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Abstract

Wind power forecasts with lead times up to a few hours are essential to optimally and economically

operate power systems and markets. Vector autoregression (VAR) has shown to be a well suited

framework to simultaneously predict for several wind farms by considering the spatio-temporal

dependencies in their time series. Lasso penalisation yields sparse models and can avoid overfitting

the many coefficients in higher dimensional settings. However, estimation in VAR models usually

does not account for changes in the spatio-temporal wind power dynamics that are related to e.g.,

seasons or wind farm setup changes. To tackle this problem this paper proposes a time-adaptive

Lasso estimator and an efficient coordinate descent algorithm to update the VAR model parameters

recursively online. On simulated data this approach shows good abilities to track changes in the

multivariate time-series dynamics. Furthermore, two case studies show a clearly better predictive

performance than non-adaptive lasso VAR and univariate auto regression.
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1. Introduction

Over the past decades wind power has experienced substantial growth and has become an

important power source in many countries. However, the variable nature of wind power production

challenges power systems and electricity markets and requires reliable generation forecasts, e.g.,

for operation of reserves or wind farm control.

Wind power forecasting has been a very active field of research and a variety of different methods

have been proposed in the past decades. An overview of short-term wind and wind power prediction

models can be found in Giebel & Kariniotakis (2017) or more focused on probabilistic approaches

in Bessa, Möhrlen, Fundel, Siefert, Browell, Haglund El Gaidi, Hodge, Cali & Kariniotakis (2017).

In general, these approaches can be distinguished into purely data-driven statistical time-series

models and methods that employ physical (numerical weather prediction) models. It is commonly
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agreed that for very-short-term forecasts (approx. < 6 hours) statistical time-series models are

superior to numerical models, which often have computation times longer than the look-ahead

time.

Often, these statistical time-series models use only local data from the forecast site itself (e.g.,

Giebel & Kariniotakis, 2017; Pinson & Madsen, 2012) but it has been shown in various studies that

forecasts can be considerably improved by additionally using data from surrounding sites or weather

stations. E.g., Gneiting, Larson, Westrick, Genton & Aldrich (2006) showed that surrounding

meteorological observations can improve 2-hour ahead wind speed forecasts in a regime-switching

space-time diurnal model, Hering & Genton (2010) extended this model by regarding wind direction

as a circular variable and by using a skew-t error distribution, and clear spatio-temporal correlations

of wind power forecast errors were also found in Tastu, Pinson, Kotwa, Madsen & Nielsen (2011)

and Tastu, Pinson, Trombe & Madsen (2014).

With the increasing number of wind power installations a wealth of data has become available.

However, to exploit this high amount of data, advanced time-series models are required, which

can take into account the important spatio-temporal dependencies while not overfitting the large

number of coefficients to the training data. Furthermore, computational efficiency and scalability

to a high number of forecast sites is crucial when dealing with bigger data sets.

Several approaches have been proposed for forecasting a set of spatially distributed wind farms

while taking into account the spatio-temporal dependencies between them. These involve e.g.,

a sparse online warped Gaussian process model (Kou, Gao & Guan, 2013) or a sparse Gaussian

random fields model (Wytock & Kolter, 2013). Because of their computational efficiency, vector

autoregressive (VAR) models (Tastu et al., 2014; He, Vittal & Zhang, 2015) have recently received

increased attention. With the aim to derive forecasts for a large number of wind farms, Dowell

& Pinson (2016) proposed a sparse VAR model with a state-of-the art method for sparse VAR

coefficient matrices (Davis, Zang & Zheng, 2016), which avoids overfitting. A similar approach was

proposed by Cavalcante, Bessa, Reis & Browell (2017) where sparsity is achieved by lasso (least

absolute shrinkage and selection operator) regularisation (Tibshirani, 1996).

Wind power generation and its dynamics clearly vary with e.g., weather conditions, seasons, or

changes in the wind farm installations and various studies have shown for univariate wind power

time series that models that can adapt to these variations are of clear advantage (e.g., Møller,
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Nielsen & Madsen, 2008; Pinson & Madsen, 2009, 2012; Pinson, 2012). One simple approach to

achieve this adaptivity, which is also employed by Dowell & Pinson (2016), is fitting the forecast

models on sliding training windows. However, this requires storing data for the whole training

period and refitting the model each time new data become available. Especially for computation-

ally expensive multivariate time-series models, this can clearly limit their applicability for higher

dimensional data. More advanced adaptive models have been used extensively for univariate wind

power time series (e.g., Møller et al., 2008; Pinson & Madsen, 2009, 2012; Pinson, 2012) but so

far have not been applied to multivariate time series. Most of these models achieve adaptivity by

exponentially forgetting past data (i.e., putting less weight in the parameter estimation on data

further in the past), which allows for very efficient online updates each time new data becomes

available while not requiring to store past data.

