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Abstract—The ever-increasing number of wind farms has
brought both challenges and opportunities in the development of
wind power forecasting techniques to take advantage of interde-
pendencies between tens or hundreds of spatially distributed wind
farms, e.g., over a region. In this paper, a sparsity-controlled vec-
tor autoregressive (SC-VAR) model is introduced to obtain sparse
model structures in a spatio-temporal wind power forecasting
framework by reformulating the original VAR model into a con-
strained mixed integer nonlinear programming (MINLP) problem.
It allows controlling the sparsity of the coefficient matrices in direct
manner. However this original SC-VAR is difficult to implement
due to its complicated constraints and the lack of guidelines for set-
ting its parameters. To reduce the complexity of this MINLP and to
make it possible to incorporate prior expert knowledge to benefit
model building and forecasting, the original SC-VAR is modified
and a correlation-constrained SC-VAR (CCSC-VAR) is proposed
based on spatial correlation information about wind farms. Our
approach is evaluated based on a case study of very-short-term
forecasting for 25 wind farms in Denmark. Comparison is per-
formed with a set of traditional local methods and spatio-temporal
methods. The results obtained show the proposed CCSC-VAR has
better overall performance than both the original SC-VAR and
other benchmark methods, taking into account all evaluation in-
dicators, including sparsity-control ability, sparsity, accuracy, and
efficiency.

Index Terms—Wind power, power system operations, forecast-
ing, spatial correlation, sparsity.
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1. INTRODUCTION

ITH the rapid development and large-scale integration
W of wind power, both stability and reliability of con-
ventional power system operation will be seriously challenged
[1]- [3]. Wind power forecasting (WPF) has been playing an
increasingly important role in helping power system operators
and market operators to schedule and trade wind power gener-
ation at various spatial and temporal scales [4], [5]. Extensive
research work has been conducted over the past few decades to
develop efficient and accurate forecasting techniques. A review
of state-of-the-art WPF methods can be found in, e.g., [6]- [8].

Most of the existing WPF methods are optimized for ev-
ery location individually, using only local on-site information
(e.g. wind power measurements, weather forecasts), while over-
looking existing spatio-temporal interdependence structures in
wind power generation fields [9], [10]. In fact, not only does
wind power generation at each site exhibit auto-correlation, but
power generation at different wind farms also shows spatial
cross-correlation, possibly with a time lag. Therefore, in a re-
gion covering tens or even hundreds of wind farms, there might
be a lot to gain by better understanding dynamic space-time
dependencies among wind farms. Eventually, this may yield a
deeper understanding of wind farm dynamics, improved accu-
racy of wind power forecasts, as well as better models that could
be seamlessly used for power system operation and market par-
ticipation.

Spatial correlation was initially primarily studied and used to
simulate wind speed and power time-series by first character-
izing the dependencies between two sites or among a group of
sites, in both time [11] and frequency domain [12]. The inter-
dependence structure of wind power generation was also inves-
tigated in [9] and [13] in terms of WPF errors. The underlying
correlation patterns were found in spatio-temporal propagation
of forecasting errors, from which probabilistic WPF can be im-
proved [14], [15].

This new insight has motivated researchers to concentrate on
WPF that takes more account of spatio-temporal correlations.
Different machine learning methods [16]- [18] were proposed
to improve wind speed and power forecasting, where wind
speed or power at a target site was predicted based on obser-
vations at neighboring sites. Furthermore, regime-switching
space-time methods [19]-[21], multichannel adaptive filters
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[22] and graph-learning methods [23] are also among ap-
proaches proposed for spatio-temporal WPE. In the Global
Energy Forecasting Competition 2014, three teams [24]— [26]
ranked in Top 5 of the wind track also used off-site information
in probabilistic WPF to improve their forecasting accuracy.

The above spatial methods for WPF generally try to utilize
data from all the available neighboring sites. This could be ap-
plicable when the number of wind farms is small. However, con-
sidering scaling to a large number of wind farms, as is the case
in practice where hundreds or even thousands of wind farms are
installed over a region, such methods appear undesirable. The
excessive use of information from numerous wind farms may
cause over-fitting problems as well as increased computational
burden. Thus, it is necessary to explore low-dimensional struc-
tures to characterize the interactions among a large number of
wind farms [27].

To this end, sparse statistical modeling has attracted much
attention, where sparsity is to be understood as handling large
models, though with a large share of coefficients being zeros.
A sparse model is generally preferable since it can avoid over-
fitting, while its interpretation is simpler and more intuitive than
a dense one [28]. Alternative proposals can be found for high-
dimensional spatio-temporal WPF problems. Among others, the
compressive sensing and structured-sparse recovery algorithms
[27], [29], dictionary learning method [30] and two-stage sparse
vector autoregressive (VAR) model [31] have achieved results
with reasonably sparse structures. However, these methods can
only provide overall and fully data-driven sparse structures,
while forecasters and forecast users may be interested in con-
trolling sparsity in a finer way, e.g., by using knowledge on
space time wind dynamics and layout of wind farms as natural
constraints on sparsity.

In practice, if a user has prior expert knowledge about the
spatio-temporal relationships between wind farms that can im-
prove forecasting, then one may want to finely control sparsity
in a model structure based on such expert knowledge. In addi-
tion, there may also be special restrictions on the forecasting
model. For example, it is difficult to use too many wind farms
to forecast the target wind farm for some technical or financial
reason, or historical data from other wind farms is not applicable
for the target wind farm, or wind farms refuse to share their data
due to privacy reasons [32].

