this kind of tool brings only a qualitative diagnostic. The484

decompositionof the CRPS depictedin section5.3 will try to shedmore light on the impact485

of reliability on the quality of eachprobabilistic models.486
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 5:
:::::
CRPS

:::::
Skill

:::::
Score

::
of

:::
all

:::::::
models

:::
for

:::
the

:::
six

::::::::::
considered

:::::
sites. Grey : deterministic-based approach,

Cyan : ensemble-based approach using the mean of the members, Green : ensemble-based approach using
mean and standard deviation of the members.
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5.2. Overall performance of the methods487

Table 4 lists the CRPS obtained by the di�erent methods.
::::::::
However

::
,

:::
in

::::::
order

:::
to

:::::::
better488

:::::::::
highlight

::::
the

:::::::::
relative

:::::::
merits

:::
of

:::::
each

:::::::::::
approach,

:::::::
Figure

::
5

:::::::
shows

::::
the

::::::::
CRPS

:::::
skill

::::::
scores

:::
of

::::
all489

:::
the

::::::::::::
forecasting

::::::::
models.

:::::
Let

:::
us

::::::
recall

:::::
that

:::::::::
positive

::::::
values

:::
of

:::::
skill

:::::::
scores

::::::
mean

:::::
that

::::
the

:::::::
model490

::::::::::::
outperforms

::::
the

::::::::::
reference

:::::::
model

::::::
(here

::::
the

:::::
raw

::::::::::::::::
ECMWF-EPS)

::::::
while

::::::::::
negative

:::::::
values

:::::::
reveal491

::::
that

::::
the

::::::::
quality

:::
of

::::
the

::::::::::
evaluated

:::::::
model

:::
is

::::::
worse

::::::
than

::::
the

::::::::::
reference

:::::
one.492

::
As

::::::::
shown

:::
by

::::::::
Figure

::
5,

::::::::::::
regardless

::::
the

::::
site

:::::::
under

:::::::
study,

:::::
the

::::::::
highest

:::::::
CRPS

::::::
skill

:::::::
scores493

:::
are

::::::::::
obtained

::::
by

::::
the

:::::::::::::::::
ensemble-based

::::::::::
approach

::::::::::::::
(represented

:::
by

:::::
the

:::::
cyan

:::::
and

:::::::
green

:::::::
bars).494

::::::::::::
Conversely,

:::::::
except

::::
the

:::::
case

:::
of

:::::::::
Hawaii,

::::
the

::::::::::::::::::::
deterministic-based

:::::::::::
approach

::::::
(grey

::::::
bars)

:::::::
yields495

:::::
lower

:::
or

:::::
even

:::::::::
negative

:::::
skill

:::::::
scores.

:::::::
These

:::::::::
negative

::::::::
CRPSS

:::::::
values

::::::::
indicate

:::::
that

::::
the

::::::::::::::::::::
deterministic-based496

:::::::
models

:::
do

:::::
not

:::::::
always

::::::::
achieve

:::
to

:::::::::
increase

::::
the

::::::::
quality

:::
of

::::
the

:::::
raw

::::::::::
ensemble

:::::::::
forecasts

:::::
(see

::::
for497

::::::::
example

:::::::::::
Palaiseau

::::
and

:::::::::::
Langley).

:
498

:
A

::::::::
deeper

:::::
look

:::::
into

::::
the

:::::::::::::
performance

:::
of

::::
the

:::::::::::::::::
ensemble-based

::::::::::
approach

:::::::
shows

:::::
that

::::::::
models499

:::::
using

:::::
the

::::::
mean

:::::
and

::::
the

::::::::::
standard

::::::::::
deviation

:::
of

::::
the

::::::::::
ensemble

::::::::::
members

:::::::
(green

:::::::
bars)

::::::::
exhibit500

:
a

:::::::
better

:::::::::
forecast

:::::
skill

::::::
than

::::::::
models

::::::
using

:::::
only

::::
the

::::::
mean

:::
of

::::
the

::::::::::
members

:::::::
(cyan

::::::
bars)

:::::::
albeit501

:::
the

:::::::::::::::
improvement

::
is

:::::
less

::::::::::::
pronounced

::::
for

:::::::::
Hawaii.