This paper applies these ideas to multivariate time series and proposes an adaptive extension of

lasso VAR. It is also based on exponential forgetting and we present a coordinate descent algorithm

(Friedman, Hastie, Höfling & Tibshirani, 2007) for efficient online updates, which is similar to the

time-weighted lasso approach of Angelosante, Bazerque & Giannakis (2010) to find sparse signals.

The ability of this approach to track changes in multivariate time-series dynamics is illustrated

on simulated data. Furthermore, the predictive performance is tested on wind power data from

172 sites in Western France as well as on a set of 100 wind farms in Denmark.

The remaining document is structured as follows: First, lasso VAR and its adaptive extension is

presented in Section 2. Subsequently, a simulation study in Section 3 shows the tracking ability of

this approach. Section 4 presents the case studies and their results and a summary and conclusion

can be found in Section 5.

2. Lasso Vector Auto Regression (Lasso VAR) and its Adaptive Extension

In the following we regard a multivariate time series with yt[i] being the wind power output at

time t ∈ 1, . . . , T and at wind farm i ∈ 1, . . . , Q. The goal is to derive predictions for these power

outputs at time t based on the previous outputs at times t− 1, t− 2, . . .

2.1. Lasso Vector Auto Regression (VAR)

Before describing the multivariate VAR model, we want to first only regard the univariate time

series at a single wind farm i. The dynamics of such time series can be described by auto regressive
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models (e.g., Pinson & Madsen, 2012), which assume the output at time t to depend linearly on

the outputs at previous time steps

yt[i] =

L∑
l=1

alyt−l[i] + et (1)

where al, l = 1, . . . , L are the model coefficients, L is the order of the auto regressive model (i.e., the

number of considered lags), and et are independent errors with zero mean and constant variance.

Forecasts can be derived from this model as
∑L

l=1 alyt−l[i]. Note that here and in the following we

assume the yt[i] to be centred (zero mean) to avoid an intercept term in (1).

For a set of wind farms one could simply apply this model for each wind farm individually.

However, it can clearly be of advantage to exploit spatio-temporal correlations in the data by also

considering previous outputs of other wind farms than the wind farm to be forecast. For a vector

of power outputs yt = (yt[1], yt[2], . . . , yt[Q])> at Q wind farms at time t this can be expressed in

a vector auto regressive (VAR) model

yt =
L∑
l=1

Alyt−l + εt (2)

where Al are coefficient matrices, and εt are independent multivariate errors with zero mean and

constant positive-semidefinite covariance matrix Σ. VAR forecasts ŷt are derived by

ŷt =
L∑
l=1

Alyt−l (3)

Note that (2) and (3) provide 1-step ahead forecasts and also the following descriptions will regard

this specific case. Typical strategies for multi-step ahead forecasts include iterative computation

of one-step ahead forecasts from predictions of prior time steps or directly fitting separate models

for each required forecast lead time. For a review of these and other multi-step ahead forecasting

strategies see e.g. Ben Taieb, Bontempi, Atiya & Sorjamaa (2012). In our case studies we used

the direct approach, which avoids accumulation of forecast errors. For these direct k-step ahead

forecasts (k = 1, 2, . . .), the sums in (2) and (3) are replaced by
∑L

l=1Alyt−l−k+1.

Commonly, the VAR coefficient matrices Al are estimated by minimising the sum of squared

errors over a training data set
T∑
t=1

||yt − ŷt||22 (4)

4



where ||x||p =
(∑Q

i=1 |x[i]|p
)1/p

is the p-norm with Q the number of elements in a vector x =

(x[1], x[2], . . . x[Q])>.

The squared loss in (4) has the advantage that an analytical solution exists for Al. However, the

number of coefficients increases quadratically with the number of sites so that, for larger numbers

of considered sites, the very high number of fitted coefficients can easily lead to overfitting and

deteriorate the predictive performance, especially when only small training samples are available.

Lasso regularisation (Tibshirani, 1996) is a popular and powerful method to avoid overfitting

in various regression problems and Cavalcante et al. (2017) also proposed to use it for multivariate

wind power forecasting. It penalises the absolute coefficient values which leads to some coefficients

shrunk to zero and thus to sparse coefficient sets.

To extend VAR with lasso regularisation, a penalty term is added to the loss function (4)

1

2

T∑
t=1

||yt − ŷt||22 + λ
L∑
l=1

||Al||1 (5)

where ||B||1 =
∑Q

i=1

∑P
j=1 |B[i, j]| with B[i, j] being the entry in the ith line and jth column of a

Q times P matrix B. The regularisation parameter λ controls the sparsity and shrinks coefficients

of less important cross correlations to zero so that the coefficient matrices become sparse and only

the cross correlations are selected that contribute most to the prediction.

