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Abstract

Forecasting wind power generation up to a few hours ahead is of utmost importance for
the efficient operation of power systems and for participation in electricity markets. Recent
statistical learning approaches exploit spatio-temporal dependence patterns among neigh-
boring sites but their requirement of sharing confidential data with third parties may limit
their use in practice. This explains the recent interest in distributed, privacy preserving
algorithms to high-dimensional statistical learning, e.g., for auto-regressive models. The few
approaches that have been proposed are based on batch learning. These approaches are po-
tentially computationally expensive while not allowing the accommodation of nonstationary
characteristics of stochastic processes like wind power generation. This paper closes the gap
between online and distributed optimisation by presenting two novel approaches that re-
cursively update model parameters while limiting information exchange between wind farm
operators and other potential data providers. A simulation study allows the comparison of
the convergence and tracking ability of both approaches. In addition, a case study using a
large dataset from 311 wind farms in Denmark confirms that online distributed approaches
generally outperform existing batch approaches, while agents do not have to actively share
their private data.

Keywords: Energy forecasting, Distributed optimisation, Online learning, Multivariate
time series, Wind energy

1. Introduction

Following the sustained deployment of renewable energy generation capacities, especially
in the case of wind energy, forecasting has received increasing interest. Accurate wind power
forecasts enhance the profitability of wind farms when participating in electricity markets
(Mazzi & Pinson , 2017). Power system operators rely on generation and load forecasts for
the optimal scheduling of conventional generation units and operating reserves (Matos et
al., 2017). An overview of state-of-the-art methods for wind power forecasting is presented
in Giebel & Kariniotakis (2017). While lead times ranging from hours to days have been
of central focus owing to wind power participation in electricity markets, other lead times
ranging from a few minutes to a week ahead (or possibly more) are of relevance to a broad
range of operational and decision-making problems. The demand for accurate wind power
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forecasts with very short lead times ranging from minutes to a few hours has supported the
development of novel forecasting methods (Pinson , 2012; Pinson & Madsen , 2012). For very
short lead times, statistical and machine-learning methods clearly dominate over methods
based on numerical weather forecasts. The majority of forecasting methods only utilise local
data that is recorded at the wind farm of interest. Numerous publications have shown that
using high-dimensional learning methods in combination with data from surrounding sites,
such as meteorological stations or wind farms, can improve forecast accuracy substantially
(He et al., 2014; Tastu et al., 2011, 2014). Generally, this modelling approach explores
and exploits spatial-temporal patterns in wind power generation. It is fairly intuitive since a
propagating wind field causes lagged changes in the power production between two or more
geographically dispersed wind farms. Naturally, an upwind location experiences changes
in wind speed first before a downwind location that is in the trajectory of the same wind
field does. Hence, using explanatory variables that are related to wind speed or power
production for an upwind location helps to forecast future changes in the power production
for a downwind location. These dependencies may be very complex and conditional on
prevailing weather conditions (Girard & Allard , 2013). Exploiting off-site information and
space-time dynamics is something that is broadly considered in environmetrics e.g. for ozone
forecasting (Paci et al., 2013), for the prediction of weather variables e.g. precipitation
(Sigrist et al., 2012), and in traffic forecasting (Min & Wynter , 2011), etc. It also shares
similarities with the problem of forecasting panel data with cross-sectional dependencies in
econometrics (Baltagi et al., 2014).

In practice, many algorithms that exploit spatial-temporal dependencies in wind power
forecasting are based on batch learning, i.e., based on the assumption that model coefficients
are time-invariant. They hence are estimated once and for all on a training dataset (the
so-called “batch” of data). The estimated coefficients are then used to issue predictions
even though new data arrives sequentially. In applications where the true model coefficients
are time-varying, such as in wind power forecasting due to seasonal variations in wind dy-
namics, as well as the environment of wind farms, using batch-learning algorithms impacts
forecast accuracy negatively. An approach that is then often considered is to re-estimate the
coefficients using a sliding or expanding training window whenever new data samples are
available (Dowell & Pinson , 2016; Zhang & Wang , 2018). The training samples are usually
weighted to control how fast the estimated coefficients adapt to changes in the dataset. How-
ever, this approach is unattractive in cases where the learning algorithm cannot efficiently
re-estimate the model coefficients. Especially for high-dimensional models the time required
to estimate model coefficients can be prohibitive for many applications. Computationally
efficient algorithms estimate time-varying model coefficients on the fly by using recursivity,
whenever a new data sample is available. We use the term online learning when referring to
such learning algorithms. Analogously, the term offline (batch) learning refers to algorithms
where the time-invariant model coefficients are estimated on a batch of training samples.

Most of the proposed online learning algorithms in the wind power forecasting literature
are used in combination with models that rely on explanatory variables which are measured
exclusively at the wind farm of interest. Relevant methods are presented in, e.g., Møller
et al. (2008) and Bessa et al. (2012). Notable exceptions are the sparse online warped

2



Gaussian model of Kou et al. (2013) and the proposal of Messner & Pinson (2019). In the
latter case, the authors described an online algorithm for high-dimensional vector autore-
gressive (VAR) models. A limitation is that all explanatory variables must be collected by
a single agent to eventually employ that algorithm. Throughout the paper we use the term
centralised learning when referring to situations where it is necessary to have direct access
to all explanatory variables centrally in order to estimate model coefficients. Considering
that wind farms are operated by competing agents and that power production data and
related measurements are often deemed confidential, the requirement to collect all explana-
tory variables centrally brings some limitations. The unwillingness of wind farm operators
to share data with third parties motivates the recent interest in distributed learning (and
possibly privacy-preserving) algorithms in the field of wind power forecasting.

Distributed learning algorithms conceptually aim at relaxing this necessity of collecting
all explanatory variables centrally, by decomposing a learning problem into many subprob-
lems and one master problem. When estimating the coefficients of a forecasting model for a
given wind farm of interest, for which some explanatory variables are provided by other wind
farms, the distributed algorithm assigns a subproblem to each wind farm where explanatory
variables are available. The model coefficients are then estimated by alternating between
solving the master problem and subproblems, taking advantage of algorithm-specific vari-
ables that link the subproblems to the master problem and vise versa. With such algorithms
it is no longer necessary to collect all explanatory variables centrally since the explanatory
variables that are provided by other wind farms are only used in their respective subproblem.
The appropriate design of distributed learning algorithms protects the explanatory variables
of wind farm operators by not exposing them to others. We refer to this condition when
stating that the data privacy of a wind farm operator is protected.

Today, to the best of our best knowledge, only a handful of papers have investigated
distributed learning algorithms for wind power forecasting (and renewable energy forecast-
ing, more generally). The most prominent papers all build upon the Alternating Direction
Method of Multipliers (ADMM). In Pinson (2016) and Cavalcante et al. (2017) algorithms
are developed to estimate the coefficients of an AR-X model while regularising with the
LASSO. Zhang & Wang (2018) extends prior work to probabilistic forecasts but replace the
L1-penalization of the LASSO with an L2-penalization to obtain a computationally cheaper
algorithm. Unfortunately, prior distributed algorithms do not allow online learning to be
performed. Therefore, to estimate time-varying coefficients it is necessary to apply the al-
gorithms on a sliding or expanding training window while weighting the data samples. As a
consequence, we aim here to close the gap between online and distributed learning methods.
Our contribution consequently includes: (i) the development of an online ADMM version,
and (ii) additionally proposing a mirror-descent-inspired algorithm for online distributed
learning. Both have advantages and caveats to be explored through simulation studies and
the application to a case study with a large real-world dataset consisting of hundreds of
wind farms in Denmark.