:::::::::
Overall,

::::
the

::::::::
model

:::::
with

::::
the

:::::::::
highest

:::::
skill502

:::::
score

:::::::::
appears

:::
to

:::
be

:::::::
either

:::::::
LQR s:::

or
::::::::::::
NR GEV .

::::::::::::
Regarding

::::
the

:::::::
latter,

:::
it

:::::
may

::::::::
suggest

::::::
that503

:
a

::::::::::
judicious

:::::::
choice

:::
of

::::
the

::::::::::::
underlying

:::::
PDF

:::::
(see

::::::::::
Equation

:::
7)

::::::
used

:::
by

::
a

::::::::::::
calibration

:::::::::::
technique504

::::
like

:::::::::::::::::
Nonhomogenous

::::::::::::
Regression

::::::
(NR)

:::::
can

::::::::
further

:::::::::
improve

::::
the

::::::::
quality

:::
of

::::
the

::::::::::::::
probabilistic505

:::::::::
forecasts.

::
506

:::::::
Finally,

:::
in

::::::
order

:::
to

::::::::::
quantify

::::
the

::::::::
relative

:::::::::::::::
improvement

:::::::::
provided

::::
by

::::
the

:::::::::::::::::
ensemble-based507

:::::::::
approach

::::::
over

::::
the

::::::::::::::::::::
deterministic-based

:::::::::::
approach,

::::
we

::::::::::
calculate

::::
the

:::::
gain

:::
in

::::::::
CRPS

::::::
based

::::
on508

:::
the

::::::::
CRPS

:::::::
values

:::
of

:::::
the

:::::
best

:::::::::::
performer

:::
of

::::::
each

:::::::::::
approach.

::::
It

:::::::::
appears

:::::
that

:::::
the

::::::
level

:::
of509

:::::::::::::
improvement

:::
is

:::::
very

::::::::::::
dependent

:::
on

::::
the

:::::::::
studied

:::::
site.

:::
It

::
is

:::::::
slight

::::
for

::::::::
Hawaii

::::
and

::::::::::::
Tiruvallur510

::::::
(4%),

:::::::::
becomes

:::::::
larger

::::
for

:::::::::::::
Saint-Pierre

::::::::::::::::
(approximately

:::::
8%)

:::::
and

::::::
quite

:::::::::::
signi�cant

::::
for

::::::::
Desert511

:::::
Rock

:::::::::::::::::
(approximately

::::::
12%),

:::::::::
Langley

:::::
and

::::::::::
Palaiseau

::::::::::::::::
(approximately

:::::::
16%).512

First, onecan state that all probabilistic modelsimproveson the raw EPS and that the513

gain in quality is morepronouncedfor the sitesof Saint-Pierreand Hawaii which experience514

variable sky conditions. Second,basedon the CRPS results, regardlessthe consideredsite,515

it appearsthat models issued from the ensemble-basedapproach outperform those from516

the deterministic-basedapproach. More precisely,deterministic-basedmodelsthat usethe517

control memberof the EPSarethe worst onesfollowedby the ensemble-basedmethodsbased518

uniquely on the mean of the members. Further, the t NGR and LQR s modelsare fairly519

comparablein terms of CRPS,and the NR GEV model turns out to be the best forecasting520

method. It must benotedalsothat the LQR techniqueshowsa generalsuperiority compared521

to the AnEn technique.522

5.3. Detailed insight through the decomposition of the CRPS523

Table 4 also provides the decomposition of the CRPS into reliability and resolution of524

the di�erent forecasting methods.
:::
As

:::::::::::
mentioned

:::::::::::
previously,

::
a

:::::::::
forecast

:::::::
should

::::::::
exhibit

::
a

::::::
small525

::::::::::
reliability

::::::
term

::::
and

::
a

::::::
large

:::::::::::
resolution

:::::::
term.