Unfortunately, no analytical solution exists for the minimum of (5) so that the coefficient

matrices have to be estimated numerically. Cyclic coordinate descent is one of the most popular

numerical optimisation approaches for lasso problems and is particularly efficient to estimate the

coefficients for a sequence of different values of the penalisation parameter λ (Friedman et al., 2007;

Friedman, Hastie & Tibshirani, 2010). This algorithm takes advantage of the fact that a simple

analytical expression exists for the partial optimum of (5) with respect to one coefficient given

that all other coefficients are fixed. Cyclic coordinate descent uses this expression to successively

update the coefficients in repeated cycles until convergence. Such an update for Al[i, j] (entry in

ith row and jth column of coefficient matrix Al) has the form (Friedman et al., 2007)

Al[i, j]←
S
(∑T

t=1 yt−l[j](yt[i]− ŷ
(j,l)
t [i]), λ

)
∑T

t=1 yt−l[j]
2

(6)
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where S() is the soft thresholding operator:

S(z, γ) = sign(z)(|z| − γ)+ =


z − γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 if γ > |z|

(7)

and ŷ
(j,l)
t [i] is the fitted value for yt[i] (cf. (2)) excluding the contribution from yt−l[j]:

ŷ
(l,j)
t [i] = ŷt[i]−Al[i, j]yt−l[j] (8)

This cyclic coordinate descent algorithm is particularly efficient if solutions for a sequence of

different λ are desired. Starting from a high λ (i.e., such that all coefficients are 0) λ is successively

decreased. By using the coefficient estimates from the previous λ as starting values the algorithm

usually converges very fast and is computationally remarkably efficient (Friedman et al., 2007,

2010).

2.2. Adaptive Lasso VAR and Recursive Online Estimation

Lasso VAR has been shown to be a well suited method to capture linear dependencies in high

dimensional wind power time series (Cavalcante et al., 2017). One crucial assumption of this model

is stationarity in these dependencies. However, changes in the wind power production dynamics

caused by e.g., different weather situations, seasons, or changes in wind park installations can make

wind power time series clearly non-stationary. One approach to account for these changes is to

put more weight on more recent data so that data further in the past is neglected in the coefficient

estimation. E.g., Pinson, Christensen, Madsen, Sørensen, Donovan & Jensen (2008); Møller et al.

(2008); Pinson & Madsen (2012) proposed exponential forgetting of past data in univariate time-

series models. This exponential forgetting can also easily be incorporated in lasso VAR by adding

weights νT−t to the loss function (5):

1

2

T∑
t=1

νT−t||yt − ŷt||22 + λ

L∑
l=1

||Al||1 (9)

where the forgetting factor ν ∈ (0, 1) determines the degree of forgetting and typically has values

only slightly below 1. Usually it is more informative to interpret the forgetting factor in terms of

the effective training data length that is given by 1/(1− ν).
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The exponential forgetting can also easily be considered in the coefficient estimation by slightly

modifying the update in (6) to (c.f., Friedman et al., 2010)

Al[i, j]←
S
(∑T

t=1 ν
T−tyt−l[j](yt[i]− ŷ

(j,l)
t [i]), λ

)
∑T

t=1 ν
T−tyt−l[j]2

(10)

Clearly, such an exponential forgetting approach only makes sense if the coefficient matrices

are re-estimated regularly, preferably every time step. However, for higher dimensional data sets,

completely re-fitting the weighted lasso VAR in each time step can easily become computationally

infeasible.

In the following we present a recursive estimation algorithm for adaptive lasso VAR. This

algorithm is based on the work of Angelosante et al. (2010) who proposed a recursive estimation

of standard lasso regression and uses similar ideas as Pinson & Madsen (e.g., 2009) or Møller

et al. (2008). The basic idea is to re-run the cyclic coordinate descent algorithm in each time

step but take the coefficient estimates from the previous time step as starting values. Since the

coefficients are expected to only vary slowly, the updated coefficients should be very similar to the

previous time step so that the algorithm should converge after only few iterations. Moreover, with

the exponential weighting, the terms in (6) can be updated very efficiently. Therefore the first

argument in the softthresholding function in (10) can be rewritten as

T∑
t=1

νT−tyt−l[j](yt[i]− ŷ
(j,l)
t [i]) = R0,l,T [i, j]−

L∑
m=1

Rm,l,T [j, ]>Al[i, ] + Rl,l,T [j, j]Al[i, j] (11)

and the denominator as
T∑
t=1

νT−tyt−l[j]
2 = Rl,l,T [j, j] (12)

where

Rm,l,T =

T∑
t=1

νT−tyt−my>t−l (13)

With Rm,l,T−1,m = 0, . . . , L, l = 1, . . . , L known from the previous time step, Rm,l,T can be derived

by

Rm,l,T = νRm,l,T−1 + yT−my>T−l (14)

Thus, compared to a complete-refitting, the number of operations is substantially reduced.