Such expert knowledge or special restrictions can involve
different aspects, e.g., the number of correlated wind farms
to explain the target wind farm, the number of past observa-
tions at each correlated wind farms to explain the target wind
farm, as well as the overall sparsity of the coefficients. These
aspects can be used to control the sparse structure of the so-
Iution as needed. It is not easy to achieve these aspects by
using existing sparse modeling techniques, as they are gener-
ally black-box models in terms of sparsity-control. Even though
Cavalcante et al. [33] explored a set of different sparse struc-
tures for VAR models based on the Least Absolute Shrinkage
and Selection Operator (LASSO), this proposal requires setting
up a new, separate model for each specific sparse structure, and
this cannot really meet the requirement to freely control the
sparsity.
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In this paper, a sparsity-controlled VAR (SC-VAR) model
[34] is introduced for very-short-term spatio-temporal WPF. It
reformulates the estimation problem for a VAR model as a con-
strained mixed integer non-linear programming (MINLP) prob-
lem, which can then be readily solved with a standard optimiza-
tion solver. Sparsity can be explicitly and flexibly controlled
by setting various parameters in the constraints. However the
SC-VAR is difficult to implement due to its complicated con-
straints and the lack of guidelines for setting its parameters. To
reduce the complexity of MINLP, and to enable incorporation
of prior expert knowledge to benefit the forecasting, the origi-
nal SC-VAR is modified and a correlation-constrained SC-VAR
(CCSC-VAR) is proposed based on the information on spatial
correlation between wind farms. The proposed method is com-
pared with different local and spatio-temporal methods using
data from 25 wind farms in Denmark.

The paper is structured as following. In Section II, the SC-
VAR and CCSC-VAR models for WPF are outlined. Section III
introduces a set of benchmark methods and performance met-
rics. In Section IV, a case study of 25 wind farms in Denmark is
carried out to test the proposed methods. Section V concludes
the work and results.

II. THE SPARSITY-CONTROLLED VECTOR
AUTOREGRESSIVE MODELS

A. The VAR Model

A VAR model can capture the dynamic interrelationships
between power generation observed at a number of spatially
distributed wind farms. Suppose ¥; ; is the power generation at
wind farm ¢ and time ¢. Power measured at N wind farms can
be integrated into a N-dimensional vector-valued time series
{y,} € RY. To describe y; ; based on past observations, the
VAR process of order p, VAR(p) is expressed as

N p
Yit = Z Za;’kyj,t—k +Eit (1)
j=1k=1

where N is the dimension of the vector time series, in this case
the number of wind farms that are spatially distributed in a
region, k = 1,2,...,pare time lags, ¢; ; is zero-mean Gaussian
noise of time series y; ¢+, and 04;’- i 18 the autoregressive coefficient
that characterizes the contribution of /; ;, to y; ;. The modeling
of VAR is to find optimal aé « that can best explain y; ;.

The VAR in more compact vector form is written as:

P
Y = ZAkyt—k + & (2)

k=1
where Ay = {a) :i,j=1,2,..., N} € RN is the coef-
ficient matrix for time lag k, and €; € RY is the vector of

zero-mean Gaussian noise with non-singular covariance matrix
for N wind farms at time ¢.

B. The SC-VAR Model

As it is the most basic multivariate time series model, the
VAR is not expected to produce a sparse coefficient structure
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by itself. Although there is literature devoted to overall sparsity
control and different sparse structures for WPF, none of it allows
fine-tuning of different aspects of sparsity. In fact, in case of
possessing specific information about the data used for VAR
modeling or showing special preferences regarding the sparse
structure, one may want to control the sparsity of the forecasting
model as needed. Some typical aspects of sparsity that can be
controlled include:
1) The overall number of non-zero coefficients of VAR (Sy).
2) The number of explanatory wind farms used in VAR to
explain the target wind farm i (S%.).
3) The number of past observations of each explanatory wind
farm used to explain the target wind farm ¢ (S}).
4) The number of nonzero coefficients used to explain the
target wind farm 7 (S%).
Following [34], by introducing binary variables and adding
constraints on the coefficients of VAR, the original VAR can be
reformulated as a MINLP problem, which is expressed as

N T N op 2
Z Z (yi,t+1 - Z Z a;'kyj,tk+1> (3a)

min
LA J=1k=1
subject to &%), <!, Vk € K,i,jel (3b)

N . .
doAi<SpViel (3c)
j=1
S Aidh < Spvig e T (3d)
k=1
N N »p
22D < Sa (3e)
i=1j=1k=1
N p ' .
oS d < Sy viel (3f)
j=1k=1
|ajk’2n/ /k7VkeK717]€I (3g)
ol (1=0,)=0Vke K i,jel (3h)
o €01}, Vk e K i, je T (3i)

where T is the length of time series for model training,

={1,2,...,p}, I ={1,2,..., N}, binary control variable
67 ik 1ndlcates whether the coefﬁcrent @y, is zero or not, binary
control variable 7] indicates whether explanatory wind farm j
can be used to explain target wind farm ¢, and threshold 7; is
the lower bound of |af, |.

This MINLP optimizes the regression coefficients o) and
binary control variables 57 ;i and ~; by minimizing the sum of
squared errors. The meaning of each constraint of the SC-VAR
is as follows:

1) Constraint (3b) forces the 7;- to take the value 1 when
some ¢’ 71, takes the value 1, i.e. as long as there exists
non-zero a7 .. for at least one lag k.

2) Constraint (3c) limits the number of explanatory wind
farms used to explain target wind farm .
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3) Constraint (3d) limits the number of past observations of
each explanatory wind farm used to explain target wind
farm .

4) Constraint (3e) limits the overall number of non-zero co-
efficients of VAR.

5) Constraint (3f) limits the number of non-zero coefficients
used to explain target wind farm .

6) Constraint (3g) confines |a, | to the interval [}, +oc] and
otherwise assigns zero to any coefficient whose absolute
value is less than 7}

7) Constraints (3h) links the control variable 5;. i to coeffi-
cient o, so that &%, can determine whether o is zero
or not.

