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Abstract

Accurate solar forecasts is one of the most effective solution to enhance grid operations. As
the solar resource is intrinsically uncertain, a growing interest for solar probabilistic forecasts
is observed in the solar research community. In this work, we compare two approaches for
the generation of day-ahead solar irradiance probabilistic forecasts. The first class of models
termed as deterministic-based models generates probabilistic forecasts from a deterministic
value of the irradiance predicted by a Numerical Weather Prediction (NWP) model. The sec-
ond type of models denoted by ensemble-based models issues probabilistic forecasts through
the calibration of an Ensemble Prediction System (EPS) or from information (such as mean
and variance) derived from the ensemble. The verification of the probabilistic forecasts is
made using a sound framework. The Continuous Ranked Probability Score is a numerical
score used to assess the overall performance of the different models. The decomposition of
the CRPS into reliability and resolution provides a further detailed insight into the quality
of the probabilistic forecasts. In addition, a new diagnostic tool which evaluates the con-
tribution of the statistical moments of the forecast distributions to the CRPS is proposed.
This tool denoted by MC-CRPS allows identifying the characteristics of an ensemble that
have an impact on the quality of the probabilistic forecasts. The assessment of the different
models is done on several sites experiencing very different climatic conditions. The gain
in forecast quality measured by the CRPS ranges from 4% to 16% depending on the site.
Results show a general superior performance of ensemble-based models but this statement
needs to be tempered for sites that experience highly variable sky conditions.

Keywords: Day-ahead solar irradiance probabilistic forecast, Ensemble
prediction system, Non parametric methods, Ensemble calibration, CRPS
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1. Introduction

Operations of electrical power systems are becoming more challenging as the share of
solar energy increases. In particular, due to the intrinsic variability of the solar resource,
high penetration of solar power generation into the electrical grid may put in danger the
grid supply-demand balance. Energy storage systems (EES) are one of the means used to
ensure the grid stablllty Heweverunlike EES; Accurate PV power forecasting is a cost-

facilitate the large-scale mtegratlon of solar energy |nto the grid. In addition, for energy
trading, accurate PV power forecasts are also required because penalties in proportion with
the forecast errors are applied

pewe%genetatremshtghlyeeﬁetatedtetlceet# Day-ahead GHI forecasts are treated here

as they have been considered essential to secure the power grid [1]. Moreover, we pro-
pose to work on probabilistic forecasting in order to estimate the uncertainty associated to
day-ahead GHI forecasts. This additional knowledge permits for instance grid operators to
improve their decisions regarding the grid operations. The interested reader can refer to [2]
or [3] to understand the bene ts of a probabilistic forecast against a deterministic one.

Day-ahead GHI forecasts are classically generated by Numerical Weather Predictions
models (NWPs). For instance, The Integrated Forecasting System (IFS) model of the Eu-
ropean Centre of Medium-Range Weather Forecasts (ECMWF) provides day-ahead GHI
forecasts [4]. The forecasts can take either the form of a deterministic forecast or an en-
semble forecast denoted by the term Ensemble Prediction System (EPS). EPS consists in
a set of several perturbed forecasts of irradiance, each representing a possible future state
of the atmosphere. If an EPS gives an important information about the uncertainty associ-
ated to a forecast, it requires a high computational cost. Thus, the added value of EPS for
probabilistic forecasting needs to be determined to justify their computation.

We propose below to conduct a bibliographic survey related to day-ahead solar forecasts
with a special emphasis on the use of NWP outputs to generate probabilistic forecasts.
One of the rst approach used to generate day-ahead probabilistic irradiance forecasts was
proposed by Lorenz et al. [5]. In this work, a Gaussian distribution of the error of the
ECMWEF-IFS deterministic irradiance forecast was used to generate prediction intervals.
Alessandrini et al. [6] developed an analog statistical method approach applied to a set of
explanatory weather variables (GHI, cloud cover, air temperature, etc.) provided by the
NWP Regional Atmospheric Modeling System (RAMS) to generate probabilistic PV power
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forecasts for three solar farms located in Italy. Zamo et al. [7] proposed two statistical
approaches to generating probabilistic forecasts of daily PV production from information
provided by Meeo France's EPS, PEARP. The rst approach makes use of the PEARP
control member as unique input to quantile regression methods while the second one averages
the set of quantiles calculated from each of the 35 members of the PEARP ensemble. Bacher
et al. [8] used a weighted quantile regression (WQR) technique to compute up to 24h ahead
probabilistic PV forecasts. In addition to lagged PV measurements, the WQR model used
also a NWP-based GHI deterministic forecast. Lauret et al. [9] used the IFS model to
produce quantile forecasts of solar irradiance and Iversen et al. [10] introduces the idea of
modeling uncertainty by stochastic di erential equations from a NWP-based deterministic
forecast provided by the Danish Meteorological Institute. Bakker et al. [11] proposed a
comparison of seven statistical regression models to issue GHI probabilistic forecasts from
the deterministic numerical weather prediction (NWP) model HARMONIE-AROME (HA)

and the atmospheric composition model CAMS.

It must be noted that the above cited works make use of deterministic information
extracted from NWP models to generate probabilistic forecasts with the help of statistical
techniques like quantile regression or analog ensemble. Others authors like Sperati et al.
[12] proceeded di erently. In their work, Sperati et al. [12] generated up to 72h probabilistic
forecasts from the raw EPS provided by the ECMWEF. In this study, two post-processing
methods (also called calibration techniques) applied to the initial raw ensemble were used
to further improve the quality of the probabilistic forecasts. Massidda and Marrocu [13]
went a little bit further and proposed a methodology to combine ECMWF ensemble and
the high-resolution IFS deterministic forecast.