Furthermore, data has only to be stored L time steps back so that this algorithm is also very
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memory efficient. Algorithm 1 summarises these updates that are performed each time new data

becomes available.

Algorithm 1 Online lasso VAR update

acquire new data yt

for l = 1 . . . L do

update Rm,l,T according to (14)

end for

repeat

for l = 1 . . . L; i = 1 . . . P ; j = 1 . . . P do

update Al[i, j] according to (10)

end for

until convergence

For each update of the coefficient matrices, firstO(L2Q2) operations are required for the updates

(14). Additionally, (11) requires O(Q) operations, a full cycle through all Q2 coefficients thus

requires O(L2Q3) operations. Thus, the computation time increases approximately cubically with

Q and quadratically with L.

The adaptive lasso VAR model has two hyperparameters: the regularisation parameter λ and

the forgetting factor ν. Clearly the optimum values for these parameters also interact with each

other, since with a higher forgetting rate the model should be sparser to not overfit the smaller

effective training data set.

To find the optimum regularisation parameter λ for a given forgetting factor we run the online

lasso VAR algorithm for a sequence of different regularisation parameters. The prediction in

each time step is then taken from the λ which has the minimum weighted sum of squared errors∑T−1
t=1 ν

T−t−1||yt − ŷt||22. Following Friedman et al. (2010) the set of λ is a sequence of K values

decreasing from λmax to ξλmax on the log scale. λmax is the minimum λ for which all coefficients

are zero and is given by the maximum entry of rl,T over all l. Thus, λmax is not constant so that

the sequence of λ has to be updated in each online update. In our simulation and case studies we

use K = 10 and ξ = 0.0001.
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As noted above, the VAR model assumes centred yt which for the adaptive VAR means

T∑
i=1

νT−tyt = 0 (15)

To achieve this property the raw data ỹT is centred by

yT = ỹT −
∑T

t=1 ν
T−tỹt∑T

n=1 ν
T−t

(16)

Note that similar updates to (??) and (14) can also be used to update the right expression in (16).

3. Simulation study

Before testing the adaptive lasso VAR on real data we want to show their ability to adapt

to changes in synthetic data. Therefore we simulated a vector time series of length 15000 (cor-

responding to approx. 1/2 year of data with 15 min temporal resolution) as a VAR process of

order 1

yt = Ayt−1 + ε (17)

where ε is a vector of independent standard normal random numbers and the lag-1 dependencies

are specified by the matrix

A =



0.9 0 0.1 0 0 0 0 0 0 0

0 a1 0 0 0 0 0 0 0 0

0 0 0.8 0 0 0 0 0 0 0

0 0 a3 0.9 0 0 0 0.2 0 0

0 0 0 0 0.8 0 0 0 0 0

0.1 0 0 0 0 0.9 0 0 0 −0.1

0 0 0 0 0 a2 0.8 0 0 0

0 0 0 0 0 0 0 0.7 0 0

0 0 −0.1 0 0 0 0 0 0.9 0

0 0 0 0 0 0 0 0 0 0.9



(18)

where a1, a2, and a3 are time varying coefficients that are shown as dashed black curves in Figure 1.

The coefficient a1 is oscillating slowly between 0.7 and 0.9 with a period of 30000 and is supposed

to simulate seasonal changes. The coefficient a2 is constant at 0.2 for the first 7500 time steps and
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Figure 1: True correlation parameters (dashed black lines) and estimated coefficients from adaptive lasso VAR with

forgetting factor 0.999 (i.e., effective training data length of 1000; red lines) and 0.99 (i.e., effective training data

length of 100; blue lines)

then abruptly switches to 0 for the remaining 7500 time steps. Such a parameter change could e.g.,

be related to a shut down of one wind farm. Finally, a3 switches every 1000 time steps between 0

and 0.3. A lagged correlation between sites is likely to depend strongly on the wind direction so

that these parameter switches could be interpreted as changes in the wind direction.

Figure 1 also shows coefficient estimates from two adaptive lasso VAR models with different

forgetting factors. After an initial burn-in period the true parameters a1 and its slow changes are

estimated quite well by both models but with much noisier estimates for the lower forgetting factor

of 0.99. Similarly, also the parameter a2 is estimated well and both models also can adapt to the

abrupt change at time step 7500. However, with the higher forgetting factor the transition clearly

takes longer. The model with the smaller forgetting factor can also reasonably follow the regular

switches of a3. However, the model with the higher forgetting factor clearly adapts too slowly to

follow these changes. This is not surprising since its effective training data length of 1000 has the

same order as the period of the changes.