Although the SC-VAR model allows full control of the spar-
sity, it can be very difficult to implement it in practice. First,
the SC-VAR allows sparsity-control but does not indicate how
to control. This requires elaborately setting many parameters,
including Sy, Sy and S} for each wind farm i, 1} for each
pair of wind farms and S4. This is impracticable when dealing
with high dimensional WPF, especially if very limited guide-
lines are available for setting these parameters. Secondly, in
addition to the regression coefficients, the SC-VAR model in-
troduces many binary variables that need to be optimized, i.e.
6; . for each pair of wind farms at each lag, and vj for each pair
of wind farms, and these are the main causes of computation
burden. Finally, as constraint (3e) controls the overall sparsity,
all of the coefficients in the objective function (3a) have to be
optimized together, which can slow down the computation. If
(3e) is removed from the model, the objective function is de-
composable so that it can be solved by solving separately the
optimization problem for each wind farm ¢, considering only
the constraints related to wind farm <. However, removing (3e)
will make the SC-VAR lose its global control of sparsity. Even
so, the global sparsity can be appropriately controlled via the
local control of each wind farm’s sparsity using constraints (3f).
Therefore, it is worth removing the constraint (3e) as a result of
balancing between the computation efficiency and the sparsity-
control ability. Also note that, in controlling the total number of
non-zero coefficients of a target wind farm, the combination of
constraints (3c) and (3d) can serve a similar function to that of
the constraint (3f). Thus, based on the above analysis, the con-
straints (3d) and (3e) can be removed while (3¢) and (3f) can
be retained to control the sparsity in a computationally efficient
way by sacrificing some control flexibility.

Furthermore, as the constraints (3g) and (3h) are non-linear,
a reformulation is provided in [34] to linearize them by replac-

ing (5i with v 4 Vjy,- Then (3g) and (3h) can be linearized
as a}k > ;j —ujkM and o < —nivi; 4+ vif M, where

M is assumed to be a large posmve constant number. But un-
fortunately many more auxiliary integer variables have to be
introduced, which will further make the SC-VAR computation-
ally heavier.

C. The CCSC-VAR Model

To address the problems of the SC-VAR, in this section the
CCSC-VAR model is proposed and formulated as:
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min
it

,0

N p 2
<ym+1 - Z Z a}kyj,tkﬂ) (4a)

] =
Mw

i=1t=p j=1k=1

subjectto &%, <A’ Vke K,i,jel (4b)
p . .
> o8 = Vvijel (4¢)
k=1
N p , 4
S> s < Sy, viel (4d)
j=1k=1
b | <M -6 ke K i j el (4e)
ik €401 vk e K i je 1 (4f)

where M is any large positive constant number, A, = {)»; :
i,j € It € RN with regard to parameter 7 is the control
matrix derived from cross-correlation matrix ® = {qb; 11,] €
I} € RV of the wind farms. The @ can be obtained in dif-
ferent ways, including Pearson correlation, Kendall rank cor-
relation and graphical modeling. It is found that the results
of these correlation analysis approaches are quite close. How-
ever, the computation of Kendall rank correlation and graphical
modeling is very time-consuming, so the Pearson correlation
coefficient is selected in this paper and computed by

4 = i (i — ) (i —9)
\/Zthl (i — gj)Q\/Z{:I (vie — )

where ¢j; and §j; are the average values of T" samples for wind
farm ¢ and j respectively.
Then, the entries of A, are obtained by

(&)

_ Lg)>7
)J] = _ (6)
0,0; <7

where 7 is a predefined threshold. Like the ’yji- in the SC-VAR,
)»; also indicates whether wind farm j contributes to wind farm
7. However, 7} is a decision variable that needs to be optimized
while Aj is an adjustable parameter related to historical data.
Here only the zero-lag correlation coefficient computed by
using synchronous time series is considered in generating the
control matrix A, because a correlation analysis of the used
data shows that the difference among the correlation coefficients
at different time lags (each lag is 15 minutes) is not significant in
the very-short-term horizons studied in this paper, as shown by
an example in Fig. 1. But for longer forecasting time horizons,
the correlation coefficients at corresponding lags are suggested
to be considered in generating the A ;.
In the CCSC-VAR model, the implications of the constraints
are as follows:
1) Constraint (4b): If 1 = 0, the coefficients aé- . between i
and 7 for all p time lags are zeros.
2) Constraint (4c): If Aé- = 1, there should be at least one
non-zero coefficient aék between wind farm ¢ and j, i.e.,
the 043 .. for at least one lag k should be non-zero.
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1.0 T T T T T T

Synchronous correlation coefficients at zero lag

Forecasting time horizons studied in this paper

0.6 | —

Pearson correlation coefficient

0.4 . 1 . ! . I .
-20 -10 0 10 20
Time lags (15 minutes)
Fig. 1. The Pearson correlation coefficients between the wind power time

series of two wind farms at different time lags.

3) Constraint (4d): It is same as constraint (3f). It is retained
from SC-VAR and used together with A to control the
sparsity.

4) Constraint (4e): The binary control variable 5; i 1s linked
to a§ &> So that 5j  can determine whether 042 & 18 zero or
not, i.e.,

_ | —M < aj < M5 =1
|| < M- 5j, & _ | @
aj = 0,05, =0

Although M is allowed to take any large positive con-
stant number, it is found that in this work the maximal
regression coefficients for all the wind farms are around
1. Therefore, the value of M is set as 2.

There are two parameters governing the sparsity of the CCSC-
VAR, i.e. T and SY . The sparsity of the CCSC-VAR is directly
affected by the sparsity of A, while the sparsity of A, is
determined by ® and 7. So 7 can serve a similar function as
Si. of the SC-VAR in controlling the number of explanatory
wind farms. In addition, the CCSC-VAR with both S}V and T
can be more flexible in controlling sparsity than the CCSC-VAR
without S .

Compared with the SC-VAR, the CCSC-VAR has fewer con-
straints. Also, the compact CCSC-VAR model has many fewer
parameters that need to be tuned, but meanwhile it still pre-
serves the ability to control the sparsity. Moreover, when us-
ing the transformation in (7), all constraints of the CCSC-VAR
are linear without resorting to auxiliary variables like those in
the SC-VAR model. Furthermore, as the decision variables %‘
are replaced by adjustable parameters A%, problem solving will
be more efficient due to the substantially reduced number of
decision variables. Therefore, the CCSC-VAR is much easier to
implement than the SC-VAR.