If we extend our bibliographic survey to the probabilistic predictions of other weather
variables such as wind, temperature or precipitation, more publications can be found on
how to use information from NWP models to generate probabilistic forecasts. For example,
Pinson [14] and Pinson and Madsen [15] suggested a framework for the calibration of wind
ensemble forecasts. Junk et al. [16] proposed an original calibration model for wind-speed
forecasting applied to ECMWF-EPS based on the combination between Nonhomogeneous
Gaussian Regression and Analog Ensemble Models. Likewise, Hamill and Whitaker [17]
suggested an adaptation of the analog ensemble technique for the calibration of ensemble
precipitation forecast, using the statistical moments of the distribution such as mean and
spread of the members as predictors.

Wilks [18], followed in his methodology by Williams et al. [19], compared several post-
processing techniques of weather EPS forecasts, such as ensemble dressing, Logistic Re-
gression, Nonhomogeneous Gaussian Regression (NGR) and Rank-Histogram recalibration.
The reader can refer to [20] and [2XFR2}and{23] for more details regarding the parametric
calibration of ensemble forecasts with techniques like NGR with a special emphasis on the
choice of the type of the parametric distribution used by the regression technique. Finally,
the interested reader should consult the following reference book : [24], who proposed a sum-
mary of the common probabilistic forecasting ensemble-based models with their respective
pros and cons.

Based on this bibliographic survey, two di erent approaches for day-ahead GHI proba-
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bilistic forecasting with the help of NWP models can be identi ed, which we denoted here
by approaches 1 and 2 :

1. Approach 1 referred herein asleterministic-based models the probabilistic forecast
is computed from deterministic NWP predictors with the help of statistical methods.
Linear Quantile Regression and Analog Ensemble techniques are particularly attractive
to implement this methodology.

2. Approach 2 referred herein asnsemble-based modeisthe estimation of the forecast
is made through the calibration of an EPS or from information (for example mean or
spread) inferred from the ensemble. For instance, calibration techniques like Nonho-
mogeneous Regression can be used to improve the raw ensemble EPS. Also, methods
based on Linear Quantile Regression and Analog methods can be used to produce
probabilistic forecasts from the mean and spread of the ensemble.

It must be stressed however that, to the best of our knowledge, no previous works have
been dedicated to the comparison of the two approaches and particularly in the realm of
solar probabilistic forecasts. In this work, our main goal is therefore to assess the relative
merits of each approach for day-ahead GHI probabilistic forecasts. Besides, we would like
to highlight the possible added-value brought by EPS for probabilistic forecasting. Indeed,
it is well known that the generation of such ensemble necessitates high computing capacities
compared to a single deterministic forecast that is fed into a statistical method to produce
the probabilistic forecasts. More precisely, it should be noted that the calculation cost is
not the same to produce only the control member of EPS or the whole set of members.

To understand the bene ts associated with the usage of EPS, we propose in this paper a a
sound and consistent methodology to evaluate the respective contribution of each approach.
First, the quality appraisal of the di erent models will be made according the veri cation
framework proposed by Lauret et al. [25]. This framework (which is not consistently pro-
posed in the literature) is based on visual diagnostic tools and numerical scores like the
Continuous ranked Probability Score (CRPS) which permits to objectively rank the com-
peting forecasting methods. However, this classical veri cation framework is not su cient to
completely explain the contribution of the statistical moments of the forecast distributions
to the forecast quality. That is why we propose in a second step a new tool that evaluates
the accuracy of all moments of the forecast distribution and its contribution to the CRPS
score. We hope that this new diagnostic tool will provide a more in-depth understanding
of the performance of each approach. To this end, we evaluate models that generate day-
ahead GHI probabilistic forecasts on 3 sites that experience di erent sky conditions. The
probabilistic models are built :

1. With only the control member of the EPS as a deterministic predictor (deterministic-
based approach),

2. With a deterministic predictor inferred from the whole set of EPS's members The
rst statistical moment (mean of the members) can be such a deterministic predictor
(ensemble-based approach),
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3. With several predictors inferred from the ensemble like the mean and the variance of
the ensemble (ensemble-based approach).

We propose the following structure for the paper. Section 2 introduces the dierent
forecasting models while section 3 brie y presents the diagnostic tools used for the veri ca-

to evaluate the di erent probabilistic models. Section 5 provides a detailed assessment of
the performance of the di erent methods. Finally, a discussion will be conducted in sec-
tion 6, trying to understand the pros and cons of each forecasting methods and the factors
impacting the forecast quality.

2. Building probabilistic forecasts

Regarding probabilistic forecasts of continuous predictand like GHI, a probability state-
ment i.e. either a Probability Distribution Function (PDF) f or a Cumulative Distribution
Function (CDF) F encodes the uncertainty of the forecast. In this work, three ways to
estimate this CDF or PDF are considered: parametric PDFs, discrete quantile estimates of
a CDF via a non-parametric method and CDF derived from EPS.