Lasso regularisation shrinks less important coefficients to zero where the strength of this shrink-

age is specified by the regularisation parameter. However, in Figure 1, even for the time steps when

a2 and a3 are truly zero, their estimates are not exactly zero all the time. Figure 2 shows the full

estimated coefficient matrices of the model with the higher forgetting factor for different time steps.

There it also can be seen that not only the non-zero parameters but also some of the truly zero
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Figure 2: Estimated lag-1 coefficient matrices for the simulated time series from adaptive lasso VAR with forgetting

factor 0.999. The estimates are taken from the time steps 5000 (left), 10000 (center), and 15000 (right). The crosses

indicate entries with truly non-zero parameters.

parameters have non-zero estimates. For the smaller forgetting factor the matrices look similar but

are even less sparse (not shown). A larger penalisation parameter would lead to sparser coefficient

matrices but also imposes a bias on the parameter estimates (i.e., smaller absolute value). Here,

the penalisation parameter was selected to optimise the predictive performance so that apparently

it is of advantage to have less sparse matrices but with less biased coefficient estimates. Note that

the size of the simulated data set is also rather big compared to the number of estimated coefficients

so that overfitting is not a real issue and these non-zero estimates for actually zero parameters are

very close to zero.

Clearly, there is a trade-off between low forgetting factors that can better follow fast changes

in the time-series dynamics and high forgetting factors that provide more stable parameter esti-

mates. Figure 3 compares the predictive performance of adaptive lasso VAR models with different

forgetting factors. For the most part, the higher forgetting factor provides better forecasts, which

indicates that the more stable parameter estimates more than compensate for the worse tracking

of a3. However, after the abrupt change of a2 at time step 7500 the lower forgetting factor pro-

vides comparable or better forecasts approximately until time step 9000 when also the model with

the higher forgetting factor has adapted to this change. Figure 3 also compares a non-adaptive

lasso VAR (batch VAR) and a lasso VAR, which was fitted on a sliding training window. The

non-adaptive lasso VAR was fitted only on the first 5000 time steps and then used to predict the

remaining 10000 time steps. This model has a comparable performance up to time step 7500 but
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Figure 3: Mean squared error as moving average over 500 time steps of the simulated time series. The red curve is

for the adaptive lasso VAR with a forgetting factor of 0.999 (i.e., effective training data length of 1000), the blue

curve for the adaptive lasso VAR with forgetting factor of 0.99 (i.e., effective training data length of 100) and the

green curve for a non-adaptive lasso VAR, fitted only on the first 5000 time steps. The dashed vertical line indicates

the time step with the abrupt change in the parameter a3.

since it can not adapt to the change in a2 its predictions are clearly worse for the remaining time

period. The sliding training window model also has a comparable but slightly worse performance

than the online VAR with the comparable effective training data length. However, the computation

time is approximately 20 times longer than for the online VAR model.

4. Case studies

The previous section showed on simulated data that adaptive lasso VAR is well suited to adapt

to slow parameter changes. This section investigates in two case studies how this model performs on

real wind power data. First, two data sets from France and Denmark are described and analysed.

Subsequently, the performance of adaptive lasso VAR is evaluated on these data sets.

4.1. Raw data

4.1.1. Western France

As one of the data sets we use data from 183 wind farms located in Western France with

nominal power between 800 kW and 16.3 MW. The data set consists of wind power generation
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Figure 4: Partial correlation of lag-1 data from surrounding wind farms conditional on lag-1 data from the two wind

farms shown as black dots. Other wind farm locations are shown as red dots.

data of these wind farms from 2013-01-01 to 2014-01-01 in 10 minute temporal resolution.

We use only data from 2013 and removed 11 wind farms for which parts of the data were

missing. This results in a data set of 172 wind farms with 52561 time steps. The locations of these

wind farms are shown as dots in Figure 4.

4.1.2. Denmark

As a second data set we use data of 100 wind farms in Denmark from 2011-01-01 to 2012-01-01

in 15 minute temporal resolution. The resulting data set covers 35036 time steps and Figure 5

shows the respective locations of the wind farms.

This data set is also a subset of the data set that was used by Girard & Allard (2013) to show

the spatio-temporal correlation of wind power forecasting errors.

4.2. Data processing

For both data sets, first the power output data were normalised to lie in [0, 1] through dividing

by the nominal power of the respective wind farm. Clearly, capacity changes of wind farms should

be taken into account for this normalization. Furthermore, following Pinson (2012) the data were

logit transformed so that they can approximately be modelled as autoregressive processes with
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Figure 5: Same as Figure 4 but for Denmark

Gaussian noise. For normalised original data x this logit transformation is

y = log

(
x

1− x

)
(19)

where log() is the natural logarithm. x values of 0 and 1 are set to 0.01 and 0.99 respectively.