Another significant advantage of the CCSC-VAR over the
SC-VAR is that the CCSC-VAR enables incorporation of ex-
pert knowledge about the spatio-temporal correlations of the
wind farms into the model building. As the ® is deterministic
and unique for a specific set of N wind farms, controlling the
sparsity of the CCSC-VAR via tuning 7 is in fact based on real
data information and thus can reduce the uncertainty in sparsity
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control, which makes the model more capable of characterizing
the true relationships between wind farms.

It should be noted that the binary control matrix A, used in
this paper is just a concrete example of expert knowledge which
is derived from basic cross-correlation matrix. However, even
such simple expert knowledge can improve the forecasting per-
formance, as will be demonstrated in the case study. Therefore,
it is expected that the forecasting accuracy can be further im-
proved by using other specifically designed control matrices. In
particular, the control matrix allows element-wise modification
when special restrictions are imposed. For example, if historical
data of a specific wind farm is not available for some technical
reasons or if a wind farm refuses to share its data for privacy
reasons, then the entries of the control matrix corresponding to
this wind farm can be directly set as zero. However, the special
restrictions may contradict the expert knowledge. This means
an unavailable wind farm with regard to the special restriction
could be the one preferred by expert knowledge. Therefore, this
case should be carefully considered in practice.

D. The Decomposition of Sparsity-Controlled Models

Since the objective function and each constraint are decom-
posable, the CCSC-VAR can be solved separately for each wind
farm ¢, which is expressed as

T N P 9
TI? Z (yl’v’f“ - Za;’kyf,tkﬂ) (8a)
=p

j=1k=1

subjectto &%, <A\, Vke K,jel (8b)
p . .
S = viel (8¢)
k=1
N p . .
DD 0k Sk (8)
j=1k=1
laly| <M -6, VEe K, jeI (8e)
i €01} Vke K jel (81

The SC-VAR model can also be decomposed in a similar way
if the constraint (3e) is removed. By decomposing the original
problem into smaller sub-problems, the dimension of the op-
timization is significantly reduced, which is very beneficial in
high-dimensional spatio-temporal WPF.

In this paper, the decomposed sub-problems are solved in a
sequential way on only one computer, i.e. the wind farms are
solved one by one. Computational gain will be more significant
if they are implemented in the framework of parallel computing
or distributed computing, which can concurrently solve the sub-
problems. The decomposition enables the forecasting models
to be deployed at both wind farm level and the power system
operator level and in both centralized and distributed ways. For
example, if each wind farm is responsible for solving the fore-
casting problem for itself, then all the wind farms can solve their
own problems respectively and simultaneously in a distributed
way.
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III. BENCHMARK METHODS AND PERFORMANCE METRICS

Two classes of forecasting methods are implemented to eval-
uate the performance of the SC-VAR and the CCSC-VAR: local
methods and spatio-temporal methods. As has been discussed,
a local method employs only local information to obtain local
forecast. Individual local models need to be built for each wind
farm. In contrast, the spatio-temporal methods provide an inte-
grated or unified form of model for all wind farms and make use
of spatial information to improve forecasting.

A. Local Forecasting Methods

1) Persistence Method: The persistence method is com-
monly used as the most basic predictor to benchmark other meth-
ods. In this method, the forecast for all times ahead is treated as
the present value. The k-step-ahead persistence method is

Ut kit = Yt )

2) Autoregressive (AR) Model: AR is the one-dimensional
version of VAR model by setting NV as 1. It models the future
wind power generation using only the local wind power time
series based on the temporal auto-correlation characteristics.

B. Spatio-Temporal Forecasting Methods

1) LASSO-VAR: The LASSO-VAR is a multivariate time se-
ries forecasting model that is widely used to explore sparse
structure and feature selection. The LASSO-VAR in separated
form of an individual wind farm i is expressed by

T
. 2
min [ (g1 — al Y1) + pllall (10)

a;
i t:p

wherea; = (A}, A}, ..., A;},)T € RVP~1jgcoefficients vector
of wind farm i with A} € R being the ith row of Aj,
Y=yt ¥ ) € RYP ||+ |1 is the £,-norm
of a vector, and p is a parameter that determines the balance
between the estimation error and the degree of sparsity of the
solution [35].

According to (10), the LASSO-VAR is a black-box model in
terms of sparsity-control. It can only control the overall sparsity
of the VAR of wind farm ¢ by tuning the value of i. The greater
the 1 is, the sparser the coefficients matrix will be. When po = 0,
the LASSO-VAR will degenerate to standard VAR. See [33] for
details about the LASSO-VAR in WPE.

2) Simplified SC-VAR model: As has been mentioned, the
complete SC-VAR defined by (3a)-(31) is very difficult to imple-
ment due to its complicated constraints and parameter settings.
So a simplified version of the SC-VAR is used for comparison in
the cased study. In the simplified SC-VAR, the constraints (3d)
and (3e) are removed and all 77; are set as 0. As the parameter 7
of the CCSC-VAR and the parameter S of the simplified SC-
VAR serve similar functions in controlling the number of wind
farms, the CCSC-VAR and the simplified SC-VAR have sim-
ilar parameter setting complexity and sparsity-control ability,
which is fair to the model comparison. In the following sections,
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Fig. 2. The geographical distribution of 25 randomly selected wind farms in
Denmark.

unless otherwise specified, the SC-VAR refers to the simplified
SC-VAR.

C. Performance Metrics

For each wind farm 4, the accuracy of the forecasting models
are indicated by two metrics following [36]. These are Normal-
ized Root Mean Square Error (NRMSE) and Normalized Mean
Absolute Error (NMAE). The average accuracy of a forecasting
model for the whole set of studied wind farms is indicated by
average NRMSE of all wind farms.

Furthermore, for the LASSO-VAR, SC-VAR and CCSC-
VAR, the model sparsity © is additionally defined as the ratio
between the number of zero coefficients and the overall number
of coefficients:

NZCI'O
Np?

where N,.., is the total number of zero coefficients.

