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Abstract—Two desirable properties of electricity market mech-
anisms include: i)revenue adequacy for the market, and ii) cost re-
covery for all generators. Previously proposedstochastic market-
clearing mechanisms satisfy both properties in expectation only,
or satisfy one property by scenario and another in expectation.
Consequently, market parties may perceive significant risks to
participating in the market since they may lose money in one
or more scenarios, and therefore be discouraged from offering
in the market or perhaps even from investing. We develop a
stochastic two-stage market-clearing model including day-ahead
and real-time settlements with an energy-only pricing scheme
that ensures both properties by scenario. However, this approach
is cost-inefficient in general and may sacrifice other desirable
market attributes. Undesirable consequences include: onegroup
of participants will have to pay more to ensure that all other
participants have their costs covered, and thus their prices will
not be equilibrium supporting; and day-ahead and real-time
prices are not arbitraged in expectation, although this canbe
fixed by allowing virtual bidders to arbitrage but at the potential
cost of increased market inefficiency. Considering these pros and
cons, we propose our model as an appropriate tool for market
analysis, and not for clearing actual markets. Numerical results
from case studies illustrate the benefits and costs of the proposed
stochastic market design.

Keywords: Two-stage stochastic market clearing, revenue
adequacy, cost recovery, equilibrium

NOTATION

Indices and Sets:

d Index for loads
i Index for conventional generators
k Index for wind power generators
n,m Indices for nodes
s Index for wind power scenarios
v Index for virtual bidders
Φn Set of nodes connected to noden
Ψn Set of generators and loads located at noden
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Constants:

Bn,m Susceptance of transmission line (n,m) [S]
Ci Offer price of generatori [$/MWh], equal to its

marginal cost
Fn,m Capacity of transmission line (n,m) [MW]
Ld Power consumption of loadd [MW]
Pmax
i Capacity of generatori [MW]

P
adj
i Maximum power adjustment limit of generatori in

real-time market [MW]
Vd Value of lost load for loadd [$/MWh]
Wk,s Wind power realization of generatork in real-time

market under scenarios [MW]
Wmax

k Installed capacity of wind power generatork [MW]
φs Probability of scenarios

Day-ahead scheduling variables (first-stage):

bDA
v Trading quantity of virtual bidderv [MW]

fDA
n,m Power flow from noden to nodem [MW]

lDA
d Power consumption of loadd [MW]

pDA
i Power output of generatori [MW]

wDA
k Power output of wind generatork [MW]

θDA
n Voltage angle of noden [rad]

Real-time operation variables (second-stage):

bRTv Trading quantity of virtual bidderv [MW]

fRT
n,m,s Power flow from noden tom under scenarios [MW]

lRTd Incremental power consumption of loadd [MW]

lshedd,s Involuntarily shedding of loadd under scenarios
[MW]

pRTi,s Power adjustment of generatori under scenarios
[MW]

wRT
k,s Deviation of wind generatork under scenarios

[MW]
θRTn,s Voltage angle of noden under scenarios [rad]

Dual variables:

λDA
n Day-ahead locational marginal price at noden

[$/MWh]
λRT
n,s Probability-weighted real-time locational marginal

price at noden under scenarios [$/MWh]
µ,ρ Set of dual variables corresponding to day-ahead and

real-time constraints, respectively



IEEE TRANSACTIONS ON POWER SYSTEMS 2

I. I NTRODUCTION

DUE to an increasing contribution of renewable energy
sources to electricity markets, new mechanisms are

needed to cope with their production uncertainty.Stochastic
market clearinghas been proposed by many researchers, and
could have a number of benefits in terms of managing vari-
ability and uncertainty more efficiently. In stochastic market-
clearing models, uncertain parameters, e.g., wind power pro-
duction, are characterized through a finite set of plausible
scenarios and their corresponding probabilities. Compared to a
deterministic model with a certain wind forecast, the stochastic
one, in theory, leads to a lower expected system cost, assuming
that a realistic range and probability distribution of scenarios
are considered. The reason for this is that in the deterministic
model, the operational reserve requirements are enforced via
exogenous values, while those requirements are endogenously
optimized within the stochastic market-clearing model.

In general, it is desirable that any market-clearing model,
either deterministic or stochastic, has a pricing scheme that has
the following two short-run properties: i)revenue adequacyfor
the market, and ii)cost recoveryfor each generator and for
transmission operator, in which market revenues cover short-
run (but not necessarily capital) costs. The first property,i.e.,
revenue adequacy, refers to a condition in which the market
operator never incurs a financial deficit. In other words, the
payments that the market operator receives from consumers
is higher than or equal to its payment to the generators, cur-
tailed loads and transmission operator.1 The second property,
i.e., cost recovery, corresponds to a condition in which the
short-run profit (or “gross margin”) of each generator, either
conventional or non-dispatchable renewable, and transmission
operator is non-negative, i.e., the revenue of that player is
higher than or equal to its operating costs.

A barrier for stochastic market clearing is that heretofore
no stochastic market design has been proposed that is simul-
taneously revenue adequate for the market and allows for cost
recovery for all generators through market prices. Standard
US practice (uplifts to cover losses) is not revenue adequate
[1]-[2], and market parties will be distrustful of a stochastic
system with probabilities they do not control and that could
expose them to losses in some scenarios.

In this paper, we are interested in answering the following
technical questions: is it possible to design a stochastic market-
clearing mechanism that would satisfy revenue adequacy and
cost recovery for each individual scenario? And if so, what
is the “price” of doing so in terms of sacrificing other
desirable market attributes? To answer these questions, we
consider a two-settlement electricity market, including day-
ahead (DA) and real-time (RT) settlements, and propose a
stochastic clearing model. This proposed mechanism is in fact

1We note that the issue of revenue inadequacy is also frequently discussed
in the context of financial transmission rights (FTR); revenue adequacy for
FTRs is defined as occurring when the market operators congestion revenues
are assured to be at least as much as the payouts to FTR holders. This
issue is distinct from the issue of bid cost recovery and subsequent uplifts
to consumers that we focus on in this paper, since market operators do not
consider FTR revenue adequacy when determining cost recovery payments
to generators or uplifts charged to consumers. Therefore, we do not consider
revenue adequacy issues associated with FTRs in this paper.

a stochastic equilibrium problem that can be recast as a mixed-
integer linear programming (MILP) problem.

A. Literature Review and Contributions

There are several strands in the literature that have revisited
conventional deterministic market designs under renewable
uncertainty. The first strand maintains the deterministic and
sequential structure of real-world electricity markets [3], but
introduces new market products, e.g., flexible ramp [4]-[5].
These new products help deterministic mechanism to become
more flexible against wind power uncertainty. The second
strand explores a “robust” design for market clearing [6]-[9].
This mechanism considers an uncertainty set for the deviation
of wind power production from the conditional mean forecast
in DA, and then clears market optimally against the worst-case
realization while ensuring that the outcomes are feasible for
any potential wind realization within the uncertainty set.

The third strand, which is the focus of our paper, defines
and analyzes stochastic market-clearing mechanisms [10]-[12],
which consider a set of scenarios based on possible DA wind
and load forecast errors. This stochastic clearing mechanism
makes the DA decisions while explicitly recognizing what
adjustments are required in RT for each of all foreseen
scenarios. For instance, reference [13] proposes a stochastic
equilibrium model for clearing a two-settlement DA-RT mar-
ket while considering renewable premiums and risk aversion
of producers. A distributed form of stochastic market-clearing
mechanism is developed in [14]. Reference [15] proposes a
stochastic two-settlement DA-RT market-clearing model that
ensures incentive compatibility, but the market might not be
revenue adequate in expectation.

One important observation is that the available stochastic
market-clearing models in literature fulfill cost recoveryand
revenue adequacy in expectation only, e.g., [10] and [11], or
satisfy one property by scenario and another in expectation,
e.g., [16] and [17]. We now explain why this might be a
disadvantage for the available stochastic market designs.The
flexibility providers (e.g., fast-start generators and fast demand
response resources) are the main market parties that participate
in both DA and RT markets. The participation of these flexi-
bility providers is essential for well-functioning of electricity
markets with significant renewables. However, they may lose
money in one or more scenarios under the available stochastic
designs, though their expected profit is non-negative. This
might discourage the flexible producers from making offers in
short run or perhaps even investing in long run, especially if
they perceive significant risks from market participation under
a stochastic clearing mechanism. Therefore, any stochastic
market-clearing mechanism that ensures cost recovery by sce-
nario is more appealing for those producers. To this purpose,
one potential alternative that is compatible with current US
practice is to consider uplift payments to cover the potential
financial losses of producers, but at the cost of sub-optimality
since the uplift system is indeed an ex-post procedure. There
are also a few papers in the literature that explicitly impose
the cost recovery condition for all producers as part of market-
clearing constraints. For example, [18] proposes an uplift-
free market-clearing model with non-convexities (binary 0/1
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variables indicating the commitment and start-up status of
thermal units), but under deterministic conditions. A similar
model but augmented for a two-settlement DA-RT stochastic
system with renewables is proposed in [19]. Both references
[18] and [19] includeexplicit constraints within their proposed
market-clearing models to enforce the cost recovery condition
per generator (and per scenario in [19]). These constraintsare
nonlinear (due to a revenue term including a product of price
and quantity variables), and may need a considerable number
of auxiliary binary variables to be approximately linearized. In
addition, [18] and [19] do not address the market’s efficiency
and revenue adequacy problems.