The remainder of this paper is organised as follows. The general model and forecasting
framework is introduced in Section 2. Section 3 describes an online ADMM version which we
refer to as Online ADMM (OADMM). Anticipating the non-negligible computational com-
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plexity of the OADMM, the computationally lighter Adaptive Distributed MIrror Descent
Algorithm made Sparse (Adaptive D-MIDAS) is presented thereafter in Section 4. The in-
herent properties of these two approaches are analysed through a simulation study in Section
5. Thereafter, the algorithms are benchmarked on a large real-world dataset consisting of
311 wind farms in Section 6. Conclusions and perspectives for future work close the paper
in Section 7.

2. Modelling and forecasting framework

2.1. From agents and their data to relevant models

Wind power generation is observed at regular time intervals at S sites. Let us write ys,t
for the power measurement of site s ∈ ΩS = {s1, s2, ..., sS} and time stamp t ∈ {1, 2, . . . , T}.
Power measurements are commonly normalised by the nominal capacity of the site, such
that eventually, ys,t ∈ [0, 1]. We restrict ourselves to AR-X models using recent power
measurements as explanatory variables, in a fashion similar to the models used by Messner
& Pinson (2019), Cavalcante et al. (2017), Pinson (2016) and Zhang & Wang (2018).
However, extending such AR-X models to accommodate additional explanatory variables like
wind speed for instance is straightforward. Generalisation to nonlinear modelling approaches
would be more complicated. Depending on the type of data collected, it may be sensible
to centre the data. Other types of transformations may additionally be considered. For
instance for nonlinear and bounded processes like wind power generation, the generalized
logit-Normal transformation of Pinson (2012) may render more Gaussian innovations and
yield a stochastic process that is more homoskedastic. Without any loss of generality, we
assume that ys,t are transformed power measurements.

The operator of site sj, referred to as central agent, contracts a set Ω
(j)
S ⊂ ΩS \ sj of

other sites to enter a learning agreement. Consequently, all sites si ∈ Ω
(j)
S are referred to

as contracted agents. In practice, this means that the contracted agents will support sj in
improving wind power forecasts through a distributed learning framework without exposing
their explanatory variables to the central agent. The cardinality of Ω

(j)
S will certainly be

small in practice, since it may not be of relevance for a central agent to contract a large
number of sites e.g. due to the limited scale of dependence structures in space and time,
and possible transaction costs. Here, for simplicity, we assume that the cardinality of Ω

(j)
S is

S−1, so as to overlook the selection problem. We further assume that all contracted agents
are rational and act truthfully. Therefore, we overlook the potential of malicious behaviour
by assuming that the learning network design incentivises all agents to be fully collaborative
(e.g. through contracts).

An AR-X model is used to link the power measured at site sj and time t with past
measurements of site sj and the sites of the contracted agents. This gives

ysj ,t = βsj ,0,t +
L∑
l=1

βsj ,l,t ysj ,t−l︸ ︷︷ ︸
on-site

+
∑
s∈Ω

(j)
S

βs,l,t ys,t−l︸ ︷︷ ︸
off-site

+ εsj ,t (1)
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i.e., as a linear combination of past power measurements for all sites plus an intercept term
βsj ,0,t and an innovation term εsj ,t with zero mean and finite variance. The scalars βs,l,t
are the model coefficients for lag l = 1, . . . , L and site s ∈ ΩS. L denotes the order of the
auto-regressive process. For simplicity, we consider that the maximum lag L is the same for
the central and contracted agents, though it does not need to be. In addition a time index
t is used, as it is assumed that the model coefficients are time-varying. While it may be
common in the econometrics literature to assume that those coefficients follow some process
e.g. autoregressive (Bekierman & Manner , 2018), we consider that these coefficients follow
a random walk with varying means. They can hence be tracked with some simple form of
Kalman filtering where parameters are updated recursively. This approach is common in
wind power forecasting, as in the examples of Pinson (2012) and Pinson & Madsen (2012)
among others.

The model in (1) has many coefficients, since a different coefficient is used for each
combination of location and lagged value. This potentially leads to the need to estimate
L×S+1 coefficients with L×S+1 being large. As an alternative one may parameterise the
spatio-temporal dynamics of wind power generation, as commonly done in environmetrics
and statistical modelling of meteorogical variables (Sigrist et al., 2012). However, here,
these dynamics are very complex and conditional on prevailing weather conditions (Girard
& Allard , 2013). Consequently, when having access to large datasets as is common with wind
power forecasting, it is possible to increase the number of coefficients to be estimated. In
parallel, note that in practice many of the βs,l,t coefficients are expected to be 0, depending on
the de-correlation range and prevailing wind direction. This is why we employ a fully data-
driven approach to variable selection and coefficient estimation through L1 regularisation.
In addition, since we are working within an online learning framework, the resulting model
coefficients are time-varying and are thus expected to capture the slow variations in wind
power dynamics e.g. induced by seasons and changes in the environment of the wind farms.

For convenience we rewrite (1) in the compact form

ysj ,t =
∑
s∈ΩS

as,t−1βs,t + εsj ,t (2)

where as,t−1 is an horizontal vector gathering the values of explanatory variables, at time t
and location s, and βs,t is the corresponding vector of model coefficients, i.e,

as,t−1 =

{
[1, ys,t−1, . . . , ys,t−L], s = sj

[ys,t−1, . . . , ys,t−L], otherwise
(3)

and

βs,t =

{
[βs,0,t, βs,1,t, . . . , βs,L,t]

>, s = sj

[βs,1,t, . . . , βs,L,t]
>, otherwise

(4)

Within this modelling framework, the largest contribution to explaining the dynamics
of ysj ,t comes from local information given by lagged values of this process. In comparison,
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offsite information provides a lower contribution, though still allowing a significant improve-
ment of forecast accuracy for short lead times (Messner & Pinson , 2019). Since most of
the βs,l,t coefficients are expected to be 0, this also implies that a central agent eventually
does not need to make a learning agreement with many other wind farms, hence limiting
communication needs and potential contracts if distributed learning was to be remunerated.

2.2. Framework for distributed and online learning

When estimating the model coefficients of such an AR-X model in a centralised setup, an
agent is required (most likely the operator of site sj, i.e., the central agent, or the contracted
forecast vendor) to gather all explanatory variables. In a distributed learning network, how-
ever, the coefficient estimation problem is decomposed into many subproblems that are
solved by the agents who entered the learning agreement. In our case the problem is con-
veniently decomposed across all S wind farm operators. The architecture of our distributed
learning network is visualised in Figure 1, where the arrows indicate information exchange.

Regularly applied in distributed networks, a fusion centre (supervisory node) oversees the
communication among all agents. In practice, the central agent does not directly communi-
cate with its contracted agents, i.e., information is not directly exchanged via a peer-to-peer
connection. The reason for designing the network like this is twofold. On the one hand,
the communication becomes more structured for large-scale applications where each mem-
ber of the learning agreement receives a forecast for its site. This requires estimating the
coefficients of at least S models in parallel. On the other hand, it may support some of the
privacy concerns of wind farm operators who do not wish their private information to be
exposed to other agents.

In centralised learning the flow of information is unidirectional from the contracted agents
to the central agent. Distributed learning algorithm require instead a bidirectional exchange
of information, as the arrows show in Figure 1. Our distributed learning algorithms require
each agent to solve their assigned subproblem. This is fundamentally different from cen-
tralised learning, where only the central agent performs computations when estimating the
model coefficients.