:
It is worth mentioning �rst that all models526

signi�cantly decreases the reliability component of the raw EPS forecasts
::::
and

:::::
that

::::
the

::::::
level527

::
of

::::::::::::::
improvement

:::::::::
strongly

:::::::::
depends

::::
on

::::
the

:::::::::::
reliability

::
of

:::::
the

:::::::
initial

::::
raw

::::::::::
ensemble.except for528
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Site HAW DR SP PAL TIR LAN

CRPS (W=m2)

raw Ensemble 67.7 29.4 59.4 38.6 46.8 40.0
AnEn c 50.1 30.1 58.5 44.0 47.8 42.8
LQR c 48.4 28.6 55.1 43.3 44.4 42.0
AnEn m 48.5 28.9 55.3 38.4 44.9 38.9
LQR m 46.9 27.9 52.7 38.6 43.4 38.0
LQR s 46.8 25.2 51.4 36.2 42.5 35.2
t NGR 47.2 25.7 52.0 36.2 43.3 35.8
NR GEV 46.6 25.5 50.8 36.2 43.2 35.7

Reliability ( W=m2)

raw Ensemble 23.2 8.4 13.4 7.5 11.5 8.2
AnEn c 4.2 4.8 6.6 4.9 7.2 4.8
LQR c 4.4 5.3 7.1 5.4 6.7 5.3
AnEn m 4.1 4.7 6.2 4.9 7.9 4.5
LQR m 4.4 5.7 7.0 5.7 8.2 5.0
LQR s 4.5 5.9 7.6 5.3 8.2 5.4
t NGR 4.7 6.5 8.4 5.4 8.0 5.7
NR GEV 4.1 6.2 7.2 5.4 7.8 5.8

Resolution (W=m2)

raw Ensemble 113.3 154.0 126.7 95.4 125.7 122.5
AnEn c 111.9 149.7 120.8 87.4 120.4 116.4
LQR c 113.9 151.7 124.7 88.6 123.3 117.7
AnEn m 113.4 150.8 123.5 93.0 124.0 120.0
LQR m 115.3 152.8 127.0 93.6 125.8 121.4
LQR s 115.5 155.6 128.9 95.6 126.8 124.7
t NGR 115.3 155.7 129.0 95.8 125.8 124.3
NR GEV 115.3 155.6 129.1 95.6 125.7 124.5

Uncertainty (W=m2) All Models 157.8 175.0 172.7 126.5 161.0 154.4

Table 4: CRPS and its components reliability, resolution and uncertainty of all considered models for the

:
6 sites. Cyan : deterministic-based approach, Green, : ensemble-based approach. Red values indicate the
worst CRPSs while the black bold ones show the best CRPSs.
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the Desert Rock site where the improvement in reliability is lesspronounced.
::::::::
Second,

:::
it529

::::
can

:::
be

::::::
noted

:::::
that

::::
the

:::::::::::
reliability

::
of

::::
all

::::::::::
calibrated

::::::::::
forecasts

::
is

::::::
fairly

::::::::::::::
comparable.

:::
In

::::::::::
addition,530

::::::::::
regardless

::::
the

:::::
site,

:::
it

:::::::::
appears

::::::
that,

::::::::
overall,

::::
the

:::::::::::::::::
ensemble-based

::::::::::
approach does not signi�-531

cantly improve reliability compared to the deterministic-based approach. Looking in more532

details, models based on theAnEn technique
:::::
often appears to generate the most reliable533

forecasts while thet NGR model
:::::::::
generally provides the less reliable forecasts. Also, in the534

case of Non homogeneous calibration technique,GEV distributions seem to be more suit-535

able than Gaussian distributions, sinceNR GEV is slightly more reliable than thet NGR536

model.537

::::::::::
Regarding

::::
the

:::::::::::
resolution

::::::::::::
component,

:::
it

::::::
must

:::
be

::::::
noted

:::::
�rst

:::::
that

::::
the

:::::::::::::::::::::
deterministic-based538

:::::::::
approach

:::::
fails

:::
to

:::::::::
improve

::::
the

::::::::::
resolution

:::
of

::::
the

::::
raw

:::::::::::
Ensemble. Converselyto reliability, reso-539

lution increases with the ensemble-based approach, and particularly when the spread of EPS540

members is taken as as input of the models
:::
i.e.