To the best of our knowledge, there is no stochastic market-
clearing mechanism in the literature thatimplicitly guarantees
both revenue adequacy and cost recovery by scenario, which
is in fact the novelty of the current paper. In other words,
our proposed market design guarantees those two desirable
properties by scenario without enforcing any explicit constraint
for cost recovery and/or revenue adequacy.

As the main contribution of this paper, we develop
a stochastic market-clearing mechanism with mathematical
proofs that it implicitly satisfies revenue adequacy and cost
recovery for each individual scenario. However, this appealing
characteristic is achieved at the cost of potentially violating
some or all three of the following desirable market properties:

(i) DA and RT prices are arbitraged in expectation,
(ii) prices are supporting of schedules for all market parties,

and
(iii) system cost is minimized.

The first desirable market property lost, i.e., arbitragingDA
and RT prices in expectation, can be restored by allowing
virtual bidders2 to arbitrage between the two markets, but
at the cost of increased market inefficiency for some other
participants. Another drawback of the proposed stochastic
market design, compared to those in [10]-[12], is that it is
formulated as anequilibrium model (similar to [13]) instead
of an optimizationproblem, and eventually results in a MILP
problem (similar to [17]-[19]) rather than a linear program-
ming (LP) one.

The main insight provided by our proposed stochastic
market-clearing model is that the satisfaction of revenue
adequacy and cost recovery for each individual scenario has
a price, in that the cost of serving load may increase. This
requires making atrade-off between the desirable properties
gained and those lost. We propose to view this stochastic
clearing mechanism as an appropriate tool for market analysis
and policy discussions of trade-offs, but not for use in practice
to clear a market.

Our extensive numerical results (Section IV.B) demonstrate
that for the case study considered, the proposed model suc-
cessfully achieves cost recovery for generators and revenue
adequacy for market not only by foreseen (in-sample) scenario
but also by unseen (out-of-sample) scenario. A key point is
that the in-sample scenarios, i.e., those scenarios which are

2The virtual bidders are financial players who own no physicalassets and
buy/sell in the day-ahead market and then sell/buy the same amount back in
the real-time market [20]-[24]. They are a part of market players in some US
electricity markets, e.g., CAISO and PJM.

included in the stochastic optimization, should be a good
approximation of the distribution of out-of-sample scenarios;
then our numerical results indicate that there is a very high
probability that revenue adequacy and cost recovery will be
achieved under any given out-of-sample scenario. Note thatit
is a numerical observation only, and it is not straightforward
to mathematically prove that the proposed market design
necessarily ensures cost recovery and revenue adequacy for
any out-of-sample scenario.

It is worth mentioning that all available stochastic market-
clearing mechanisms in literature (as well as our proposed
stochastic market design) are theoretical models and none have
been implemented in actual electricity markets. The reason
is that the stochastic clearing models have difficulties for
implementation in practice. For example, they place a large
burden on the market operator to acquire and process proba-
bilistic data needed for stochastic clearing (e.g., distribution of
wind power across scenarios and their probabilities). However,
stochastic clearing models (including our proposed model)can
be viewed as benchmarks since they provide a lower bound for
the system cost.3 This benchmark can be used for assessing
the performance of clearing models in actual markets (e.g.,
deterministic designs), and for understanding the efficiency
loss that can occur if cost recovery by scenario is to be
guaranteed through energy prices alone.

B. Model Assumptions and Paper Organization

We now review some general assumptions of this paper
about the market parties. First, we assume that wind power
production is the only source of uncertainty. A two-stage elec-
tricity pool (DA-RT) is assumed, being perfectly competitive,
energy-only, and all players have same information in DA
about the distribution of wind power scenarios in RT. The
loads are assumed to be inelastic with respect to price. For
simplicity, we consider a single-hour electricity pool since no
inter-temporal constraints are enforced. To avoid pricingnon-
convexities, binary variables indicating the commitment status
of conventional generators are not considered; the assumption
of convexity is necessary for the proofs of this paper. A
linearized lossless DC representation of the network is used in
both DA and RT, yielding locational marginal prices (LMPs).
Wind power production cost is assumed to be zero.

The remainder of this paper is organized as follows. Sec-
tion II presents a general stochastic market-clearing model
based on ones in the literature. Section III first presents
the proposed model in the form of an equilibrium prob-
lem, and then describes its solution technique. Section IV
provides and discusses the numerical results from a simple

3In case the actual electricity markets decide to use a market-clearing model
similar to the one proposed in this paper, the method used to solve DA unit
commitment problem should also be modified. One potential approach could
be the use of a Walrasian auction. In this iterative mechanism, the market
operator specifies a set of prices, and then each market participant decides
its own commitment and dispatch decisions. Then, based on the participants’
dispatch decisions, the market operator checks whether nodal power balance
conditions hold or not. If not, the operator systematicallyadjusts the prices
and generates a new set to be disseminated among participants. Similar (but
non-stochastic) market designs based on a tâtonnement process are available
in [25] and [26].
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test system and the IEEE two-area reliability test system
(RTS), to illustrate the properties of our model. Section V
concludes the paper. Appendix A derives the Karush-Kuhn-
Tucker (KKT) optimality conditions of the stochastic market-
clearing model presented in Section II. Appendix B obtains the
KKT optimality conditions of the proposed market-clearing
model. Appendix C mathematically proves that the proposed
model is revenue adequate by scenario. Appendix D provides
a mathematical proof for cost recovery of all generators and
transmission operator by scenario. Finally, Appendix E derives
a linear expression to be used in the proposed model.

II. A G ENERIC STOCHASTIC MARKET-CLEARING MODEL

Most of the stochastic market-clearing models in the liter-
ature can be stated concisely as a two-stage LP problem as
given by optimization problem (1) below. The first-stage pro-
vides the DA schedules (here-and-now decisions), whereas the
second-stage adjusts the energy imbalances due to wind power
deviations in RT (wait-and-see decisions). Objective function
(1a) minimizes theexpectedsystem cost that includes energy
dispatch costs in DA, expected adjustment costs in RT, and
expected load shedding costs in RT. This objective function
is subject to scenario-independent DA constraints (1b)-(1g)
and scenario-dependent RT constraints (1h)-(1o). Note that the
dual variables are listed alongside each constraint:

Minimize
pDA
i

,wDA
k

,fDA
n,m,θDA

n ,pRT
i,s

,wRT
k,s

,lshed
d,s

,fRT
n,m,s,θ

RT
n,s

∑

i

Ci p
DA
i

+
∑

s

φs

{

∑

i

Ci p
RT
i,s +

∑

d

Vd lshedd,s

}

(1a)

subject to:
∑

d∈Ψn

Ld +
∑

m∈Φn

fDA
n,m −

∑

i∈Ψn

pDA
i

−
∑

k∈Ψn

wDA
k = 0 : λDA

n ∀n (1b)

0 ≤ pDA
i ≤ Pmax

i : µP
i
, µP

i ∀i (1c)

0 ≤ wDA
k ≤ Wmax

k : µW
k
, µW

k ∀k (1d)

Bn,m

(

θDA
n − θDA

m

)

= fDA
n,m : µθ

n,m

∀n, ∀m ∈ Φn (1e)

fDA
n,m ≤ Fmax

n,m : µF
n,m ∀n, ∀m ∈ Φn (1f)

θDA
(n=1) = 0 : µ1 (1g)
∑

m∈Φn

(

fRT
n,m,s − fDA

n,m

)

−
∑

i∈Ψn

pRTi,s −
∑

k∈Ψn

wRT
k,s

−
∑

d∈Ψn

lshedd,s = 0 : λRT
n,s ∀n, ∀s (1h)

0 ≤
(

pDA
i + pRTi,s

)

≤ Pmax
i : ρP

i,s
, ρPi,s ∀i, ∀s (1i)

− P
adj
i ≤ pRTi,s ≤ P

adj
i : ρadj

i,s
, ρ

adj
i,s ∀i, ∀s (1j)

0 ≤
(

wDA
k + wRT

k,s

)

≤ Wk,s : ρW
k,s

, ρWk,s ∀k, ∀s (1k)

0 ≤ lshedd,s ≤ Ld : ρshed
d,s

, ρshedd,s ∀d, ∀s (1l)

Bnm

(

θRTn,s − θRTm,s

)

= fRT
n,m,s : ρθn,m,s

∀n, ∀m ∈ Φn, ∀s (1m)

fRT
n,m,s ≤ Fmax

n,m : ρFn,m,s ∀n, ∀m ∈ Φn, ∀s (1n)

θRT(n=1),s = 0 : ρ1s ∀s. (1o)

Constraint (1b) represents the DA power balance at noden,
whose dual variable (λDA

n ) provides the day-ahead LMP at
that node. Constraints (1c) and (1d) enforce the lower and
upper bounds for production schedules of conventional and
wind power generators, respectively. Constraint (1e) obtains
the power flow schedule across transmission lines as functions
of nodal voltage angles. The capacity of each transmission
line is enforced through (1f), and constraint (1g) sets node
n = 1 as the reference node. Regarding operating conditions
in RT, constraint (1h) represents the power balance in an
incremental form at noden and scenarios, whose dual variable
(λRT

n,s) provides the corresponding probability-weighted real-
time LMP. According to (1h), wind power deviation in RT is
met by power adjustments of flexible conventional generators
and/or load curtailments. Constraints (1i) and (1j) limit the
power adjustment of each conventional generator. Constraint
(1k) restricts the total wind power production of each generator
for each scenario, i.e., the DA wind schedule plus its deviation
in RT, to lie within zero and wind power realization (i.e.,
uncertain parameterWk,s). Note that this constraint allows
excess wind power to be spilled. Constraint (1l) limits the level
of unserved load. Finally, constraints (1m)-(1o) are similar to
(1e)-(1g) but for RT operation.