Numerous distributed and online algorithms have been proposed in the literature, though
not for application in renewable energy forecasting. While first focusing on the available
online versions of the ADMM it was observed that all algorithms address consensus problems,
i.e., require the design matrix to be horizontally partitioned across all agents (Suzuki , 2013;
Wang & Banerjee , 2012; Matamoros , 2017). Figure 2 illustrates the difference between a
horizontal and vertical partitioning of the set of explanatory variables in a model like the
one we use here as a basis for forecasting.

From (2), it can clearly be seen that in our forecasting problem the design matrices are
naturally vertically partitionable across all S agents, i.e. each agent observes a unique subset
of the whole set of explanatory variables. Horizontally partitionable datasets are found in
applications where instances of the design matrix are recorded at different locations but
with identical features (e.g., in clinical trials carried out across multiple hospitals). While
online versions of ADMM have already been proposed for horizontally partitionable design
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Figure 1: Architecture of the distributed learning network

Figure 2: Horizontal (left) and vertical (right) partitioning of a matrix across S agents. Both matrices have
equal dimensions. Each column represents a unique feature whereas a row is related to a time instance.

matrices, this is not the case for vertically partitionable ones. This motivates our proposal
asdescribed in the following section.

3. Online Alternating Direction Method of Multipliers (OADMM)

Pinson (2016) originally proposed using the ADMM (Boyd et al., 2010) to estimate
the AR-X model coefficients in (1) in a distributed fashion while applying L1-regularisation
with the LASSO. The applied ADMM estimates the model coefficients on a batch of training
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samples and does not allow for efficient coefficient re-estimates in applications where the true
coefficients are expected to be time-varying. We thus extend this algorithm to an online
version that minimises the cumulative loss over all observed data samples. Our online
version efficiently re-estimates all model coefficients through recursions whenever a new data
sample is available. A flowchart for the Online ADMM approach (abbreviated OADMM) is
presented in Figure 3, and a detailed algorithm is available in Appendix A.

Figure 3: Flowchart for the Online ADMM (OADMM) approach for online distributed learning applied to
wind power forecasting.
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3.1. Coefficient estimation through a time-varying optimisation problem

Considering 1-step ahead forecasting the OADMM approach solves an unconstrained
minimisation problem. For every time stamp t, it can be formulated as

min
{βs,t}s

1

2

t∑
τ=1+L

(∑
s∈ΩS

as,τ−1βs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

‖βs,t‖1 (5)

where as,τ−1 and βs,t are as defined in (3) and (4). In parallel, λ ≥ 0 is the L1 regularisation
parameter that controls sparsity. L1 regularisation penalizes the model coefficient absolute
values and thereby shrinks coefficients deemed to be insignificant towards 0.

In order to solve the minimisation problem in (5) every time a new data sample is made
available, it should be made computationally efficient. Additionally, we want to control the
level of adaptivity via a forgetting factor as also done by Messner & Pinson (2019), Møller
et al. (2008) and Pinson & Madsen (2012). By giving less weight to older data, the model
coefficient estimates better reflects the recent dynamics in the time-series data. Introducing
an exponential forgetting factor ν into (5) results in

min
{βs,t}s

1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1βs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

‖βs,t‖1 (6)

where ν ∈]0, 1]. A value of 1 results in no forgetting while decreasing values increase the
amount of forgetting. Values slightly less than 1 are generally preferred. ν may be optimised
in practice through, e.g., cross-validation.

The standard ADMM builds on the dual-ascent method, which is used to solve optimi-
sation problems where the objective function is separable, by splitting the complete model
coefficient vector into sub-vectors. Our problem is naturally separable since each wind farm
operator has unique explanatory variables as,τ−1 and related model coefficients βs,t in (6).
The optimisation problem is transformed into an appropriate ADMM sharing form by adding
the auxiliary vector zs,t to (6). The constrained optimisation problem then reads

min
{βs,t}s

1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1zs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

‖βs,t‖1

subject to βs,t − zs,t = 0, ∀s ∈ ΩS

(7)

The ADMM uses the augmented Lagrangian to solve the constrained optimisation prob-
lem with respect to βs,t and zs,t, by updating the variables in an alternating fashion. For a
detailed description of the ADMM and its application in distributed networks, the reader is
referred to Boyd et al. (2010). When following the standard ADMM to solve (7), the cen-
tral agent may be able to retrieve the explanatory variables of all contracted agents. Thus,
the data privacy of the contracted agents is violated. In the offline ADMM for distributed
learning of Pinson (2016), the explanatory variables as,τ−1 of each agent are protected in
each step of the algorithm naturally by being multiplied by the respective βs,t. Taking this
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as inspiration, our idea is to introduce the encryption matrix Ms ∈ RL,L and multiply it by
as,τ−1 whenever it appears. We achieve this by changing the affine constraint in (7) into

βs,t −Mszs,t = 0, ∀s ∈ ΩS (8)

and additionally adjusting the objective function by replacing the term as,τ−1zs,t with
as,τ−1Mszs,t. As a requirement, each encryption matrix must be non-singular and cho-
sen by each agent privately. This eventually yields the encrypted version of the constrained
optimisation problem (7), i.e.,

min
{βs,t}s

1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1Mszs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

‖βs,t‖1

subject to βs,t −Mszs,t = 0, ∀s ∈ ΩS

(9)

The augmented Lagrangian of (9) in its scaled form is then written as

Lρ(βt, zt,ut) =
1

2

t∑
τ=1+L

νt−τ

(∑
s∈ΩS

as,τ−1Mszs,t − ysj ,τ

)2

+ λ
∑
s∈ΩS

‖βs,t‖1

+
ρ

2

∑
s∈ΩS

‖βs,t −Mszs,t + us,t‖2

(10)

where ρ > 0 is a penalty parameter and us,t are the dual variables for the constraints in (9).
The OADMM then performs the minimisation of the augmented Lagrangian by sequentially
optimising for βs,t and zs,t while updating the dual variables us,t as part of the dual ascent
algorithm. By optimising for βs,t and zs,t individually it is possible to take advantage of the
separability of (10) with respect to all βs,t ∈ ΩS.

3.2. Recursive updates of parameters

3.2.1. Central agent updates

To perform an update at time t, let us first focus on the master problem of the central
agent. The central agent first observes the true power production ysj ,t and subsequently
derives the prediction error ysj ,t − ŷsj ,t|t−1. The augmented Lagrangian is then minimised
with respect to the auxiliary variable z. The minimisation is written as a parameter update
which is carried out exclusively by the central agent. To obtain the update equations we
first define

βt−1 =
[
β>s1,t−1, . . . ,β

>
sS ,t−1

]>
, (11a)

zt−1 =
[
z>s1,t−1, . . . ,z

>
sS ,t−1

]>
, (11b)

ut−1 =
[
u>s1,t−1, . . . ,u

>
sS ,t−1

]>
, (11c)

at−1 = [as1,t−1, . . . ,asS ,t−1] , (11d)
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the model coefficient estimates β̂t at time t, and the block-wise diagonal matrix

M = diag (Ms1 , . . . ,MsS) (12)

Differentiating the augmented Lagrangian with respect to zt yields

∂Lρ(β̂t, zt,ut)
∂zt

=
t∑

τ=1+L

νt−τ (aτ−1M)>
(
aτ−1Mzt − ysj ,t

)
− ρM>

(
β̂t−1 −Mzt + ut−1

)
(13)

By writing

Ht =
t∑

τ=1+L

νt−τ (aτ−1M )> (aτ−1M ) (14)

and

pt =
t∑

τ=1+L

νt−τ (aτ−1M )> ys,t (15)

the auxiliary vectors are updated by equating (13) to 0 and then solving for zt. Hence, the
OADMM requires (

Ht + ρM>M
)
zt = pt + ρM>

(
β̂t−1 + ut−1

)
(16)

to be solved for zt. Before solving the equation system, the covariance structures Ht and
pt are efficiently updated via the recursions

Ht = νHt−1 +
(
aτ−1M )>(aτ−1M

)
(17a)

pt = νpt−1 + (aτ−1M )> ys,t (17b)

Both covariance structures comprise the memory of the recursive updating process, con-
trolled by the forgetting factor ν.

