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Abstract—This paper addresses a centralized generation ex-
pansion planning problem, accounting for both long- and short-
term uncertainties. The long-term uncertainty (demand growth)
is modeled via a set of scenarios, while the short-term uncertainty
(wind power production) is described by a family of probability
distributions having the same first- and second-order moments
obtained from historical data. In the expansion stage, the optimal
units to be built are selected among discrete options. In the
operational stage, a detailed representation of unit commitment
constraints is considered. To make this problem tractable, we
solve it with linear decision rules, and use a tight relaxation
approach to convexify the unit commitment constraints. The
resulting model is a distributionally robust chance-constrained
optimization problem, which is eventually recast as a mixed-
integer second-order cone program. We consider the IEEE 118-
bus test system as a case study, and explore the performance
of the proposed model using an out-of-sample analysis. It is
demonstrated that handling the short-term uncertainty by the
proposed distributionally robust model gives more effective out-
of-sample performance in terms of system cost and reliability
compared to a chance-constrained model that assumes a Gaussian
distribution of uncertainty, while maintaining computational
tractability. Similar out-of-sample performance is observed when
comparing the proposed model against a chance-constrained
program using the empirical distribution, is recast as either a
robust optimization or a stochastic program.

Index Terms—Distributionally robust optimization, chance
constraints, conic programming, linear decision rules, generation
expansion planning, unit commitment.

I. INTRODUCTION

The increasing integration of stochastic renewable energy
sources exposes power systems to a more variable and un-
certain generation profile. In particular, this brings two main
challenges to long-term planning decision-making problems.
First, it is complicated in the long-term planning horizon to
accurately model the short-term uncertainties pertaining to
stochastic production. Second, the emerging variability in net-
load (demand minus renewable power production) necessitates
the considerations of operational limits in the planning prob-
lems. These challenges require the development of advanced
decision-making tools for capacity planning studies that ac-
curately take into account the short-term uncertainties and
effectively define operational flexibility requirements.

In this paper, we focus on long-term expansion planning
problems in terms of generation assets. In a market context,
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the generation investment falls into the internal decisions of
the power producers, who are in general profit maximizers.
However, a centralized generation expansion planning (GEP)
model, which is the focus of this paper, can be still useful
in market-related studies. The reason is that this centralized
model can serve as an ideal benchmark, and provide the
market regulators with insights into the planning decisions
which are optimal for the whole system. The market regulator
may then design proper policies to incentivize the producers
to invest in those assets which are optimal from social welfare
perspective [1].

An appropriate GEP model requires modeling both short-
term (e.g., renewable power production) and long-term (e.g.,
demand growth) uncertainties [2]. In particular, it is compli-
cated to model the short-term uncertainties over the whole
planning horizon. In the existing literature, stochastic pro-
gramming and robust optimization are commonly used to
model short-term uncertainty in GEP problems, but each
of those techniques has its own shortcomings [3]–[5]. The
performance of stochastic GEP models highly depends on
the set of scenarios representing the sources of uncertainty.
It is crucial to ensure that the set of scenarios describes
well the true probability distribution [6]. However, this usu-
ally requires embedding a very large number of scenarios,
which will eventually end up with computational intractability.
A reduction in the number of scenarios may cause failing
a proper representation of the uncertainty distribution, and
thereby, may yield a weak out-of-sample performance [7]. On
the other hand, the GEP models based on robust optimization
make the optimal planning decisions against the worst-case
realization of a prescribed uncertainty set, which may achieve
over conservative solutions. It is also complicated to define a
proper uncertainty set, accounting for all potential distributions
of the short-term uncertainties.