As mathematically proven in [11], the stochastic market-
clearing model (1) ensures revenue adequacy and cost recovery
in expectation, providing that an energy-only pricing scheme
is considered based on day-ahead LMPs, i.e.,λDA

n ∀n, and

probability-adjusted real-time LMPs, i.e.,
λRT
n,s

φs
∀n, ∀s. This

result necessarily assumes convex costs, e.g., no binary unit
commitment variables. Hereafter, model (1), which represents
a typical stochastic market-clearing setup in the literature, is
called modelM1.

Inspired by [27] that refers to a deterministic but oligopolis-
tic market, we mathematically prove that optimization model
M1 is equivalentto an equilibrium model given by (2)-(6)
below. We refer to this equivalent equilibrium model asM2.
The basis of this proof is that the KKT conditions of model
M1 are identical to the equilibrium conditions of modelM2,
as shown in Appendix A. To define the equilibrium problem
M2, it is necessary to define a profit-maximization problem
for each market player, obtain the KKT conditions for each,
and finally concatenate them with market-clearing conditions
(power balance). Within the equivalent equilibrium model
M2, optimization problem (2) presents the expected profit-
maximization problem for each conventional generatori as
given below:

{

Maximize
pDA
i

,pRT
i,s

pDA
i

(

λDA
n:i∈Ψn

− Ci

)

+
∑

s

pRTi,s

[

λRT
(n:i∈Ψn),s

− φs Ci

]

(2a)

subject to: (1c), (1i), (1j)

}

∀i. (2b)



IEEE TRANSACTIONS ON POWER SYSTEMS 5

The first row of objective function (2a) refers to the DA profit
of generatori, whereas the second row is associated with
its expected profit in RT. Similarly, optimization problem (3)
maximizes the expected profit of each wind power generator
k:

{

Maximize
wDA

k
,wRT

k,s

wDA
k λDA

n:k∈Ψn
+
∑

s

wRT
k,s λRT

(n:k∈Ψn),s
(3a)

subject to: (1d), (1k)

}

∀k. (3b)

Likewise, optimization problem (4) maximizes the expected
profit of transmission operator obtained from energy transac-
tions across lines. In the DA market, the transmission operator
buys powerfDA

n,m at noden at priceλDA
n , and then sells it at

nodem at priceλDA
m . Similarly, it trades in RT based on the

incremental power flow:

Maximize
fDA
n,m,θDA

n ,fRT
n,m,s,θ

RT
n,s

∑

n,(m∈Φn)

[

fDA
m,n λDA

n

+
∑

s

(

fRT
m,n,s − fDA

m,n

)

λRT
n,s

]

(4a)

subject to: (1e)− (1g), (1m)− (1o). (4b)

In addition, optimization problem (5) minimizes the expected
load shedding cost for each inelastic loadd, which represents
the consumer’s problem:

{

Minimize
lshed
d,s

∑

s

lshedd,s

(

φsVd − λRT
(n:d∈Ψn),s

)

(5a)

subject to: (1l)

}

∀d. (5b)

Finally, (6) includes the nodal power balance equalities as
market constraints, i.e.,

(1b), (1h). (6)

Similar to modelM1, the dual variables of (1b) and (1h) in (6)
provide DA and probability-weighted RT LMPs, respectively.
These prices are variables within equilibrium modelM2,
but treated as exogenous parameters within the optimization
problems (2)-(5).

In modelsM1 andM2, it is straightforward to mathemat-
ically prove that the DA and expected RT prices at each node
are equal, providing that there is at least one market party at
that node who acts as an unrestrained arbitrager between DA
and RT markets. The equality of DA and expected RT prices
is a desirable property, as discussed in [28].

III. PROPOSEDSTOCHASTIC MARKET-CLEARING MODEL

In this section, we first propose a stochastic market-clearing
model as an equilibrium problem that ensures revenue ade-
quacy for the market and cost recovery for all generators and
for transmission operatorby scenario. Then, we propose a
solution technique.

A. Proposed Model:

The proposed model in this paper is an equilibrium problem
that includes problems (7) to (10). Hereafter, we refer to (7)-
(10) as modelM3. Note that the augmented version of model
M3, i.e., modelM3 with virtual bidders, includes problem
(11) as well. We compare the proposed modelM3 with model
M2 since both are equilibrium models, whileM1 is a single
optimization model. However, recall that modelsM1 and
M2 are equivalent. Compared to modelM2, the proposed
equilibrium modelM3 embodies three main differences, as
follows:

First, problems (2), (3), and (4) in modelM2 maximize
the expected profitof conventional generatori, wind power
generatork, and transmission operator, respectively. However,
problems (7), (8), and (9) within modelM3 maximize their
probability-weighted profit for each individual scenario.

Secondly, modelM3 omits the cost-minimization (or profit-
maximization) of one pre-selected party or set of parties within
the equilibrium problem, and thereby, that party cannot affect
the market price formation, and their decisions are unsupported
by market prices. This results in the cost of uncertainty (i.e.,
the cost of augmenting market to ensure revenue adequacy and
cost recovery by scenario) being assigned to that party, whose
optimization problem is excluded. In our proposed model, we
choose “loads” as the party whose cost-minimization problems
are excluded from the equilibrium modelM3. This selection is
consistent with the current US practice, since the loads paythe
uplifts to cover losses. Because the load’s cost-minimization
problem is excluded from the equilibrium, this is equivalent to
the operator deciding which market loads will be served day-
ahead as opposed to real-time (load will not be allowed to
arbitrage) and the total amount that load will pay by scenario.
However, this does not mean that the total payments by load
in model M3 are necessarily higher than in modelsM1
andM2; in fact, as the first example shows later, consumer
expenditures can be lower under modelM3.

Although we select loads to pay the cost of uncertainty, the
structure of the proposed equilibrium modelM3 is flexible
and can allow the cost of uncertainty to be assigned to
other party. For example, wind power generators would pay
the cost of their own uncertainty if their profit-maximization
problems are excluded from the equilibrium model, while the
optimization problems of conventional generators, loads,and
transmission operator are included.

Thirdly, the proposed modelM3 allows the market operator
to settle loads in both DA and RT markets. In contrast, the
loads in modelsM1 andM2 are fully settled in DA market.
Within the proposed model, two scenario-independent non-
negative variableslDA

d and lRTd are defined for each inelastic
load d referring to its consumption level in DA and RT
markets, respectively. However, the summation oflDA

d andlRTd

is fixed to the total load, i.e., parameterLd.
Similar to modelsM1 and M2, we use an energy-only

pricing scheme in modelM3 based on day-ahead LMPs,
i.e, λDA

n ∀n, and probability-adjusted real-time LMPs, i.e.,
λRT
n,s

φs
∀n, ∀s. We now describe each market party’s profit-

maximization problem. Within the proposed modelM3, op-
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timization problem (7) maximizes the probability-weighted
profit for each conventional generatori under each scenarios:

{

Maximize
pDA
i

,pRT
i,s

φs

[

pDA
i

(

λDA
n:i∈Ψn

− Ci

)

+ pRTi,s

(

λRT
(n:i∈Ψn),s

φs

− Ci

)

]

(7a)

subject to:

0 ≤ pDA
i ≤ Pmax

i : µP
i,s
, µP

i,s (7b)

(1i), (1j)

}

∀i, ∀s. (7c)

The objective function (7a) is multiplied byφs to weight prob-
lem (7) within the proposed equilibrium modelM3. Similar to
modelsM1 andM2, the DA schedules, i.e.,pDA

i are scenario-
independent (enforcing non-anticipativity); however, the dual
variables associated with DA constraints, i.e.,µP

i,s
andµP

i,s in
(7b), are scenario-dependent (indexed bys) since problem (7)
corresponds to scenarios. The KKT conditions associated with
(7) are given in Appendix B. A comparison between the KKT
conditions of conventional generator’s problem in modelsM2
andM3, i.e., (2) and (7), further clarifies the mathematical
differences. For example, the KKT equality (14ab) in model
M2 provides a single condition across all scenarios, while the
analogous equality in modelM3, i.e., (15b), provides a set of
conditions by scenario. The KKT conditions (14ab) and (15b)
would be equivalent if the values obtained for dual variables
µP
i,s

, µP
i,s, ρ

P
i,s

, andρPi,s in modelM3 are identical to values

obtained forφsµ
P
i

, φsµ
P
i , φs

∑

s ρ
P
i,s

, andφs

∑

s ρ
P
i,s in model

M2, respectively.
Similarly, the probability-weighted profit-maximization

problem for each wind power generatork under each scenario
s is given by (8) below:

{

Maximize
wDA

k
,wRT

k,s

φs

[

wDA
k λDA

n:k∈Ψn
+ wRT

k,s

λRT
(n:k∈Ψn),s

φs

]

(8a)

subject to:

0 ≤ wDA
k ≤ Wmax

k : µW
k,s

, µW
k,s (8b)

(1k)

}

∀k, ∀s. (8c)

Likewise, the probability-weighted profit-maximization
problem for transmission operator under each scenarios is
given by (9) below:

{

Maximize
fDA
n,m,θDA

n ,fRT
n,m,s,θ

RT
n,s

φs

∑

n,(m∈Φn)

[

fDA
m,n λDA

n

+
(

fRT
m,n,s − fDA

m,n

) λRT
n,s

φs

]

(9a)

subject to:

Bn,m

(

θDA
n − θDA

m

)