After the central agent has updated the auxiliary vectors, it shares them via the fusion
centre with its contracted agents. This is considered to be a broadcasting operation where
the central agent distributes local variables within the network.

3.2.2. Contracted agent updates

After each contracted agent receives its respective auxiliary vector zs,t, all S agents
update their dual variables in parallel with the recursion

us,t = us,t−1 + β̂s,t−1 −Mszs,t (18)

where the update is part of the dual ascent method.
Next follows the update of β̂t where the augmented Lagrangian is separable across all

β̂s,t ∈ ΩS. Hence, the update is also carried out in parallel. Due to the L1-norm of the
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LASSO the Lagrangian is not differentiable with respect to β̂t, though sub-differentiable.
The final update then reads

β̂s,t = Sλ/ρ (Mszs,t − us,t) (19)

where Sκ (c) is a soft-thresholding operator

Sκ (c) =


c− κ if c > 0 and κ < |c|
c+ κ if c < 0 and κ < |c|
0 if κ > |c|

(20)

which is applied element-wise to the input Mszs,t − us,t.

3.2.3. Back to the central agent

After each agent updates their model coefficient estimates β̂s,t, they compute the par-

tial prediction as,tβ̂s,t with the latest explanatory variables. Besides sharing the partial
prediction with the central agent, due to the z-update the algorithm also requires each con-

tracted agent to share as,tMs and M>
s

(
β̂s,t + us,t

)
with the central agent. M>

s Ms are

also required by the central agent but only have to be shared once.
The last step before obtaining the next prediction requires the central agent to sum all

partial predictions, i.e.

ŷsj ,t+1|t =
∑
s∈ΩS

as,tβ̂s,t (21)

Because the OADMM requires each contracted agent to share the prior stated vectors and
scalar with the central agent, the central agent has access to L2 + L+ 1 equations for each
contracted agent and time stamp. The central agent cannot retrieve the elements of as,t
because the obtained equations contain 2(L2 +L) unknowns. Therefore, the data privacy of
the contracted agents is protected. Besides protecting the data of each wind farm operator,
the OADMM requires only a single bidirectional data exchange between the central agent
and its contracted agents. Taking into consideration that only low-dimensional vectors and
matrices are exchanged, the algorithm is efficient communication-wise. The pseudocode of
the OADMM’s final version is presented in Appendix A.

Considering all 5 required algorithm parameter updates, due to their low complexity it
is expected that the β-, u- and covariance structure updates can be performed efficiently
and quickly. However, the z-update is more expensive because a linear system is solved
which grows linearly with the number of agents S and the order of the AR process L.
Therefore, for large-scale applications with hundreds or thousands of contracted agents the
z-update becomes time-intensive. This motivated us to develop a computational-wise lighter
algorithm which can perform all parameter updates quickly in very large learning networks
as well.

12



4. Adaptive Distributed MIrror Descent Algorithm made Sparse (Adaptive D-
MIDAS)

In the following, we first present basic concepts about stochastic gradient descent algo-
rithms, which are of relevance to the proposal of an online distributed learning algorithm.
A flowchart for the resulting Adaptive Distributed MIrror Descent Algorithm made Sparse
(abbreviated to Adaptive D-MIDAS) is presented in Figure 4, and a detailed algorithm is
available in Appendix Appendix A.

4.1. Basics of the SMIDAS

Stochastic gradient descent algorithms provide a great platform for designing compu-
tationally inexpensive online distributed learning methods. We derive in the following an
algorithm that is greatly influenced by the work of Shalev-Shwartz & Tewari (2011). The au-
thors proposed the Stochastic MIrror Descent Algorithm made Sparse (SMIDAS) for solving
problems of the form

min
βs1 ,...,βsS

C (βs1 , . . . ,βsS) + λ
∑
s∈ΩS

‖βs‖1 (22)

where in regression problems C is commonly the squared loss

C (βs1 , . . . ,βsS) =
T∑

τ=1+L

(∑
s∈ΩS

as,τ−1βs − ysj ,τ

)2

(23)

The proposal of Shalev-Shwartz & Tewari (2011) is motivated by previous work on
stochastic optimisation for L1-regularized problems. First, Duchi et al. (2008) described an
algorithm which replaces the L1 regularisation term in (22) with the constraint ‖

∑
s∈ΩS

βs‖1 ≤
B and then uses a stochastic gradient projection procedure to estimate the model coeffi-
cients. Second, Langford et al. (2009) introduced a stochastic gradient descent algorithm
where sparse solutions are obtained by truncating the model coefficients, i.e., elements in the
model coefficient vector that cross 0 during a gradient step are truncated to 0. The runtime
of both algorithms might grow in some situations in a quadratic way with the dimension of
the feature space even though the optimal coefficient vector is very sparse (Shalev-Shwartz
& Tewari , 2011). Mirror descent algorithms instead achieve a runtime which is linear in
the dimension of the feature space of the problem (Beck & Teboulle , 2003). This makes
them particularly suitable for high-dimensional learning. However, they do not necessarily
yield sparse solutions. In a nutshell, the SMIDAS uses mirror descent updates in combina-
tion with the truncation method of Langford et al. (2009). Hence, the SMIDAS achieves
a superior runtime compared to the algorithms of Duchi et al. (2008) and Langford et al.
(2009) while still yielding sparse solutions. Based on these properties we use the SMIDAS
as a starting point for the proposal of an online distributed learning approach.

In the following, we first apply the SMIDAS to learn the time-invariant model coefficients
of (22). This will facilitate the understanding of the subsequent derivation of our algorithm
for learning time-varying model coefficients in a distributed setting.
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Figure 4: Flowchart for the Adaptive Distributed MIrror Descent Algorithm made Sparse (Adaptive D-
MIDAS) approach for online distributed learning applied to wind power forecasting.
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4.2. Batch estimation with SMIDAS

Like most gradient-based optimisation methods, the algorithm in Langford et al. (2009)
updates only one weight vector β every iteration. Mirror descent algorithms are conceptually
different because they maintain two weight vectors, the primal vector β and the dual vector
θ. The mirror descent algorithm was first derived in Nemirovski & Yudin (1983), while a
new derivation is presented in Beck & Teboulle (2003). We recommend both works for a
more detailed description of the algorithm.

The two weight vectors are linked via the transformation θ = f(β), where f is a link
function. From the derivation in Nemirovski & Yudin (1983) and under the right conditions,
f is invertible. Hence, the inverse transformation β = f−1(θ) exists. In Shalev-Shwartz &
Tewari (2011) a p-norm link function is used, which writes

βn = f−1
n (θ) =

sign (θn)|θn|p−1

‖θ‖p−2
p

(24)

with

‖θ‖p =
(∑

|θn|p
) 1
p

(25)

and θn being the nth element in θ.
After this initial description of the mirror descent algorithm, let us apply the SMIDAS to

learn the time-invariant model coefficients of (22), in a centralised setup where the central
agent receive the explanatory variables from all its contracted agents.