Pinson (2012) used a generalised version of this logit transformation with an additional prior

power transformation of x. However, for simplicity we omit this generalisation here.

To facilitate the interpretation of the coefficient matrices (see Section 4.4), both data sets with

Q (number of sites) columns and N (number of time steps) rows were sorted with respect to the

longitude so that the first columns contain data from the most western wind farms and the last

columns corresponds to the most eastern wind farms. Thus, close stations are also close in the

data matrix.

4.3. Data analysis

Figure 4 and 5 show the partial correlation of lag-1 data from other sites, i.e., the correlation

between the forecast site (black dot) and lag-1 data from the other sites where the linear dependency

on lag-1 data at the site itself has been removed. Clear positive partial correlations with close sites,

especially in Denmark, indicate that these close sites can provide useful predictive information.

Furthermore, sites to the west of the regarded location have higher partial correlations which can

be associated with the prevailing westerly wind directions in these regions.
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4.4. Results

This section applies and tests adaptive lasso VAR on the data sets described above. To eval-

uate the predictive performance of these approaches we use different benchmark models. As the

simplest benchmark approach we use persistence (i.e., the forecasts are equal to the last available

observations), which for the considered look-ahead times (10 minutes to 1 hour) is known to already

provide good predictions (Giebel & Kariniotakis, 2017).

To investigate the advantage of spatio-temporal modelling, we also compare adaptive univariate

auto regressive (AR) models (e.g. Pinson et al., 2008), which we apply individually to each of the

wind farms, i.e., models of the form (1) that were fitted by minimising a similar loss function as

(5) but with λ = 0.

Finally, we also compare non-adaptive lasso VAR (batch lasso VAR) models to test the benefits

of the proposed adaptive fitting. These models are of the form (2) and (5) but with ν = 1 and are

estimated only on the first 20000 time steps without any later updates. The optimum penalisation

parameters λ for these batch lasso VAR models were found in a 10-fold cross validation. Therefore

the training time series were split into 10 approximately equally sized parts and predictions for

each of these parts were derived from batch lasso VAR models trained only on the 9 remaining

parts. The optimum penalization parameter was then chosen from the model with the minimum

mean squared error of these predictions.

All the results that are shown in the following are derived on the data excluding the first

Ntr = 20000 (10000 to find optimum number of lags and forgetting factor) time steps in order to

have independent forecasts for batch-VAR and a sufficient burn-in period for the adaptive models

to provide meaningful predictions. As performance measure we use the bias

bias =
1

N −Ntr

N∑
n=Ntr+1

yn − ŷn (20)

the root mean squared error (RMSE )

RMSE =

√√√√ 1

N −Ntr

N∑
n=Ntr+1

||yn − ŷn||22 (21)

and the mean absolute error (MAE )

MAE =
1

N −Ntr

N∑
n=Ntr+1

||yn − ŷn||1 (22)

15



Lag−1 coefficient matrix

site

si
te

50

100

150

50 100 150

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag−2 coefficient matrix

site

si
te

50

100

150

50 100 150

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag−3 coefficient matrix

site

si
te

50

100

150

50 100 150

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Estimated adaptive lasso-VAR lag 1 to 3 coefficient matrices of 1-step ahead forecasts for the France data.

Estimates are taken from the last time step in the data set

For better comparison, we mainly regard skill scores of the RMSE and MAE , which show the

improvement over persistence

1− S

Spers
(23)

where S is the respective forecast performance measure (RMSE or MAE ) and Spers is the perfor-

mance measure of persistence.

4.4.1. France

This subsection tests the adaptive lasso VAR on the France data, results for the Denmark data

are presented in the next subsection. Before regarding the predictive performance, Figure 6 shows

estimates of the coefficient matrices from a lag-3 adaptive lasso VAR for one step ahead. The coef-

ficient matrices are quite sparse and clearly, the lagged data from the forecast sites themselves are

the most important so that the coefficients on the diagonal have the highest values. Furthermore,

there are also some non-zero coefficients close to the diagonal, which correspond to spatio-temporal

correlations between close wind farms. It is also interesting to see that there are more non-zero

coefficients below the diagonal than above. Because the data were sorted from west to east, these

coefficients correspond to sites west of the forecast site, which are also expected to have more

valuable information in the prevalent westerly wind conditions. This is also consistent with the

analysis in Figure 4. Figure 6 shows the coefficient matrices from the last time step in the data

set. Clearly, for the adaptive lasso VAR these estimates are not constant and change slightly with

every adaptive online update in every time step. However, the general patterns of the matrices
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Figure 7: 1-step ahead forecasts and measurements for Turbine 1 from 2013-12-31 00:10:00 to 2014-01-01 00:00:00

look very similar for other time steps within the data period (not shown).

