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Abstract

The interdependence between electricity and natural gas systems has lately increased due to the

wide deployment of gas-fired power plants (GFPPs). Moreover, weather-driven renewables in-

troduce uncertainty in the operation of the integrated energy system, increasing the need for

operational flexibility. Recently proposed stochastic dispatch models optimally use the available

flexibility and minimize the total expected system cost. However, these models are incompatible

with the current sequential market design. We propose a novel method to optimally define the

available natural gas volume for power production scheduling, anticipating the real-time flexibility

needs. This volume-based model is formulated as a stochastic bilevel program that aims to enhance

the inter-temporal coordination of scheduling and balancing operations, while remaining compati-

ble with the sequential clearing of day-ahead and real-time markets. The proposed model accounts

for the inherent flexibility of the natural gas system via the proper modeling of linepack capabil-

ities and reduces the total expected system cost by the optimal definition of natural gas volume

availability for GFPPs at the forward phase. The volume-based coordination model is compared

with a price-based coordination alternative, which was recently proposed. In the latter one, the

natural gas price perceived by GFPPs is similarly adjusted to enhance the temporal coordination

of scheduling and balancing stages. This comparison enables us to highlight the main properties

and differences between the two coordination mechanisms.

Keywords: OR in energy, bilevel programming, integrated electricity and natural gas systems,

market-based coordination, uncertainty.

1. Introduction

The coupling between electricity and natural gas systems has been substantially strengthened

due to the increased utilization of gas-fired power plants (GFPPs) over the last decades and this

trend is expected to continue in the foreseeable future (U.S. Energy Information Administration,
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2016; Meibom et al., 2013; Gil et al., 2014). In addition, renewable energy sources, such as wind and

solar power, already comprise a significant share of the generation mix. The co-existence of these

two types of power production plants serves as a promising combination for a smooth transition to

a sustainable energy system that is flexible enough to accommodate high shares of renewables. To

this end, the interdependence between these two energy systems will increase and the intermittency

of renewable energy sources will eventually affect the operation of both systems. Hence, there is a

compelling need to introduce mechanisms that treat these systems in an integrated manner.

The coordinated operation of electricity and natural gas systems has been extensively studied

lately. Zlotnik et al. (2017) indicate the benefits of improved coordination between the two energy

systems under high intraday variability of GFPPs’ fuel consumption. In a similar context, the

impact of natural gas supply uncertainty and price variability on the power system dispatch is

analyzed by Zhao et al. (2016), showing that these parameters can considerably alter the mar-

ket outcomes. Moreover, Correa-Posada & Sanchez-Martin (2014) highlight the benefit in terms

of improved flexibility and reliability, when accounting for the ability to store natural gas in the

pipelines, known as linepack. Therefore, both physical and economic links between electricity and

natural gas systems have an eminent role in short-term operations and are highly essential in the

presence of renewables. He et al. (2017) examine the effect of uncertain renewable power produc-

tion to the coupled energy system in a robust co-optimization framework, while Alabdulwahab

et al. (2015) utilize a model based on stochastic programming to dispatch the power system with

feasible fuel supply from the natural gas network. Moreover, Zeinalzadeh et al. (2017) consider

a joint optimization framework that utilizes GFPPs to firm up uncertain power supply from re-

newables.Taking a market perspective, Wang et al. (2018) propose an equilibrium model for the

interdependent electricity and natural gas markets that allows for short-term energy trading based

on locational marginal prices. In a similar context, this paper explores the short-term coupled oper-

ation of electricity and natural gas systems in a market framework where these energy commodities

are traded based on their marginal prices. This approach is highly relevant especially when the

two systems are operated by the same entity, e.g. Energinet.dk in Denmark, which operates both

electricity and natural gas systems (Pinson et al., 2017).

Following the paradigm of the electricity sector, the volume of natural gas traded in the spot

markets is continuously increasing (Pinson et al., 2017). Therefore, the short-term operation of

electricity and natural gas systems should be modeled following a market-based framework. The

short-term operation is mainly associated with two trading floors, namely the day-ahead and

balancing markets that are cleared in a sequential manner. The day-ahead market is settled 12-36

hours ahead of the actual system operation, while the balancing market in cleared close to real-

time operation to deal with the necessary adjustments to keep the system balanced. However, this

sequential arrangement is inefficient under high shares of stochastic renewable power production

due to its deterministic view of the uncertain renewables’ production. Stochastic programming has

been utilized to enhance the temporal coordination between these two trading floors by employing
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a probabilistic description of stochastic renewable production in an electricity-only market design

(Morales et al., 2012; Pritchard et al., 2010) but also in an integrated electricity and natural

gas market framework (Alabdulwahab et al., 2015; Ordoudis et al., 2019b). More specifically, in

(Ordoudis et al., 2019b), we proposed a coupled electricity and natural gas scheduling approach

based on two-stage stochastic programming that efficiently accounts for the dynamics of the natural

gas flow. In this work, two key coordination parameters; namely, the natural gas price and volume

availability for power production from GFPPs, were identified to have an impact on the dispatch

of the coupled energy system.

Despite that the stochastic dispatch models provide the solution with the minimum expected

system cost, they are incompatible with the current market design, while they also suffer from some

design flaws related to the violation of the least-cost merit-order principle1 as shown by Morales

et al. (2014) and Zavala et al. (2017). For this reason, several approaches have been proposed that

aim at approximating the stochastic ideal solution, while maintaining the current market archi-

tecture regarding the temporal sequence of the day-ahead and real-time trading floors. Exploiting

the natural gas price coordination parameter identified by Ordoudis et al. (2019b), we presented

a price-based coordination model in (Ordoudis et al., 2017). In particular, a systematic approach

to generate proper flexibility price signals that adjust the natural gas price perceived by GFPPs

was proposed in order to provide a market outcome that is closer the stochastic ideal solution.

In a similar vein, Morales et al. (2014) proposed an improved dispatch model that minimizes ex-

pected system’s cost and respects the merit-order principle by scheduling wind power in a value

different than its expected production, while cost recovery2 of flexible producers is guaranteed for

any realization of uncertainty. Additionally, Jensen et al. (2018) developed a framework to set

the available transfer capacity (ATC) among zones in a cost-optimal manner and attain a solution

closer to the stochastic one, while Dvorkin et al. (2019) approximated the stochastic solution by

optimally setting the reserve requirements. Finally, Delikaraoglou & Pinson (2019) proposed a

model that efficiently dispatches the power system with an optimal setting of allocation between

energy and reserves on the inter-regional HVDC interconnections. In the aforementioned works,

the system operator is able to properly tune these parameters, i.e. natural gas price, day-ahead

wind power schedule, ATCs, HVDC allocation, reserve requirements, in order to communicate

the missing information to the day-ahead stage and improve its temporal coordination with the

balancing stage.

While the end-goal of this work remains the improvement of temporal coordination between

the scheduling and dispatch operations of the integrated electricity and natural gas system, we

propose a new coordination mechanism that aims to exploit the volume link between the two

1This principle defines the ranking of power producers based on an ascending order of their short-run marginal
cost and the respective power to be generated. The power producers are thus scheduled to meet the demand in a
way that those with the lowest marginal cost are scheduled first, which results in minimizing the system cost.

2Revenue of each market participant is greater than or equal to its operating costs.
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systems as it was identified by Ordoudis et al. (2019b). To this end, we formulate a systematic

method to define the optimal natural gas volume that is made available for power production at

the day-ahead stage. This approach has a fundamental difference compared to the price-based

coordination structure proposed by Ordoudis et al. (2017), since it only adjusts purely technical

parameters at the interface of the two systems, without interfering with the economic parameters

of the market. This approach resembles the “maximum gas burn” constraint that was recently

introduced by the California Independent System Operator (CAISO) to address reliability risks

due to the limited operability of the Aliso Canyon natural gas storage facility (CAISO, 2017).

In this volume-based model, we consider the natural gas availability as a parameter that can be

controlled by the operator and we build a stochastic bilevel model to determine its optimal value,

while anticipating the future balancing needs due to forecast errors from uncertain power supply.

This mechanism aims to improve the temporal coordination between day-ahead and balancing

trading floors by preserving the existing market architecture and approximating the efficiency

of the stochastic solution that is obtained by Ordoudis et al. (2019b), under the fundamental

assumption of co-optimized scheduling and balancing operations. The natural gas availability

only affects the day-ahead schedule of the integrated energy system and the real-time balancing

takes into account the physical characteristics of the two networks. The proposed model can be

utilized to provide further insights into the economic and technical implications resulting from the

improved temporal coordination that is achieved by defining the natural gas volume availability

before any clearing procedure. Therefore, we do not advocate for the adoption of this model as an

actual market-clearing algorithm, but rather than as a decision-support tool that improves the cost

efficiency of the integrated energy system. Regarding the natural gas system modeling, we adopt

the approach proposed by Ordoudis et al. (2019b) that permits to model the linepack capability

and make optimal use of the available network flexibility. It should be noted that this detailed

gas network representation cannot be integrated in the model proposed by Ordoudis et al. (2017),

since the resulting mathematical formulation would violate the convexity requirements that are

necessary to obtain a tractable reformulation.

The remainder of the paper is organized as follows. Section 2 outlines the main properties

of each dispatch model for the integrated energy system, while the mathematical formulation is

presented in Section 3. The results are illustrated in Section 4, and Section 5 concludes the paper.

The guarantee of cost recovery for flexible producers in the sequential arrangement of day-ahead

and balancing stages is further discussed and proven in the appendix of the manuscript. A detailed

nomenclature is also provided in the appendix. For the sake of clarity and completeness, the

price-based dispatch model proposed by Ordoudis et al. (2017) is discussed and compared with the

volume-based one in the present work. Finally, additional material including some mathematical

extensions and additional results are given in the online appendix (Ordoudis et al., 2019a).
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2. Market-based Coordination

In this paper, we study four dispatch models for scheduling and balancing electricity and

natural gas systems. These models achieve different degrees of temporal coordination for the

integrated energy system. This section describes their fundamental principles and provides a

schematic representation to outline the main properties of each coordination scheme.

2.1. Sequential Dispatch of Integrated Energy System

The sequential dispatch of an integrated energy system (Seq) models a case of perfect inter-

systems coordination between electricity and natural gas networks for both day-ahead and bal-

ancing markets, as shown in Fig. 1. However, these market floors are cleared in sequential and

independent auctions, resulting to imperfect temporal coordination between the scheduling and

balancing operations. Having as input a single-valued forecast of the stochastic power production,

a common day-ahead market is cleared to obtain the initial operation schedule for both systems.

Getting closer to actual operation, when the realization of stochastic production ω′ is known, the

balancing actions to compensate for potential forecast errors are jointly optimized for both systems

through a common balancing market. Even though this sequential approach may be inefficient due

to imperfect temporal coordination, it admits an important economic property that ensures cost re-

covery for flexible producers for any realization of stochastic production, as shown in the appendix.