At each iteration k, the algorithm uniformly samples a training example i ∈ {1 +
L, . . . , T}. Then, the gradient of the squared loss function C is estimated with

∇C
(
β̂

(k−1)
1 , . . . , β̂

(k−1)
S

)
= 2

(∑
s∈ΩS

as,i−1

)>(∑
s∈ΩS

as,i−1β̂
(k−1)
s − ysj ,i

)
(26)

where β̂
(k−1)
s are the estimated model coefficients of the previous iteration and agent s. Next,

the estimated gradient is used in

θ̃(k)
s = θ(k−1)

s − η∇C
(
β(k−1)
s

)
, ∀s ∈ ΩS (27)

to update the dual variables, where η > 0 is a fixed learning rate. The SMIDAS then applies
the truncation step

θ
(k)
s,j = sign

(
θ̃

(k−1)
s,j

)
max

(
0, |θ̃(k−1)

s,j | − ηλ
)
, ∀j ∈ {1, . . . , L},∀s ∈ ΩS (28)

where the regularisation strength λ pulls the dual variables towards 0. As soon as a coefficient
crosses 0, it is truncated to 0. This procedure is conceptually the same as in Langford et al.
(2009), though applied to the dual variables of the mirror descent instead of to the primal
variables of the stochastic gradient descent. The last step of the SMIDAS applies the p-norm
link function

β̂
(k)
1 , . . . , β̂

(k)
S = f−1

(
θ

(k−1)
1 , . . . ,θ

(k−1)
S

)
(29)
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to update the model coefficient estimates.
Equations (26) to (29) are applied until a defined convergence criterion is reached. De-

pending on the dataset size and convergence criterion, the algorithm can sample a single
training example multiple times.

4.3. Online distributed MIDAS

The motivation to use the SMIDAS as the basis for our distributed online algorithm
comes from the separability of (26) in the explanatory variables and the possibility of ob-
taining sparse model coefficient vectors through the truncation step (28). By choosing the

loss function C as the quadratic criterion, the term
∑

s∈ΩS
as,i−1β̂

(k−1)
s − ysj ,i in (26) is the

1-step ahead forecast error of iteration k. Hence, if the central agent shares the forecast
error for its site with the contracted agents, each agent is able to estimate their share of the
gradient locally. Given the remaining steps of the SMIDAS, this allows, with a few modifica-
tions only, the obtainment of a distributed online algorithm where the privacy of each agent
is protected. However, one might argue that the forecast error is a private information for
the central agent, who hence is not willing to share it. In situations where the central agent
is not willing to share forecast errors with competitors, we propose the following distributed
learning network design. When sharing the forecast error through a fusion centre with con-
tracted agents, the forecast error is anonymised such that the contracted agents cannot infer
the identity of the central agent, and hence cannot identify the location of the related site.
The anonymisation of the central agent would further require that potential compensations
for the participation in a learning agreement are handled by the fusion centre operator.

To obtain a learning algorithm which is able to track time-varying model coefficients, our
algorithm does not randomly sample training examples. Instead, the algorithm estimates
the gradient for a sample only once as observations arrive sequentially. Therefore, the index
t replaces i in all previous SMIDAS formulations. We further change the name of the
algorithm to MIDAS because we remove the stochasticity by not using random samples.
Last, we remove the iteration counter k (t is the equivalent in online learning) from all
formulations. Estimating the gradient of a sample only once is fundamentally different from
the OADMM where the cumulative loss is minimised over all past observations. This means
that, when updating the model coefficients, all past information is implicitly considered.
Consequently, when using the distributed MIDAS version, we expect a greater variance in
the estimated model coefficients.

Starting from the willingness of the central agent to share its forecast error rt|t−1 =
ŷsj ,t|t−1 − ysj ,t with the contracted agents at time t, we propose the following distributed
MIDAS. Instead of sharing the forecast error directly with the contracted agents, it is shared
through a fusion centre. This is considered to be the first broadcasting step. Each agent
then updates their local dual variables by taking a step into the direction of the negative
estimated gradient while controlling the step size with the learning rate η. The update is
performed by all agents in parallel and is written as

θ̃s,t = θs,t−1 − ηas,t−1rt|t−1 (30)
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The SMIDAS subsequently uses the element-wise truncation (28). A simulation study re-
vealed that a single sample evaluation does not yield significant benefits in terms of forecast
accuracy. Furthermore, we realised that the p-norm link function is sufficient to shrink
unimportant model coefficients to 0, though the estimated model coefficients never became
exactly 0. Therefore, we dismissed the option to obtain sparse coefficient vectors by neglect-
ing the truncation step in our distributed version (i.e., θ̃s,t is hereafter replaced by θs,t). We
subsequently obtain an algorithm that has one less hyperparameter. However, the inabil-
ity to shrink unimportant model coefficients to 0 is a setback if compared to the case of
OADMM.

The next step of the algorithm utilises the fusion centre, with which all agents share
their dual variables. This allows the computation of the denominator of the link function
with

γt = ‖θt‖p−2
p (31)

where θt is the assembly of all local dual vectors θs,t ∈ ΩS and p is a hyperparameter. This
step marks the first gathering step, even though the local variables are not gathered by the
central agent. The norm γt is consequently shared with all agents such that they can apply
the link function to their respective dual variables. This is the second broadcasting step of
the algorithm. The final update is the element-wise application of the link function

β̂s,t =
sign (θs,t)|θs,t|p−1

γt
(32)

The aforementioned shrinkage behaviour of the link function is controlled via the hyperpa-
rameter p, where a greater value in p applies a greater shrinkage to all β̂s,t’s.

After obtaining re-estimated model coefficients, each agent calculates a new partial pre-
diction and shares it through the fusion centre with the central agent, who eventually cal-
culates the next prediction for its site. The final exchange of information accounts for the
second gathering step. In total the algorithm requires 2 broadcasting and 2 gathering steps
for each t.

4.4. Extending the distributed MIDAS

With the distributed MIDAS version, the fusion centre operator could have the possibility
to retrieve the information about local explanatory variables. This possibility exists since the
access to all dual variables and the forecast errors results in an equal amount of equations and
unknowns. Therefore, additional measures are required to protect the data of the wind farm
operators. Due to the different structure of the algorithms, introducing an encryption matrix
as in the OADMM was unsuccessful. Our proposal is therefore to encrypt the forecast errors
using an encryption technique such as AES (Li et al., 2009) and then share it through the
fusion centre with the contracted agents. This requires the direct exchange of the decryption
key with the contracted agents before all agents start performing online learning. Because
the fusion centre operator does not have access to the forecast error anymore, it has more
unknowns than equations to solve. Hence, it is not possible to retrieve the explanatory
variables with sufficient accuracy. In a setting with anonymized forecast errors, the central
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agent still shares the decryption key with its contracted agents. However, the central agent
does not reveal its identity and therefore the contracted agents cannot obtain information
about the location of the central agent’s site.

In the presented algorithm, named Distributed MIDAS (D-MIDAS), the learning rate
η controls the general speed with which the algorithm approaches the global optimum of
the minimisation problem within a given period. When η is large, the global optimum is
approached faster but at the same time the estimated model coefficients experience a greater
variance between consecutive time stamps. This statement is derived from (30), where a
large forecast error translates directly to a significant change in the dual variables, and
subsequently to a notable change in the model coefficients. Ideally, in stationary periods
the algorithm requires smaller η values compared to non-stationary periods. Taking into
account that all algorithm parameter updates are computationally cheap, our proposal is
to learn multiple AR-X models in parallel while varying the learning rate η between the
models.

Based on the past performance of each model, the algorithm adaptively chooses which
model to use for the next prediction. This can considered as adaptive learning, where in
stationary periods a small η is used, and in non-stationary periods a larger η is applied
instead. We use the cumulative absolute error (CAE) with decaying weights

CAE
(η)
t = µCAE

(η)
t−1 + |ŷ(η)

sj ,t|t−1 − ysj ,t| (33)

to evaluate the performance of each model, where µ allows the control of the level of decay.
The superscript η indicates from which model the prediction is coming from. We name this
extension Adaptive D-MIDAS and the pseudocode is shown in Appendix A.