Figure 7 shows a one-day example time series of one turbine and the corresponding 1-step

ahead forecasts from adaptive lasso VAR (online VAR) and adaptive univariate AR (online AR).

The forecast models follow the general signal of the measurements but especially significant changes

clearly lag one time step. The differences between the uni- and multivariate models are only small,

which is not surprising since the off diagonal coefficients in the multivariate model are only small

(first rows of matrices in Figure 6). Still, there are differences between the forecasts and in the

following their impact on the predictive performance will be investigated.

Figure 8 shows the bias of the adaptive lasso VAR (online VAR) for different look ahead times

and compares it to adaptive univariate AR (online AR) and batch lasso VAR (batch VAR). All

forecast methods have an average bias of zero, however, batch VAR exhibits relatively high biases

for some of the wind farms (larger spread). This indicates that the dynamics of these wind farms

experience systematic changes, which can not be followed by the non-adaptive batch VAR.

Figure 9 shows similar plots for the RMSE and MAE skill scores. The RMSE skill scores (top

row) show clearly positive skill (i.e., better predictive performance than persistence) for all forecast

methods at all lead times. The skill generally increases with the look-ahead time which mainly

results from the decreasing performance of persistence. When comparing the different forecast

models with each other, the univariate AR is clearly worst, which indicates that for this data

17



set, it is of clear advantage to exploit spatio-temporal information. Furthermore, the adaptive

lasso VAR performs better than the batch lasso VAR, which confirms that the time series are not

completely stationary so that adaptiveness in the lasso VAR models is clearly beneficial. Paired

t-tests confirmed the significance of the RMSE differences between the different forecast models at

a 0.05 level and a closer analysis showed that online VAR provides the best forecasts for almost all

wind farms (only at one wind farm at 10-minute ahead batch VAR provides smaller RMSE).

The MAE (bottom row) show similar differences between the forecast methods and online lasso

VAR clearly performs best of the 3 tested methods (paired t-test significant at 0.05 level). However,

all methods perform worse compared to persistence and the univariate AR and batch lasso VAR

have mainly negative skill scores. The MAE of the adaptive lasso VAR are similar to that of

persistence for 10- and 20-minute ahead forecasts but is slightly better for 30- and 40-minute

ahead predictions (i.e., positive MAE skill score). The good RMSE but rather poor MAE skill

scores may be explained by the fact that all models optimize the squared rather than the absolute

error.

For the results that are shown in Figure 6 and 9 we used a forgetting factor of 0.9998, which

corresponds to an effective training data length of 5000, and 3 lags. This selection is based on Fig-

ure 10 that shows that these are the optimum parameters for 1-step ahead forecasts when regarding

the time steps 10001 to 20000. Additionally, paired t-tests confirmed the best performance of these

selected parameters at a 0.05 level. Clearly, different values for these parameters could be better

for other look-ahead times. Furthermore, Figure 10 also does not account for likely dependencies

between these two parameters. However, for simplicity and because a complete grid optimisation

of the two parameters would computationally be very expensive we take these parameters for all

look-ahead times. Furthermore the batch lasso VAR and the adaptive univariate AR also use this

same number of lags and the adaptive univariate AR also the same forgetting factor. The optimum

penalisation parameter λ for the adaptive lasso VAR was chosen adaptively, based on the past

weighted predictive performance (see Section 2.2) while it was selected by cross validation for the

batch lasso VAR.

4.4.2. Denmark

In the following, a similar analysis as above is carried out for the Denmark data. Figure 11

shows that, compared to the France data, a slightly different forgetting factor (0.999 or effective
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Figure 8: Bias for different lead times for the logit transformed France data. The solid circles mark the medians,

the boxes the interquartile range, and the whiskers the most extreme values of the 172 score values for the different

sites. The models were fitted with 3 lags, batch VAR was fitted on the first 20000 time steps, and online AR and

online VAR use a forgetting factor of 0.9998. The biases are derived for time steps 20001 to 52561.
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lead times for the France data. The same models are used as in Figure 8.
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training data length of 1000) and a higher number of lags (4) are optimal.

Therefore, Figure 12 shows a similar figure as Figure 6 but with estimated coefficient matrices for

lags 1 to 4. Similar to Figure 6 the diagonal entries for lag-1 have the highest values. Furthermore,

most other non-zero entries are close to the diagonal (correlations with close wind farms) and,

consistent with Figure 5, the higher correlations with locations to the west (below diagonal entries)

are even more pronounced. However, different to Figure 6 these patterns are much less pronounced

in the lag-2 to lag-4 matrices and especially for the higher lags there are also a number of negative

coefficients (red).