:::::
case

:::
of

::::
the

::::::::::::::::
LQR s,t NGR

::::
and

::::::::::::
NR GEV541

:::::::
models. Put di�erently, these results suggest that ensemble-based approach uniquely im-542

proves the resolution
:::::
(and

::::
not

::::
the

::::::::::
reliability

:::::::::::::
component) of the forecasting models.Finally,543

notice that modelsbasedon the AnEn technique fail to outperform the resolution of the544

raw forecasts.
::::::::
Finally,

:::::
one

::::
can

::::::
state

::::::
that

::::
the

::::::::::::::::
decomposition

:::
of

:::::::
CRPS

:::::::
given

:::
in

::::::
Table

:::
4545

:::::::
reveals

:::::
that

::::
the

::::::::::
di�erence

:::
in

::::::::
quality

::
of

::::
the

::::::::::::::
probabilistic

:::::::::
forecasts

::
is

::::::::
mainly

::::::::::
explained

::::
by

::::
the546

::::::::::
resolution

:::::::::::::
component,

:::::::::
whereas

::::::::::
reliability

:::
is

::::::
fairly

:::::::::::::
comparable.547

5.4. Comparisonbetweensites548

As shownby Table 4, all forecastsget signi�cantly better scoresin Desert Rock. Last549

line of Table 3 lists a high solar variability in Saint-Pierre and Hawaii and a low variability550

in Desert Rock. Note that the two siteswith high variability have in commonto be insular551

and very mountainous. Lauret et al. [46] found a link between solar variability and the552

accuracyof deterministic forecastingmethods,and our results suggestthat a link may also553

exist betweensky conditions experiencedby a site and quality of probabilistic forecasts.554

The decompositionof CRPS given in Table 4 revealsthat the di�erence betweensites is555

mainly explainedby the resolution, whereasthe reliability scoreis fairly comparable.556

To understandwhy resolution di�ers signi�cantly betweenthe 3 sites,we plot the width557

of the 50%central prediction interval of forecastsgeneratedby 4 modelsin Figure 6. This558

is a measureof the sharpnessof the forecasts.As the contribution of the reliability part is559

small whatever the forecastingmethod, one can hypothesisehere that sharpnessrelates to560

resolution. Figure 6 suggeststhat forecastingschemesneedto keep large distributions for561

Saint-Pierre and Hawaii, to not deteriorate the reliability. This explains the di�erence in562

resolution. As this observation can be made for all forecastingschemes,we can conclude563

that sky-conditionsare possibly the reasonsof thesedi�erences.564
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(a) LQR m (b) AnEn m

(c) LQR s (d) t NGR

Figure 6: Sharpnessof severalmodelsfor di�erent forecastinglevelsgiven by the meanwidth of central 50%
interval for the three di�erent studied sites
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5.5. Detailed insight through the CRPS Moments-Contributions565

(a) MC-CRPS for Hawaii (b) MC-CRPS for Desert Rock

(c) MC-CRPS for Saint-Pierre (d) MC-CRPS for Palaiseau

(e) MC-CRPS for Tiruvallur (f) MC-CRPS for Langley

Figure 7: MC-CRPS of the three
::
six sites and all forecasting models. A black line is used to better highlight

the value of the CRPS and a dotted black line indicates the value ofCRPSm 1.

Figure 7 shows the results of the MC-CRPS introduced in section 3.4.In general,
:::
As566

:::::
seen,

::::
the

::::::
�nal

:::::::
CRPS

::::::::
values, the scores of the forecasting modelsin Hawaii occurs to be567

strongly dependent on
:::::
their

:::::::::::
respectiveCRPSm1 ::::::

values. , asG2 is fairly comparablefor all568

modelsand the gain G+ low for all models.
::
In

::::::::::::
particular,

::::::::
models

:::::
from

::::
the

:::::::::::::::::
ensemble-based569

:::::::::
approach

::::::::
appear

:::
to

:::::
have

:::::
best

::::::::::
CRPSm1::::::

than
::::::::
models

:::::
from

::::
the

:::::::::::::::::::::
deterministic-based

::::::::::
approach570

::::
(see

::::
for

:::::::::
instance

::::
the

::::::
case

::
of

:::::::::::
Langley). This means that the aggregation of members im-571

proves the estimation of the �rst moment.
::::::::
Among

::::
the

:::::::::::::::::
ensemble-based

::::::::
models,

::::::::
except

::::
for572

:::
the

::::::
cases

:::
of

:::::::::
Hawaii

::::
and

:::::::::::::
Tiruvallur,

::::
the

::::::::::::
superiority

:::
of

:::::
the

:::::::
LQR s,::::::::::::NR GEV

:::::
and

::::::::
tNGR573

:::::::
models

:::::::
using

::::
the

::::::
mean

:::::
and

::::::::::
standard

:::::::::::
deviation

:::
of

::::
the

::::::::::
ensemble

:::::::::::
members

::::
can

::::
be

::::::::
mainly574
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::::::::::
explained