Assuming a co-optimization process that minimizes the combined system cost at each market stage,

this setup deviates from the current design since it does not respect the asynchronous timing and

the independent clearing of the respective markets (Hibbard & Schatzki, 2012). However, this

market model allows us to assess the net value of temporal coordination between the day-ahead

and balancing markets of interdependent energy networks.

Figure 1: Sequential dispatch of integrated energy system. DA: Day-ahead, E: Electricity, G: Natural gas, ∆E:
Electricity adjustment, ∆G: Natural gas adjustment.

2.2. Stochastic Dispatch of Integrated Energy System

To improve the temporal coordination between the scheduling and balancing operations, we

construct the stochastic coupled electricity and natural gas dispatch model (Stoch) illustrated in

Fig. 2 and previously proposed by Ordoudis et al. (2019b). Here, the day-ahead market co-

optimizes the electricity and natural gas schedules based on a probabilistic description of uncertain

supply, which allows to anticipate the cost of re-dispatch actions in real-time operation. Such

probabilistic description is based on the available forecast at the day-ahead stage and may not
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cover the exact realization in real-time. However, given that the uncertainty modelling adequately

captures the true characteristics of the stochastic processes involved, the potential realization will

be represented via a set of scenarios Ω. This market setup is mathematically formulated as a two-

stage stochastic programming problem that minimizes the total expected cost of the integrated

energy system. The definition of this model provides an ideal reference solution that attains

perfect inter-systems and temporal coordination, assuming that a realistic range and probability

distribution of scenarios are considered. However, its real-life implementation is restricted because

cost recovery for market participants and revenue adequacy3 for the system operator hold only

in expectation (Morales et al., 2012). Actually, these fundamental economic properties may be

violated for some uncertainty realizations in scenario set Ω since this model does not respect the

least-cost merit-order principle in the day-ahead market.

Figure 2: Stochastic dispatch of integrated energy system.

2.3. Volume-based Coordination in Sequential Dispatch of Integrated Energy System

Aiming to address the caveat of imperfect temporal coordination of the Seq model, while

sidestepping the design flaws of the Stoch model, we introduce a volume-based (V-B) coordination

mechanism. This mechanism leverages the physical coupling of electricity and natural gas systems

through the GFPPs to implicitly coordinate the day-ahead and balancing markets. The system

operator uses as coordination signal an amount χv of the natural gas volume that is available

to GFPPs at the day-ahead stage, while the full capacity of the natural gas network is released

during real-time operation. Note that volume χv affects only the fuel demand of GFPPs, while

industrial/commercial natural gas loads have higher priority.

A systematic method for the definition of the optimal value of χv is mathematically formulated

as the stochastic bilevel program presented schematically in Fig. 3. Similar to the Stoch model,

the upper-level problem minimizes the expected cost of the integrated system, having χv as a

non-negative decision variable. In turn, the lower-level problem reproduces the day-ahead clearing

of the integrated market for a fixed value of χv that enters the lower level as a fixed parameter.

This structure accounts for the independence of day-ahead and balancing markets, since the day-

ahead schedule that is enforced by the lower-level problem has the exact same properties as its

counterpart in the Seq model. Consequently, the re-dispatch actions are optimized individually for

each uncertainty realization in the upper level. Essentially, the optimal value of χv is found by

anticipating the day-ahead market outcome and the subsequent expected balancing cost.

3Payments made to/received from market participants do not incur financial deficit to the operator.
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Figure 3: Volume-based coordination in sequential dispatch of integrated energy system.

Regarding the analogy with the “maximum gas burn” constraint recently adopted by CAISO,

CAISO is able to limit the gas consumption of a group of generators in a defined area to increase

system reliability (CAISO, 2017). In the same vein, our volume signal χv can be applied to a

whole control zone or be tailored to specific areas or GFPPs. Nonetheless, the proposed mechanism

extends CAISO’s approach to consider primarily issues pertaining to forecast errors of stochastic

power producers.

To ensure transparency for all counter-parties, the volume signal χv has to be publicly an-

nounced. When a common volume signal χv is applied to the whole control zone, no issue of

discrimination is raised. However, when the volume signal χv affects specific areas or individual

GFPPs, the system operator has to be aware of potential discrimination issues when only specific

GFPPs are affected. It is evident that there is a trade-off between the flexibility of defining the

volume signal χv and whether this is defined system-wide or area/GFPP-specific. Similar discrim-

ination issues are raised in already established mechanisms as in the case of the “maximum gas

burn constraint” imposed by CAISO during scarcity periods of natural supply. Therefore, it is

always a relevant topic to be considered when dealing with reliability issues or when increasing

the flexibility of the system. The definition of a systematic approach to handle this issue is out of

the scope of this paper, but a potential solution could be to establish out-of-market payments to

remunerate flexible producers who face remaining opportunity costs, as currently discussed in the

European market context (Henriot & Glachant, 2014).

2.4. Price-based Coordination in Sequential Dispatch of Integrated Energy System

Apart from the physical interaction of electricity and natural gas networks, there is also an

economic link that couples the operation of these systems through the natural gas price offered to

GFPPs. Therefore, a coordination mechanism analogous to the volume-based approach outlined

above, can be established using instead a price-based (P-B) signal χp applied to the natural gas

prices. To define the optimal value of χp, we employ the stochastic bilevel optimization model that

is depicted schematically in Fig. 4 and proposed by Ordoudis et al. (2017). The construction of
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this model follows the same rationale as the volume-based coordination scheme and thus it also

preserves the independent clearing of day-ahead and balancing markets that enforces per-se the

merit-order principle.

Figure 4: Price-based coordination in sequential dispatch of integrated energy system. RT: Real-time.

This coordination mechanism allows GFPPs to utilize all available natural gas resources but can

instead control (either increase or decrease) the natural gas price that is perceived by the GFPPs

via the free in sign χp. In turn, this affects their short-term marginal costs and consequently their

price offers on the electricity side of the integrated market in both day-ahead and balancing stages.

Practically, these price signals reflect the scarcity value of flexible GFPPs for the system operator

during real-time balancing. This scarcity value quantifies how much the system operator is willing

to pay or to alter the natural gas price in order to efficiently change the merit-order of the supply

curve and schedule enough flexible resources at the day-ahead stage. An efficient scheduling of

the flexible resources improves the system response to the uncertainty and variability of renewable

energy sources. In order to ensure non-discrimination and transparency for all counter-parties,

this mechanism is designed on a cost-neutral basis such that the system operator is financially

balanced at the day-ahead stage. Potential financial imbalances in the real-time settlements can

be compensated using out-of-the-market payments as a supporting mechanism for the flexible

producers, similar to the flexible capacity remuneration mechanisms that are currently discussed

in the European electricity market context (Henriot & Glachant, 2014).

2.5. Features of Bilevel Models and Computational Tractability

Models V-B and P-B are Stackelberg games (Von Stackelberg, H., 2011) where the leader

(system operator) anticipates the decisions of the followers (market clearing stages). Moreover, as

described in Section 2.1, the market clearing consists of two stages. The first stage is the day-

ahead market, while the second stage is the balancing market due to the realization of stochastic

production ω′. Since the sequential arrangement between the trading floors is preserved with V-B

and P-B models, cost recovery for flexible producers is guaranteed for each realization of stochastic
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production. It can be noticed that in V-B implementation only the day-ahead stage needs to

be included in the lower-level problem since the natural gas volume availability χv only affects

the natural gas volume that is announced at the day-ahead market stage and then the physical

capacity of the natural gas network is made available in real-time. In the V-B model, considering

the outcomes of the day-ahead stage fixed to the optimal values of the sequential market design, the

balancing market is settled as the last trading floor and the variables of the balancing stage do not

have an impact on the solution of the day-ahead stage. Therefore, the inclusion of the balancing

in the upper-level problem is equivalent to independent balancing market clearings per scenario.

Alternatively, the formulation of the balancing stage could be included in the lower-level problem.

This would result in the same solution but at the expense of including an additional lower-level

problem per scenario ω, which would increase its computational burden. On the contrary, both

the day-ahead and balancing markets must be included in the lower-level problem of P-B, since

the price adjustment χp affects the marginal cost of GFPPs in the day-ahead market; however,

the real-time price offers have to be altered in a consistent way to preserve the incentive for the

provision of balancing services. Since the proposed dispatch models V-B and P-B are formulated

in a bilevel structure, it is necessary to ensure that the lower-level problems are linear and convex

in order to allow a single-level reformulation as a tractable mixed-integer linear program (MILP).

Therefore, we study two variants of the balancing market in the following section. The first one

directly permits the comparison between V-B and P-B since the balancing market is formulated

as a linear program (LP). On the other hand, the second variant can be applied only to V-B as it

has a detailed formulation for the gas flows in the real-time stage, which requires the introduction

of binary variables that make the problem non-convex. Finally, model V-B results in a MILP with

fewer binary variables than P-B as the balancing market is not included in the lower level. Note

that since the balancing market is not included in the lower level of V-B model, this formulation

is less computationally expensive as the number of binary variables is independent of the number

of scenarios. We refer the reader to (Pozo et al., 2017; Morales et al., 2014), for further discussion

on bilevel optimization used in similar applications.

3. Model Formulation

Before presenting the mathematical formulation of the dispatch models, we introduce a set of

assumptions made in this study. We consider a variation of the current market framework in which

the day-ahead and balancing markets are cleared separately and at each stage the electricity and

natural gas markets are co-optimized in a single optimization problem. This modeling approach

allows us to assess the benefits that our models bring in terms of improved temporal coordination

between the scheduling and balancing operations. Uncertain supply from stochastic producers is

modeled via a finite set of scenarios Ω, accounting for the temporal and spatial correlations of

the forecast errors. We assume that electricity and natural gas demands are inelastic and exactly

known, hence we take the operator’s perspective that minimizes system’s cost. The physical link
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between the electricity and natural gas systems is provided by GFPPs, where their fuel consump-

tion has a lower priority than industrial/commercial natural gas demands. The cost structure

for electricity and natural gas producers is assumed to have the form of linear functions, while

stochastic producers bid at zero marginal cost. We assume a perfectly competitive market where

the power producers are considered price-takers and therefore bidding at their marginal cost. We

focus on the two trading floors of day-ahead and balancing markets, where a zonal-based approach,

i.e. power exchange without network constraints, is used to clear the day-ahead market, while the

balancing market is formulated under two different setups. The first setup is formulated as an LP

under the assumption that the balancing market is cleared as a power exchange with additional

fuel constraints for the GFPPs based on an ex-ante estimation of pipeline capacities, similarly to

the approach used by Zhao et al. (2016). In the second setup, we introduce network constraints

for both electricity and natural gas systems4. For the power system, we adopt a linearized lossless

DC power flow, while a model that approximates gas flow dynamics via linepack consideration is

used for the natural gas system, which leads to a MILP formulation as in (Ordoudis et al., 2019b).