Regarding this last case, EPS can be seen as discrete estimates of a CDF when they
are sorted in ascending order. Lauret et al. [25] discussed three ways to associate these
sorted members to cumulative probabilities. In this work, we chose the uniform distribution
which consists in & uniform spacing of the members and a linear interpolation between
the members. More precisely, this choice assigns a probability mass sfM + 1) between
two members and for events that fall outside of the ensemble. Using this de nition, th&
ensemble member can be interpreted as a quantile forecast with a probability level equal
to = M'—+1 Put di erently, the ensemble forecasts are in the form of 51 equally spaced
quantiles with probability levels = Z5;5; ;23. This construction is illustrated in Figure
1, for an EPS with 4 members. In the following, we present rst the di erent statistical
techniques used to estimate the uncertainty of the forecasts. Secondly, we detail the two
approaches introduced in section 1.

2.1. Statistical techniques used to generate probabilistic forecasts

2.1.1. The linear quantile regession (LQR) technique
This method estimates the quantiles of the cumulative distribution functiorF of some
response variabley (also called predictand) by assuming a linear relationship between the

q= X+ 1)

where is a vector of parameters to optimize for each probability leveland represents
a random error term.
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Figure 1: lllustration of an uniform construction of a CDF from an ensemble of M = 4 members. The
tails of the CDF are bounded by ey and ey +1 which correspond to the minimum and the maximum of the
climatology.

Following Koenker [26], theguantiles-—=—F—(-}-can be-estimated-as the-soltion-of
I N :
X!
G =argmin Y, q); )

i=1

A X
= arg min ;i X)) 3)

i=1

the tralnlng set. (u)is the quantlle loss functlon de ned as :

( .
u ifu O

u( 1) ifu<®

(u) = 4)
with  representing the quantile probability level. Hence, in quantile regression, the quantiles
are estimated by applying asymmetric weights to the mean absolute error.

Thus, the quantlty q " X is the estlmatlon of the th quantlle obtained by the LQR

It must be noted that the quantile regression method estimates each quantile separately
(i.e. the minimization of the quantile loss function is made for each separately). As a
consequence, one can obtain quantile regression curves that may intersect) ,e>§ , when

1 < 5. To avoid this issue during the model tting, we used the rearrangement method
described by Chernozhukov et al. [27].
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Figure 2: Observed GHI vs. the predicted day-ahead GHI. The lines are the estimates of the quantiles
with probability levels of 0.2, 0.4, 0.6 and 0. 8 Data are from the training period of Hawaii. Observed and

2.1.2. The Analog Ensemble (AnEn) technique
The analog ensemble technique is now quite a standard in the energy meteorology fore-
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sertedm%rmiaemarmeeasteethe#ereeasts the procedure for determining the forecast
CDF is as follows:

equatlon
X+l

71, Hoy Y )

F(xy) = P(XY xy)=

or step function The e ectiveness of the method is strongly dependent on the value of
It is proposed here to take = 0:02N. This choice has been motivated by a preliminary
study made on the training period. Appendix D details the selection of the optimal value
of . Finally,. as, for, the Iinear quantile regresssionpotice that the GHI_forecastsusedin

2.1.3. The Nonhomogeneous truncated Gaussian Regression technigud GR)

The NGR technique also called in some studies "Ensemble Model Output Statistics"
(EMOS) has been introduced by Gneiting et al. [20] for probabilistic forecasting of weather
variables. This technique is dedicated to the post processing of ensemble forecasts produced

PDF. As such this kind of model can be termed as a parametric model The predictive pdf
f* estimated by the NGR method is given by:

X
" N (a+  (kmXy);c+ ds?); (6)

k=1

whereM is the number of members my is the k"™ member andS? is the variance of the
ensemble members distribution. The free parametess by; bv. , cand d are determined

with the help of an optimization procedure. In this work, and following Gneiting et al.
[20], these parameters are calculated by minimizing (over a training period) an evaluation
metric for probabilistic forecasts caIIed CRPS (see section 3.3 for details regarding CRPS).
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2.1.4. The Nonhomogeneous Regression of Generalized Extreme Value technijie_GEV)

One can question the choice of a Gaussian distribution in tHeNGR technique. Indeed,
the distributions of observations for a xed forecasting level are actually non-Gaussian. Two
examples for the studied sites are presented in Figure 3.

(a) 6™ decile for Hawaii

st i
levels of forecasting from 484 to 584 W=m?2 (b) 1* decile for Desert Rock

levels of forecasting from 0 to 38 W=m?

Figure 3: Example of distributions of observations for a xed forecasting level

On these speci c examples, the distributions of observations are clearly non-Gaussian
and the consideration of other types of distributions may improve the skills of the forecast.

As pointed out in [21] and [22], other types of parametric distributions can be used
to deal with this issue. Here, a Non homogeneous Regression approach with Generalized

(7)

The parameters , and are to be determined by optimizing the CRPS over the training
period. We followed the framework of [31] and [32] to set these coe cients. Following this
procedure, the mean and the scale parameter of the nal distributions are determined by
linear regression, and depends only on variables inferred from the EPS. The mean is a linear
combination of the mean of the members and the fraction of members which predict exactly
zero. The scale parameter depends on the \Gini's mean di erence” (a measure of the

10
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Notlce that the tvvo technlques namelyt NGR dlscussed above antlR _GEV discussed
here are part of a family of parametric methods named Nonhomogeneous RegresdioR ).

2.2. Obtaining probabilistic forecasts from deterministic forecasts (Deterministic-based ap-
proach)

gression (LQR) and the Analog Ensemble(AnEn) technlques are capable of generating a
probabilistic forecast from a deterministic predictor.