:::
by

::
a

:::::::::
greater

:::::::::::::
contribution

:::
of

::::
G2. Thus the spread of EPS members is e�ective575

and improves more importantlyG2 than CRPSm1.
::::::::
Further,

::::
the

:::::
best

:::::::::::
performer

::::::::
among

::::
the576

:::::
three

:::::::::::::::::
aforementioned

::::::::
models

::
is

::::::::
�nally

::::::::::::
determined

:::
by

:::::
G+ .

::::::
This

:::::::::::
highlights

::::
the

:::::::::::::
importance577

::
of

::::
the

:::::::
choice

:::
of

::::
the

:::::::::::::
distribution

:::
in

::::
the

:::::
non

:::::::::::::
homogenous

:::::::::::
regression

::::::::::::
calibration

:::::::::::::
framework.578

For Desert Rock, the gain G2 increasesfor LQR s, t NGR and NR GEV . This fact may579

explain their overall superiority. In Saint-Pierre, CRPSm1 is worsefor deterministic-based580

models(AnEn c and LQR c) and G2 is the highest for LQR s and NR GEV models. For all581

sitesexceptDesertRock, the two worst modelsin terms of CRPSm1 are AnEn c and LQR c582

from the deterministic-basedapproach.583

Except for Hawaii, G2 increasesonly for modelsLQR s, t NGR and NR GEV . Thus584

the spread of EPS membersis e�ective for Desert Rock and Saint-Pierre, and improves585

more importantly G2 than CRPSm1. In terms of CRPS, notice �nally that
::::
For

::::::::::
example,586

:::::::
overall, NR GEV performs better than thet NGR model because ofG+ . Let us stress that587

the choice of strictly
::::::::::
truncated Gaussian distributions in the implementation of aNGR588

technique forcesG+ to be
::::
very

::::::
close

:::
to

:
0 in the MC-CRPS. Hence, the bene�ts of GEV589

distributions compared to Gaussian distributions are highlighted by the MC-CRPS method.590

6. Discussion591

In this section, we try to give more clues regarding the merits of each proposed approach.592

Also, a discussion related to the advantages brought by the MC-CRPS is proposed.593

6.1. Deterministic-based approach versus ensemble-based approach594

Let us recall that the deterministic-based approach usesan
:
a unique deterministic pre-595

dictor while the ensemble-based approach makes use of the information conveyed by the596

ensemble. Therefore, the main weakness of deterministic-based approach is the lack of in-597

formation feeding the models. Since the distribution needs to be completely determined from598

one single deterministic predictor, the spread and the possible skewness and kurtosis of the599

forecasting distribution need to be only inferred from this single predictor. Conversely, the600

bene�ts gained from the multiplicity of predictors provided by the ensemble-based approach601

need to be signi�cant to justify the computation of the EPS. Two types of bene�ts can be602

discussed.603

First, the aggregation of predictors leads to a better estimation of the �rst moment. This604

is visible in Figure 7 where models issued from the ensemble-based approach getssigni�cantly605

better CRPSm1 than models from the deterministic-based approach. It is clear that a gain606

in the estimation of the �rst moment can be obtained by the substitution of the control607

member by the mean of all members. However, models belonging to the ensemble-based608

approach are not always better thanAnEn m and LQR m . It means that the superiority of609

t NGR and LQR s models cannot be explained by a better estimation of the mean value of610

the probabilistic forecast distribution.611

Second, regarding the determination of the second moment, the uncertainty is already612

carried by the level of forecasting of the mean of EPS members. These variables are depen-613

dent, as shown in Appendix C (the standard deviations of the observations clearly depends614

25



on the level of forecasting). Hence, using the spread of the members of EPS as input of the615

forecasting models can only be justi�ed if it brings an extra-information on the uncertainty.616