= fDA
n,m : µθ

n,m,s

∀n, ∀m ∈ Φn (9b)

fDA
n,m ≤ Fmax

n,m : µF
n,m,s ∀n, ∀m ∈ Φn (9c)

θDA
(n=1) = 0 : µ1

s (9d)

(1m)− (1o)

}

∀s. (9e)

Finally, conditions (10) include the nodal power balance
equalities in DA and RT as well as load constraints:

∑

d∈Ψn

lDA
d +

∑

m∈Φn

fDA
n,m −

∑

i∈Ψn

pDA
i

−
∑

k∈Ψn

wDA
k = 0 : λDA

n ∀n (10a)

∑

d∈Ψn

(

lRTd − lshedd,s

)

+
∑

m∈Φn

(

fRT
n,m,s − fDA

n,m

)

−
∑

k∈Ψn

wRT
k,s

−
∑

i∈Ψn

pRTi,s = 0 : λRT
n,s ∀n, ∀s (10b)

lDA
d ≥ 0; lRTd ≥ 0; lDA

d + lRTd = Ld ∀d (10c)

0 ≤ lshedd,s ≤ Ld ∀d, ∀s. (10d)

The dual variables of (10a) and (10b) present DA and
probability-weighted RT LMPs, respectively. Similar to equi-
librium modelM2, the DA and RT prices are variables within
equilibrium modelM3, but treated as exogenous parameters
within the optimization problems (7)-(9), and within optimiza-
tion problem (11) that is presented later.

The KKT optimality conditions associated with the pro-
posed modelM3 are given by (15) in Appendix B. We now
list four properties of modelM3:

First, as mathematically proven in Appendix C, the cost
recovery by scenario is achieved, i.e., the profit of each con-
ventional generatori, each wind power generatork, and trans-
mission operator is non-negative for each individual scenario.
The reason is that each party (excluding load) maximizes its
profit for each scenario individually, and therefore, it will never
take a position resulting a negative profit in that scenario.

Second, as mathematically proven in Appendix D, model
M3 ensures the revenue adequacy for the market by sce-
nario. Intuitively speaking, loads’ cost-minimization problems
are excluded within the equilibrium problem. This brings a
flexibility to market operator to decide which market the loads
are settled (without allowing them to do arbitrage), and what
the total amount that loads will pay by scenario. In addition,
the RT market price will never be formed at the value of lost
load (VOLL), even though load may be curtailed - note that
there is no KKT equality in (15) linking VOLL and RT market
price.

Third, the exclusion of cost-minimization problem of loads
in modelM3 makes the KKT conditions (15)non-squarein
the sense that the number of variables is more than the number
of conditions. Therefore, the proposed equilibrium modelM3
may havemultiple solutions.

Fourth, unlike modelsM1 andM2, the DA and expected
RT prices are not necessarily arbitraged in modelM3, which
is an undesirable property. This price distortion in modelM3
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can be corrected by virtual bidders. However, as we show later,
this may further increase costs to loads. In modelM3 with
virtual bidders, the optimization problem (11) below for each
virtual bidderv should also be included within the equilibrium
model:

{

Maximize
bDA
v ,bRT

v

bDA
v λDA

n:v∈Ψn
+
∑

s

bRTv λRT
(n:v∈Ψn),s

(11a)

subject to: bDA
v + bRTv = 0 : ρv

}

∀v (11b)

where the objective function (11a) maximizes the expected
profit of virtual bidderv, subject to constraint (11b) that forces
its total production in DA and RT is zero. Note that both
variablesbDA

v andbRTv are scenario-independent to ensure that
the total production of virtual bidder is zero irrespectiveof the
scenario realized. Note also that in modelM3 with virtual
bidders,

∑

v∈Ψn
bDA
v and

∑

v∈Ψn
bRTv should be added to the

left-hand side of power balance equalities (10a) and (10b),
respectively. One important observation is that the inclusion
of (11) within the equilibrium modelM3 implicitly enforces
the equality of DA and expected RT prices at busn [23]-[24].
This price equality condition can be readily derived from the
KKT conditions of (11).

B. Solution Technique:

In order to choose one solution from the multiple possible
equilibria of modelM3, we formulate an auxiliary optimiza-
tion problem, whose objective function could be arbitrarily
selected, however, it is constrained by optimality conditions
(15). Note that different objective functions may lead to
different solutions. In order to choose from among alternative
solutions, we consider the minimization of total expected cost
paid by all loads as objective function. This means that among
all possible market-clearing solutions, we select a solution
which is the best for the loads in expectation. The reason
for this selection is that the loads in modelM3 have been
already forced to pay the cost of uncertainty by excluding their
cost-minimization problems from the equilibrium problem.
Accordingly, the following auxiliary problem is formulated:

MinimizeΠ, subject to (15) (12)

where Π is the total expected cost of all loads including
their expected payments and shedding costs. Note that the
auxiliary problem (12) is in fact a mathematical program with
equilibrium constraints (MPEC) as it is constrained by market-
clearing conditions. This MPEC can be then recast as a MILP
as follows:

Minimize linear equivalent ofΠ (13a)

subject tomixed-integer linear form of(15) (13b)

where the linear equivalent ofΠ is provided in Appendix E.
In addition, conditions (15) are linearized through replacing
complementarity conditions (15g)-(15l) by their mixed-integer

Node N1 Node  N2

G1Load

Line capacity: 200 MW

Susceptance: 1000 S

G2 G3WP

Fig. 1. Network of the illustrative example.

TABLE I
ILLUSTRATIVE EXAMPLE : DATA FOR CONVENTIONAL GENERATORS

Conventional generatorPmax
i [MW] P

adj
i

[MW] Ci [$/MWh]
G1 50 0 10
G2 110 0 25
G3 100 45 35

linear equivalent. More specifically, each complementarity
condition of the form0 ≤ a ⊥ b ≥ 0 is replaced bya ≥ 0,
b ≥ 0, a ≤ M(1 − z) and b ≤ Mz, wherez is an auxiliary
binary variable andM is a large enough positive constant [29]-
[30]. Another alternative for complementarity linearization is
to use auxiliary SOS1 variables as proposed in [31]. This
SOS1-based technique replaces each complementarity condi-
tion of the form 0 ≤ a ⊥ b ≥ 0 by the following set of
equations:a ≥ 0, b ≥ 0, a + b = c + d anda − b = c − d.
Note thatc and d are SOS1 variables, i.e., at most one of
them can take a strictly positive (non-zero) value. We use
both complementarity linearization techniques above in our
large case study.

IV. N UMERICAL RESULTS

This section provides the numerical results from a small-
scale illustrative example (Section IV.A) and a large-scale
case study based on IEEE two-area RTS (Section IV.B). The
computational performance of different models is discussed in
Section IV.C.

A. Simple Illustrative Example

We consider a two-node (N1 and N2) system as illustrated
in Fig. 1. This system includes three conventional generators
(G1, G2 andG3), whose technical data are provided in Table I.
A wind power generator (WP) with an installed capacity of 50
MW is considered, and its production uncertainty is modeled
through three scenarios: 50 MW, 22 MW and 10 MW with
probabilities 0.2, 0.5 and 0.3, respectively. The load is 200
MW, and its VOLL is $200/MWh.

Table II gives the market outcomes obtained from models
M1, M2, M3, and M3 with virtual bidders (VB). The
transmission line is not congested. As proven in Appendix
A, modelsM1 and M2 are equivalent, and therefore, they
result in identical outcomes. In these two equivalent models,
load is fully settled DA, and DA and expected RT prices are
equal ($28/MWh). ModelM3 yields different outcomes; the
market operator settles 150 MW of load in DA and remaining
50 MW in RT. Also, modelM3 results in different values for
DA and expected RT prices ($25/MWh and $33/MWh), which
is undesirable. Virtual bidding could fix this price difference
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TABLE II
ILLUSTRATIVE EXAMPLE : MARKET-CLEARING OUTCOMES

Model
Market DA RT RT RT

outcome schedule (scenario 1) (scenario 2)(scenario 3)

M1 andM2

G1 [MW] 50 0 0 0
G2 [MW] 110 0 0 0
G3 [MW] 40 -40 -22 -10
WP [MW] 0 +40 (10 spilled) +22 +10
Load [MW] 200 0 0 0

LMP [$/MWh] 28 0 35 35

M3

G1 [MW] 50 0 0 0
G2 [MW] 100 0 0 0
G3 [MW] 0 0 +28 +40
WP [MW] 0 +50 +22 +10
Load [MW] 150 50 50 50

LMP [$/MWh] 25 25 35 35

M3 with VB

G1 [MW] 50 0 0 0
G2 [MW] 100 0 0 0
G3 [MW] 0 0 0 0
WP [MW] 0 +50 +22 +10
VB [MW] +50 -50 -50 -50

Load [MW] 200 0 0 (28 shed)0 (40 shed)
LMP [$/MWh] 25 25 25 25

TABLE III
ILLUSTRATIVE EXAMPLE : TOTAL EXPECTED SYSTEM COST AND TOTAL

EXPECTED COST OF LOAD[$]

Model Total expected system cost∗ Total expected cost of load†

M1 andM2 3,880 5,600
M3 3,910 5,400
M3 with VB 8,200 9,550
∗ This value includes generation-side costs and load shedding costs.
† This value consists of demand-side payments and load shedding costs.

in model M3 and result in identical DA and expected RT
prices ($25/MWh), but at the cost of load curtailment under
two scenarios. Note that the RT prices are not equal to VOLL,
though the load is curtailed. The reason is that the cost-
minimization problem of load is not included in equilibrium
modelM3, and thereby, load’s cost function cannot affect the
RT market price formation.