Note that a nomenclature is provided in the appendix.

3.1. Sequential Dispatch of Integrated Energy System

As illustrated in Fig. 1, the day-ahead and balancing markets are cleared independently in the

Seq model. Initially, the day-ahead market is formulated in (1) as follows,

min
ΘD

∑
t∈T

( ∑
ic∈Ic

Cicpic,t +
∑
k∈K

Ckgk,t

)
(1a)

s.t 0 ≤ pi,t ≤ Pmax
i , ∀i, t, (1b)

0 ≤ wj,t ≤ Ŵj,t, ∀j, t, (1c)

0 ≤ gk,t ≤ Gmax
k , ∀k, t, (1d)∑

i∈I
pi,t +

∑
j∈J

wj,t −
∑
re∈Re

DE
re,t = 0 : λ̂E

t , ∀t, (1e)

∑
k∈K

gk,t −
∑
rg∈Rg

DG
rg ,t −

∑
ig∈Ig

φigpig ,t = 0 : λ̂G
t , ∀t, (1f)

0≤
∑
t∈T

∑
ig∈Ig

φigpig ,t≤|T |
∑
k∈K

Gmax
k −

∑
t∈T

∑
rg∈Rg

DG
rg ,t, (1g)

0 ≤
∑

ig∈A
Ig
ψ

φigpig ,t ≤ Fmax
ψ,t −

∑
rg∈A

Rg
ψ

DG
rg ,t, ∀ψ, t, (1h)

where ΘD = {pi,t, ∀i, t;wj,t, ∀j, t; gk,t, ∀k, t} is the set of optimization variables. The objective

function (1a) to be minimized determines the day-ahead cost of the integrated electricity and

4The inclusion of network constraints at the balancing stage may result in higher counter-trading costs for the
system operator to ensure network feasibility.
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natural gas system, including thermal electricity producers (i.e. excluding GFPPs) ic and natural

gas producers k. Parameters Ci and Ck are production costs, and t is the index for time periods.

We have excluded the electricity cost of GFPPs ig since this is already accounted through the

cost of their natural gas consumption. Power production pi,t of power plant i (either thermal or

GFPP) is constrained by their generation capacity Pmax
i in (1b), while the power dispatch wj,t

of the stochastic (e.g. wind) electricity producer j is bounded by its expected production Ŵj,t,

calculated over scenario set Ω, in (1c). Moreover, natural gas production gk,t is constrained by the

production capacity Gmax
k in (1d) for each producer. The balance in power and natural gas systems

is enforced through (1e) and (1f), whose dual variables λ̂E
t and λ̂G

t reflect the market price for

electricity and natural gas, respectively. Note that re and rg are indices for electricity and natural

gas demands, and their loads are denoted by parameters DE
re,t and DG

rg ,t. In addition, parameter

φig refers to the power conversion factor for each GFPP. The marginal cost of each GFPP can be

endogenously calculated by the multiplication of the natural gas price and the power conversion

factor. Constraints (1g) limit the daily natural gas use of GFPPs up to the available natural

gas volume at the day-ahead stage, which is determined by subtracting the commercial/industrial

natural gas demand from the total daily available capacity. The number of time periods considered

in one day is denoted by |T |. This aggregated representation allows us to conveniently control the

natural gas consumption for the whole scheduling in the subsequent models using a single decision

variable. We introduce a specific set to group GFPPs indexed by ψ, which may comprise GFPPs in

a specific area of the natural gas system or even only a particular GFPP. Set A
Ig
ψ denotes a subset of

GFPPs belonging to the specific area ψ, while similar notation for sets A is used in all formulations.

The hourly fuel constraints are imposed in (1h), where Fmax
ψ,t denotes the maximum natural gas

availability for the specific group of GFPPs. For the sake of conciseness, we denote the power

adjustment provided by each power plant as ∆pi,ω′,t = p+
i,ω′,t− p

−
i,ω′,t with p+

i,ω′,t, p
−
i,ω′,t ≥ 0 and the

natural gas adjustment for each gas producer as ∆gk,ω′,t = g+
k,ω′,t − g

−
k,ω′,t with g+

k,ω′,t, g
−
k,ω′,t ≥ 0.

The day-ahead schedule is a fixed input (denoted with superscript ‘*’) to the balancing market

and model (2) simulates the balancing market to compensate for potential imbalances due to the

stochastic power realization Wj,ω′,t, where index ω′ denotes each specific realization:

min
ΘR

∑
t∈T

(∑
k∈K

(C+
k g

+
k,ω′,t − C

−
k g
−
k,ω′,t) +

∑
re∈Re

Csh,Elsh,E
re,ω′,t

+
∑
ic∈Ic

(C+
ic
p+
ic,ω′,t

−C−icp
−
ic,ω′,t

)+
∑
rg∈Rg

Csh,Glsh,G
rg ,ω′,t

)
(2a)

s.t − p*
i,t ≤ ∆pi,ω′,t ≤ Pmax

i − p*
i,t, ∀i, t, (2b)

− P -
i ≤ ∆pi,ω′,t ≤ P+

i , ∀i, t, (2c)

0 ≤ wsp
j,ω′,t ≤Wj,ω′,t, ∀j, t, (2d)
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0 ≤ lsh,E
re,ω′,t

≤ DE
re,t, ∀re, t, (2e)∑

i∈I
∆pi,ω′,t +

∑
re∈Re

lsh,E
re,ω′,t

+
∑
j∈J

(Wj,ω′,t − wsp
j,ω′,t − w

*
j,t) = 0 : λ̃E

ω′,t, ∀t, (2f)

− g*
k,t ≤ ∆gk,ω′,t ≤ Gmax

k − g*
k,t, ∀k, t, (2g)

−G−k ≤ ∆gk,ω′,t ≤ G+
k , ∀k, t, (2h)

0 ≤ lsh,G
rg ,ω′,t

≤ DG
rg ,t, ∀rg, t, (2i)∑

k∈K
∆gk,ω′,t+

∑
rg∈Rg

lsh,G
rg ,ω′,t

=
∑
ig∈Ig

φig∆pig ,ω′,t : λ̃
G
ω′,t, ∀t, (2j)

0≤
∑
t∈T

∑
ig∈A

Ig
z

φig(p
*
ig ,t+∆pig ,ω′,t) ≤ FA

z , ∀z, (2k)

0≤
∑

ig∈A
Ig
z

φig(p
*
ig ,t+∆pig ,ω′,t)≤FM

z,t, ∀z, t, (2l)

p+
i,ω′,t, p

−
i,ω′,t, g

+
k,ω′,t, g

−
k,ω′,t ≥ 0 (2m)

where ΘR ={p+/−
i,ω′,t, ∀i, t;l

sh,E
re,ω′,t

, ∀re, t;lsh,G
rg ,ω′,t

, ∀rg, t;g+/−
k,ω′,t, ∀k, t; w

sp
j,ω′,t, ∀j, t} is the set of optimiza-

tion variables. The cost of re-dispatch actions is minimized in objective function (2a). Balancing

offer prices C+ > C and C− < C denote the adjustment costs for thermal power plants ic and

natural gas producers k, while Csh,E and Csh,G are costs for load shedding in the two systems.

The bounds of power adjustments are defined in (2b) considering the day-ahead dispatch of the

power plants. Constraints (2c) limit power adjustments to the maximum capability P+
i and P -

i

of each power plant. Power spillage wsp
j,ω′,t and electricity load shedding lsh,E

re,ω′,t
are constrained by

the realized power production of stochastic producers Wj,ω′,t and electricity demand through (2d)

and (2e), respectively. Constraints (2f) represent the power balance in real-time operation. The

adjustment of natural gas production is limited by (2g), where day-ahead schedules are taken into

account. Additionally, constraints (2h) impose the maximum capability G+
k and G-

k of natural gas

adjustments. Natural gas load shedding lsh,G
re,ω′,t

is limited by the natural gas demand in (2i). More-

over, constraints (2j) impose real-time natural gas balance. The daily natural gas volume limit FA
z

for pipeline z is imposed by (2k), while the real-time physical pipeline capacity FM
z,t is enforced by

(2l). The upper bounds of (2k) and (2l) are calculated based on an ex-ante analysis, where the

industrial/commercial natural gas demand is subtracted by the maximum physical capacity of the

pipeline and thus no explicit description of natural gas system dynamics is included.

In the remainder of the section, we present a more detailed setup for the balancing market

where the network flows in electricity and natural gas systems are taken into account. At the
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electricity side, a DC power flow is considered with the following set of constraints,∑
i∈AIn

(p*
i,t + ∆pi,ω′,t) +

∑
re∈ARen

lsh,E
re,ω′,t

+
∑
j∈AJn

(Wj,ω′,t − wsp
j,ω′,t)

−
∑

r:(n,r)∈L

Bn,r(δn,ω′,t−δr,ω′,t) =
∑

re∈ARen

DE
re,t : λ̃

E
n,ω′,t, ∀n, t, (3a)

Bn,r(δn,ω′,t−δr,ω′,t) ≤ Fmax
n,r , ∀(n, r) ∈ L, t, (3b)

δn,ω′,t free, ∀n/n : ref, δn,ω′,t = 0, n : ref, ∀t. (3c)

More specifically, the real-time balancing is imposed for each node of the power system, hence (3a)

replaces (2f). Moreover, constraints (3b) determine the power flow between nodes n and r, where

δn,ω′,t is the voltage angle defined in (3c). The transmission capacity limits Fmax
n,r are enforced by

(3b).