(—):

an

IV. APPLICATION AND CASE STUDY
A. Data Preparation

The data used in this paper are wind power time series in
2006 from 25 randomly selected wind farms across Denmark.
The geographical distribution of these wind farms is shown in
Fig. 2. Each time series contains 35 040 consecutive data points
with time resolution of 15 min. The dataset of each wind farm
is divided into three consecutive parts, including 10 000 data
points for training, 10 000 data points for validation (parameter
optimization) and the remaining 15 040 data points for out-of-
sample predictive performance testing. Each forecasting model
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is firstly trained using the training data with different parame-
ters. Then the forecasting NRMSE corresponding to different
parameters are obtained using validation data to select the opti-
mized parameters for each forecasting model. The performance
metrics of the forecasting models with their optimal parameters
are finally compared using testing data. In the following sec-
tions, the NRMSE computed from the validation data is called
validation NRMSE while the NRMSE and MAE computed from
the testing data are called testing NRMSE and testing MAE. In
this work, the forecasting methods are applied in very-short-
term time horizons of up to 6 steps (i.e., 1.5 hours) ahead with
each step being 15 minutes.

It is well known that the time series forecasting models are
more capable of Gaussian processes. Thus, all the data are nor-
malized to the range of [0, 1] and then transformed to Gaussian
time series using Logit transformation [37]:

Y
=1 —_— 1
Ya Og(l_y)aye(ov )

where y is the original data and y is the transformed Gaussian
data. As the logit transformation requires that y € (0, 1), the
data smaller than 0.01 are treated as 0.01 and the data greater
than 0.99 are treated as 0.99.

After finishing the forecasting, all forecasts are transformed
back to the normalized range of (0, 1) using the inverse trans-
formation

12)

exp (ya )

=0 13
1+ exp (ye) (1

B. The Tools for Solving the Forecasting Models

All the forecasting methods are implemented on a 64-bit PC
with 2.9 GHz Intel Dual Core CPU and 4 GB RAM.

Except for the SC-VAR and the CCSC-VAR, all other fore-
casting methods are implemented on the platform of Matlab
R2013b (64-bit). The LASSO-VAR is solved by the Matlab
package “Glmnet” using a Coordinate Descent algorithm [38].
Since the VAR is a special case of the LASSO-VAR without the
{1-norm constraint [28], the forecasting of the VAR is achieved
by directly setting the shrinkage parameter p of the LASSO-
VAR as zero.

The simplified SC-VAR and the CCSC-VAR are solved by
the Gurobi solver with mathematical programming language
AMPL. Other solvers such as CPLEX and other modeling lan-
guages such as Python can also easily deal with these MINLPs.

C. Parameter Settings

1) The Order p of the Forecasting Models: Partial autocor-
relogram is an effective tool to determine the order of autore-
gressive models for time series. The partial autocorrelogram
calculated from training data is used for each of the 25 wind
farms to determine their optimal orders p, as shown in Fig. 3.
The AR model for each wind farm is trained with its correspond-
ing optimal order. However, a spatio-temporal model requires
an unified order for all wind farms. It can be seen from Fig. 3
that the optimal p for most of the wind farms ranges from 3
to 6. Based on the optimal orders of individual wind farms,
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Fig. 4. The average validation NRMSE of 1-step-ahead forecasting by differ-
ent models with varying training data size.

and considering the fairness of comparison, a moderate p =
4 is configured for all the spatio-temporal methods, i.e., VAR,
LASSO-VAR, SC-VAR and CCSC-VAR.

2) The Impact of Training Data Size on Accuracy: The size
of training data is a very important factor, with significant in-
fluence on the accuracy of a forecasting model. The average
1-step-ahead validation NRMSE of different forecasting meth-
ods with different training data sizes is given in Fig. 4. Note
that the parameters used here are not optimal ones. The y of the
LASSO-VAR is 0.001. The Si and S§ of the SC-VAR are 15
and 20 respectively. The T and S% of the CCSC-VAR are 0.75
and 30 respectively.

In Fig. 4, the NRMSE values for all the methods tend to
decrease with training data size. However, after the data size
reaches a specific value (e.g. 5000), the NRMSE decreases very
slowly. The AR model is the most insensitive to the training
data size. Its performance remains almost unchanged when the
data size is greater than 1000. It also has the lowest NRMSE
level among all these methods when the data is not sufficient,
which indicates AR is a simple but powerful forecasting method.
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The VAR model is very data hungry, which is consistent with
the conclusion of [31]. It is the worst one in terms of both
forecasting accuracy and convergence rate with data size. The
NRMSE curves of all the sparse models decrease very quickly
to a very low level and then varies closely and slowly when data
is more than 4000. The LASSO-VAR and the SC-VAR always
keep very close and show almost the same variation tendencies.
Among the spatio-temporal methods, the CCSC-VAR signifi-
cantly outperforms the others when the data size is extremely
small (smaller than 1000). This is because the CCSC-VAR that
highly dependent on the spatio-temporal correlation informa-
tion can be effectively characterized even by using very small
amounts of data, though sufficient data can be more beneficial.
The NRMSE of these models may continue changing if the data
size further increases, but it is fair to train all these forecasting
models with 10 000 data points according to the above analysis.

3) Parameters Tuning for Spatio-Temporal Forecasting
Model: This section will discuss in detail the parameters of
spatio-temporal forecasting models, including the g of the
LASSO-VAR, the S} for both the SC-VAR and the CCSC-
VAR, the S} for the SC-VAR, and the 7 for the CCSC-VAR.