Table III gives the values obtained for total expected system
cost and total expected cost of load. The total expected system
cost in modelsM1 and M2 is comparatively lower than
that in modelM3, though wind power is spilled under one
scenario in the cost-minimization models. The reason for this
lower expected cost is that the costly generatorG3 is operated
more in modelM3 compared to other two models. This cost
is significantly higher in modelM3 with VB due to load
shedding. The total expected cost of load in modelsM1 and
M2 is comparatively higher than that in modelM3. However,
this may change in different cases, since the cost-minimization
problem of load is excluded from the market equilibrium
problem in modelM3. The cost of load is considerably high
in modelM3 with VB due to curtailed load.

Table IV gives profits and cost for the different market par-
ties in expectation and by scenario. One important observation
is that modelsM1 andM2 do not ensure cost recovery for all
generators by scenario; for example, the profit of generatorG3
under scenarios 2 and 3 is negative (-$280), while its expected
profit is non-negative (zero). In contrast, modelM3 (with or
without VB) results in non-negative profit for all generators

TABLE IV
ILLUSTRATIVE EXAMPLE : PROFIT/COST OF MARKET PLAYERS IN

EXPECTATION AND BY SCENARIO

Model
Market Scenario 1Scenario 2Scenario 3

Expected
player realizationrealizationrealization

M1 andM2

G1 [$] 900 900 900 900
G2 [$] 330 330 330 330
G3 [$] 1,120 -280 -280 0
WP [$] 0 770 350 490

Load [$] 5,600 5,600 5,600 5,600

M3

G1 [$] 750 750 750 750
G2 [$] 0 0 0 0
G3 [$] 0 0 0 0
WP [$] 1,250 770 350 740

Load [$] 5,000 5,500 5,500 5,400

M3 with VB

G1 [$] 750 750 750 750
G2 [$] 0 0 0 0
G3 [$] 0 0 0 0
WP [$] 1,250 550 250 600
VB [$] 0 0 0 0

Load [$] 5,000 9,900 12,000 9,550

TABLE V
IEEE TWO-AREA RTS CASE STUDY: DATA FOR CONVENTIONAL

GENERATORS

Generator
Location Pmax

i P
adj
i

Ci

[node] [MW] [MW] [$/MWh]
GA1, GA2, GB1, GB2 A1, A2, B1, B2 40 0 11.09
GA3, GA4, GB3, GB4 A1, A2, B1, B2 152 80 16.60
GA5, GB5 A7, B7 300 160 18.52
GA6, GB6 A13, B13 591 280 19.10
GA7, GB7 A15, B15 60 60 22.41
GA8, GA9, GB8, GB9 A15, A16, B15, B16 155 60 14.08
GA10, GA11, GB10, GB11 A18, A21, B18, B21 400 0 10.17
GA12, GB12 A22, B22 300 0 6.10
GA13, GB13 A23, B23 310 80 14.08
GA14, GB14 A23, B23 350 75 12.46

not only in expectation but also by scenario, which is its
advantage over modelsM1 andM2. This is true even though
consumers pay less under modelM3 in this case. Another
observation is that the conventional generators earn higher
profit in expectation in modelsM1 andM2, whereas the wind
power generator’s expected profit is comparatively higher in
modelM3 (with or without VB). Regarding revenue adequacy
for the market, it is satisfied in all models by scenario, and
the profit of the system operator is zero since the line is never
congested.

B. IEEE Two-Area RTS Case Study

We consider the IEEE RTS [32] including two areas (A and
B), 48 nodes (A1 to A24 andB1 to B24), 34 loads and 28
conventional generators (i.e.,GA1 to GA14 located in areaA,
andGB1 to GB14 located in areaB). The loads are identical
to that in [32] raised by 5%, yielding a total load of 5,985
MW. Technical data for conventional generators are given in
Table V. In addition, two wind power generators (WP1 and
WP2) are considered that are located at nodesA11 andB16,
respectively. The per-unit power production of wind generators
WP1 and WP2 is modeled using a Beta distribution with
shape parameters, (α, β), equal to (1.89, 4.48) and (2.09, 3.12),
respectively. We generate 300 samples; each one includes the
production of both wind generators. According to these 300
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Fig. 2. IEEE two-area RTS case study: In-sample and out-of-sample scenarios
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Fig. 3. IEEE two-area RTS case study: Profit of generators GB5and WP1 in
modelsM1 andM2 (upper plot), modelM3 without VB (intermediate plot)
and modelM3 with VB (lower plot) under each in-sample and out-of-sample
scenario

samples, wind power penetration, i.e., total expected wind
power divided by total load, is 30.4%. Wind power uncertainty,
i.e., standard deviation of wind production across scenarios
divided by expected wind, is 55.1%. We then select nine of
these samples as in-sample equiprobable scenarios (s1 to s9)
for use within the stochastic optimization, and the remaining
291 samples are used for an out-of-sample simulation. The
reason for selecting these specific nine scenarios is that they
give nearly identical values for wind power penetration and
wind uncertainty as the full original set of 300 samples. Both
sets of in-sample and out-of-sample scenarios are illustrated in
Fig. 2. The in-sample simulation considers the nine scenarios
s1 to s9, and treats them as the only potential realizations in
RT within the stochastic market model. In the out-of-sample
simulation, the DA schedules are fixed to those obtained in
the in-sample simulation, and then the RT market is cleared
deterministically for each of 291 out-of-sample scenarios. The
VOLL for all loads is assumed to be identical, i.e., $200/MWh.
The capacity of transmission lines is raised by 30% to facilitate
wind integration.

As examples of generators’ profits in different models, Fig.

3 illustrates the profits of conventional generatorGB5 and
wind power generatorWP1 under each in-sample and out-
of-sample scenario. We first investigate their profits achieved
in the in-sample simulations (scenarioss1-s9). Similar to the
results of illustrative example in Section IV.A, modelsM1 and
M2 do not guarantee cost recovery of generators by in-sample
scenario (upper plot of Fig. 3). For example, the profit of
generatorGB5 in three in-sample scenarios and that ofWP1
in two scenarios are negative, though their expected profits
are non-negative ($39 forGB5, and $10,809 forWP1). In
contrast, modelM3 (with or without VB) yields non-negative
profits forall generators in each and every in-sample scenario,
as well as in expectation. We now analyze their profits in
the 291 out-of-sample simulations. Similar to the in-sample
simulation, the profit of at least one of generatorsGB5 and
WP1 in modelsM1 and M2 is negative under about half
of out-of-sample scenarios. Remarkably, such profits are still
non-negative foreveryout-of-sample scenario in modelM3
(with or without VB), see intermediate and lower plots of Fig.
3. We had expected, in contrast, that sampling error would
produce at least a few out-of-sample scenarios with negative
profits.

Table VI gives the market-clearing outcomes of the three
different models obtained from in-sample and out-of-sample
simulations. We first analyze the results of the in-sample
simulations. As expected, total expected system cost and its
standard deviation are comparatively lower in modelsM1
and M2 compared to those in modelM3. The profits of
all generators in modelM3 (with or without VB) are non-
negative for each individual in-sample scenario (by construc-
tion), while they could be negative in modelsM1 andM2
as already shown in Fig. 3. We assume that such negative
profits of generators across scenarios are compensated by
loads, as in the uplift system in existing markets. Unlike the
simple illustrative example in Section IV.A, total cost of loads
is also lower in modelsM1 and M2 compared to that in
modelM3, even though this cost includes the uplift payments.
This demonstrates the cost-inefficiency of modelM3 as a
potentially undesirable consequence of a stochastic market
design that ensures cost recovery and revenue adequacy by
scenario. Adding VB to modelM3 results in a considerable
increase in system cost and the cost to load due to significant
load shedding. The DA and RT prices are arbitraged in
expectation in modelsM1, M2 andM3 with VB, but not in
modelM3 without VB.

We now analyze the results in Table VI obtained from
the out-of-sample simulation. The market outcomes (profits
and costs) of modelsM1 and M2 in the out-of-sample
simulations are not significantly changed compared to those
obtained from in-sample simulation, although these models
result in a negative profit for at least one generator in 130 of
the 291 out-of-sample scenarios.