At the gas side, an isothermal natural gas flow qm,u in horizontal pipelines is assumed (Borraz-

Sanchez et al., 2016). Therefore, the Weymouth equation can be used to describe the natural gas

flow from node m to u with the dependency at the pressure prm of adjacent nodes,

qm,u = Kf
m,u

√
pr2
m − pr2

u, ∀(m,u) ∈ Z, (4)

where Kf
m,u is the Weymouth constant that depends on the physical characteristics of each pipeline

(m,u) ∈ Z. Since (4) is non-linear and non-convex, we use an outer approximation by deriving

the Taylor series expansion around fixed pressure points to obtain a linear expression (Tomasgard

et al., 2007; Rømo et al., 2009). Consequently, we replace equality constraints (4) by the following

set of linear inequalities,

qm,u≤Kf
m,u

(
PRm,v√

PR2
m,v−PR2

u,v

prm−
PRu,v√

PR2
m,v −PR2

u,v

pru

)
, ∀(m,u) ∈ Z, ∀v ∈ V. (5)

where v ∈ V is the set of fixed pressured points (PRm,v, PRu,v). To ensure an efficient approxima-

tion of the equation (4), we use a large number of fixed pressure points (PRm,v, PRu,v), as proposed

by Fodstad et al. (2015). Thus, we achieve an outer approximation by the constructed planes in

(5) that are tangent to the surface defined by the Weymouth equation in (4). This results in

approximating the gas flow by the single linear constraint in (5) that is binding (Tomasgard et al.,

2007). An advanced natural gas system with linepack is modeled using the following constraints,

PRmin
m ≤ prm,ω′,t ≤ PRmax

m , ∀m, t, (6a)

pru,ω′,t ≤ Γz · prm,ω′,t, ,∀(m,u) ∈ Z, t, (6b)

qm,u,ω′,t = q+
m,u,ω′,t − q

−
m,u,ω′,t, ∀(m,u) ∈ Z, t, (6c)
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0 ≤ q+
m,u,ω′,t≤M̃m,uym,u,ω′,t, ∀(m,u) ∈ Z, t, (6d)

0 ≤ q−m,u,ω′,t≤M̃m,u(1− ym,u,ω′,t), ∀(m,u) ∈ Z, t, (6e)

ym,u,ω′,t + yu,m,ω′,t = 1, ∀(m,u) ∈ Z, t, (6f)

ym,u,ω′,t ∈ {0, 1}, ∀(m,u) ∈ Z, t, (6g)

q+
m,u,ω′,t≤KI

+
m,u,vprm,ω′,t−KO+

m,u,vpru,ω′,t +M̃m,u(1−ym,u,ω′,t),∀{(m,u) ∈ Z|m < u}, ∀v, t, (6h)

q−m,u,ω′,t≤KI
−
m,u,vpru,ω′,t−KO−m,u,vprm,ω′,t+M̃m,uym,u,ω′,t,∀{(m,u) ∈ Z|m < u}, ∀v, t, (6i)

q−u,m,ω′,t≤KI
+
m,u,vprm,ω′,t −KO+

m,u,vpru,ω′,t + M̃m,uyu,m,ω′,t, ∀{(m,u) ∈ Z|m < u}, ∀v, t, (6j)

q+
u,m,ω′,t≤KI

−
m,u,vpru,ω′,t−KO−m,u,vprm,ω′,t+M̃m,u(1−yu,m,ω′,t), ∀{(m,u) ∈ Z|m < u}, ∀v, t, (6k)

q+
m,u,ω′,t=

qin
m,u,ω′,t + qout

m,u,ω′,t

2
, ∀(m,u) ∈ Z, t, (6l)

q−m,u,ω′,t=
qin
u,m,ω′,t + qout

u,m,ω′,t

2
, ∀(m,u) ∈ Z, t, (6m)

hm,u,ω′,t=Kh
m,u

prm,ω′,t + pru,ω′,t
2

, ∀(m,u) ∈ Z, t, (6n)

hm,u,ω′,t=hm,u,ω′,t−1+qin
m,u,ω′,t−qout

m,u,ω′,t,∀(m,u)∈Z,t, (6o)∑
k∈AKm

(g*
k,t + ∆gk,ω′,t)+

∑
rg∈A

Rg
m

lsh,G
rg ,ω′,t

−
∑

ig∈A
Ig
m

φig(p
*
i,t+∆pig ,ω′,t)

−
∑

u:(m,u)∈Z

(qin
m,u,ω′,t−qout

u,m,ω′,t)=
∑

rg∈A
Rg
m

DG
rg ,t : λ̃

G
m,ω′,t, ∀m, t. (6p)

qin
u,m,ω′,t, q

out
u,m,ω′,t ≥ 0 (6q)

The bounds of pressure at each node of the system PRmin
m and PRmax

m are given by (6a), while

the active pipelines are modeled by the relation of pressures between the two adjacent nodes via a

compression factor Γz in (6b), in order to model compressors in the natural gas system (Correa-

Posada & Sanchez-Martin, 2014). More specifically, the outlet pressure at node u is greater than

the inlet pressure at node m, when the gas flow is from m to u for the active branches. The

natural gas flow qm,u,ω′,t is defined in (6c)-(6g) by two non-negative variables q+
m,u,ω′,t, q

−
m,u,ω′,t ≥ 0,

where the direction of flow is defined by the binary variable yu,m,ω′,t. Note that parameter M̃m,u

is a sufficient large constant that reflects the maximum physical capacity of each pipeline. The

physical characteristics of gas flow are introduced in (6h)-(6k) that are derived by (5) with

{
KI+

m,u,v=
Kf
m,uPRm,v√

PR2
m,v−PR2

u,v

, KO+
m,u,v=

Kf
m,uPRu,v√

PR2
m,v−PR2

u,v

,

KI−m,u,v=
Kf
m,uPRu,v√

PR2
u,v−PR2

m,v

, KO−m,u,v=
Kf
m,uPRm,v√

PR2
u,v−PR2

m,v

}
, ∀{(m,u) ∈ Z|m < u}, ∀v.

(7)
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Finally, two additional non-negative variables for the inflow and outflow of each pipeline qin
u,m,ω′,t,

qout
u,m,ω′,t ≥ 0 are introduced to model linepack flexibility. Constraints (6l) and (6m) define the flow

of each pipeline as the average of inflow and outflow (Correa-Posada & Sanchez-Martin, 2014).

The average mass hm,u,ω′,t in each pipeline is given by (6n), where Kh
m,u is a constant dependent

on pipeline characteristics. The mass conservation at each pipeline is enforced by (6o). The

natural gas balancing in the real-time is enforced by (6p) that replaces (2j). The presented model

approximates the dynamics of the natural gas system and is described in detail in (Ordoudis et al.,

2019b; Schwele et al., 2019), while a schematic representation to facilitate the relationship among

the variables of the natural gas flow is provided in the online appendix (Ordoudis et al., 2019a). We

refer the reader to (Misra et al., 2015) for a steady-state modeling of the natural gas system with

geometric programming and to (Zlotnik et al., 2015) for a transient model that closely describes

the physical behaviour of the natural gas flow. Alternative technologies, such as electricity storage,

underground natural gas storage and flexible demand, can be incorporated into the model in a

straightforward manner. In this work, the focus is placed only to natural gas storage via linepack

and therefore such alternative technologies are left for future extensions.

The zonal-based balancing market is formulated with the set of constraints (2b)-(2l). A dif-

ferent set of constraints is used for the network constrained balancing market that consists of

{(2b)-(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)}. In both cases, the objective function is (2a). We use “N ”

to determine the use of network-constrained balancing market, hence models Seq and Seq-N are

formulated. Moreover, the set of primary variables ΘR is extended with ΘEX = {δn,ω′,t, ∀n, t;
prm,ω′,t ∀m, t; q

in/out
m,u,ω′,t, q

+/-
m,u,ω′,t, hm,u,ω′,t, yu,m,ω′,t, ∀(m,u) ∈ Z, t} in Seq-N. In this model, the elec-

tricity and natural gas prices are derived as the dual variables of the balance constraints of the LP

obtained by fixing the binary variables related to the natural gas flow direction of the MILP to

the optimal values. A potential caveat of this approach, due to the non-convexity of the original

MILP, is that the resulting prices may not adequately support the economic dispatch. In that case,

corrective out-of-market payments may be considered, e.g. similar to uplift payments5 in the unit

commitment problem, to provide the right incentives to follow the dispatch instructions (Gribik

et al., 2007; O’Neill et al., 2005). The expected balancing cost over a scenario set Ω is given as the

sum of the balancing cost for each scenario ω weighed by its probability of occurrence πω.

3.2. Stochastic Dispatch of Integrated Energy System

As presented in Fig. 2, the Stoch model optimizes jointly the day-ahead and balancing stages

of the integrated electric power and natural gas systems. The problem is formulated as a two-stage

5Payments from the operator to ensure that the profit of each producer is non-negative. This mechanism is
typically used in case when generation schedules are derived from a unit commitment. In that case, energy prices
based on marginal costs are not able to support producers in recovering their total cost, since costs modelled by
non-convex binary constraints, such that start-up/shut-down costs, are not reflected in the energy prices.
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stochastic program aiming to minimize the total expected cost and writes as follows,

min
ΘSC

∑
t∈T

[ ∑
ic∈Ic

Cicpic,t +
∑
k∈K

Ckgk,t +
∑
ω∈Ω

πω

(∑
k∈K

(C+
k g

+
k,ω,t − C

−
k g
−
k,ω,t)

+
∑
ic∈Ic

(C+
ic
p+
ic,ω,t

− C−icp
−
ic,ω,t

) +
∑
re∈Re

Csh,Elsh,E
re,ω,t +

∑
rg∈Rg

Csh,Glsh,G
rg ,ω,t

)]
(8a)

s.t constraints (1b), (1d)− (1h), (8b)

0 ≤ wj,t ≤W j , ∀j, t, (8c)

constraints (2b)− (2l), ∀ω, (8d)

where ΘSC = {ΘD; ΘR
ω , ∀ω} is the set of optimization variables. In this model, the temporal

coordination of the two trading floors is achieved through the real-time constraints (8d) for all

scenarios ω ∈ Ω. When network constrains {(2b)-(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)} are introduced

to replace (8d), the model is named Stoch-N. Note that in model (8), the day-ahead dispatch of

stochastic producers is restricted by the installed capacity W j , according to (8c), instead of the

expected power generation and day-ahead dispatch decisions are treated as variables.

3.3. Volume-based Coordination in Sequential Dispatch of Integrated Energy System

According to Fig. 3, the V-B dispatch model that aims at minimizing the expected cost of

the integrated energy system and defining the optimal natural gas volume availability writes as

follows,

min
ΘVUL

(8a) (9a)

s.t (2b)− (2l), ∀ω, (9b)

0 ≤ χvψ ≤ |T |
∑
k∈K

Gmax
k −

∑
t∈T

∑
rg∈Rg

DG
rg ,t, ∀ψ, (9c)

0 ≤ χvψ,t ≤ Fmax
ψ,t −

∑
rg∈A

Rg
ψ

DG
rg ,t, ∀ψ, t, (9d)

(pi,t, wj,t, gk,t) ∈ arg
{

min
ΘVLL

∑
t∈T

( ∑
ic∈Ic

Cicpic,t +
∑
k∈K

Ckgk,t

)
(9e)

s.t constraints (1b)− (1f), (9f)

0 ≤
∑
t∈T

∑
ig∈A

Ig
ψ

φigpig ,t ≤ χvψ, ∀ψ, (9g)

0 ≤
∑

ig∈A
Ig
ψ

φigpig ,t ≤ χvψ,t, ∀ψ, t
}
, (9h)
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where ΘVUL = {χvψ, ∀ψ;χvψ,t, ∀ψ, t; ΘR
ω , ∀ω} is the set of optimization variables of the upper-level

problem. Additionally, ΘVLL = ΘD is the set of optimization variables of the lower-level problem.