The computational complexity and the amount of exchanged data increases linearly with
the number of models that the Adaptive D-MIDAS learns in parallel. Concerning the amount
of exchanged data, the Adaptive D-MIDAS exchanges an almost equal amount of data as
the OADMM when learning two models in parallel. However, the Adaptive D-MIDAS
requires two bidirectional data exchange steps whereas the OADMM requires only one. The
additional data exchange step comes from the requirement to compute the denominator of
the link function at the fusion centre. Based on this insight we obtain a communication-
reduced version of the algorithm by using the denominator and dual variables of the previous
time stamp to update the model coefficients via the link function. Consequently, it is no
longer necessary to send the dual variables to the fusion centre before updating the weight
vector. The denominator of the link function can instead be calculated after the central
agent has calculated the next prediction for its site. With this strategy that reduces the
overall time between obtaining the newest observation and calculating a new prediction with
re-estimated model coefficients, it is expected that a negative impact on forecast accuracy
will be observed. However, as the later following case study using real-world data shows,
the reduction in forecast accuracy is small.
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5. Simulation study

A study on simulated data investigates the ability of both algorithms to estimate time-
varying model coefficients and the related computational costs. We only consider the stan-
dard Adaptive D-MIDAS and not its communication-reduced version since the lagged cal-
culation of the denominator γt was verified to have only a small impact on the estimated
model coefficients.

5.1. Tracking of time-varying coefficients

We first generate a multivariate time series with time-varying coefficients of the form

yt = Ayt−1 + εt (34)

where εt is a vector of independent standard Gaussian noise with 0 mean and finite variance
(set to 0.1 in our experiments). Each simulated time series has 25 000 times steps. The
coefficient matrix A is further defined as

A =



0.9 0 0 0.2 0 0 0 0 0 0
0 0.8 0.1 0 0 0 0 0 0 0
0 0 0.85 0 0 0 0−0.15 0 0
0 0 0 0.75 0 0 0 0 0 0
0 0 0 0 a1 0.2 0 0 0 0
0 a2 0 0 0 0.9 0.2 0 0 0
0 0 0 0 0 0 0.85 0 0 0
0 0 0 −0.1 0 0 0 0.7 0 0
0 0 0 0 0 0 0 0 0.9 0
0 0 0 0 0.15 0 0 0 00.8


(35)

where a1 and a2 are time-varying coefficients (as illustrated in Figure 5). We performed a
Monte-Carlo simulation with 1 000 replicates to estimate the variance of â1 and â2. The
hyperparameters p and µ of the Adaptive D-MIDAS were set to 2.5 and 0.996, respectively.
In this experiment we used 6 evenly spaced (from 0.025 to 0.15) learning rates.

Figure 5 shows the temporal evolution of the mean, as well as the 5th and 95th quantiles
of the estimated coefficient distributions for a1 and a2. Both algorithms are able to track the
time-varying coefficients in expectation (the mean of the estimated coefficient distributions
follows the true values). However, some noticeable differences are observed between both
algorithms. First of all, the Adaptive D-MIDAS has a greater “burn-in” period, i.e., the
number of samples required to learn from before a fair approximation of the true coefficient
value is reached. Secondly, the spread in the estimated model coefficients for the 1 000
replicates (represented by the difference between both quantiles) increases for the Adaptive
D-MIDAS when the true coefficients change. Contrary to this, the spread in coefficient es-
timation for the OADMM is either constant or even decreases for changing true coefficient
values. The increased spread for the Adaptive D-MIDAS coefficient estimates is a conse-
quence of the faster learning rate which is required to keep track of the decreasing true
coefficient value.

This can also be observed from Figure 6, which shows the average (over all 1 000 Monte-
Carlo replicates) learning rate of the Adaptive D-MIDAS. It reveals a clear relationship
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Figure 5: Coefficient estimates obtained through the Monte-Carlo simulation. Top row: Adaptive D-MIDAS,
bottom row: OADMM

between the spread in the coefficient estimates and the best-performing learning rate (based
on (33)).

Figure 6: Average learning rate of the Adaptive D-MIDAS across all 1 000 replicates. Left a1 right a2

Thus, there is a clear trade-off for the Adaptive D-MIDAS between the variation in the
estimated model coefficients and the ability to track time-varying coefficients: when trying
to achieve a high degree of adaptivity, one has to pay the price of higher variation in the
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estimated coefficients.
A similar trade-off is observed for the OADMM, where the adaptivity is controlled by

the forgetting factor ν. When applying a smaller ν value, the algorithm becomes more
adaptive but since the effective training data length decreases the variance in the estimated
coefficient increases. However, the OADMM provides a better trade-off between adaptivity
and estimated coefficient variance due to the fact that it minimises the cumulative loss over
all past observations. Thus, occasional outliers in the form of large forecast errors have a
smaller impact on the estimated coefficients.

5.2. Computational costs

Besides assessing the ability of both algorithms to track time-varying model coefficients,
a simulation study is performed to compare the computational costs. The study estimates
the time required by each agent and algorithm to calculate a new prediction after the central
agent obtain a new data sample. To show the expected better scaling properties of the D-
MIDAS, we estimated the computational time for an increasing learning network size of
contracted agents. We again used simulated time series data that are generated with the
previously introduced approach. However, instead of creating an AR(1)-, we used an AR(4)-
process. In this study we performed online learning for 1 000 simulated time steps while
recording the time it took to complete each operation. To achieve comparability between the
Adaptive D-MIDAS and OADMM, the Adaptive D-MIDAS learned two models in parallel.
For both algorithms, this resulted in an almost equal amount of data that was exchanged
within the learning network. The simulation study was performed on a system with a i5-
5200U CPU, 8 GB DDR3 RAM and a Windows 10 OS. Because both algorithms were used
locally, we neglected the encryption and decryption steps of the Adaptive D-MIDAS. Hence,
the observed performance gap in computational speed would decrease in case encryption
was required to ensure data privacy.

Computational times are summarised in Figure 7. They were obtained by averaging the
computational time for each and every one of the 1 000 time steps. The Adaptive D-MIDAS
is faster than the OADMM overall. Furthermore, the algorithm shows a better scaling
behaviour with respect to the learning network size. This is expected since, at each and
every time t, the OADMM needs to solve a linear system of equations. Depending on the
solving technique, complexity grows at least quadratically with the number of equations.
The Adaptive D-MIDAS scales better because its updates are simple linear operations.

6. Case study

Our distributed and online learning algorithms were benchmarked on a real-world dataset
of wind power generation for 311 sites. The dataset is a subset of the one used in Girard
& Allard (2013). The temporal resolution is of 15 minutes and our subset covers 40 000
time steps, corresponding to 416 days. Figure 8 shows the location of the sites in Western
Denmark. Many sites are located in close proximity to each other. This allows accounting
for relevant spatial-temporal patterns when forecasting wind power generation for short lead
times. To highlight the benefits of online learning, we benchmarked the forecasts from our
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Figure 7: Average time (over 1 000 time steps) required by each agent to complete its tasks at a given time
step, for both OADMM and Adaptive D-MIDAS approaches, as a function of total number of agents S.

online algorithms against those that would be otinaed from L1-regularized AR-X models
with time-invariant coefficients. The model coefficients were then estimated on the training
part of the dataset only.

The benefits of exploring spatial-temporal patterns in wind power generation data have
been shown for a different subset in Messner & Pinson (2019). The authors showed that
high-dimensional regularised AR-X models outperform univariate AR models which only
use on-site power measurements. All model coefficients were estimated in a time-varying
fashion. Based on these results, we allowed ourselves to disregard univariate AR models
with time-varying coefficients in our case study.