Fig. 4 illustrates the distribution of system cost versus
total cost of loads in modelsM1 and M2 (upper plot),
modelM3 without VB (intermediate plot), and modelM3
with VB (lower plot) for both in-sample and out-of-sample
simulations. According to the upper plot and the results of
Table VI, the expected value and standard deviation of total
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TABLE VI
IEEE TWO-AREA RTSCASE STUDY: MARKET-CLEARING OUTCOMES IN DIFFERENT MODELS

In-sample simulations (N=9) Out-of-sample simulations (N=291)
M1 andM2 M3 M3 with VB M1 andM2 M3 M3 with VB

Total system cost1 [$]
Expected 46,997 54,554 90,404 47,156 47,717 47,717
Standard deviation 13,580 27,355 94,255 9,624 11,439 11,439

Number of scenarios with a negative profit2 3 out of 9 0 out of 9 0 out of 9 130 out of 291 0 out of 291 0 out of 291

Total negative profit of generators3 [$]
Expected 768 0 0 714 0 0
Standard deviation 1,200 0 0 1,079 0 0

Total cost of loads including uplifts4 [$]
Expected 90,158 97,060 128,388 90,103 91,153 85,878
Standard deviation 1,200 20,836 84,726 1,079 38,401 8,980

Total expected wind power spillage [MW] 0 0 0 33.5 20.4 20.4
Total expected load shedding [MW] 0 39.0 236.1 0 1.7 1.3
DA price5 [$/MWh] 14.93 14.08 14.08 14.93 14.08 14.08
Expected RT price5 [$/MWh] 14.93 16.49 14.08 14.15 16.91 16.91
1. This value includes generation-side costs and load shedding costs.
2. This number considers the scenarios with a negative profit for at least one conventional or wind power generator (but notvirtual bidders).
3. This value considers the negative profits of generators across scenarios, i.e., the non-negative profits are excluded.These losses are compensated by uplift payments of loads.
4. This value consists of demand-side payment, load sheddingcost, and uplifts for compensating the negative profits of generators (but not virtual bidders).
5. All nodal LMPs are identical since there is no transmissioncongestion.
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Fig. 4. IEEE two-area RTS case study: Total system cost and total cost
of loads in modelsM1 and M2 (upper plot), modelM3 without VB
(intermediate plot) and modelM3 with VB (lower plot) under each in-sample
and out-of-sample scenario

system cost and total cost of loads in modelsM1 andM2
in the out-of-sample simulations are close to their values in
the in-sample simulation (i.e., the scenarios considered in the
original market model). This shows the robustness of models
M1 andM2 against scenarios not anticipated by the market
parties. In addition, the upper plot of Fig. 5 shows that wind
power is scheduled in DA, and the wind shortage in low-wind
scenarios (either in-sample or out-of-sample) is compensated
by re-dispatching flexible conventional generators in RT. The
average RT market price in both low-wind in-sample and
out-of-sample scenarios is identical, i.e., $19.10/MWh. Unlike
modelsM1 andM2, the system cost and cost of loads are
more widely dispersed in modelM3 (especially with VB).
For example, as given in the third and fourth rows of Table
VI, standard deviation of total system cost across in-sample
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Fig. 5. IEEE two-area RTS case study: DA dispatch, RT re-dispatch under a
low-wind (403.2 MW) in-sample scenario, and RT re-dispatchunder a similar
low-wind (400.4 MW) but out-of-sample scenario in modelsM1 andM2

(upper plot), modelM3 without VB (intermediate plot) and modelM3 with
VB (lower plot)

scenarios divided by expected total system cost in modelsM1
and M2 is 29%, while it is 50% and 104% in modelM3
without and with VB, respectively. In addition, out-of-sample
costs are very different than the in-sample ones in mean and
standard deviation (Table VI), illustrating that the in-sample
costs in modelM3 are not highly robust against non-modeled
scenarios.

In modelM3 (without VB), unlike modelsM1 andM2,
market outcomes with out-of-sample scenarios are moderately
different than those in in-sample simulation. For example,
the expected cost to load in the out-of-sample simulation
is 6.4% lower than that in the in-sample simulations, while
the standard deviation of that cost is significantly higher.As



IEEE TRANSACTIONS ON POWER SYSTEMS 11

another example, the intermediate plot of Fig. 4 illustrates
that the total system cost under the two low-wind in-sample
scenarios considered is significantly higher than that in the rest
of in-sample scenarios, yielding a comparatively high standard
deviation for the total system cost in in-sample simulations
($27,355). However, that value is significantly lower in the
out-of-sample simulation ($11,439). The difference between
in-sample and out-of-sample market outcomes in modelM3
is further emphasized in the second plot of Fig. 5. Although
the RT re-dispatch under both low-wind in-sample and out-of-
sample scenarios is very similar, their resulting market prices
are significantly different. As already discussed in Section
III.A, the loads in modelM3 cannot affect market price
formation. Therefore, the RT price under in-sample scenario
is not equal to VOLL (i.e., $200/MWh), although a portion
of the load is curtailed. However, we solve a deterministic
RT market-clearing model for the low-wind out-of-sample
scenario, in which the curtailed load sets the RT market price
to $200/MWh. Note that a considerable part of the unserved
loads in modelM3 winds up being supplied in the RT stage.
It is also worth mentioning that in all 291 out-of-sample
scenarios, modelM3 ensures cost recovery for all generators
and revenue adequacy for the market. Whether this a general
result for modelM3 would require additional analysis for a
wider variety of systems.

Finally, the out-of-sample simulation shows that modelM3
with VB is not robust against the unseen scenarios, since the
market outcomes (e.g., total system cost and total cost of
loads) with foreseen and unseen scenarios are significantly
different, although in this example cost recovery for all
conventional and wind power generators (but not necessarily
for virtual bidders) is successfully achieved under all out-of-
sample scenarios.

This important difference in market outcomes of modelM3
with VB is highlighted in the lower plot of Fig. 4, where the
total system cost and total cost of loads are large under one of
the in-sample scenarios, representing a low-wind condition.
The reason for these large costs is revealed if we examine
the lower plot of Fig. 5. In this example, the aggregation of
virtual bidders behaves as a generator in the DA stage, while
in RT they buy back the same amount of energy that they
already sold in DA. In this way, the DA and (in-sample) RT
prices are arbitraged in expectation. In this specific low-wind
in-sample scenario, the RT price is identical to the DA price,
which is $14.08/MWh. This price is lower than the marginal
cost of most of flexible conventional generators; therefore,
the wind shortage in this scenario is mostly met by load
curtailment (1480 MW) – recall that loads cannot contribute
to market price formation in modelM3, and therefore, the RT
market price under this in-sample scenario is not $200/MWh.
This major load curtailment greatly increases the system cost
and the cost of loads, even in expectation. However, the
deterministic RT market-clearing model used for the out-of-
sample scenario yields different re-dispatch outcomes, since
the curtailed load sets the market price to $200/MWh, while
the flexible conventional generators offset a large portion
of wind shortage. Since a single low-wind scenario out of
nine in-sample scenarios drastically changes the in-sample

market outcomes of modelM3 with VB, we hypothesize
that including a higher number of in-sample scenarios (while
including more low-wind scenarios) in this model will not
decrease the gap between the market outcomes of modelM3
with VB between the in-sample and out-of-sample simulations.

As an additional test of modelsM1 and M2, and both
versions of modelM3, we have also applied them to the
IEEE 118-bus test system with 19 thermal generators [33].
This system is augmented with wind farms at buses 9 and
64 whose uncertain output is described by 15 scenarios. The
results are consistent with the above two-area RTS system
(details available from authors): day-ahead and real-timeprices
converge in expectation in modelsM1 and M2, and M3
with VB; model M3 is costlier thanM1 and M2, with
VB increasing cost further; and both versions of modelM3
ensure revenue adequacy and cost recovery for each and every
scenario, unlike modelsM1 andM2.

C. Computational Performance

The LP problem in modelM1 and the MILP problems in
modelsM2 andM3 (with and without VB) are solved using
CPLEX under GAMS on an Intel(R) Xeon(R) E5-1650 with
12 processors clocking at 3.50 GHz and 32 GB of RAM. The
CPU time for the LP problem of modelM1 in Section IV.B
(IEEE two-area RTS case study with 9 in-sample scenarios) is
0.2 seconds, while it is 244 seconds for the MILP problem of
modelM3 with a zero optimality gap. The maximum CPU
time occurs in modelM3 with VB, which is 7 hours with
an optimality gap of 1%. The CPU time increases drastically
with higher number of scenarios, so that MILP models with a
high number of scenarios become computationally intractable.
In particular, we were unable to solve modelM3 using
the computing system mentioned for the same large case
study when there are either 10 and 15 in-sample scenarios
for the with and without VB cases, respectively. The much
longer computational times for modelM3 raise issues of
scalability, and are consistent with our earlier point thata cost
of implementing the revenue adequacy-by-scenario framework
would be computational inefficiencies.

As a potential future work, we propose the application
of decomposition and distributed optimization techniquesto
modelsM2 and M3 with high number of scenarios. This
might diminish the computational disadvantages of the revenue
adequacy-by-scenario model. One interesting observationis
that the equilibrium modelsM2 andM3 are decomposable
– the relaxation of nodal power balance conditions as shared
market constraints decomposes them to several smaller sub-
problems, one per market party in modelM2, and one per
market party per scenario in modelM3.

V. CONCLUSIONS

This paper proposes a stochastic market design that ensures
i) cost recovery for all generators and transmission opera-
tor, and ii) revenue adequacy for the market, not only in
expectation but also by scenario. However, these properties
have a price: generation and demand-side costs may increase;
market prices will not be equilibrium supporting all parties;
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and DA and RT prices are not arbitraged in expectation. The
latter could be fixed by virtual bidders, but they may increase
the demand-side costs. From mathematical point of view, the
proposed model is an equilibrium problem, which is recast as
an MPEC, and then linearized.

APPENDIX A: KKT S OFMODELSM1 AND M2

The KKT optimality conditions associated with modelM1
are given by (14) below. Note thatL is the Lagrangian
function with respect to problem (1). An identical set of KKT
optimality conditions is derived from modelM2.