In addition to the aforementioned challenges, there is an-
other one concerning two common simplifications that are
made in long-term planning studies, which might be no longer
valid. The first one is to ignore the chronological variations
of the net-load by using a net-load duration curve over the
planning horizon [14]. The second one is to constrain the
GEP optimization model by economic dispatch limits only,
discarding the operational unit commitment (UC) constraints,
e.g., start-up, shut-down, and minimum up/down time limits.
There are several recent studies showing that these simpli-
fications are distorting the expansion planning decisions in
power systems with high renewable power penetration [4], [8]–
[10], [15]. In particular, these simplifications may lead to an
underestimation of the need for new generation capacity, and
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TABLE I
THE COMPARISON OF RELEVANT WORKS PROPOSED IN THE LITERATURE AND THE MODEL PROPOSED IN THIS PAPER

Ref. Problem Operational Uncertainty modeling Correlation of Out-of-sample Resulting
constraints technique uncertainties analysis model

[8]–[10] GEP1 Unit commitment Deterministic No No MILP2

[3] GEP Economic dispatch Stochastic programming No No MILP
[4], [11] GEP Unit commitment Stochastic programming No No MILP
[5] GEP Economic dispatch Robust optimization No Yes MILP
[12], [13] TEP3 Economic dispatch Distributionally robust optimization No Yes MILP
This paper GEP Unit commitment Distributionally robust chance-constrained optimization Yes Yes MISOCP4

1GEP: Generation expansion planning; 2MILP: Mixed-integer linear program
3TEP: Transmission expansion planning; 4MISOCP: Mixed-integer second-order cone program

eventually a significant increase in the actual system cost [11].
Based on all these challenges, we address the following

three research questions: How can the renewable production
uncertainty be properly modeled in a GEP problem when the
true probability distribution is unknown? How important is it
to model the spatial and temporal correlations of renewable
production uncertainty in the GEP problem? And, how to
ensure that the operational limits including UC constraints
are properly taken into account in the GEP problem while
maintaining the GEP problem computationally tractable?

To properly address all these questions, we propose a
distributionally robust chance constrained GEP model. In this
model, an ambiguity set represents a family of probability
distributions, all with identical first- and second-order mo-
ments (mean and covariance), each representing a potential
distribution of short-term uncertainties5. In addition, the long-
term uncertainties are modeled using a set of scenarios drawn
from expert knowledge. The proposed model is constrained
by expansion limits as well as operational limits, including a
tight convex relaxation of unit commitment constraints. This
allows making the expansion planning decisions, which are
optimal in annualized total expected cost for both the long-
term scenarios and the worst-case distribution of short-term
uncertainty in the ambiguity set. By using chance constraints,
we can adjust the conservativeness of planning decisions ob-
tained by optimizing against the worst probability distribution
of short-term uncertainty. Adopting linear decisions rules, the
proposed model is eventually recast as a mixed-integer second-
order cone program with good computational performance.
Note that the resulting model is mixed-integer due to discrete
representation of expansion options. Otherwise, with a simpler
but continuous representation of candidate units to be built,

5In the existing literature of distributionally robust optimization, two types
of ambiguity sets are extensively used: moment-based and metric-based. In
the former, the set includes all probability distributions whose moments (e.g.,
mean and covariance) are identical (or close enough) to those of empirical
data [16]–[18]. In the latter, the ambiguity set is defined as a ball in the
space of distributions, such that the empirical distribution is considered in
the center, and the ball is constructed around the center using a probability
distance functions, such as φ-divergence, Kullback-Leibler divergence, or
Wasserstein metric [19], [20]. Although the Wasserstein-based ambiguity sets
guarantee a comparatively stronger out-of-sample performance, the moment-
based ambiguity sets provide better tractability features [20]. Besides, a
distributionally robust optimization with moment-based ambiguity set is in
general more tractable in comparison to its stochastic counterpart, whereas a
distributionally robust model build upon Wasserstein metric is generally more
computationally expensive [20]. A comprehensive review for distributionally
robust optimization is available in [21]. In this paper, we limit our attention
to distributionally robust optimization with a moment-based ambiguity set,
where the values of the first two moments are exactly known.

the resulting model would be a second-order cone program
without integrality constraints.

As summarized and compared in Table I, some existing GEP
models focus on various types of approximations to embed
the effect of UC constraints and the variability of net load in
the GEP problem while maintaining its tractability [8]–[10].
In these papers, the uncertainty of stochastic power produc-
ers is neglected. Some other studies focus on characterizing
uncertainties using either stochastic programming (e.g., [3],
[4], [11]) or robust optimization (e.g., [5]), with or without
enforcing UC constraints. To the best of our knowledge, there
is no other work in the existing literature proposing a distri-
butionally robust chance-constrained GEP model. References
[12] and [13] use a distributionally robust optimization with a
moment-based ambiguity set for expansion planning problems,
but their purpose is to determine the optimal investment in
transmission assets. Besides, it is worth mentioning that the
ambiguity sets in [12] and [13] consider the first moment in-
formation of uncertainties only. Therefore, these models miss
the potential temporal and spatial correlations of uncertainties,
and also build very big ambiguity sets, which may end up
to very conservative solutions, especially without enforcing
chance constraints. Also, these two papers neglect the UC
constraints.