6.1. Data preprocessing

First, the raw data was normalised by dividing the time series of each site by the respec-
tive nominal capacity. Write xs,t the normalised wind power generation observed at time
t and for site s. In addition, a logit-Normal transformation of the original time-series was
considered, as proposed by Lau & McSharry (2010), i.e., at each and every time t and site
s,

ys,t = ln

(
xs,t

1− xs,t

)
, ∀s, t . (36)

To account for the bound effects, a coarsening approach was used (Pinson , 2012), for which
values of 0 and 1 are set to 0.01 and 0.99, respectively.

22



Figure 8: Location of sites in Western Denmark.

6.2. Case study setup

The data is split into two equal sub-periods of 20 000 time steps. The first part is used
for training and hyperparameter optimisation, and the second for genuine out-of-sample
forecast verification. Over the first period, the hyperparameters of all algorithms were
optimized with a grid search scheme. After identifying suitable hyperparameters for the
Adaptive D-MIDAS, the same hyperparameters were then applied to its communication-
reduced version. The LASSO’s L1-regularisation parameter λ for the batch AR-X models
was determined through 1-fold cross-validation. For both approaches, the forgetting factors
are to be seen as variables that control how much of the past data is used for estimation.
Hence, optimising these forgetting factors through cross-validation is to be seen as equivalent
to determining an optimal training set size in the case of batch learning.

For a given site s, the Mean Absolute Error (MAE),

MAE =
1

T

T∑
t=1

|ys,t − ŷs,t| (37)

and the Root Mean Squared Error (RMSE),

RMSE =

√√√√ 1

T

T∑
t=1

(ys,t − ŷs,t)2 (38)

were used as performance metrics. To further quantify the performance of each model, the
skill score I

IS = 1− SModel

SPers

(39)
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was used to assess the improvement over persistence forecasts (the latest observed power
measurement is used as the next prediction), where S could be the metrics MAE or RMSE.

Owing to the large number of wind farms in the dataset, hyperparameter optimisation
was performed for all wind farms at once, instead of for each site individually. A set of
hyper-parameters was evaluated by considering the skill score distribution that contained
the scores of all 311 sites. The median, the lower quartile and the inter-quartile range
were used here as decision criteria. It was further decided to perform multi-step-ahead
forecasting with up to 4 steps ahead. In general, different strategies exist for multi-step-
ahead forecasting, where a good overview is presented in Ben Taieb et al. (2012). The
most common approaches are either the iterative calculations of 1-step-ahead predictions
or training separate models for each lead time. The iterative calculation of 1-step-ahead
predictions results in the accumulation of forecast errors. Therefore, we used the direct
approach and trained models for each lead time.

The hyperparameters of the Adaptive D-MIDAS and the batch AR-X model were op-
timized for each of the 4 lead times. Based on the significantly longer simulation times,
the hyperparameters of the OADMM were optimized for 1-step-ahead predictions only. The
selected hyperparameters were then applied for all other lead times. Due to the observed
longer burn-in period of the Adaptive D-MIDAS, the performance metrics were calculated
for both online algorithms only for the time steps between t =10 000 and t =20 000.

To obtain predictions for all sites of the dataset, each site took the role of the central
agent once, while acting as a contracted agent in the other 310 simulations (i.e., for all other
sites). Therefore, to obtain predictions for all sites and a single lead time, in total 311 AR-X
models were estimated.

6.3. Results

Focusing first on hyperparameter optimisation, Figure 9 gives an example of the results
obtained by optimizing the forgetting factor µ for the Adaptive D-MIDAS approach, when
performing 1-step ahead forecasting. The boxplot shows the improvement over persistence
forecasts for all 311 sites, as a function of the forgetting factor µ. Each box extends from
the lower to the upper quartile (denoted Q1 and Q3, respectively), where the horizontal
line indicates the median of the obtained RMSE skill score distributions. The maximum
length of the whiskers is set to 1.5 times the interquartile range (Q3-Q1). The upper whisker
then indicates the last sample which is found to be below or equal to the threshold of
Q3+1.5(Q3−Q1). If a data point of the distribution is found outside this range, it is classified
as an outlier and marked with a circle. The same concept applies to the lower whisker, which
marks the first sample that is found to be within the range of Q1 − 1.5(Q3 −Q1).

A µ value of 0.95 performed slightly better than the remaining selected values when
considering the aforementioned decision criteria. Therefore, this value was subsequently
selected when performing online learning to estimate the performance on unseen data. The
same approach was followed when tuning the other hyperparameters.

After finding suitable hyperparameters for both online algorithms, online learning was
performed on the complete dataset. In contrast, the batch AR-X model coefficients were
estimated over the first 20 000 time steps and then used to generate predictions over the
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Figure 9: RMSE skill score of the Adaptive D-MIDAS with reference to the persistence forecast for 1-step
ahead forecasts, as a function of the forgetting factor µ. The skill score values are computed for the time
stamps t = 10000 to t = 20000.

remaining 20 000 time steps without re-estimating the model coefficients. Results are col-
lated in Figure 10, for all approaches considered and for all sites, again with boxplots for
skill score values (both in terms of RMSE and MAE).

Overall, all online distributed learning algorithms outperform the batch learning one
(LASSO estimation in AR-X models), with the advantage that no data from contracted
agents is actually shared with the central agents. A paired t-test supported the statistical
significance by rejecting the null hypothesis of equal means at the 0.05 significance level.
The number of outliers for the batch LASSO additionally emphasises the strength of online
learning because the poor performance of batch estimation can be explained by the non-
stationarity of the wind power generation time series. Hence, there are significant differences
between the time-varying coefficients throughout the value period, and the coefficients esti-
mated over and fixed at the end of the training period. Furthermore, when computing the
bias it was observed that all forecasting models exhibit negligible bias values (not shown
here).

The results further show that OADMM, despite being computationally more expensive,
outperforms the Adaptive D-MIDAS for all lead times and skill scores. A paired t-test
also supported the statistical significance of the results here. In addition, the performance
gap increases for further lead times. This may be due to the structure and workings of
both online algorithms. Indeed, the OADMM minimises the cumulative loss over all past
observations where the covariance structures Ht and pt carry the information of all previous
samples. By varying the applied forgetting factor the number of past samples that are
effectively used to update all algorithm parameters is controlled. As a result, even when
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Figure 10: RMSE (top row) and MAE (bottom row) skill scores for the online distributed and batch learning
approaches for different lead times. The skill score values are computed over the evaluation period, from
t = 20000 to t = 40000. The dots indicate the mean of the skill score distributions.

a set of successive large forecast errors are observed, the estimated model coefficients are
less subject to variations. The Adaptive D-MIDAS on the other hand does not utilize
covariance structures to estimate model coefficients. Instead it uses the estimated gradient
of the current squared loss between the observation and prediction to re-estimate the model
coefficients. Therefore, large forecast errors directly translate to noticeable variations in the
estimated model coefficients. A resulting shortcoming may be that the algorithm could be
highly sensitive to outliers and structural breaks in the time series. While for 1-step-ahead
predictions the model coefficient update is performed right after, i.e., naturally 1 time step
after the prediction is made, for greater lead times there is a time lag because one must
wait k steps to obtain the forecast error of a k-step-ahead forecast. This, paired with the
sensitivity with respect to large forecast errors, may explain the lower forecast accuracy of
the Adaptive D-MIDAS for further lead times. As mentioned earlier within the study on
simulated data, the OADMM deals essentially better with this condition since the covariance
structures carry an inertia whereby single or multiple large forecast errors do not affect the
model coefficient estimates as much. Here it should be noted that this statement only holds
for a sufficiently large forgetting factor.
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Finally, one can verify that the communication-reduced Adaptive D-MIDAS version (Acc.
D-MIDAS) does not perform significantly worse than the standard version. Thus, this
version is an alternative in applications where re-estimating the model coefficients as quickly
as possible has a high priority.