(1b), (1e), (1g), (1h), (1m), (1o) (14aa)

∂L

∂pDA
i

= Ci − λDA
n:i∈Ψn

+ µP
i − µP

i

+
∑

s

(

ρPi,s − ρP
i,s

)

= 0 ∀i (14ab)

∂L

∂wDA
k

= − λDA
n:k∈Ψn

+ µW
k − µW

k

+
∑

s

(

ρWk,s − ρW
k,s

)

= 0 ∀k (14ac)

∂L

∂fDA
n,m

= λDA
n − µθ

n,m + µF
n,m

−
∑

s

λRT
n,s = 0 ∀n, ∀m ∈ Φn (14ad)

∂L

∂θDA
n

=
∑

m∈Φn

Bn,m

(

µθ
n,m − µθ

m,n

)

+
(

µ1
)

n=1
= 0 ∀n (14ae)

∂L

∂pRTi,s
= φs Ci − λRT

(n:i∈Ψn),s
+ ρPi,s − ρP

i,s

+ ρ
adj
i,s − ρadj

i,s
= 0 ∀i, ∀s (14af)

∂L

∂wRT
k,s

= − λRT
(n:k∈Ψn),s

+ ρWk,s

− ρW
k,s

= 0 ∀k, ∀s (14ag)

∂L
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= φs Vd − λRT
(n:d∈Ψn),s

+ ρshedd,s

− ρshed
d,s

= 0 ∀d, ∀s (14ah)

∂L
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= λRT
n,s − ρθn,m,s + ρFn,m,s = 0

∀n, ∀m ∈ Φn, ∀s (14ai)
∂L
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∑
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)
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(

ρ1s
)
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= 0 ∀n, ∀s (14aj)
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i ≥ 0 ∀i (14al)
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k ≥ 0 ∀k (14an)
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(
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n,m

)
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n,m ≥ 0 ∀n, ∀m ∈ Φn (14ao)

0 ≤
(

pDA
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⊥ ρP
i,s

≥ 0 ∀i, ∀s (14ap)
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⊥ ρPi,s ≥ 0 ∀i, ∀s (14aq)
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≥ 0 ∀i, ∀s (14ar)
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i,s ≥ 0 ∀i, ∀s (14as)
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)

⊥ ρW
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≥ 0 ∀k, ∀s (14at)

0 ≤
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k,s

)

⊥ ρWk,s ≥ 0 ∀k, ∀s (14au)

0 ≤ lshedd,s ⊥ ρshed
d,s

≥ 0 ∀d, ∀s (14av)

0 ≤
(

Ld − lshedd,s
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0 ≤

(
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n,m − fRT

n,m,s
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⊥ ρFn,m,s ≥ 0 ∀n, ∀m ∈ Φn, ∀s.

(14ba)

APPENDIX B: KKT S OFMODEL M3

The KKT optimality conditions associated with the pro-
posed modelM3, i.e., problem (7)-(10), are given by (15)
below. Note thatL(7), L(8) andL(9) are the Lagrangian func-
tions with respect to problems (7), (8) and (9), respectively.

(9b), (9d), (1m), (1o), (10) (15a)
∂L(7)

∂pDA
i

= φs Ci − φs λDA
n:i∈Ψn

+ µP
i,s − µP

i,s

+ ρPi,s − ρP
i,s

= 0 ∀i, ∀s (15b)

∂L(8)

∂wDA
k

= − φs λDA
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+ µW
k,s − µW

k,s

+ ρWk,s − ρW
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= 0 ∀k, ∀s (15c)

∂L(9)

∂fDA
n,m

= φs λDA
n − µθ

n,m,s + µF
n,m,s

− λRT
n,s = 0 ∀n, ∀m ∈ Φn, ∀s (15d)

∂L(9)

∂θDA
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∑
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µθ
n,m,s − µθ

m,n,s

)

+
(

µ1
s

)

n=1
= 0 ∀n, ∀s (15e)

(14af)− (14ag), (14ai), (14aj) (15f)

0 ≤ pDA
i ⊥ µP

i,s
≥ 0 ∀i, ∀s (15g)

0 ≤
(

Pmax
i − pDA

i

)

⊥ µP
i,s ≥ 0 ∀i, ∀s (15h)

0 ≤ wDA
k ⊥ µW

k,s
≥ 0 ∀k, ∀s (15i)

0 ≤
(

Wmax
k − wDA

k

)

⊥ µW
k,s ≥ 0 ∀k, ∀s (15j)

0 ≤
(

Fmax
n,m − fDA

n,m

)

⊥ µF
n,m,s ≥ 0 ∀n, ∀m ∈ Φn, ∀s (15k)

(14ap)− (14au), (14ba). (15l)

APPENDIX C: COST RECOVERY BY SCENARIO

Mathematically, the profit of all generators, either conven-
tional or renewable, under any scenario realization are non-
negative if, at the optimal solution, they hold that

[

pDA∗
i

(

λDA∗
n:i∈Ψn

− Ci

)

+ pRT∗
i,s

(

λRT∗

(n:i∈Ψn),s

φs

− Ci

)

]

≥ 0 ∀i, ∀s (16a)
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[

wDA∗
k λDA∗

n:k∈Ψn
+ wRT∗

k,s

λRT∗

(n:k∈Ψn),s

φs

]

≥ 0 ∀k, ∀s (16b)

where superscript∗ stands for the optimal values.
In addition, the profit of transmission operator for any

scenario realization is non-negative if, at the optimal solution,
it holds that

∑

n,(m∈Φn)

[

fDA∗
m,n λDA∗

n +
(

fRT∗
m,n,s − fDA∗

m,n

) λRT∗
n,s

φs

]

≥ 0 ∀s.

(16c)

For notational clarity, we denote the left-hand side of
equations (16a), (16b) and (16c) asΓ(16a)

i,s , Γ(16b)
k,s , andΓ(16c)

s ,
respectively.

To prove that conditions (16a)-(16c) hold, we derive the
strong duality equality corresponding to problems (7), (8),
and (9) within the proposed modelM3. Note that for each
optimization problem the strong duality equality enforcesthat
the values of primal and dual objective functions at the optimal
solution are identical. Thus, we get

Γ(16a)
i,s =

1

φs

[

Pmax
i

(

µP∗
i,s + ρP∗

i,s

)

+ P
adj
i

(

ρadj∗
i,s

+ ρ
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i,s

)

]

∀i, ∀s (16d)

Γ(16b)
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1

φs

[
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k µW∗

k,s +Wk,s ρW∗
k,s

]

∀k, ∀s (16e)

Γ(16c)
s =

1

φs

∑

n,(m∈Φn)

Fmax
n,m

(

µF∗
n,m,s + ρF∗n,m,s

)

∀s. (16f)

The right-hand side of equations (16d)-(16f) include the
summation of several expressions, each one is a product
of a parameter and a dual variable. Observe that all those
parameters and dual variables are non-negative. Therefore, the
right-hand side of each equation (16d), (16e), and (16f) is nec-
essarily non-negative. This concludesΓ(16a)

i,s ≥ 0, Γ(16b)
k,s ≥ 0,

andΓ(16c)
s ≥ 0.

APPENDIX D: REVENUE ADEQUACY BY SCENARIO

This appendix proves that the proposed modelM3 is
revenue-adequate by scenario. To this purpose, at the optimal
solution, we multiply each expression within the DA nodal
equalities (10a) byλDA∗

n . Similarly, all expressions within the

RT nodal equalities (10b) are multiplied by
λRT∗
n,s

φs
at the optimal

solution. Then, we sum all equalities obtained, i.e.,

∑

n,(d∈Ψn)

[

lDA∗
d λDA∗
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lRT∗
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) λRT∗
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∑
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pDA∗
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i,s

λRT∗
n,s
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]
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∑
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[
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n + wRT∗
k,s

λRT∗
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φs

]

+
∑

n,(m∈Φn)
[

fDA∗
m,n λDA∗

n +
(

fRT∗
m,n,s − fDA∗

m,n

) λRT∗
n,s

φs

]

∀s. (17)

According to (17), under any scenario, the total payment of
demand-side to market operator, i.e., the left-hand side, equals
to the total payment of market operator to all conventional
generators, wind power generators, and transmission operator.
Therefore, the market operator never incurs a financial deficit
under any scenario, i.e., the market is revenue-adequate by
scenario. Note that in cases in which the transmission system
belongs to the market operator, the market is still revenue-
adequate by scenario because the transmission operator’s profit
for each scenario, i.e., the expression in the last row of (17),
is non-negative as proven in Appendix C.

APPENDIX E: A L INEAR EXPRESSION FORΠ

Total expected cost of all loads (Π) to be included in
objective function (13a) contains the expected payment and
shedding cost of all loads, i.e.,

Π =
∑

n,(d∈Ψn),s

φs

[

lDA
d λDA

n +
(

lRTd − lshedd,s

) λRT
n,s

φs

+ Vd lshedd,s

]

(18a)

Note that (18a) is non-linear due to bilinear terms. This
appendix provides a linear expression forΠ.

As proven in Appendix D, for each scenarios, the total
demand-side payment equals to total payment of the market
operator to conventional generators, wind power generators,
and transmission operator. Observe that the expressions inthe
second, third, and fourth rows of (17) are included in objective
functions (7a), (8a), and (9a), respectively. All those expres-
sions are non-linear. However, their linear equivalents can be
derived through the strong duality equalities corresponding to
problems (7), (8) and (9). Accordingly, a linear equivalentfor
Π is obtained as follows:

Π =
∑

s

φs

(

Πs +
∑

d

Vd lshedd,s

)

(18b)

where

Πs =
∑
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}

∀s. (18c)

ACKNOWLEDGMENT

We thank Stefanos Delikaraoglou (Technical University of
Denmark) for suggestions. We also thank the three anonymous
reviewers for their helpful comments.



IEEE TRANSACTIONS ON POWER SYSTEMS 14

REFERENCES

[1] R. O’Neill, P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf,and
W. R. Stewart, “Efficient market-clearing prices in marketswith non
convexities,”Eur. J. Oper. Res., vol. 164, no. 1, pp. 269-285, Jul. 2005.