Notice that, according to the implications of constraints, the
limit of effective S% for the SC-VAR is S% < p- Si. The im-
pact of constraint (3f) on the SC-VAR will not change with
S when S% is fixed and SY is greater than its upper limit.
Similarly, the limit of effective S} for the CCSC-VAR is
Zévzl )»; < S <p- Zévzl )»;i, and the impact of constraint
(4d) on the CCSC-VAR will not change with S}V when 7 is
fixed and S% is greater than its upper limit. On the contrary, if
S is fixed and smaller than its upper limit, then the sparsity
will not change with varying S% or 7, but the accuracy of the
SC-VAR or the CCSC-VAR could always change with S, or
7 respectively, no matter whether S%; is beyond its upper limit
or not. In addition, for the CCSC-VAR, the S}"V that is smaller
than its lower limit will make the optimization problem infeasi-
ble due to the contradiction between constraints (4¢) and (4d).
The S% and S for all wind farms will take the same values in
this paper, though different values can be set for different wind
farms.

The optimal parameters for the LASSO-VAR, SC-VAR and
CCSC-VAR are determined by examining the 1-step-ahead fore-
casting results. The optimal parameters in other time horizons
are set as the same as those in the 1-step horizon.

To investigate the impact of y on the performance of the
LASSO-VAR, the average validation NRMSE of 25 wind farms
for 1-step-ahead forecasting and the model sparsity in terms of
different values of p are obtained and given in Fig. 5. As ex-
pected, the model sparsity increases with 1, whereas the average
NRMSE firstly decreases and then increases with 1. The average
NRMSE reaches its minimum value 3.5249% at p = 0.0014,
with model sparsity © = 0.5428.

The performance of the SC-VAR is affected by two param-
eters, i.e., S% and S%. To investigate the impact of each pa-
rameter on the forecasting performance, one of them has to be
fixed while the other one is varying. Firstly, the S% is fixed at
25 and the average 1-step-ahead validation NRMSE of 25 wind
farms and model sparsity with varying values of S are given in
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Fig. 6. It can be seen that the model sparsity linearly decreases
with S% . The average NRMSE decreases at the beginning and
then starts to slowly increase. Both the sparsity and NRMSE
finally remain unchanged after S% reaches 88. The dramatic
decrement at the beginning where 1 < S% < 5 is because the
wind power generation of a wind farm cannot be sufficiently
explained by very few coefficients. The minimum NRMSE is
achieved at S, = 19.

Then the S is fixed as 19 and the average 1-step-ahead val-
idation NRMSE and model sparsity with varying values of S%
are given in Fig. 7. It is found that the sparsity stops decreasing at
S = 5 while the NRMSE stops decreasing and reaches its min-
imum value at S% = 17. This is because when S%. > 5, the fixed

% =19 is always smaller than its upper limit p - S%, which
means the constraint (3c) is inactive while constraint (3f) always
restricts the number of wind farms to 4. Although it restricts
the number of selected wind farms, constraint (3f) doesn’t re-
strict which wind farms should be selected, so the selected wind
farms may be changed when S’ is increasing, which makes the
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Fig.8.  The average validation NRMSE of 1-step-ahead forecasting and model

sparsity of CCSC-VAR with varying S%; and fixed 7 = 0.75.

NRMSE change as well. Based on Figs. 6 and 7, the optimal
parameters of the SC-VAR are set as S, = 17 and S = 19,
and the corresponding minimum average NRMSE and sparsity
are 3.5177% and 0.81 respectively.

As with the SC-VAR, the average 1-step-ahead validation
NRMSE and sparsity of the CCSC-VAR with varying S} and
fixed 7 = 0.75 is shown in Fig. 8. The two curves of the CCSC-
VAR are similar to that of the SC-VAR in Fig. 6, but it can be
seen that the NRMSE curve in Fig. 8 shows significant volatil-
ity. However, this volatility is just within a very small range
of [3.5143%, 3.5163%], which is even below the minimum
NRMSE of the LASSO-VAR and the SC-VAR. Therefore, the
volatility doesn’t affect the parameter selection. The minimum
average NRMSE is achieved at S%, = 28.

Furthermore, the average 1-step-ahead validation NRMSE
and sparsity of the CCSC-VAR with varying 7 and fixed S% =
28 are shown in Fig. 9. The trends of the curves in Fig. 9 can
be explained in a similar way to that in Fig. 7, except that the
sparsity of the SC-VAR decreases with S while the sparsity of
the CCSC-VAR increases with 7. According to Figs. 8 and 9, the
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optimal parameters of the CCSC-VAR are set as 7 = (.76 and
;= 28, and the corresponding minimum average NRMSE
and sparsity are 3.5139% and 0.7264 respectively.

D. Results and Discussions

1) Average Scores of Forecasting Accuracy: The average
out-of-sample testing NRMSE and testing NMAE of all 25
wind farms for different forecasting models in different time
horizons are presented in Table I. All the models are configured
with their optimal parameters determined in Section IV-C. The
sparsity values of spatio-temporal methods are given as well.

In terms of NRMSE, all the spatio-temporal methods signif-
icantly outperform the local methods. But there is one excep-
tion, i.e., the AR is slightly better than VAR for 1-step-ahead
forecasting, which reveals that a spatio-temporal model is not
necessarily better than a local model due to the over-fitting
problem. This is also demonstrated by the fact that all the sparse
spatio-temporal methods performs better than the VAR model
in all time horizons. Thus it is necessary to seek the sparsity for
a high-dimensional spatio-temporal WPF model. Among the
sparse models, the CCSC-VAR performs best for 1-step-ahead
to 5-step-ahead forecasting. However, the LASSO-VAR is more
accurate than the CCSC-VAR in 6-step horizon. This suggests
one possibility to improve the accuracy of the CCSC-VAR in
longer-term time horizons is to consider more time lags (both
positive and negative) between time series for two wind farms
when computing the cross-correlation matrix and control ma-
trix. However, the details still need to be carefully studied.