It is assumed that the spread of the members is higher if the uncertainty is so. Indeed it617

indicates if slight errors in the initial conditions could lead to great di�erences in the �nal618

state of the atmosphere.619

Thus, it appears necessary to investigate on the quantity of information actually provided620

by the spread of the members. In order to do this, the correlation between the standard621

deviation of the observations and the spread of the members has been studied. This has been622

made for a �xed level of forecasting, in order to remove the dependency between uncertainty623

and level of forecasting. Then an average over all levels of forecasting has been calculated624

to produce Figure 8. This kind of plot is of great utility to know the added value of the625

standard deviation of the EPS forecast members. If the dependence between the spread of626

the members and the uncertainty of the forecast for a �xed level of forecasting is strong,627

then a large improvement can be expected for calibration models using the spread of the628

members as an input, compared to simpler models.629

Figure 8: Standard deviation of observations vs. standard deviation of the EPS members (raw ECMWF
ensembles). Normalization of the standard deviation has been done by dividing the standard deviations by
the maximum of the standard deviation for each site.

As shown by Figure 8, the amount of new information given by the spread of the members630

is very dependent on the studied site. When for Hawaii, the correlation between the standard631

deviation of the observations and the spread of the members is almost null, it is quite632

signi�cant for the two other sites and especially for
::::::::
Langley

:::::
and Desert Rock. A link can633

be established between this �nding and Table 4 which shows that the success of taking into634

account the spread of members in the forecasting models depends on the site (it is clearly635

less valuable in Hawaii than in
:::::
other

::::::
sites,

:::::
and

::
it

:::
is

::::::::::::
particularly

:::::::::::
successful

:::
in

::::::::
Desert

::::::
Rock636

::::
and

:::::::::
Langley). It is also consistent with Figure 7 whereG2 is signi�cantly higher in Desert637
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Rock for LQR s, t NGR and NR GEV models.638

The successof the ensemble-basedmodels LQR s, t NGR and NR GEV compared639

to deterministic-basedforecasting models may justify the usageof EPS for probabilistic640

forecastingdespitethe high computation requirementsneededto generatethe EPS.However641

the level of improvement is very dependanton the studied site. For eachsite, the ratio of642

the CRPS scoreof the best ensemble-basedforecastingmodel over the CRPS scoreof the643

best deterministic-basedforecastingmodel hasbeencalculated to de�ne this improvement.644

It is slight for Hawaii (4%), becomeslarger for Saint-Pierre (approximately 8%) and major645

for Desert Rock (approximately 12%)646

6.2. Discussion related to CRPS Moments-Contributions647

In order to consolidate the results obtained in Figure 7, a complete analysis of the648

statistical moments of the probability distributions produced by the forecasting methods649

has been conducted. This kind of study is traditionally done to assess the strengths and650

weaknesses of a forecasting model. Although the deterministic measure of a statistical651

moment is not a proper scoring rule, it is of great interest to use it to understand the652

behaviour of the forecasting models.653

First, an evaluation of the accuracy of the �rst moment has been conducted. A good654

forecasting model should have the ability to give a mean value of the forecasting distributions655

as close as possible to the mean of the observation values. A measure of this ability can656

be obtained by calculating the Root Mean Square Error (RMSE) or Mean Absolute Error657

(MAE) of the mean of the forecasting distributions2. In this study, the MAE has been658

chosen as it is exactly the de�nition ofCRPSm1 introduced in section 3.4 (see [37] for659

details). Figure 7 gives therefore the results related to the accuracy of the �rst moment of660

the distributions.661

Second, a probabilistic forecast also provides an estimation on the level of uncertainty,662

which is re
ected by the spread of the forecasting distribution (i.e. the second statistical663

moment). Some works have been speci�cally dedicated to the assessment of the accuracy664

of the spread of the predictive distributions. Among others, one can cite the studies related665

to the spread-skill relationship (see [48] or [49]). These works are guided by the idea that666

the variance of a probabilistic forecast should be larger if the uncertainty of the forecast is667

so. Fortin et al. [50] proposed a criterion for the evaluation of the accuracy of the second668

moment of the distributions. This criterion is based on the fact that statistical consistency669

requires that the spread of the forecasting distributions should be equal to the RMSE of the670

mean of the forecast. Following [50], spread is calculated as the square root of the mean671

of the variances of the forecasting distributions. The accuracy of the second moment is672

therefore measured by calculating the RMSE of the di�erences between spread and RMSE673

of the mean of the distributions (i.e.RMSE M ). Figure 9 plots the RMSE of the di�erence674