In our study, and regarding the deterministic-based approach, the control member of
ECMWEF-EPS is the predictor variable X of the LQR technique and it will be the forecast
used in the AnEn procedure. The corresponding probabilistic models are denoted respec-
tively as LQR . and AnEn in the following.

2.3. Obtaining probabilistic forecasts from ensemble forecasts (Ensemble-based approach)

2.3.1. From raw output of EPS
Given a raw ensemble forecast &l membersf X m;gi-1. .m, it Seems natural to de ne

directly a forecast CDF from this EPS as illustrated in Figure 1. Notice that this de nition
corresponds to the \uniform” de nition of a CDF derived from an ensemble" discussed in
Lauret et al. [25].

2.3.2. From information extracted from an EPS

An EPS diers from a deterministic forecast by the multiplicity of predictors. In this
work, we propose to assess the quality of two variants of probabilistic models built with
information extracted from an EPS.

The rst variant will make use of the mean of the ensemble members of the EPS. The
usageuyse of the mean of members as a deterministic predictor is justi ed by Table 1.

estimation (i.e. the mean) two models denoted bizQR , and AnEn ,, based respectively
on the LQR and AnEn techniques will be evaluated.

The second variant will include, in addition to the mean of the members, the spread (i.e.
the variance) of the members of the EPS. The NGR and the NR_GEV models described
in sections 2.1.3 and 2.1.4 use the rst and second moment of the EPS distribution to build
the predictive distributions. Furthermore, we also propose to use the LQR technique with
a vector X of predictors given by

X =[,;S7; (8)
11
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Site HAW | DR | SP PAL | TIR | LAN

Any perturbed member| 138 | 75.3| 126.5| 97.7 | 110.7| 98.8

Control member 135 72.81 91.9 | 102.9| 100.8| 93.2
Mean of the members | 129.7 | 67.9| 113.8| 81.8 | 92.6 | 84.3
Median_of the members| 133.9 | 69.4| 115.5| 84.1 | 94.7 | 85.6

Approach Deterministic-based Ensemble-based
Predictors Control member Mean of memberg Mean and spread of members
Meodel Technique | AnEn LQR AnEn LQR LQR NR
Model Abbreviation | AnEn LOR. AnEn, | LOR, LORs t_NGR \ NR_GEV

Table 2: Summary of all considered forecasting models with AnEn: Analog Ensemble, LQR: Linear Quantile
Regression, NR: Nonhomogeneous Regression

where represents the mean of members argf the variance of the ensemble. This method
will be referred in this study asLQRs.

Finally, Table 2 summarizes the di erent probabilistic models that will be evaluated in
this study.

3. Veri cation of the probabilistic forecasts

In this section, we detail some of the veri cation tools proposed by Lauret et al. [25]
that will be applled to assess the quallty of GHI probablllstlc forecasts FoIIowing this
work, y

di erent methods. Moreover, and based on the recommendatlons of [25], we will provide the
decomposition of the CRPS into the main attributes that a ect the quality of the forecasts.
In addition to this decomposition, it is worth noting that we will propose in this work a new
way to have detailed insight into the performance of the methods. This new methodology is
based on the contribution of the moments (mean, variance, etc.) of the forecast distribution
to the CRPS (see section 3.4 below).

3.1. Attributes for a skillful probabilistic model

We recall here brie y the two main attributes that characterize the quality of the prob-
abilistic models namely reliability and resolution [34, 35]. Reliability or calibration evalu-
ates the statistical consistency between the forecasts and the observations. In the case of
a continuous variable like GHI, a high reliability is obtained if predictive distributions and
distributions of observations agree. Resolution refers to the ability of the probabilistic model

12
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to discriminate among di erent forecast situations. More precisely, the more distinct the
observed frequency distributions for various forecast situations are from the full climatolog-
ical distribution, the more resolution the forecast model has. A high quality probabilistic
model should issue reliable forecasts with high resolution. In other words, high reliability is
a necessary but not a su cient condition for a high quality probabilistic forecast. The fore-
cast should also exhibit high resolution. For instance, climatological forecasts are perfectly
reliable but exhibit no resolution.

3.3. CRPS

In the veri cation framework proposed by Lauret et al. [25], the authors recommend the
computation of a score like the Continuous Ranked Probability Score (CRPS) to evaluate
the overall quality of the probabilistic models. We recall here the de nition of the CRPS.

LFor quantile forecasts, reliability diagrams constitute the natural visual diagnostic tool to evaluate the
calibration property - See [25] for details.
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3.3.1. De nition
The CRPS measures the di erence between the predicted and observed cumulative dis-
tributions functions (CDF) [37]. The CRPS reads as

1)(\| Z+lh

CRPS= N ) r_Aflcst (KY) F>I<y bs (Xy) dly’ (9)
i=1

where Iffcst (xy) is the predictive CDF of the predictandxY (here GHI) and Fyy,,. (xy) is a

the predlctand Xy equals the observationyops (i.€. Fyy,s (XY) = Lixy xymsg)- ThE squared

di erence between the two CDFs is averaged over thH forecast/observation pairs. The
CRPS score rewards concentration of probability around the step function located at the
observed value [34]. In other words, the CRPS penalizes lack of resolution of the predictive
distributions as well as biased forecasts. Notice that the CRPS is negatively oriented (smaller
values are better) and it has the same dimension as the forecasted variable. CRPS is a proper
score meaning that it obtains the best expected value when the forecast distribution is equal
to the true distribution of probability of the observation. Besides, using proper scoring rules
allows the decomposition of the score into the two important attributes of the quality of a
forecasting probabilistic model namely resolution and reliability. This permits to understand
more precisely the characteristics of the quality of the forecast.