Although the SC-VAR is better than the LASSO-VAR in the
1-step horizon, it is the worst of the sparse models in the other
5 horizons. This indicates that the SC-VAR allows controlling
the sparsity in detail but can still be defeated by the black-box
controlling of LASSO-VAR. Note that the SC-VAR used here
is simplified version of the original SC-VAR defined in (3a)-
(3i). It is possible to improve the accuracy of the SC-VAR by
using all the constraints and parameters of the original SC-VAR
to tune the sparsity, but this will sacrifice the implementation
efficiency too much.
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In terms of NMAE, the CCSC-VAR outperforms all other
models for 2-step-ahead to 6-step-ahead forecasting. Notably,
although the Persistence method is the worst in terms of
NRMSE, it performs best for 1-step-ahead forecasting in terms
of NMAE. The low MAE value is related to the flat parts of
the wind-power curve model where the Persistence is almost
impossible to outperform. In cases with high wind speed, the
wind power profile will be mainly constant and close to the
rated power, in this case Persistence presents an almost per-
fect forecast performance (particularly in the 1-step horizon) in
comparison with other models. This is more visible in the MAE
metric since the RMSE penalizes the other situations more, i.e.,
the non-linear part of the power curve model. The Persistence
cannot capture any ramp in wind power time series and this
corresponds to the non-linear part of power curve model. This
will cause large errors and contribute significantly to the RMSE
due to the square of the errors.

With regard to the sparsity of sparse models, the SC-VAR
acquires the highest sparsity. The LASSO-VAR has lowest spar-
sity, indicating that it needs more non-zero coefficients to ex-
plain the target wind farms. The CCSC-VAR has a moderate
sparsity but has higher accuracy than both the SC-VAR and the
LASSO-VAR. This indicates that the CCSC-VAR can extract
the most useful information from a relatively small number of
explanatory variables. Note that the sparsity of the LASSO-
VAR in only the 1-step horizon is provided in Table I. It is
found that the sparsity of the LASSO-VAR tends to decrease
with the time horizons. Its sparsity in 2-step to 6-step horizons
are 0.4332, 0.4, 0.3668, 0.3384 and 0.3440, respectively. Unlike
the LASSSO-VAR, the fixed parameter settings of the SC-VAR
and the CCSC-VAR in all time horizons leads to their fixed
control matrix and fixed number of explanatory wind farms.
Therefore, the sparsity of the SC-VAR and the CCSC-VAR will
not change with time horizon, which can partly explain why
the CCSC-VAR is worse than the LASSO-VAR in 6-step hori-
zon, since the decreasing sparsity of the LASSO-VAR implies
that a sparse forecasting model may need to extract more useful
information from more wind farms for longer time horizons.

To summarize, the CCSC-VAR performs best in terms of av-
erage accuracy among all the forecasting methods in this paper.
This result indicates that introducing the correlation constraints
to control the sparsity can improve the forecasting by exploiting
the most relevant information from real data.

2) Diebold-Mariano Test for Statistical Significance: To as-
sess the statistical significance of the forecast error improvement
in each wind farm, Diebold-Mariano (DM) test [39], [40] is ap-
plied here to compare between the CCSC-VAR and the LASSO-
VAR, which are the two most accurate methods demonstrated
in previous section.

The null hypothesis of DM test is that the two methods have
the same forecasting accuracy. The significance level used in
this paper is 0.05. Three kinds of DM tests are implemented.
The first one is a two-tailed test and the alternative hypothesis
is that the CCSC-VAR and the LASSO-VAR have different
levels of accuracy. The second one is a one-tailed test and the
alternative hypothesis is that the LASSO-VAR is less accurate
than the CCSC-VAR. The third test is a one-tailed test and the
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TABLE I
THE AVERAGE OUT-OF-SAMPLE TESTING NRMSE AND TESTING NMAE IN DIFFERENT TIME HORIZONS
AND THE SPARSITY VALUES OF DIFFERENT FORECASTING MODELS

Indicator Average NRMSE (%) Average NMAE (%) (C]
Time horizon 1-step 2-step 3-step 4-step 5-step 6-step 1-step 2-step 3-step 4-step 5-step 6-step n/a
Persistence 45967 64880 7.6261 85363 9.3276  10.0358  2.7307 3.9314 4.6870 53034 5.8380 6.3192 n/a
AR 45788 64371  7.5561 8.4541 9.2333  9.9291 2.8330 4.0214 47676 53788 5.9103  6.3907 n/a
VAR 45803 6.2176  7.1826  7.9625 8.6553  9.2965  2.8757 3.9423 45964 5.1256 5.5969  6.0317 0
LASSO-VAR  4.4382  6.1056  7.0795 7.8659 85683  9.2135 27820 3.8676 4.5261 5.0618 55387 5.9757 0.5428
SC-VAR 44291  6.1102  7.1036  7.9243  8.6443  9.2951 27730  3.8679 4.5437 5.1012  5.5889  6.0285  0.8100
CCSC-VAR 44169 6.0842 7.0577 7.8465 85633  9.2222 27631 3.8471 4.5073 5.0437 5.5286 5.9707 0.7264
TABLE II 65 T T T

THE DM TEST RESULTS IN TERMS OF SQUARED LOSS FUNCTION FOR
COMPARISON BETWEEN CCSC-VAR AND LASSO-VAR

Indicator  I-step  2-step  3-step 4-step  S-step  6-step

Nesi 14 7 9 9 4 2

Necr 1 3 4 2 3 4

No-—p, 10 15 12 14 18 19
TABLE III

THE DM TEST RESULTS IN TERMS OF ABSOLUTE LOSS FUNCTION FOR
COMPARISON BETWEEN CCSC-VAR AND LASSO-VAR

Indicator  1l-step  2-step  3-step 4-step  S-step  6-step
Nes1p 14 14 10 9 6 5
Ne<p 1 1 3 2 3 4
Ne—p 10 10 12 14 16 16

alternative hypothesis is that the LASSO-VAR is more accurate
than the CCSC-VAR.

These tests are carried out in terms of two different loss func-
tions, including squared error loss and absolute error loss. The
tests results are summarized using three indicators and presented
in Table II and Table III, where N¢ - 1, is the number of wind
farms for which the CCSC-VAR significantly outperforms the
LASSO-VAR, N¢ -1, is the number of wind farms for which the
LASSO-VAR significantly outperforms the CCSC-VAR, No— 1,
is the number of wind farms for which the two methods have
almost equivalent forecasting accuracy.