(spread� RMSE M ) , computed over the evaluation period.675

2RMSE and MAE are common metrics used to assess the accuracy of deterministic forecasts [47]
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 9: Accuracy of the second moment for thethree
::
six studied sites and all forecasting models

Conversely to the �rst moment, the accuracy of the second moment gradually improves676

when the information taken by the forecasting model is more complete. Using the mean677

of members instead of the control member increases the second moment accuracy. Taking678

into account the spread of the EPS improves further the accuracy by approximately the679
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same extent
::::::::
(except

:::
for

:::::::::
Hawaii,

:::
for

::::
the

::::::::
reasons

:::::::::::
discussed

::
in

::::::::
section

:::::
6.1). Nevertheless, this680

improvement depends on the site and sky conditions. As shown by Figure 9, the accuracy681

of the second moment for Hawaii is almost equal for each model. It is consistent with the682

results depicted in Figure 8, showing that the information of the second moment of the EPS683

distribution in Saint-Pierre
::::::::
Langley and Desert Rock ismore

:::
the

::::::
most valuable than

:
,

:::
as684

::::::::
opposed

:::
to the information of Hawaii EPS distribution.685

The accuracy of the second moment can be linked to the gainG2 introduced in the MC-686

CRPS (see section 3.4). The correlation between these two values is highlighted in Figure687

10, which shows the ratioG2=CRPSm1 versus the accuracy of the second moment.688
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 10: Link betweenG2 and the accuracy of the second moment.

To sum up, the great advantage of the MC-CRPS is to reconcile the score of a proba-689

bilistic forecasting model and the explanation of its performance by examining the accuracy690

of the moment-based distributions.691
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Moreover, the link between the calibration of the moments and the score is highlighted,692

because the contribution of the accuracy of the moments to the score is quanti�ed. Here,693

in the proposed new diagnostic tool MC-CRPS, the accuracy of the statistical moments of694

the forecasting distributions is quanti�ed by the proper score itself. This diagnostic tool is695

complementary of the decomposition discussed in section 3.3.3, i.e. reliability and resolution696

of f m1 and f m2 can also be computed and studied. The MC-CRPS diagnostic tool also697

highlights the bene�ts of probabilistic forecasting, as the comparison betweenCRPSm1 and698

CRPS provides a measure of the quality di�erence between deterministic and probabilistic699

forecasting.700

7. Conclusions701

Based on the two type
:
s of forecasts i.e deterministic or ensemble forecast (denoted by702

the term EPS for ensemble prediction system) issued by the meteorological centre ECWMF,703

two approachesto
:::
for generating day-ahead solar irradiance probabilistic forecasts were704

proposed. The �rst approach creates probabilistic forecasts from the deterministic day-ahead705

GHI predictor while the second one generates probabilistic forecasts from the calibration of706

the EPS or from information inferred from the ensemble.707

The goal of this work was to quantify the possible added-value of the EPS on the quality708

of the forecasts. Three
:::
Six sites experiencing di�erent sky conditions were chosen for the709

appraisal of the di�erent probabilistic models. Quality of the di�erent probabilistic models710

have been evaluated with common diagnostic tools such asRank Histograms, the CRPS711

and its decomposition. A new diagnostic tool called MC-CRPS has also been introduced.712

It consists in the measure of the contribution of each statistical moment of the forecasting713

distributions to the CRPS.714

Overall, modelsbasedon
:::::::::
adopting the ensemble-based approach have been found to issue715

probabilistic forecasts with better quality than the ones based on the deterministic-based716

approach. Thelevel of improvement
::::
gain

:::
in

:::::::::
quality,

::::::
based

::::
on

::::
the

:::::::
CRPS

::::::::
metric, depends717

on the site and varies
::::::
ranges from 4 % up to 16 %.It hasalsobeendemonstratedthat the718

choiceof a gooddistribution for parametric modelsis essential.GeneralizedExtreme Value719

distribution hasbeenfound a better candidatethan Gaussiandistribution for improving the720

quality of the probabilistic forecasts. It is shown also that the sky conditions experienced721

by a site largely impact the skills of the probabilistic forecastingmodels.722

One other important contribution of this work is the new diagnostic tool related to the723