3.3.2. CRPS Skill Score

CRPSS=100 1 CRPSm

CRPS

3.3.3. Decomposition of the CRPS
The decomposition of the CRPS is given by :

SCRPS= REL RES+ UNC; (11)

where REL, RES and UNC are respectively the reliability part, the resolution part and the
uncertainty part of the CRPS. The interested reader is referred to [25] for details regarding
the computation of the di erent components of the CRPS.

14



384 In addition to reliability and resolution, the uncertainty term accounts for the variability

a5 Of the observations. It is an indication of the di culty to forecast the variable of interest and

sss  cannot be modi ed by the forecasting model. It is also worth noting that the uncertainty
7 part UNC corresponds to the score of the climatology. For scores like CRPS that are
s Negatively oriented, the goal of a forecasting model is to minimize (resp. maximize) as much
a0 aS possible the reliability term (resp. the resolution term). In fact, a forecasting model with
a0 @ high resolution term means that the model has captured the maximum of the variability
01 present in the data (which variability is measured by the uncertainty term).

32 3.4. Contributions of the statistical moments of the forecast distribution to the CRPS

303 In this study, a new methodology for a better understanding of the skills of a probabilistic

22 forecast in relation with the CRPS score is developed. The main idea is to assess separately
s the contribution of the statistical moments (mean, variance, etc.) of the predictive distribu-

w6 tions to the CRPS and consequently to the quality of a probabilistic forecasting model. The
27 principle of the method is to create two virtual forecasts which show the contribution of the

s Statistical moments of the actual forecast to the CRPS. Let us illustrate the methodology
w0 With 3 forecast PDFsseealse{depictedin Figure 4 ). f represents the actual forecast PDF

w0 andf; andf . the associated virtual PDF forecasts.
The rst virtual forecast f; is derived from the rst moment (mean) of the actual
forecastf . Let m; be the rst moment of f and the Dirac distribution (corresponding to
the dotted vertical in Figure 4), the PDF of f ,; is thereby de ned by:

fma(xy) — (xy my): (12)

w01 Notice that this de nition implies that the second, third and further moments off,,; are
w2 equal to 0.
The second virtual forecasft ., is given by a Gaussian distribution with rst and second
moments equal to those of . Let m, be the second moment of, f,, is de ned as:

fm2 N (m1; m2): (13)

w3 Being a Gaussian distribution, the third, fourth and further moments off ,,, are equal to O.
The contribution of the statistical moments of the distribution to the CRPS is computed
as follows. First, the CRPS of each forecast namel@RP S, CRP S, ; and CRP Sy, 2
are averaged over thé\ forecast/observation pairs. This leads to the corresponding values
CRPS, CRPS,,; and CRPS,,»,. Second, the dierenceG, = CRPS,,7; CRPS,, and
G, = CRPS;,, CRPS are calculated. Note that one can therefore rewrite the CRPS as:

CRPS= CRPS,: G, G,: (14)

s Error (MAE) (see[37] for details).

404 Notice that_the CRP Sy .of the determistic_foreacstf ,1.is actually jts. Mean Absolute

A

o
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Figure 4: lllustration of the virtual forecasts f,; and f ;2 related to the forecast PDF f

G, is the measure of the gain in CRPS or equivalently in forecast quality that results
from the additional information brought by the second moment of the distribution. G.
represents the gain resulting from the other statistical moments.G, is assumed to be
positive. If it is found negative, then the probabilistic forecast has no added value compared

black Iine |nd|catesCRP Sn1. In the following, we refer to this diagnostic tool based on the
contribution of the moments of the forecast distributions to the CRPS as \MC-CRPS".

4. DPata- Case studies

Three Six sites are chosen to test the selected models. The rst one, Desert Rock, which
is part of the SURFRAD network, is located in an arid area. It experiences a high occurrence
of clear skies and consequently a very low variability. The two other sites, the airport of
Hawaii, where the NREL set up a radiometric network, and Saint-Pierre, which is located
on the coastal part of the island La Reunion, are insular sites. Both present a high yearly
solar irradiation but also an important variability due to frequent partly cloudy skies. These
di erences between the two types of sites will permit testing the models under di erent sky
conditions. For an extensive study on the multiple factors that impact the climatology and
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sky conditions in the speci c case of Saint Pierre and La Féunion see Badosa et al. [41]

The main characterlstlcs of thesehree six S|tes are glven in Table 3. The solar varlablllty
presented in the last line of Table 3, is de ned as the standard deviation of the changes in
the clear sky index [43].

4.1. Measurements

The measured data used in this work are global horizontal irradiance (GHI) time series
recorded at thethree six considered sites. These datasets have been prepared for previous
works related to the development and the benchmarking of probabilistic solar forecasts
[44, 45]. They correspond to two years of data divided in a training set (the rst year)
and test set (the second year). As the ensemble forecasts used here are provided with a
3-hour time step, the recorded time series, initially formatted with a 1-hour granularity,
were averaged with a 3-hour time step. A quality check and several test were performed on
the recorded GHI time series. The results are given in Appendix A.