[2] W. W. Hogan and B. J. Ring, “On minimum-uplift
pricing for electricity markets,” Mar. 2003. Available:
https://sites.hks.harvard.edu/fs/whogan/minuplift031903.pdf

[3] E. Ela, C. Wang, S. Moorty, K. Ragsdale, J. O’Sullivan, M.Rothleder,
and B. Hobbs, “Electricity markets and renewables: A surveyof potential
design changes and their consequences,”IEEE Power and Energy
Magazine, vol. 15, no. 6, pp. 70-82, Nov.-Dec. 2017.

[4] B. Wang and B. F. Hobbs, “Real-time markets for flexiramp:A stochastic
unit commitment-based analysis,”IEEE Trans. Power Syst., vol. 31, no.
2, pp. 846-860, Mar. 2016.

[5] C. Wang, P. Luh, and N. Navid, “Ramp requirement design for reliable
and efficient integration of renewable energy,”IEEE Trans. Power Syst.,
vol. 32, no. 1, pp. 562-571, Jan. 2017.

[6] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adaptive
robust optimization for the security constrained unit commitment prob-
lem,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52-63, Feb. 2013.

[7] A. Lorca, X. A. Sun, E. Litvinov, and T. Zheng, “Multistage adaptive
robust optimization for the unit commitment problem,”Oper. Res., vol.
64, no. 1, pp. 32-51, Jan. -Feb. 2016.

[8] M. Zugno and A. J. Conejo, “A robust optimization approach to energy
and reserve dispatch in electricity markets,”Eur. J. Oper. Res., vol. 247,
no. 2, pp. 659-671, Dec. 2015.

[9] J. M. Morales, A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno,
Integrating Renewables in Electricity Markets, ser. International Series
in Operations Research & Management Science. New York, NY, USA:
Springer, 2013.

[10] G. Pritchard, G. Zakeri, and A. Philpott, “A single-settlement, energy-
only electric power market for unpredictable and intermittent partici-
pants,”Oper. Res., vol. 58, no. 4, pp. 1210-1219, Jul. -Aug. 2010.

[11] J. M. Morales, A. J. Conejo, K. Liu, and J. Zhong, “Pricing electricity
in pools with wind producers,”IEEE Trans. Power Syst., vol. 27, no.3,
pp. 1366-1376, Aug. 2012.

[12] S. Wong and J. D. Fuller, “Pricing energy and reserves using stochastic
optimization in an alternative electricity market,”IEEE Trans. Power
Syst., vol. 22, no. 2, pp. 631-638, May 2007.

[13] S. Martı́n, Y. Smeers, and J. A. Aguado, “A stochastic two settlement
equilibrium model for electricity markets with wind generation,” IEEE
Trans. Power Syst., vol. 30, no. 1, pp. 233-245, Jan. 2015.

[14] Y. Zhang and G. B. Giannakis, “Distributed stochastic market clearing
with high-penetration wind power,”IEEE Trans. Power Syst., vol. 31,
no. 2, pp. 895-906, Mar. 2016.

[15] Y. Xu and S. H. Low, “An efficient and incentive compatible mechanism
for wholesale electricity markets,”IEEE Trans. Smart Grid, vol. 8, no.
1, pp. 128-138, Jan. 2017.

[16] G. Zakeri, G. Pritchard, M. Bjørndal, and E. Bjørndal, “Pricing wind: a
revenue adequate, cost recovering uniform auction for electricity markets
with intermittent generation,”Working paper, Jul. 2016. Available:
www.optimization-online.org/DBFILE/2016/06/5484.pdf

[17] J. M. Morales, M. Zugno, S. Pineda, and P. Pinson, “Electricity market
clearing with improved scheduling of stochastic production,” Eur. J.
Oper. Res., vol. 235, no. 3, pp. 765-774, Jun. 2014.

[18] C. Ruiz, A. J. Conejo, and S. A. Gabriel, “Pricing non-convexities in an
electricity pool,”IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1334-1342,
Aug. 2012.

[19] F. Abbaspourtorbati, A. J. Conejo, J. Wang, and R. Cherkaoui, “Pricing
electricity through a stochastic non-convex market-clearing model,”
IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1248-1259, Mar. 2017.

[20] A. G. Isemonger, “The benefits and risks of virtual bidding in multi-
settlement markets,”The Electr. J., vol. 19, no. 9, pp. 26-36, Nov. 2006.

[21] R. Li, A. J. Svoboda, and S. S. Oren, “Efficiency impact ofconvergence
bidding in the California electricity market,”J. Reg. Econ., vol. 48, no.
3, pp. 245-284, Dec. 2015.

[22] W. W. Hogan, “Virtual bidding and electricity market design,” The
Electr. J., vol. 29, no. 5, pp. 33-47, Jun. 2016.

[23] J. Kazempour and B. F. Hobbs, “Value of flexible resources, virtual
bidding, and self-scheduling in two-settlement electricity markets with
wind generation – Part I: Principles and competitive model,” IEEE Trans.
Power Syst., vol. 33, no. 1, pp. 749-759, Jan. 2018.

[24] J. Kazempour and B. F. Hobbs, “Value of flexible resources, virtual
bidding, and self-scheduling in two-settlement electricity markets with
wind generation – Part II: ISO models and application,”IEEE Trans.
Power Syst., vol. 33, no. 1, pp. 760-770, Jan. 2018.

[25] R. Wilson, “Architecture of power markets,”Econometrica, vol. 70, no.
4, pp. 1299-1340, Jul. 2002.

[26] A. L. Motto, F. D. Galiana, A. J. Conejo, and M. Huneault,“On
Walrasian equilibrium for pool-based electricity markets,” IEEE Trans.
Power Syst., vol. 17, no. 3, pp. 774-781, Aug. 2002.

[27] B. F. Hobbs, “Linear complementarity models of Nash-Cournot com-
petition in bilateral and POOLCO power markets,”IEEE Trans. Power
Syst., vol. 16, no. 2, pp. 194-202, May 2001.

[28] V. M. Zavala, K. Kim, M. Anitescu, and J. Birge, “A stochastic electricity
market clearing formulation with consistent pricing properties,” Oper.
Res., vol. 65, no. 3, pp. 557-576, May-Jun. 2017.

[29] J. Fortuny-Amat and B. McCarl, “A representation and economic in-
terpretation of a two-level programming problem, ”J. Oper. Res. Soc.,
vol. 32, no. 9, pp. 783-792, Sep. 1981.

[30] S. A. Gabriel, A. J. Conejo, J. D. Fuller, B. F. Hobbs, andC. Ruiz,
Complementarity Modeling in Energy Markets, ser. International Series
in Operations Research & Management Science. New York, NY, USA:
Springer, 2012.

[31] S. Siddiqui and S. A. Gabriel, “An SOS1-based approach for solving
MPECs with a natural gas market application, ”Netw. Spat. Econ., vol.
13, no. 2, pp. 205-227, Jun. 2013.

[32] Reliability System Task Force, “The IEEE reliability test system1996: a
report prepared by the reliability test system task force ofthe application
of probability methods subcommittee”IEEE Trans. Power Syst., vol. 14,
no. 3, pp. 1010-1020, Aug. 1999.

[33] University of Washington, Power systems test case archive. Available:
www.ee.washington.edu/research/pstca/

Jalal Kazempour (M’14) received the Ph.D. degree
in electrical engineering from the University of
Castilla-La Mancha, Ciudad Real, Spain, in 2013.
He is an Assistant Professor with the Department
of Electrical Engineering, Technical University of
Denmark, Kgs. Lyngby, Denmark. He was a Post-
doctoral Fellow at The Johns Hopkins University,
Baltimore, MD, USA, in 2014, and at the Technical
University of Denmark in 2015-2016. His research
interests include power systems, electricity markets,
and optimization and its applications to energy sys-

tems.

Pierre Pinson (SM’13) received the M.Sc. degree in
applied mathematics from the National Institute for
Applied Sciences, Toulouse, France, and the Ph.D.
degree in energetics from Ecole des Mines de Paris,
Paris, France. He is a Professor at the Department
of Electrical Engineering, Centre for Electric Power
and Energy, Technical University of Denmark, Kgs.
Lyngby, Denmark, also heading a group focusing
on Energy Analytics and Markets. His research in-
terests include among others forecasting, uncertainty
estimation, optimization under uncertainty, decision

sciences, and renewable energies. He is an Editor for theInternational Journal
of ForecastingandWind Energy.

Benjamin F. Hobbs (F’07) received the Ph.D. de-
gree in Environmental Systems Engineering from
Cornell University, Ithaca, NY, USA. He is Theodore
and Kay Schad Professor of Environmental Manage-
ment in the Department of Environmental Health
& Engineering of The Johns Hopkins University,
Baltimore, MD, USA, and Founding Director of the
JHU Environment, Energy, Sustainability & Health
Institute. He is the Chair of the California ISO
Market Surveillance Committee.

https://sites.hks.harvard.edu/fs/whogan/minuplift_031903.pdf
www.optimization-online.org/DB_FILE/2016/06/5484.pdf
www.ee.washington.edu/research/pstca/

	Introduction
	Literature Review and Contributions
	Model Assumptions and Paper Organization

	A Generic Stochastic Market-Clearing Model
	Proposed Stochastic market-clearing Model
	Proposed Model:
	 Solution Technique: 

	Numerical Results
	Simple Illustrative Example
	IEEE Two-Area RTS Case Study
	Computational Performance

	Conclusions
	References
	Biographies
	Jalal Kazempour
	Pierre Pinson
	Benjamin F. Hobbs