The objective function of model (9) is the same as in (8). Thus, the upper-level problem minimizes

the expected cost of operating the integrated energy system by deciding the optimal value of χvψ
and χvψ,t. Variable χvψ limits the total daily natural gas consumption of GFPPs according to (9g),

while χvψ,t defines their hourly fuel limit in (9h). We define fuel availability χvψ and χvψ,t under

different setups, ranging from a single value for the whole market to individual values for specific

areas or GFPPs. Therefore, these two variables are indexed by ψ ∈ Ψ that defines the GFPPs that

are grouped together in each setup. The lower-level problem reproduces the day-ahead coupled

electricity and natural gas market. Under this setup the sequential clearing of day-ahead and

balancing markets is practically emulated, since the day-ahead decisions are fixed to the sequential

dispatch though (9e)-(9h) and the balancing market is simulated for each independent scenario

by imposing constraints (9b) for all ω ∈ Ω. The system operator has the ability to decide the

natural gas volume that will be made available for power production at the day-ahead stage within

specified limits, defined by (9c) and (9d).Note that (9c) and (9d) resemble constraints (1g) and

(1h) of Seq dispatch model. The upper-level variables χvψ and χvψ,t have an impact on the decisions

of the lower-level problem as the total fuel availability for GFPPs affects the day-ahead schedule

for power production. Moreover, the lower-level decision variables affect the total expected cost

of the integrated system. Owning to this structure, model (9) finds an appropriate dispatch that

minimizes expected system cost by revealing flexibility from GFPPs, while ensuring that the least-

cost merit-order principle is respected. The different effects of these approaches are illustrated

in the numerical study. Similarly, the model is named V-B-N with the introduction of network

constrains {(2b)-(2e),(2g)-(2i),(3a)-(3c),(6a)-(6p)} to replace (9b). The bilevel problem (9) can be

reformulated as a Mathematical Program with Equilibrium Constraints (MPEC) by replacing the

linear, and thus convex, lower-level problems by their Karush-Kuhn-Tucker (KKT) conditions as

presented in the online appendix (Ordoudis et al., 2019a).

3.4. Price-based Coordination in Sequential Dispatch of Integrated Energy System

As shown in Fig. 4, the P-B dispatch model minimizes the expected cost of the integrated

energy system and defines the optimal natural gas price adjustment. Model P-B writes as follows,

min
ΘPUL

(8a) (10a)

s.t −X ≤ χpt ≤ X, ∀t, (10b)∑
t∈T

∑
ig∈Ig

φigpig ,tχ
p
t = 0, (10c)
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(pi,t, wj,t) ∈ arg
{

min
ΘPLL

1

∑
t∈T

( ∑
ic∈Ic

Cicpic,t +
∑
ig∈Ig

Cig ,tpig ,t

)
(10d)

s.t constraints (1b), (1c), (1e), (1g), (1h), (10e)

Cig ,t = (λ̂G
t + xt)φig , ∀ig, t

}
, (10f)

(p+
i,ω,t, p

−
i,ω,t, w

sp
j,ω,t, l

sh,E
ω,t ) ∈ arg

{
min
ΘPLL

2

∑
t∈T

( ∑
ic∈Ic

(C+
ic
p+
ic,ω,t

− C−icp
−
ic,ω,t

) +
∑
ig∈Ig

(C+
ig ,ω,t

p+
ig ,ω,t

− C−ig ,ω,tp
−
ig ,ω,t

)

+ Csh,Elsh,E
ω,t +

∑
j∈J

Cspwsp
j,ω,t

)
(10g)

s.t constraints (2b)− (2f), (2k), (2l), (10h)

C+
ig ,ω,t

= (λ̃G
ω,t + xt)φig , ∀ig, t, (10i)

C−ig ,ω,t = (λ̃G
ω,t + xt)φig , ∀ig, t

}
, ∀ω, (10j)

(gk,t, λ̂
G
t ) ∈ arg

{
min
ΘPLL

3

∑
t∈T

∑
k∈K

Ckgk,t (10k)

s.t constraints (1d), (1f)
}
, (10l)

(g+
k,ω,t, g

−
k,ω,t, l

sh,G
ω,t , λ̃

G
ω,t) ∈ arg

{
min
ΘPLL

4

∑
t∈T

(∑
k∈K

(C+
k g

+
k,ω,t − C

−
k g
−
k,ω,t)

)
+ Csh,Glsh,G

ω,t

)
(10m)

s.t constraints (2g)− (2j)
}
, ∀ω, (10n)

where ΘPLL
1 = {pi,t, ∀i, t;wj,t, ∀j, t}, ΘPLL

2 = {p+
i,ω,t, p

−
i,ω,t, ∀i, ω, t; l

sh,E
ω,t , ∀ω, t; w

sp
j,ω,t, ∀j, ω, t},

ΘPLL
3 = {gk,t, ∀k, t} and ΘPLL

4 = {g+
k,ω,t, g

−
k,ω,t, ∀k, ω, t; l

sh,G
ω,t , ∀ω, t} are the sets of optimization

variables of the lower-level problems. Additionally, ΘPUL = {χpt , ∀t} is the set of optimization

variables of the upper-level problem. The upper-level problem minimizes the total expected cost

and optimally decides the value of natural gas price adjustment χpt . The lower-level problems prac-

tically simulate the sequential dispatch of day-ahead and balancing stages, since the day-ahead

decisions are fixed to the sequential dispatch via (10d)-(10f) and (10k)-(10l), while the balancing

stage is simulated for each scenario ω ∈ Ω by (10g)-(10j) and (10m)-(10n). The natural gas price

adjustment is bounded in constraints (10b) which indicates the limits that the operator is able to

vary the natural gas price perceived by GFPPs. These bounds can be set either wide enough so

that the natural gas price adjustments could be able to move the GFPPs to any position of the

supply curve or in a way that the operator will only have a smaller interference to the natural
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gas price and hence to the marginal cost of GFPPs. Equality (10c) enforces cost-neutrality at the

day-ahead stage guaranteeing that the operator will not have a financial deficit or surplus through-

out the scheduling horizon. Note that any potential deficit or surplus at the balancing stage is

expected to be reasonably small and can be addressed via proper regulation. The upper-level vari-

able χpt affects the decisions of lower-level problems by the day-ahead and balancing offer prices of

GFPPs via equality constraints (10f), (10i) and (10j), which in turn influences the objective func-

tions (10d),(10g),(10k) and (10m) in the lower-level problems. Moreover, the dispatch of GFPPs

affects the values of lower-level decision variables which then have an impact on the total expected

cost of the coupled energy system. Hence, model (10) provides the optimal system schedule that

anticipates future balancing costs and simultaneously respects the least-cost merit-order principle.

As discussed in Section 2.5, model P-B is not formulated with network constraints {(2b)-(2e),(2g)-

(2i),(3a)-(3c),(6a)-(6p)}, since the lower-level problems would include binary variables that make

them non-convex. Similarly to bilevel problem (9), bilevel problem (10) can be reformulated as an

MPEC as presented by Ordoudis et al. (2017).

3.5. Overview of Dispatch Models

Before proceeding to the numerical results, we provide an overview of the dispatch models and

their features in Table 1.

Table 1: Dispatch models’ characteristics

Fuel / Network
constraints

Seq / Seq-N Stoch / Stoch-N V-B / V-B-N P-B / -

Temporal
coordination

Imperfect Perfect Partial Partial

Coordination
mechanism

Non-existing Explicit Implicit via χv * Implicit via χp

* The value of χv can be defined for the whole market, specific areas or GFPPs.

The dispatch models are classified based on the networks’ representation in the balancing

market, as well as the temporal coordination achieved and the mechanism utilized.

4. Numerical Results

In this section, we first demonstrate the features of the four dispatch models presented in Section

2 in a tailored case study. Then, we compare the performance of the volume-based variants on a

more realistic case study.

4.1. Tailored Case-Study

4.1.1. 1-hour Simulation Results

To allow a fair comparison between P-B and V-B models, the balancing market in this illus-

trative example is modeled as a power exchange with fuel constraints for GFPPs. Moreover, we

19



assume a single type of uncertain supply that is wind power. Here, we consider a system which

comprises three thermal power plants (I1, I2 and I3), two GFPPs (I4 and I5) that acquire their

fuel from the natural gas market, one wind farm (WP) and two natural gas producers (K1 and

K2). Table 2 collects the data for the producers in both markets. The wind farm has a capacity

of 215 MW and the wind power production is characterized by two equiprobable scenarios ω1 (166

MW) and ω2 (86 MW). The offer prices for upward and downward regulation are equal to 1.1 and

0.9 of the day-ahead offer prices. In P-B, we limit the natural gas price adjustment to $1.35/kcf.

Moreover, we consider a pipeline capacity of 6,000 kcf. The cost of electricity and natural gas

load shedding is $1,200/MWh and $600/kcf, while wind spillage is cost-free. The peak electricity

and natural gas demand for industrial/commercial loads are equal to 430 MW and 3,600 kcf/h,

respectively.

Table 2: Electric power and natural gas system data (kcf: kilo cubic feet)

Unit i I1 I2 I3 I4 I5 Unit k K1 K2

Pmax
i (MW) 110 80 100 50 100 Gmax

k (kcf) 10,000 6,000
P+
i (MW) 0 10 20 30 25 G+

k (kcf) 2,500 1,000
P−i (MW) 0 10 20 30 25 G−k (kcf) 2,500 1,000
Ci ($/MWh) 10 30 60 - - Ck ($/kcf) 2 3
φig (kcf/MWh) - - - 12 18

We solve all dispatch models for 24-hours and provide detailed results for a specific time period,

where χp has a negative value. Additional results for the case that χp has a positive value are

included in the online appendix (Ordoudis et al., 2019a). Two variants of (9), where natural

gas volume availability is determined for the whole market (V-B) and for each individual GFPP

(V-B gen), are studied. In this specific time period and for all dispatch models, natural gas is

produced only by unit K1, hence the natural gas price is $2/kcf and the marginal costs of GFPPs

I4 and I5 are $24/MWh and $36/MWh.

The action of adjusting the natural gas price or volume availability becomes beneficial when

the day-ahead dispatch is altered with regards to Seq to allow more cost-effective power plants

to provide the required regulation in the balancing market. This results in an increase of the

day-ahead cost and a decrease of expected balancing cost that yields a reduction of total expected

cost.