Despite these differences the predictive performance of the different forecasts in Figures 13 and

14 are similar to the France data and adaptive lasso VAR clearly performs best for most lead times

and performance measures. Only for the MAE at lead times 15 and 30 minutes the difference

between batch VAR and online VAR are not significant in a t-test at a 0.05 level. A closer analysis

showed that online VAR performs best at almost all wind farms for longer lead times and in the

RMSE. Different to the France data, batch lasso VAR also have mainly positive MAE skill scores

which is most probably related to the worse performance of persistence at the longer lead times

(15 to 60 minutes versus 10 to 40 minutes).

5. Summary and Conclusion

This paper presents an appealing method for forecasting wind power generation at multiple

wind farms, which takes into account sparse spatio-temporal dependence structures and can adapt

to changes in the time-series dynamics. Therefore, lasso vector autoregression (VAR) is extended

with exponentially decaying weights for past data to allow the model to adapt to changes in the

spatio-temporal dependencies. Furthermore a coordinate descent algorithm for very efficient online

updates is presented.

On simulation data this approach shows very good tracking abilities of slow continuous changes

and reasonable abilities to follow abrupt changes in the time-series parameters. Two case studies

with wind power data from western France and Denmark show that the adaptive lasso VAR can

clearly improve the predictions compared to non-adaptive lasso VAR (similar to Cavalcante et al.,

2017) and an adaptive univariate auto regressive model (e.g. Pinson et al., 2008). Lasso VAR on a

sliding training data window showed also comparable forecast skill on the simulated data but the
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Figure 12: Estimated adaptive lasso-VAR lag 1 to 4 coefficient matrices for one step ahead forecasts for the Denmark

data. Estimates are taken from the last time step in the data set
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Figure 14: RMSE skill score (bottom row) and MAE skill score (top row) with reference to persistence for different

lead times for the Denmark data. The same models are used as in Figure 13.
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higher computational costs (approx. factor of 20 compared to adaptive lasso VAR for the simulated

data) make it almost infeasible to be used for larger data sets.

For fitting adaptive lasso VAR the penalisation parameter, the number of lags, and the forget-

ting factor have to be specified. The selection of these parameters can have a great impact on the

forecast performance and the optima of these parameters might interact with each other and might

not be constant over time. In our study we fit parallel models for a sequence of penalisation param-

eters and in each time step choose the parameter with the smallest error measure in the preceding

time steps. The forgetting factor and the number of lags were set to fixed values chosen based on

an independent validation period. A future extension could be a dynamic forgetting factor, similar

to the scale parameter tracking in Dowell & Pinson (2016), which could further improve the ability

of the model to adapt to abrupt changes.

For higher numbers of wind farms the number of VAR coefficients quickly becomes larger than

the available data length so that regularization is crucial to solve this ill-posed problem. Alternative

to penalizing the absolute coefficients (lasso), it is also common to penalize the squared coefficients

(ridge regression; Hoerl & Kennard, 1970). However, compared to lasso, ridge regression does not

provide sparse coefficient matrices, which are usually easier to estimate and interpret. Nevertheless,

similar ideas as presented in this paper could also be used for adaptive VAR with ridge regression

or elastic net regularization, which combines lasso and ridge regression (Zou & Hastie, 2005).

Similarly, also different sparse structures such as those proposed in Cavalcante et al. (2017) could

be imposed by modifying the penalization term.

This paper only regarded deterministic multivariate predictions. However, similar to Dowell &

Pinson (2016) probabilistic forecasts could easily be generated by interpreting these predictions as

conditional means of Gaussian distributions.

We found that for our data sets the optimum forgetting factor is too large to track diurnal trends

and changes at time scales in the order of days. Diurnal trends are not very pronounced in our

data but changes at time scales in the order of days occur frequently as a result of weather regime

changes. Especially changes in the wind direction are supposed to clearly effect the spatio-temporal

correlation pattern. Therefore, future work should investigate adaptive lasso VAR extensions with

wind direction, the diurnal cycle, or other additional covariables. Additionally, regime or Markov

switching (Pinson et al., 2008; Pinson & Madsen, 2012) could be an attractive extension to our
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proposed approach.

Compared to 22 wind farms in Dowell & Pinson (2016) and 66 in Cavalcante et al. (2017) we

used relatively big data sets with 100 and 172 wind farms. Running adaptive lasso VAR over one

year with 172 wind farms and 52561 time steps takes approx. 1.5 hours on a Notebook with a

4 × 2.3GHz Intel i5 processor and 12 GB memory. Thus even bigger data sets are still feasible

and in an operational setting the coefficients can be updated in less than a second each time new

data becomes available. To facilitate applications and extensions we implemented the adaptive

lasso VAR algorithm in the software package onlineVAR (Anonymous, 2017) for the open source

software R (R Core Team, 2017). This package also includes a data set of 22 wind farms in south

eastern Australia (see also Dowell & Pinson, 2016), which is smaller but similar to the data sets

used in the presented case studies.
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