Desert Rock Hawaii Saint-Pierre
(USA) (USA) (Reunion)
Agronym DR HAW sP
Provider SURFRAD NREL PIMENT
Position 36.6N, 119.0W 21.3N, 158.1W  21.3S, 55.5E
Elevation (m) 1007 11 75
Climate type Desert Insular tropic  Insular tropic
Years of record 2012 - 2013 2010-2011 2012 - 2013
Annual solar irradiation (MW h=m?) 2.105 1.969 2.053
Solar variability 1-h ( Kty,0u) 0.146 0.209 0.241
Palaiseau Tiryvallur Langley
(France) (India) (USA)
Agronym PAL TIR LAN
Provider BSRN BSRN BSRN
Position 48.7N, 2.2E 13.1N, 80.0E 37.1N, 76.4W.
Elevation (m) 156 36 3
Climate type Mild oceanic Monsoon Humid
Years of record 2016-2017 2018-2019 2015-2016
Annual solar irradiation (MW h=m?) 1.172 1.835 1.685
Solar variability 1-h ( Kty,0.) 0.281 0.190 0.186

Table 3: Main characteristics of time series of recorded global horizontal irradiance (GHI) used to test the
models
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us 4.2. Forecasts

449 The initial day-ahead ensemble forecasts, covering the same period as the measurements,
«s0 are provided by the European Centre of Medium-Range Weather Forecasts (ECMWF). They
1 correspond to 50 perturbed members and a control run (unperturbed member) [4]. This leads
2 to atotal of M = 51 members. The EPS is released by ECMWF at 12:00 for the 72 next
»s3 hourswith a 3-hourstimestep which allows it to be used for day-ahead scheduling or trading

454 PUrposes.

ss 5. Results

456 Based on the veri cation framework proposed by Lauret et al. [25)yeassessrst—visually

71 thereliability—property-with—the-help-efrank-histograms-—Seeond, the overall performance
s Of the di erent probabilistic methods is measured by the CRP&nd the CRPSS. Detailed

s insight in the quality of the models is obtained through the decomposition of the CRPS
w0 and the new \MC-CRPS" method. Notice that this section is dedicated to the presentation
w1 Of the main results of the study. The next section will be devoted to in-depth discussion
w2 related to the pros and cons of each approach and the added-value brought by the MC-CRPS
w3 methodology.
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

mean and standard deviation of the members.
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5.2. Overall performance of the methods

5.3. Detailed insight through the decomposition of the CRPS
Table 4 also provides the decomposition of the CRPS into reliability and resolution of
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Site HAW | DR SP PAL TIR LAN
raw Ensemble| 67.7 | 29.4 | 59.4 | 38.6 | 46.8 | 40.0
AnEn. 50.1 | 30.1 | 585 | 440 | 47.8 | 42.8
LOR 48.4 | 28.6 | 55.1 | 43.3 | 444 | 42.0
CRPS (W=m?) AnEn, 485 | 289 | 55.3 | 384 | 449 | 38.9
LOR 469 | 279 | 52.7 | 38.6 | 43.4 | 38.0
LOR 46.8 | 25.2 | 514 | 36.2 | 425 | 35.2
t_NGR 47.2 | 25.7 | 52.0 | 36.2 | 43.3 | 35.8
NR_GEV 46.6 | 25,5 | 50.8 | 36.2 | 43.2 | 35.7
raw Ensemble| 23.2 8.4 134 | 7.5 11.5 8.2
AnEn 4.2 4.8 6.6 4.9 7.2 4.8
LOR 4.4 5.3 7.1 5.4 6.7 5.3
Reliability (W=nv) AnEn, 4.1 4.7 6.2 4.9 7.9 4.5
LOR 4.4 5.7 7.0 5.7 8.2 5.0
LORs 4.5 5.9 7.6 5.3 8.2 5.4
t_NGR 4.7 6.5 8.4 54 8.0 5.7
NR_GEV 4.1 6.2 7.2 5.4 7.8 5.8
raw Ensemble| 113.3 | 154.0| 126.7| 95.4 | 125.7 | 1225
AnEn. 111.9| 149.7| 120.8| 87.4 | 120.4 | 116.4
LOR. 113.9| 151.7| 124.7| 88.6 | 123.3| 117.7
Resolution W=nv) | AnEn 113.4 | 150.8| 123.5| 93.0 | 124.0 | 120.0
LOR 115.3| 152.8| 127.0) 93.6 | 125.8| 121.4
LORs 115.5| 155.6| 128.9| 95.6 | 126.8  124.7
t_NGR 115.3 | 155.7| 129.0| 95.8 | 125.8 124.3
NR_GEV 115.3 | 155.6| 129.1| 95.6 | 125.7  124.5
Uncertainty (W=nv¥) | All Models 157.8 | 175.0| 172.7| 126.5| 161.0 | 154.4

Table 4: CRPS and its components reliability, resolution and uncertainty of all considered models for the
6 sites. Cyan : deterministic-based approach, Green: ensemble-based approach. Red values indicate the
worst CRPSs while the black bold ones show the best CRPSs.
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case of Non homogeneous calibration techniquEV distributions seem to be more suit-
able than Gaussian distributions, sinceN R _GEV s slightly more reliable than thet NGR

model.
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ses 5.5. Detailed insight through the CRPS Moments-Contributions
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(a) MC-CRPS for Hawaii (b) MC-CRPS for Desert Rock
(c) MC-CRPS for Saint-Pierre (d) MC-CRPS for Palaiseau
(e) MC-CRPS for Tiruvallur (f) MC-CRPS for Langley

Figure 7: MC-CRPS of the three six sites and all forecasting models. A black line is used to better highlight
the value of the CRPS and a dotted black line indicates the value ofCRP Sy,1.