Initially, we demonstrate the performance of all dispatch models in Table 3, when the total

electricity demand is equal to 387 MW and the wind power penetration level is 55.5%, defined as

the share of wind power capacity on total system’s electricity demand. It can be observed that

Stoch returns the lowest expected system cost and Seq the highest one due to imperfect temporal

coordination between day-ahead and balancing markets. Models P-B, V-B and V-B gen attain an

expected cost that is bounded by the ideal solution of Stoch and the one of Seq. Thus, a reduction

of expected system cost can be accomplished, while the system is still dispatched based on the

least-cost merit-order principle.
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Table 3: Expected system cost and its breakdown in $ when total power load is 387 MW
Total Day-ahead Balancing Up regulation Down regulation

Seq / V-B 10,400 9,982 418 990 -572
Stoch 10,234 10,222 12 660 -648
P-B 10,273 10,042 231 825 -594

V-B gen 10,261 10,162 99 693 -594

The detailed system dispatch is illustrated in Table 4 for an electricity demand of 387 MW.

Regarding P-B, the marginal cost of all GFPPs is affected by adjusting the natural gas price with

χpt1 = −$0.333/kcf. The decreased natural gas price of $1.666/kcf results in a lower marginal cost

for GFPP I5 equal to $30/MWh, which equals the one of unit I2. Therefore, unit I2 is dispatched

to 70 MW and GFPP I5 to 31 MW without breaking the merit order. Model V-B returns the same

results with Seq, as a change of total natural gas volume availability would not decrease the total

expected cost. On the contrary, V-B gen has a better performance due to its ability to influence

the dispatch of both GFPPs I4 and I5. Note that GFPPs I4 and I5 produce a total of 71 MW in

both Seq and V-B gen at the day-ahead stage. However, the allocation between the two GFPPs is

different and more efficient under V-B gen. More specifically, the total natural gas volume bought

by GFPPs in Seq is 987 kcf, where 600 kcf are consumed by GFPP I4 and the remaining 387 kcf

by GFPP I5. In V-B gen, the natural gas volume made available for GFPP I4 is 420 kcf, while

GFPP I5 consumes 648 kcf. The adjustment of natural gas volume availability has a direct impact

on the day-ahead dispatch which in turn reduces the total expected cost compared to Seq. The

day-ahead cost increases but this increase is counterbalanced by a greater decrease of balancing

cost. In particular, the up-regulation cost is decreased because unit I3 is not activated and the

need for up-regulation is covered by the cheaper GFPP I4. Moreover, a greater portion of the

total 40 MW needed for down-regulation is provided by GFPP I5 that is more cost-effective than

GFPP I4.

Table 4: Power system schedule in MW when total power load is 387 MW (variation from Seq day-ahead (DA)
schedule in bold)

Seq P-B V-B V-B gen Stoch

Unit DA ω1 ω2 DA ω1 ω2 DA ω1 ω2 DA ω1 ω2 DA ω1 ω2

I1 110 0 0 110 0 0 110 0 0 110 0 0 110 0 0
I2 80 -10 0 70 -10 +10 80 -10 0 80 -10 0 70 -10 +10
I3 0 0 +15 0 0 +5 0 0 +15 0 0 0 0 0 0
I4 50 -9 0 50 -5 0 50 -9 0 35 -5 +15 50 -10 0
I5 21 -21 +25 31 -25 +25 21 -21 +25 36 -25 +25 36 -25 +25

WP 126 +40 -40 126 +40 -40 126 +40 -40 126 +40 -40 121 +45 -35

The Stoch and Seq models provide the two extreme solutions in terms of expected cost for all

time periods of the scheduling horizon and serve as upper and lower bounds, respectively, for the

expected costs of P-B, V-B and V-B gen models. We perform an analogous analysis for the case

with a total power load of 344 MW where χp gets a positive value and all three improved sequential

models achieve the same expected cost with Stoch. This fact illustrates that it is possible in specific
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cases to have an efficient sequential dispatch if the future balancing costs are communicated into the

day-ahead market through the operator-defined parameters χ. The additional results are presented

in the online appendix (Ordoudis et al., 2019a), along with the development of the operator-defined

parameters χ over the scheduling horizon.

4.1.2. 24-hour Simulation Results

Additionally, we provide the following results for the whole 24-hour scheduling horizon, where

20 equiprobable wind power scenarios are utilized (available at (Bukhsh, 2017)). Fig. 5 presents

the expected cost of the integrated energy system as a function of wind power penetration level,

defined as the share of wind power capacity on total system’s electricity demand.
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Figure 5: Impact of wind power penetration level on the expected system cost.

The expected cost of Stoch is decreasing with an increase of wind power penetration and achieves

the lowest expected cost in all cases. On the other hand, model Seq becomes inefficient for a wind

power penetration level above 25%, while even an increase of the expected cost is observed when

this level is greater than 40%. The V-B and V-B gen models manage to approximate efficiently

the solution of Stoch model up to a share of 40%, where they start diverging with an increasing

tendency. Note that the expected cost of V-B gen is lower than V-B, confirming its higher flexibility

to provide an improved day-ahead dispatch. Similarly, P-B attains an expected cost close to the

one obtained by Stoch.

We now highlight the main features of the proposed dispatch models in order to provide some

additional insights regarding how the scheduling of the power plants is affected at the day-ahead

stage. All three P-B, V-B and V-B gen demonstrate a considerable ability to bridge the gap

between Seq and Stoch models. They manage to return an expected system cost closer to the

stochastic ideal solution, while still dispatch the system based on the merit-order principle and

keep the economic properties of Seq. Moreover, they can affect the system dispatch regardless

22



of the type of marginal producer, i.e. GFPP or power plant using another fuel. In models V-B

and V-B gen at least one GFPP would have to be scheduled in order to be able to improve the

dispatch of the system, while this restriction does not apply to P-B. Additionally, model V-B is

able to alter the dispatch of the GFPP with the higher conversion factor. In case the natural gas

availability is defined individually for specific areas of the system, the GFPP affected is the one

with the greater conversion factor in the specific area. Finally, V-B gen is more flexible than V-B

as it can change the dispatch of each individual GFPP. More specifically, the portion of the day-

ahead power to be produced by GFPPs can be split under different shares in order to reveal more

cost-effective regulation in the balancing market. A schematic representation of how the supply

curve is redefined under each model is presented in the online appendix (Ordoudis et al., 2019a).

4.2. Realistic Case-Study

A more realistic case study is considered to assess the performance of the proposed dispatch

model V-B-N when network constraints are included for the real-time operation of the energy

system. The integrated energy system consists of the IEEE 24-bus Reliability Test System (RTS)

(Grigg et al., 1999) and a 12-node natural gas system based on (He et al., 2017). More specifically,

there exist 12 conventional power plants, out of which 4 are GFPPs, 2 wind farms and 3 natural

gas suppliers. The offer prices for upward and downward regulation are equal to 1.1 and 0.9 of the

day-ahead offer prices. Wind power production is modeled by a set of 25 equiprobable scenarios.

The data and network topology are provided in the online appendix, available in (Ordoudis et al.,

2019a). Moreover, we introduce a new variant of (9) that defines the natural gas volume availability

for specific areas of the integrated energy system, namely V-B area. Two areas are determined

in this study including two GFPPs in each one of them. More specifically, GFPP 1 and GFPP 5

are included in area I, while GFPP 7 and GFPP 11 in area II. Similarly to Section 4.1, we also

examine V-B-N and V-B-N gen. We optimize over a 24-hour scheduling horizon and we set the

level of linepack at the end of the day equal to the one at the beginning of the day that is 448,000

kcf.

The expected system cost for different wind power penetration levels is illustrated in Fig. 6.

All models reduce the expected cost compared to Seq-N and this reduction is more significant

for higher shares of wind power penetration. Moreover, it can be observed that allowing more

degrees of freedom to define natural gas availability allows to capture more efficiently the benefits

of Stoch-N.

Additionally, we quantify the benefits of modeling the linepack in the natural gas system by

comparing the outcome of the dispatch models when a purely steady-state operation is followed.

In this case, the pipelines are not able to store natural gas, hence the inflow and outflow is equal

for each time period. Fig. 7 illustrates the relative increase in expected cost when neglecting

linepack in comparison with the expected cost presented in Fig. 6. An increase in expected cost

is observed for all dispatch models, when neglecting the linepack flexibility. Model Stoch-N is the
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Figure 6: Impact of wind power penetration level on the expected system cost.

most advanced one and accomplishes a consistent decrease of expected cost in both cases, which

is only slightly affected by wind power penetration level. On the other hand, Seq-N is the most

inefficient and has the greatest increase when linepack is ignored that results in about 3.5% for

a wind power share of 50%. Regarding the proposed volume-based dispatch models, two trends

are noticed. Initially, we observe that the more flexible the procedure is to define natural gas

volume availability, the less the outcome is altered up to a 30% wind power penetration level.

Then, the difference in expected cost is higher for V-B-N gen at higher penetration levels. This

difference though mainly stems from the efficiency of V-B-N gen to exploit the linepack flexibility

and significantly reduce the expected cost in this case, while still having an adequate performance

when linepack is neglected. The inclusion of additional storage technologies in the energy system

would increase the flexibility and decrease the value of coordination. However, the ranking in

expected operational costs among the models is expected to stay the same since there exists an

optimal definition of the coordination parameters to be made, which may depend on supply and

demand side characteristics of the energy system.

Finally, we illustrate that it is possible for flexible producers to face losses in Stoch-N as cost

recovery is only guaranteed in expectation and not for each wind power scenario. On the contrary,

models Seq-N, V-B-N, V-B-N area and V-B-N gen respect the merit-order and thus cost recovery

is ensured for each scenario. The proposed models reduce the total expected system cost, while

protecting the flexible power plants from facing negative profits in any potential realization of

uncertainty in the prescribed scenario set. In energy systems with high shares of renewables,

these characteristics are highly important in order to efficiently harness existing flexibility and

accommodate higher shares of renewables in a cost-effective manner. Table 5 presents the daily

profits for the flexible power plant I3
6 for wind power penetration level equal to 50%. For Stoch-N,

6The characteristics and location of power plant I3 are shown in the online appendix (Ordoudis et al., 2019a).
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Figure 7: Impact of wind power penetration level on the expected system cost increase when neglecting linepack
modeling.

the average losses and the probability of facing a negative profit is shown. Note that the expected

profit is significantly higher in Seq-N due to the payments to flexible producers under the very

costly balancing actions (e.g. load shedding). Such balancing actions are less often under V-B-N,

V-B-N area and V-B-N gen; hence, the expected profits are decreased for power plant I3. This is a

common observation for all flexible power plants because of the less extreme prices in the balancing

market under more efficient dispatch models. An extended discussion regarding this topic is also

provided in (Morales et al., 2014).