7. Conclusions

Two novel online distributed learning algorithms, the OADMM and Adaptive D-MIDAS,
were proposed for high-dimensional AR-X model coefficient estimation to be used in wind
power forecasting. The distributed component of both algorithms enables the estimation of
AR-X models without the necessity of sharing sensitive data, such as power measurements,
directly with other agents or entities. This enables competing wind farm operators to co-
operate and collectively improve the forecasts for their sites. On the other hand, the online
component allows the estimated model coefficients to follow the time-varying conditions of
wind power generation time-series. Our main focus has been on distributed learning and
forecasting for a class of linear models. Obviously then, the quality of the forecasts obtained
is linked to the relevance of such linear models in practice. In view of the literature on
short-term wind power forecasting, AR-X models are highly relevant for the lead times and
forecasting setups considered in the paper. Some relevant generalisation could readily be
considered e.g. to some types of regime-switching models (Self-Exciting Threshold Auto-
Regressive – SETAR, and Smooth Transition Auto-Regressive – STAR). As long as the
models involved are linear and separable, the methods discussed in the paper could be used
in a similar manner. More broadly though, generalisation to nonlinear and more complex
models may be more involved.

The OADMM relies on a LASSO-type objective function to estimate the coefficients of
regularised AR-X models, in combination with an exponential forgetting factor to control
the level of adaptivity. The algorithm minimises at any time t the cumulative loss over all
observed samples (up to t), which requires the solving of a linear system of equations to
update the algorithm parameters. Due to the non-negligible time for solving large equa-
tion systems, the Adaptive D-MIDAS is subsequently introduced. Owing to its design,
all parameter updates are computationally cheaper to obtain. The algorithm is based on
a mirror descent method where the gradient of the current squared forecast error is used
to update dual variables. These are then mapped via a link function to the AR-X model
coefficients. In addition, an accelerated version of the Adaptive D-MIDAS was proposed,
i.e., a communication-reduced version. The algorithm achieves faster model coefficient re-
estimates by using the dual variables from the previous time stamp. We verified that the
impact on forecast accuracy is small.

A study on simulated data verified the ability of both algorithms to track time-varying
model coefficients. However, the OADMM approach brings a better trade-off between adap-
tivity and limited variability of the estimated model coefficients, than the Adaptive D-
MIDAS approach. Owing to its design, by minimising the cumulative loss over all past
samples, large forecast errors do not directly cause large variations in the model coefficient
estimates. The better controllability between adaptivity and the estimated model coeffi-
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cient variance is the reason why the OADMM achieves a better forecast accuracy than the
Adaptive D-MIDAS in the case study with a real-world dataset of 311 wind farms. The case
study additionally confirmed that online learning is superior to offline learning, as already
supported by previous work, although based on centralised learning algorithms.

Future works should address strategies to reduce the greater variability in the estimated
model coefficients of the Adaptive D-MIDAS. Since we only considered deterministic fore-
casting models, future works should investigate extensions of the online distributed learn-
ing algorithms for the case of probabilistic forecasting. Then, besides other proposals for
distributed online learning, and to relax the assumption such that agents are willing to col-
laborate, truthfully and rationally, it may be crucial to investigate federated learning and
data markets. These new concepts may incentivise and support improvements in forecast
quality when relevant data and features are distributed, both geographically and in terms
of ownership.
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Appendix A. Algorithms

Algorithm 1 Online ADMM

1: Central agent decides on λ, ρ, ν and L. Initialize β̂s,0, zs,0 and us,0 for s ∈ Ωs, H0, P0 and t
to be 0. To build M>M , contracted agents share M>

s Ms with the central agent j.
2: while agents want to perform distributed online learning do
3: t := t+ 1
4: ysj ,t is revealed to the central agent

5: Ht := νHt−1 + (at−1M)> (at−1M)
6: pt := νpt−1 + ysj ,t (at−1M)
7: Central agent updates zt−1 and distributes local values to contracted agents
8:

(
Ht + ρMTM

)
zt = pt + ρM>(β̂t−1 + ut−1)

9: [zs1,t, ...,zsS ,t] := zt
10: for s ∈ Ωs do
11: us,t := us,t−1 + β̂s,t−1 −Mszs,t
12: β̂s,t := Sλ/ρ (Mszs,t − us,t)
13: Agent s uses latest observation ys,t to form as,t
14: ỹs,t+1|t := as,tβ̂s,t

15: share ỹs,t+1|t, as,tMs and M>
s

(
β̂s,t + us,t

)
with central agent

16: end for
17: ŷsj ,t+1|t :=

∑
s∈Ωs

ỹs,t+1|t

18: Central agent j stacks local as,tMs and M>
s

(
β̂s,t + us,t

)
19: atM := [as1,tMs1 , ...,asS ,tMsS ]

20: M>
(
β̂t + ut

)
:=
[
M>

s1

(
β̂s1,t + us1,t

)
, ...,M>

sS

(
β̂sS ,t + usS ,t

)]
21: end while
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Algorithm 2 Adaptive D-MIDAS
1: Central agent creates decryption key K∗, selects a set of learning rates (collected in Ωη) and

shares both quantities with its contracted agents.

2: Initialize t and β̂
(η)
s,0 , θ

(η)
s,0 for s ∈ Ωs and η ∈ Ωη to be 0. Additionally, initialize CAE

(η)
sj for

η ∈ Ωη to be 0. Central agent selects µ and p but only shares p with the fusion centre and
contracted agents.

3: while agents want to perform distributed online learning do
4: t := t+ 1
5: ysj ,t is revealed to the central agent
6: for η ∈ Ωη do

7: r
(η)
t|t−1 := ŷ

(η)
sj ,t|t−1 − yt,sj

8: CAE
(η)
t = µCAE

(η)
t−1 + |r(η)

t|t−1|
9: end for

10: Central agent encrypts forecast errors with K(·) and shares them through the fusion centre
with its contract agents

11: for s ∈ Ωs do
12: Agent s decrypts forecast errors with K∗(·)
13: for η ∈ Ωη do

14: θηs,t := θ
(η)
s,t−1 − η · as,t−1r

(η)
t|t−1

15: end for
16: Transmit list of dual vectors to fusion centre
17: end for
18: Fusion centre operator computes denominators of link function, γ

(η)
t

19: for η ∈ Ωη do

20: θ
(η)
t :=

[
θ

(η)
s1,t
, ...,θ

(η)
sS ,t

]
21: γ

(η)
t := ‖θ(η)

t ‖
p−2
p

22: end for
23: Fusion centre operator shares γ

(η)
t with all agents

24: for s ∈ Ωs do
25: Agent s uses latest observation ys,t to form as,t
26: for η ∈ Ωη do

27: ∀ k, β̂(η)
s,t,k :=

sign (θ
(η)
s,t,k)|θ(η)s,t,k|

p−1

γ
(η)
t

28: ỹ
(η)
s,t|t−1 := as,tβ̂

(η)
s,t

29: Each contracted agent shares partial predictions through fusion centre with central
agent

30: end for
31: end for
32: for η ∈ Ωη do

33: ŷ
(η)
sj ,t|t−1 :=

∑
s∈Ωs

ỹ
(η)
s,t|t−1

34: end for
35: Central agent selects final prediction according to minηMAE

(η)
sj

36: end while
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