Figure 7 shows the results of the MC-CRPS introduced in section 3. 4943eﬂe¥a4 As
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distributions compared to Gau55|an dlstrlbutlons are hlghllghted by the MC-CRPS method.

6. Discussion

In this section, we try to give more clues regarding the merits of each proposed approach.
Also, a discussion related to the advantages brought by the MC-CRPS is proposed.

6.1. Deterministic-based approach versus ensemble-based approach

Let us recall that the deterministic-based approach usesi a unique deterministic pre-
dictor while the ensemble-based approach makes use of the information conveyed by the
ensemble. Therefore, the main weakness of deterministic-based approach is the lack of in-
formation feeding the models. Since the distribution needs to be completely determined from
one single deterministic predictor, the spread and the possible skewness and kurtosis of the
forecasting distribution need to be only inferred from this single predictor. Conversely, the
bene ts gained from the multiplicity of predictors provided by the ensemble-based approach
need to be signi cant to justify the computation of the EPS. Two types of bene ts can be
discussed.

First, the aggregation of predictors leads to a better estimation of the rst moment. This
is visible in Figure 7 where models issued from the ensemble-based approachgetscanthy-
better CRP S;,,; than models from the deterministic-based approach. It is clear that a gain
in the estimation of the rst moment can be obtained by the substitution of the control
member by the mean of all members. However, models belonging to the ensemble-based
approach are not always better tharAnEn,, and LQR,. It means that the superiority of
t NGR and LQRs models cannot be explained by a better estimation of the mean value of
the probabilistic forecast distribution.

Second, regarding the determination of the second moment, the uncertainty is already
carried by the level of forecasting of the mean of EPS members. These variables are depen-
dent, as shown in Appendix C (the standard deviations of the observations clearly depends
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on the level of forecasting). Hence, using the spread of the members of EPS as input of the
forecasting models can only be justi ed if it brings an extra-information on the uncertainty.
It is assumed that the spread of the members is higher if the uncertainty is so. Indeed it
indicates if slight errors in the initial conditions could lead to great di erences in the nal
state of the atmosphere.

Thus, it appears necessary to investigate on the quantity of information actually provided
by the spread of the members. In order to do this, the correlation between the standard
deviation of the observations and the spread of the members has been studied. This has been
made for a xed level of forecasting, in order to remove the dependency between uncertainty
and level of forecasting. Then an average over all levels of forecasting has been calculated
to produce Figure 8. This kind of plot is of great utility to know the added value of the
standard deviation of the EPS forecast members. If the dependence between the spread of
the members and the uncertainty of the forecast for a xed level of forecasting is strong,
then a large improvement can be expected for calibration models using the spread of the
members as an input, compared to simpler models.

Figure 8: Standard deviation of observations vs. standard deviation of the EPS members (raw ECMWF
ensembles). Normalization of the standard deviation has been done by dividing the standard deviations by
the maximum of the standard deviation for each site.

As shown by Figure 8, the amount of new information given by the spread of the members
is very dependent on the studied site. When for Hawaii, the correlation between the standard
deviation of the observations and the spread of the members is almost null, it is quite

be established between this nding and Table 4 which shows that the success of taking into
account the spread of members in the forecasting models depends on the site (it is clearly
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6.2. Discussion related to CRPS Moments-Contributions

In order to consolidate the results obtained in Figure 7, a complete analysis of the
statistical moments of the probability distributions produced by the forecasting methods
has been conducted. This kind of study is traditionally done to assess the strengths and
weaknesses of a forecasting model. Although the deterministic measure of a statistical
moment is not a proper scoring rule, it is of great interest to use it to understand the
behaviour of the forecasting models.

First, an evaluation of the accuracy of the rst moment has been conducted. A good
forecasting model should have the ability to give a mean value of the forecasting distributions
as close as possible to the mean of the observation values. A measure of this ability can
be obtained by calculating the Root Mean Square Error (RMSE) or Mean Absolute Error
(MAE) of the mean of the forecasting distributions. In this study, the MAE has been
chosen as it is exactly the de nition of CRP S,,; introduced in section 3.4 (see [37] for
details). Figure 7 gives therefore the results related to the accuracy of the rst moment of
the distributions.

Second, a probabilistic forecast also provides an estimation on the level of uncertainty,
which is re ected by the spread of the forecasting distribution (i.e. the second statistical
moment). Some works have been speci cally dedicated to the assessment of the accuracy
of the spread of the predictive distributions. Among others, one can cite the studies related
to the spread-skill relationship (see [48] or [49]). These works are guided by the idea that
the variance of a probabilistic forecast should be larger if the uncertainty of the forecast is
so. Fortin et al. [50] proposed a criterion for the evaluation of the accuracy of the second
moment of the distributions. This criterion is based on the fact that statistical consistency
requires that the spread of the forecasting distributions should be equal to the RMSE of the
mean of the forecast. Following [50], spread is calculated as the square root of the mean
of the variances of the forecasting distributions. The accuracy of the second moment is
therefore measured by calculating the RMSE of the di erences between spread and RMSE
of the mean of the distributions (i.e.RMSE ;). Figure 9 plots the RMSE of the di erence
(spread RMSE\, ), computed over the evaluation period.