It can be seen that the DM test results are consistent with the
average NRMSE and NMAE in Table I. Although the CCSC-
VAR cannot defeat the LASSO-VAR for every wind farm, the
Ne~p is greater than N7 in 1-step to S-step horizons in
terms of both squared error loss and absolute error loss, which
is very significant in 1-step to 4-step horizons. Actually, itis well
known that no forecasting approach provides the best results for
all conditions such as different time horizons, different wind
farms, different seasons, etc.

A reason for the CCSC-VAR not being better than the
LASSO-VAR for some wind farms can be related to their param-
eter settings. The number of non-zero coefficients for each wind
farm and each sparse forecasting model is shown in Fig. 10.
All the sparse methods are configured with unified parameters
for all wind farms, but the number of non-zero coefficients of
the SC-VAR and the CCSC-VAR may be suppressed by S%,
while this is not the case with the LASSO-VAR. The numbers

T
—o— CCSC-VAR
—o— SC-VAR
—— 1-step LASSO-VAR

(%))
a
T
1

w S~
a (9]
T T

1

Number of non-zero coefficients
nN
(4]

Wind farm index

Fig. 10.  The number of non-zero coefficients for each wind farm and each
sparse forecasting method.

TABLE IV
THE COMPUTATION TIME TAKEN FOR TRAINING
DIFFERENT FORECASTING MODELS

Methods Total time (s)  Average time for one wind farm (s)
AR 8.52 0.34

VAR 2.15 0.086

LASSO-VAR 2.15 0.086

SC-VAR 750 30

CCSC-VAR 10.78 0.43

of non-zero coefficients of the SC-VAR for all wind farms are
limited to S}, = 19 and the numbers of non-zero coefficients of
the CCSC-VAR for most wind farms are limited to S} = 28.
When the numbers of non-zero coefficients for different wind
farms are restricted to one unified value, the forecasting accu-
racy of some wind farms that need more relaxed S§ may be
limited.

In summary, the CCSC-VAR is the overall best method when
taking into account both the average scores in Table I and the
DM test results.

3) Computational Efficiency Analysis: The computation
time for training each forecasting model is provided in Table I'V.
All the spatio-temporal forecasting models are solved in a de-
composed way by optimizing each target wind farm separately.
The LASSO-VAR costs the least time because it is solved by
the very efficient Coordinate Descent algorithm. It is even much
faster than the local AR models. This means the spatio-temporal
methods is not necessarily less efficient than simple local meth-

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 10,2020 at 14:39:37 UTC from IEEE Xplore. Restrictions apply.



ZHAO et al.: CORRELATION-CONSTRAINED AND SC-VAR MODEL FOR SPATIO-TEMPORAL WIND POWER FORECASTING

ods. Notice that the VAR is a special case of the LASSO-VAR
(p = 0), so they cost the same amount of computation time. The
SC-VAR is most computationally expensive among these meth-
ods. The CCSC-VAR is much better than the SC-VAR, though
it is less competitive in comparison with LASSO-VAR.

In fact, MINLPs form a particularly broad class of challeng-
ing optimization problems, as they combine the difficulty of
optimizing over integer variables with the complexity of han-
dling nonlinear functions. The simplified SC-VAR and CCSC-
VAR are standard convex MINLPs [41], since they will become
nonlinear convex programming if the integrality constraint on
integer variables is relaxed. This is also how the solvers deal
with MINLPs. Convex MINLPs can be more efficiently solved
than non-convex ones. In practice, when working with MINLPs,
solvers (e.g. Gurobi) might find the optimal solution (at least a
very good feasible solution) quite fast but such solvers spend
huge amounts of time just trying to prove the solution is optimal.

Though the simplified SC-VAR is a convex MINLP, its time
consumption is still quite larger than that of other forecasting
models. In practice, when solving the simplified SC-VAR, a
short time limit (30 seconds in this paper) has to be imposed
for each wind farm, as suggested by [34]. Otherwise, the opti-
mization process for some wind farms may take more than ten
minutes. The solving process will be stopped and the optimiza-
tion results will be returned if the time limit is exceeded. The
time limit is set by taking into account both the forecasting ac-
curacy and efficiency. As for the CCSC-VAR model with better
convergence property, its computation is much faster than the
simplified SC-VAR. The optimization for each wind farm can
be solved in a very short time and no time limit is needed, as
shown in Table IV. From this point of view, the CCSC-VAR is
also a significant improvement compared with the SC-VAR.

V. CONCLUSION

This paper deals with the very-short-term WPF that makes
full use of space-time dependencies among spatially distributed
wind farms. The SC-VAR is employed to pursue sparse struc-
tures of forecasting models. Although the SC-VAR allows full
control of sparsity, it is difficult to implement in practice due to
its complicated constraints and the lack of guidelines for setting
its parameters. The proposed CCSC-VAR is more efficient and
accurate because it is more compact and allows incorporation of
prior expert knowledge to benefit the forecasting. The proposed
method is tested on 25 wind farms in Denmark and compared
with several classic forecasting methods, including both local
methods and spatio-temporal methods. The CCSC-VAR has best
overall performance taking into account all evaluation indica-
tors, including sparsity-control ability, sparsity, accuracy and
efficiency.

Some further work could be done to improve the CCSC-VAR.
The control matrix derived from the Pearson cross-correlation
matrix is just one specific example to illustrate the sparsity-
control and forecasting ability of the CCSC-VAR. It is flexi-
ble to choose the control matrix. Consequently, the forecasting
accuracy can be improved by using other specifically de-
signed control matrices based on reasonable expert knowledge.
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Furthermore, in this paper, all the forecasting methods are only
discussed within the framework of batch learning mode, while
an online adaptive version of the CCSC-VAR can capture and
adapt to the stochastic behavior of wind by updating itself using
the latest and real-time information, and thus could save com-
putation time and improve forecasting accuracy. Moreover, in
future work the proposed method will be extended to a larger
spatial scale, e.g. hundreds of wind farms.
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