Table 5: Daily profits of thermal unit I3 in case wind penetration is 50%
Seq-N Stoch-N V-B-N V-B-N area V-B-N gen

Expected profit ($) 239,062 4,618 73,895 52,649 47,487
Probability of

negative profits*(%)
0 4 0 0 0

Average losses ($) 0 −46.7 0 0 0

* Based on the available scenario set Ω.

The optimization problems were solved using CPLEX 12.6.2 under GAMS on a stationary

computer with Intel i7 4-core processor clocking at 3.4 GHz and 8 GB of RAM. The average solution

time is presented in Table 6 for both case studies. It can be noticed that P-B has significantly higher

solution time. This is due to the greater number of binary variables required for the linearization

of complementarity constraints in the KKT conditions, since the balancing market is also included

in the lower-level problem of the bilevel formulation. Moreover, the time-coupling constraint that

ensures cost neutrality for the system operator at the day-ahead stage also increases the complexity

of the problem.
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Table 6: Average solution time in seconds
Model Seq Stoch V-B - V-B gen P-B

Tailored Case-Study 0.3 0.6 1.5 - 1.5 520

Model Seq-N Stoch-N V-B-N V-B-N area V-B-N gen -

Realistic Case-Study 48 1,100 2,920 1,409 1,034 -

5. Conclusion

This paper proposed a methodology to optimally define the natural gas volume availability

for power production in an integrated electricity and natural gas system under high shares of

stochastic renewables. Releasing in the day-ahead market a proper amount of natural gas to be

consumed by the GFPPs allows us to increase the efficiency of the sequential market design via

creating an implicit link between the day-ahead and balancing markets. The current sequential

market structures are highly challenged from the increased uncertainty and variability introduced

by renewables, since the description of uncertain parameters is performed in a deterministic way.

Using the stochastic dispatch model as an ideal benchmark, the proposed volume-based model

manages to bridge the efficiency gap between the sequential and stochastic dispatch models. The

optimal setting of natural gas availability is achieved through a stochastic bilevel program that

anticipates the balancing costs, while its outcome can be directly incorporated in the current

market structure. In order to fully exploit the flexibility of the integrated energy system and to

enhance the overall system efficiency, we approximate the natural gas system dynamics by modeling

linepack that plays an important role in short-term operations. Moreover, a comparison with a

price-based model that alters the natural gas price perceived by GFPPs to achieve an implicit

temporal link is performed.

Our analysis illustrated that an intelligent adjustment of natural gas volumes or price can

significantly improve the efficiency of the sequential dispatch model and bring its expected system

cost closer to ideal solution of the stochastic model. The utilization of such decision-support

tools facilitates the integration of renewables and captures the benefits of the stochastic dispatch

model, while respecting the least-cost merit-order principle and its economic properties. Hence,

the operators can directly utilize the outcomes of these decision-support tools or gain insights

about the interactions of the electricity and gas systems in order to design new market products

and refine the existing market structure. For future work, more detailed models for the electricity

and natural gas systems can be considered, as the utilization of AC power flow, the inclusion of

unit commitment constraints along with start-up and no-load costs for the thermal power plants

and the incorporation of compressors’ fuel consumption in the natural gas system. Regarding the

modeling of power plants, more details can be taken into account such as quadratic functions to

characterize fuel consumption, inter-temporal constraints, quadratic cost functions and varying

efficiency across the power production range. Finally, potential computational challenges can be

tackled by the use of decomposition techniques.
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Appendix

Proposition 1. In the sequential clearing of day-ahead and balancing markets, the profits of flexible

producers, who can be re-dispatched in real-time operation, over the scheduling horizon are non-

negative (i.e. electricity and natural gas prices guarantee cost recovery). For thermal power plants,

that is ∑
t∈T

[
pic,t(λ̂

E
t − Cic) + ∆pic,ω′,t(λ̃

E
ω′,t − Cic)

]
≥ 0 (11)

and for GFFPs that is∑
t∈T

[
pig ,t(λ̂

E
t − φig λ̂Gt ) + ∆pig ,ω′,t(λ̃

E
ω′,t − φig λ̃Gω′,t)

]
≥ 0. (12)

Proof of Proposition 1. Notice that Seq model is formulated as two optimization problems in (1)

and (2). Considering a different optimization problem for each market participant in Seq model

and the market-clearing conditions for each trading floor (i.e. day-ahead and balancing), a two-

settlement equilibrium model Seq-Eq can be formulated by writing the KKT conditions for each

individual optimization model. This set of KKT conditions is identical to those conditions associ-

ated with the Seq model, which proves that Seq and Seq-Eq are equivalent. Thus, any solution of

one model is a solution of the other model too. The aforementioned statement holds if the problems

are convex. An extensive discussion on this topic and presentation of the approach to equivalently

formulate the equilibrium and optimization models is provided by Kazempour & Hobbs (2018a)

and Kazempour & Hobbs (2018b). Focusing to the equilibrium model Seq-Eq, the profit maxi-

mization problem of each thermal power producer ic for the day-ahead stage writes as follows,

{
max
pic,t

∑
t∈T

[
pic,t(λ̂

E
t − Cic)

]
(13a)

s.t. 0 ≤ pic,t ≤ Pmax
i : µP

ic,t
, µP

ic,t

}
, ∀ic, t. (13b)
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Since program (13) is linear and thus convex, the strong duality theorem holds for the optimal

solution and ∑
t∈T

[
pic,t(λ̂

E
t − Cic)

]
=
∑
t∈T

µP
ic,tP

max
ic , (14)

where µP
ic,t
≥ 0 and Pmax

ic
≥ 0 which shows that the profits in the day-ahead market are non-

negative. Similarly, the profit maximization problem for the balancing market can be written by

having the day-ahead decision p∗ic,t fixed,{
max

∆pi,ω′,t

∑
t∈T

[
∆pi,ω′,t(λ̃

E
ω′,t − Cic)

]
(15a)

s.t. − p∗ic,t ≤ ∆pic,ω′,t ≤ Pmax
ic − p∗ic,t : µR

ic,ω′,t
, µR

ic,ω′,t, (15b)

− P -
i ≤ ∆pig ,ω′,t ≤ P+

i : µRR
ic,ω′,t

, µRR
ic,ω′,t

}
, ∀ic, ω′, t. (15c)

Furthermore, strong duality theorem for the optimal solution of program (15),∑
t∈T

[
∆pic,ω′,t(λ̃

E
ω′,t − Cic)

]
=
∑
t∈T

(
µR
ic,ω′,t(P

max
ic − p∗ic,t)+µR

ic,ω′,t
p∗ic,t+µ

RR
ic,ω′,tP

+
ic

+ µRR
ic,ω′,t

P -
ic

)
, (16)

where µR
ic,ω′,t

, µR
ic,ω′,t

, µRR
ic,ω′,t

, µRR
ic,ω′,t

≥ 0. Moreover, the quantities (Pmax
ic
− p∗ic,t), p

∗
ic,t
, P+

ic
, P -

ic
≥ 0.

Thus, the profits in balancing market are also non-negative. Since cost recovery holds for Seq-Eq

model, then it means that it is also ensured in optimization model Seq due to their equivalence. A

similar proof can be written for the GFPPs, where the marginal cost Cic is replaced by φig λ̂
G
t and

φig λ̃
G
ω′,t for the day-ahead and balancing markets, respectively. The claim then follows.

The analogous proof regarding cost recovery for flexible producers in the stochastic dispatch

model Stoch is presented by Morales et al. (2012). In this case, cost recovery holds only in expecta-

tion and not per scenario realization of stochastic power production. Morales et al. (2014) provide

a detailed discussion on the topic. Finally, a stochastic market-clearing model that ensures cost

recovery and revenue adequacy per scenario is proposed by Kazempour et al. (2018).

Nomenclature

Parameters

Γz Compressor factor located at natural gas network branch z [-].

W j Capacity of stochastic power plant j [MW].

φig Power conversion factor of natural gas-fired power plant ig [kcf/MWh].

πω Probability of scenario ω [-].

M̃m,u Sufficiently large constant for pipeline (m,u) [-].
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Ŵj,t Expected power production by stochastic power plant j in period t [MW].

Bn,r Absolute value of the susceptance of line (n,r) [per unit].

C+
i , C

−
i Up/down regulation offer price of dispatchable power plant i [$/MWh].

C+
k , C

−
k Up/down regulation offer price of natural gas producer k [$/kcf].

Csh,E Cost of electricity load shedding [$/MWh].

Csh,G Cost of natural gas load shedding [$/kcf].

Ci Day-ahead offer price of dispatchable power plant i [$/MWh].

Ck Day-ahead offer price of natural gas producer k [$/kcf].

DE
re,t Electricity demand re and in period t [MW].

DG
rg ,t Natural gas demand rg and in period t [kcf/h].

FA
z Daily contract limit of natural gas pipeline z [kcf].

Fmax
ψ,t Maximum natural gas availability for a specific area ψ containing the group of GFPPs

[kcf/h].

Fmax
n,r Transmission capacity of line (n,r) [MW].

FM
z,t Capacity of natural gas pipeline z in period t [kcf/h].

G+
k , G

−
k Maximum up/down reserve offered by natural gas producer k [kcf/h].

Gmax
k Capacity of natural gas producer k [kcf/h].

K f
m,u Natural gas flow (f) constant of pipeline (m,u) [kcf/(psig · h)].

Kh
m,u Linepack constant of pipeline (m,u) [kcf/psig].

P+
i , P

−
i Maximum up/down reserve offered by dispatchable power plant i [MW].

Pmax
i Capacity of dispatchable power plant i [MW].

PR
min/max
m Minimum and maximum pressure at node m [psig].

Wj,ω,t Power production by stochastic power plant j in scenario ω, period t [MW].

X Limit of natural gas price adjustment [$/kcf].

Sets

Ω Set of stochastic power production scenarios ω.

Ψ Set of groups of natural gas-fired power plants located in a specific area ψ.

Θ Set of primal optimization variables defined for each optimization model.

A
Ig
ψ Set of natural gas-fired power plants ig located in a specific area ψ.

A
Ig
m Set of natural gas-fired power plants ig located at natural gas network node m.
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AKm Set of natural gas producers k located at natural gas network node m.

A
Rg
m Set of natural gas demands rg located at natural gas network node m.

AIn Set of dispatchable power plants i located at electricity network node n.

AJn Set of stochastic power plants j located at electricity network node n.

ARen Set of electricity demands re located at electricity network node n.

I Set of dispatchable power plants i.

Ic Set of thermal power plants ic (Ic ⊂ I).

Ig Set of natural gas-fired power plants ig (Ig ⊂ I).

J Set of stochastic power plants j.

K Set of natural gas producers k.

L Set of electricity transmission lines l.

M Set of natural gas network nodes m.

N Set of electricity network nodes n.

Re Set of electricity demands re.

Rg Set of natural gas demands rg.

T Set of time periods t.

V Set of fixed pressure points v for the linearization of Weymouth equation.