2RMSE and MAE are common metrics used to assess the accuracy of deterministic forecasts [47]
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 9: Accuracy of the second moment for thethree six studied sites and all forecasting models

Conversely to the rst moment, the accuracy of the second moment gradually improves
when the information taken by the forecasting model is more complete. Using the mean
of members instead of the control member increases the second moment accuracy. Taking
into account the spread of the EPS improves further the accuracy by approximately the
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improvement depends on the site and sky conditions. As shown by Figure 9, the accuracy
of the second moment for Hawaii is almost equal for each model. It is consistent with the
results depicted in Figure 8, showing that the information of the second moment of the EPS

opposedto the information of Hawaii EPS distribution.
The accuracy of the second moment can be linked to the gaBy introduced in the MC-
CRPS (see section 3.4). The correlation between these two values is highlighted in Figure

10, which shows the ratioG,=CRP S, versus the accuracy of the second moment.
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(a) Hawaii (b) Desert Rock

(c) Saint-Pierre (d) Palaiseau

(e) Tiruvallur (f) Langley

Figure 10: Link between G, and the accuracy of the second moment.

689 To sum up, the great advantage of the MC-CRPS is to reconcile the score of a proba-
so0 bilistic forecasting model and the explanation of its performance by examining the accuracy
s1 Of the moment-based distributions.
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Moreover, the link between the calibration of the moments and the score is highlighted,
because the contribution of the accuracy of the moments to the score is quanti ed. Here,
in the proposed new diagnostic tool MC-CRPS, the accuracy of the statistical moments of
the forecasting distributions is quanti ed by the proper score itself. This diagnostic tool is
complementary of the decomposition discussed in section 3.3.3, i.e. reliability and resolution
of fn1 and f,, can also be computed and studied. The MC-CRPS diagnostic tool also
highlights the bene ts of probabilistic forecasting, as the comparison betwedRP S,,; and
CRP S provides a measure of the quality di erence between deterministic and probabilistic
forecasting.

7. Conclusions

Based on the two type of forecasts i.e deterministic or ensemble forecast (denoted by
the term EPS for ensemble prediction system) issued by the meteorological centre ECWMF,
two approachesto for generating day-ahead solar irradiance probabilistic forecasts were
proposed. The rst approach creates probabilistic forecasts from the deterministic day-ahead
GHI predictor while the second one generates probabilistic forecasts from the calibration of
the EPS or from information inferred from the ensemble.

The goal of this work was to quantify the possible added-value of the EPS on the quality
of the forecasts. Three Six sites experiencing di erent sky conditions were chosen for the
appraisal of the di erent probabilistic models. Quality of the di erent probabilistic models
have been evaluated with common diagnostic tools such &ankHistegrams, the CRPS
and its decomposition. A new diagnostic tool called MC-CRPS has also been introduced.
It consists in the measure of the contribution of each statistical moment of the forecasting
distributions to the CRPS.

One other important contribution of this work is the new diagnostic tool related to the
CRPS score based on the moments of the ensemble distribution called MC-CRPS. This MC-
CRPS tool allowed to identify two characteristics of EPS that have an impact on the quality
of probabilistic forecasts. First, the aggregation of deterministic predictors of the ensemble
leads to an improvement of the estimation of the rst moment and thus, raises the overall

guality of a probabilistic forecast. Secondgependingon-the-sky-conditions-of thesite; the

spread of the EPS members turns to be be a good predlctor that permlts to enhance the
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Appendix A. Data quality check

A quality check has been conducted for the observation data of each of theee six
studied sites. As the decomposition of irradiance into di use and direct has not been mea-
sured, the exhaustive set of BSRN recommended quality checks could not been conducted
(see [51]), but only the rst plot. It consists in the plot of measured irradiance versus solar
zenith angle. The rarely reached limit is plotted in dashed line and the physical possible
limit is plotted in solid line. The second check is a frequency histogram of the clear-sky
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index (k) for each site. K is de ned as:

a Irradiance
~ ClearSky Irradiance

(A1)

where the clear-sky irradiance is calculated with the Bird clear-sky model [52]. The maxi-
mum of the observed frequency is supposed to belkat= 1. The third check is a plot of the

k", only for clear-sky days. The morning data is reported by black dots and afternoon data
by red dots. From this plot, it is possible to see if clear-sky irradiances are well-reported
by the measurement data. If not, the line drawn by the dots is not straight. To extract
clear-sky days from the data, the process proposed in Badosa et al. [41] has been followed.
The last gure is a plot of the k' for each hour and day of the year. It allows to detect

if systematical biases exist at some days/hours of the year. It also allows to easily detect
missing data.

Figure A.11: Desert Rock
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Figure A.12: Saint-Pierre
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Figure A.13: Hawaii
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Figure A.14: Palaiseau
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Figure A.16: Langley

No major issues have been detected concerning the three six studied sites. The-only

TS

sites (Tiruvallur, Langley, Saint-Pierre), it is possible to guess that some reflexions occur for

. . . *
extreme hours and some seasons. This leads to the phenomenon of overirradiance where {k
can easily reach a value of 4}

\ y 0 = Cl = O
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Figure B.17: Rank histograms for raw ensemble forecasts
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Figure B.18: Rank histograms for AnEn,
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Figure B.19: Rank histograms for LQR,
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