CRPS score based on the moments of the ensemble distribution called MC-CRPS. This MC-724

CRPS tool allowed to identify two characteristics of EPS that have an impact on the quality725

of probabilistic forecasts. First, the aggregation of deterministic predictors of the ensemble726

leads to an improvement of the estimation of the �rst moment and thus, raises the overall727

quality of a probabilistic forecast. Second,dependingon the sky conditions of the site, the728

spread of the EPS members turns to be be a good predictor that permits to enhance the729

estimation of the second moment of the forecasting distributions. Finally,
::
in

:::::::
terms

::
of

:::::::::
forecast730

::::::::
quality, it can be concluded that using an EPS (which requires high computing capacities) to731

produce day-ahead GHI probabilistic forecastsis worthwhile
::::::
should

::::
be

::::::::
favored compared732
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to a deterministic (less demanding) approach.
::::
This

::::::
work

:::::::
opens

::::
the

:::::
way

:::
to

::::
the

::::::::::::
assessment733

::
of

::::
the

:::::::::
forecast

::::::
value

:::
of

:::::
each

:::::::::::
approach

::::
i.e.

::::
the

::::::::
bene�t

:::::::::::::
(economical

:::
or

::::::::
others)

::::::::
gained

::::::
from734

:::
the

::::
use

:::
of

::::::
these

:::::::::::::
probabilistic

::::::::::
forecasts

:::
in

:::
an

::::::::::::
operational

:::::::::
context.735
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Appendix A. Data quality check872

A quality check has been conducted for the observation data of each of thethree
:::
six

studied sites. As the decomposition of irradiance into di�use and direct has not been mea-
sured, the exhaustive set of BSRN recommended quality checks could not been conducted
(see [51]), but only the �rst plot. It consists in the plot of measured irradiance versus solar
zenith angle. The rarely reached limit is plotted in dashed line and the physical possible
limit is plotted in solid line. The second check is a frequency histogram of the clear-sky
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index (k* ) for each site. k* is de�ned as:

k� =
Irradiance

ClearSky Irradiance
(A.1)

where the clear-sky irradiance is calculated with the Bird clear-sky model [52]. The maxi-873

mum of the observed frequency is supposed to be atk� = 1. The third check is a plot of the874

k* , only for clear-sky days. The morning data is reported by black dots and afternoon data875

by red dots. From this plot, it is possible to see if clear-sky irradiances are well-reported876

by the measurement data. If not, the line drawn by the dots is not straight. To extract877

clear-sky days from the data, the process proposed in Badosa et al. [41] has been followed.878

The last �gure is a plot of the k* for each hour and day of the year. It allows to detect879

if systematical biases exist at some days/hours of the year. It also allows to easily detect880

missing data.881

Figure A.11: Desert Rock
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Figure A.12: Saint-Pierre

36



Figure A.13: Hawaii
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Figure A.14: Palaiseau
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Figure A.15: Tiruvallur
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Figure A.16: Langley

No major issues have been detected concerning the three
:::
six studied sites. The only882

site with possible issues is the site of Saint-Pierre. It is noted that the 31/12/2012 for883

Saint-Pierre is the only day without data. Moreover, it is possible to see some disturbances884

at the very beginning and ending of the day (i.e. for low solar zenital angle).
::::
For

::::::
some885

::::
sites

:::::::::::::
(Tiruvallur,

:::::::::
Langley,

:::::::::::::::
Saint-Pierre), it is possible to guess that some reflexions occur for886

extreme hours and some seasons. This leads to the phenomenon of overirradiance where (k*
887

can easily reach a value of 4)888
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Appendix B. Rank histograms889

(a) Hawaii (b) Desert Rock (c) Saint-Pierre

Figure B.17: Rank histograms for raw ensemble forecasts

(a) Hawaii (b) Desert Rock (c) Saint-Pierre

Figure B.18: Rank histograms for AnEnc

(a) Hawaii (b) Desert Rock (c) Saint-Pierre

Figure B.19: Rank histograms for LQRc
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