Z Set of natural gas network branches z.

Variables

χpt Natural gas price adjustment in period t [$/kcf].

χvψ,t Hourly natural gas volume availability for GFPPs’ group in specific area ψ in period t [kcf].

λ̂E
t Electricity locational marginal price in day-ahead market at period t [$/MWh].

λ̂G
t Natural gas locational marginal price in day-ahead market at period t [$/kcf].

χvψ Daily natural gas volume availability for GFPPs’ group in specific area ψ [kcf].

δ̃n,ω,t Voltage angle at node n in scenario ω, period t [rad].

λ̃E
n,ω,t Electricity locational marginal price in balancing market at node n in scenario ω, period t

[$/MWh].

λ̃G
m,ω,t Natural gas locational marginal price in balancing market at node m in scenario ω, period

t [$/kcf].

g
+/−
k,ω,t Up/down regulation provided by natural gas producer k in scenario ω, period t [kcf/h].

gk,t Day-ahead dispatch of natural gas producer k in period t [kcf/h].
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hr
m,u,ω,t Average mass of natural gas (linepack) in pipeline (m,u), scenario ω, period t [kcf].

l
sh,E/G
n/m,ω,t Electric power and natural gas load shedding at node n/m in scenario ω, period t [MW,

kcf/h].

p
+/−
i,ω,t Up/down regulation provided by dispatchable power plant i in scenario ω, period t [MW].

pi,t Day-ahead dispatch of power plants i in period t [MW].

prr
m,ω,t Pressure at node m in scenario ω, period t [psig].

q
in/out,r
m,u,ω,t In- and outflow natural gas rates of pipeline (m,u) in scenario ω, period t [kcf/h].

qm,u Natural gas flow in pipeline (m,u) [kcf/h].

wsp
j,ω,t Power spilled by stochastic power plant j in scenario ω, period t [MW].

wj,t Day-ahead dispatch of wind power plants j in period t [MW].

yr
m,u,ω,t Binary variable defining the direction of the natural gas flow in pipeline (m,u), scenario ω,

period t {0,1}.

References

Alabdulwahab, A., Abusorrah, A., Zhang, X., & Shahidehpour, M. (2015). Coordination of interdependent natural

gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling.

IEEE Transactions on Sustainable Energy , 6 , 606–615.

Borraz-Sanchez, C., Bent, R., Backhaus, S., Hijazi, H., & Van Hentenryck, P. (2016). Convex relaxations for gas

expansion planning. INFORMS Journal on Computing , 28 , 645–656.

Bukhsh, W. (2017). Data for stochastic multiperiod optimal power flow problem.

https://sites.google.com/site/datasmopf/ Accessed 20.11.18.

CAISO (2017). Aliso Canyon gas-electric coordination. http://www.caiso.com/Documents/DraftFinalProposal-

AlisoCanyonGas-ElectricCoordinationPhase3.pdf Accessed 20.11.18.

Correa-Posada, C. M., & Sanchez-Martin, P. (2014). Integrated power and natural gas model for energy adequacy

in short-term operation. IEEE Transactions on Power Systems, 30 , 3347–3355.

Delikaraoglou, S., & Pinson, P. (2019). Optimal allocation of HVDC interconnections for exchange of energy and

reserve capacity services. Energy Systems, 10 , 635–675.

Dvorkin, V., Delikaraoglou, S., & Morales, J. M. (2019). Setting reserve requirements to approximate the efficiency

of the stochastic dispatch. IEEE Transactions on Power Systems, 34 , 1524–1536.

Fodstad, M., Midthun, K. T., & Tomasgard, A. (2015). Adding flexibility in a natural gas transportation network

using interruptible transportation services. European Journal of Operational Research, 243 , 647–657.

Gil, J., Caballero, A., & Conejo, A. J. (2014). Power cycling: Ccgts: The critical link between the electricity and

natural gas markets. IEEE Power and Energy Magazine, 12 , 40–48.

Gribik, P., Hogan, W., & Pope, S. (2007). Market-clearing prices and energy uplift. Online:

https://sites.hks.harvard.edu/fs/whogan/Gribik Hogan Pope Price Uplift 123107.pdf.

Grigg, C., Wong, P., Albrecht, P., Allan, R., Bhavaraju, M., Billinton, R., Chen, Q., Fong, C., Haddad, S., Kuruganty,

S., Li, W., Mukerji, R., Patton, D., Rau, N., Reppen, D., Schneider, A., Shahidehpour, M., & Singh, C. (1999).

The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application

of probability methods subcommittee. IEEE Transactions on Power Systems, 14 , 1010–1020.

31



He, C., Wu, L., Liu, T., & Shahidehpour, M. (2017). Robust co-optimization scheduling of electricity and natural

gas systems via ADMM. IEEE Transactions on Sustainable Energy , 8 , 658–670.

Henriot, A., & Glachant, J.-M. (2014). Capacity remuneration mechanisms in the European market: Now but how?

European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS), .

Hibbard, P. J., & Schatzki, T. (2012). The interdependence of electricity and natural gas: Current factors and future

prospects. The Electricity Journal , 25 , 6–17.

Jensen, T. V., Kazempour, J., & Pinson, P. (2018). Cost-optimal ATCs in zonal electricity markets. IEEE Transac-

tions on Power Systems, 33 , 3624–3633.

Kazempour, J., & Hobbs, B. F. (2018a). Value of flexible resources, virtual bidding, and self-scheduling in two-

settlement electricity markets with wind generation - part I: Principles and competitive model. IEEE Transactions

on Power Systems, 33 , 749–759.

Kazempour, J., & Hobbs, B. F. (2018b). Value of flexible resources, virtual bidding, and self-scheduling in two-

settlement electricity markets with wind generation - part II: ISO models and application. IEEE Transactions on

Power Systems, 33 , 760–770.

Kazempour, J., Pinson, P., & Hobbs, B. F. (2018). A stochastic market design with revenue adequacy and cost

recovery by scenario: Benefits and costs. IEEE Transactions on Power Systems, 33 , 3531–3545.

Meibom, P., Hilger, K. B., Madsen, H., & Vinther, D. (2013). Energy comes together in denmark: The key to a

future fossil-free danish power system. IEEE Power and Energy Magazine, 11 , 46–55.

Misra, S., Fisher, M. W., Backhaus, S., Bent, R., Chertkov, M., & Pan, F. (2015). Optimal compression in natural

gas networks: A geometric programming approach. IEEE Transactions on Control of Network Systems, 2 , 47–56.

Morales, J. M., Conejo, A. J., Liu, K., & Zhong, J. (2012). Pricing electricity in pools with wind producers. IEEE

Transactions on Power Systems, 27 , 1366–1376.

Morales, J. M., Zugno, M., Pineda, S., & Pinson, P. (2014). Electricity market clearing with improved scheduling of

stochastic production. European Journal of Operational Research, 235 , 765–774.

O’Neill, R. P., Sotkiewicz, P. M., Hobbs, B. F., Rothkopf, M. H., & Stewart, W. R. (2005). Efficient market-clearing

prices in markets with nonconvexities. European Journal of Operational Research, 164 , 269 – 285.

Ordoudis, C., Delikaraoglou, S., Kazempour, J., & Pinson, P. (2019a). Electronic companion - Market-based coordina-

tion of integrated electricity and natural gas systems under uncertain supply. https://zenodo.org/record/3596909

Accessed: 02.01.2020.

Ordoudis, C., Delikaraoglou, S., Pinson, P., & Kazempour, J. (2017). Exploiting flexibility in coupled electricity and

natural gas markets: A price-based approach. In 2017 IEEE Manchester PowerTech (pp. 1–6).

Ordoudis, C., Pinson, P., & Morales, J. M. (2019b). An integrated market for electricity and natural gas systems

with stochastic power producers. European Journal of Operational Research, 272 , 642 – 654.

Pinson, P., Mitridati, L., Ordoudis, C., & Østergaard, J. (2017). Towards fully renewable energy systems : Experience

and trends in Denmark. CSEE Journal of Power and Energy Systems, 3 , 26–35.

Pozo, D., Sauma, E., & Contreras, J. (2017). Basic theoretical foundations and insights on bilevel models and their

applications to power systems. Annals of Operations Research, 254 , 303–334.

Pritchard, G., Zakeri, G., & Philpott, A. (2010). A single-settlement, energy-only electric power market for unpre-

dictable and intermittent participants. Operations Research, 58 , 1210–1219.

Rømo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B. H., & Pedersen, B. (2009). Optimizing the

Norwegian natural gas production and transport. Interfaces (Providence), 39 , 46–56.

Schwele, A., Ordoudis, C., Kazempour, J., & Pinson, P. (2019). Coordination of power and natural gas systems:

Convexification approaches for linepack modeling. In 2019 IEEE Milan PowerTech (pp. 1–6).

Tomasgard, A., Rømo, F., Fodstad, M., & Midthun, K. (2007). Optimization models for the natural gas value chain.

In G. Hasle, K.-A. Lie, & E. Quak (Eds.), Geometric Modelling, Numerical Simulation, and Optimization: Applied

Mathematics at SINTEF (pp. 521–558). Berlin, Heidelberg: Springer Berlin Heidelberg.

32



U.S. Energy Information Administration (2016). International Energy Outlook 2016 . Technical Report May 2016

U.S. Energy Information Administration.

Von Stackelberg, H. (2011). Market Structure and Equilibrium. Springer Berlin Heidelberg.

Wang, C., Wei, W., Wang, J., Wu, L., & Liang, Y. (2018). Equilibrium of interdependent gas and electricity markets

with marginal price based bilateral energy trading. IEEE Transactions on Power Systems, 33 , 4854–4867.

Zavala, V. M., Kim, K., Anitescu, M., & Birge, J. (2017). A stochastic electricity market clearing formulation with

consistent pricing properties. Operations Research, 65 , 557–576.

Zeinalzadeh, A., Aguiar, N., Baros, S., Annaswamy, A. M., Chakraborty, I., & Gupta, V. (2017). Using natural gas

reserves to mitigate intermittence of renewables in the day ahead market. In 56th IEEE Annual Conference on

Decision and Control (CDC) (pp. 3896–3901).

Zhao, B., Conejo, A. J., & Sioshansi, R. (2016). Unit commitment under gas-supply uncertainty and gas-price

variability. IEEE Transactions on Power Systems, 32 , 2394–2405.

Zlotnik, A., Chertkov, M., & Backhaus, S. (2015). Optimal control of transient flow in natural gas networks. In 54th

IEEE Conference on Decision and Control (CDC) (pp. 4563–4570).

Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., & Andersson, G. (2017). Coordinated scheduling for interdepen-

dent electric power and natural gas infrastructures. IEEE Transactions on Power Systems, 32 , 600–610.

33