In addition to [12] and [13], distributionally robust opti-
mization has been recently applied to an extensive range of
applications in power systems, such as UC [22]–[24], optimal
power flow [25]–[29], hydroelectric reservoir optimization
[30], congestion line management [31], energy management
in microgrids [32], and multi-stage distribution planning [33].

Given the context above, the main contributions of this
paper are as follows: we develop a moment-based distribu-
tionally robust chance constrained GEP model in which a tight
relaxation of UC with chance constraints is incorporated at the
operation stage of the GEP problem. This allows to incorporate
the effect of both long- and short-term uncertainty as well
as flexibility requirements into generation expansion planning
problem, and adjust its conservatism by varying the desired
confidence level of chance constraints. Moreover, by consider-
ing short-term moment-based ambiguity set including second-
order moment information, the spatial and temporal correla-
tions of short-term uncertainty on inter-temporal constraints,
e.g., ramp-rate constraints, are properly modeled. In addi-
tion, our findings show that the proposed GEP model based
on a distributionally robust chance-constrained optimization
exhibits a better out-of-sample performance compared to a
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similar model relying on a chance-constrained optimization
following a Gaussian distribution. The same finding still holds
when we consider a chance-constrained optimization using the
empirical distribution, is recast as either a robust optimization
or a stochastic program.

The remainder of this paper is structured as follows. Section
II provides some preliminaries on expansion time horizon
and uncertainty modeling, and lists our assumptions. Sec-
tion III presents the proposed distributionally robust chance-
constrained GEP model. Section IV explains the solution
methodology. Section V provides a comprehensive case study
based on the IEEE 118-bus test system. Section VI concludes
the paper. Appendix A provides a nomenclature. We also
include additional five appendices to provide extra technical
information, which will be required throughout the paper.

II. MODELING FRAMEWORK AND ASSUMPTIONS

A. Expansion Time Horizon
Two different approaches are commonly used in expansion

planning studies to model the planning time horizon: static
(one-year) and dynamic (multi-year). In the static expansion
approach, a single target year only (e.g., the 20th year from
now) is considered as the expansion time horizon. This model
indeed finds the optimal generation assets required to be built
by the target year, but does not determine the optimal years of
expansion from now to the target year. On the other hand, in
the dynamic expansion approach, the planning time horizon
is divided into multiple years, which allows to determine
the optimal time of expansion plans in addition to the new
capacities to be built. More information on the differences
of these two approaches are available in [1]. The proposed
problem in this paper follows a static expansion model with
a single target year – this means that we simply consider an-
nualized expansion and operations costs. It is straightforward
to extend it to a dynamic model, but the computational time
may drastically increase, and a decomposition method will be
eventually required.

It is also common in expansion planning studies to consider
a load duration curve (LDC), or a net-load duration curve, as
an approximation of hourly load curve during the expansion
time horizon [34]. The aim of such LDC-based expansion
models is to meet the capacity adequacy requirements only.
However, its main drawback is that it ignores the chronological
sequence of load profile, and thereby, the operational flexibility
limitations cannot be modeled. To resolve this issue while
maintaining the problem computationally tractable, the net-
load during the planning horizon can be represented through
a set of representative operating periods (days or weeks)
[35]–[37]. In this paper, we use a set of representative days
r P ϕ, each including 24 hours. We assign a weight to each
representative day r, indicating the number of days in the
target year, whose net-load profile is represented by day r.

B. Uncertainty Modeling
In capacity expansion studies, the sources of uncertainty

can be generally categorized into long- and short-term uncer-
tainties. The former corresponds to uncertain sources to be
realized in long run, e.g., load growth, future fuel cost, future

share of renewables in power systems, and policy regulations.
In contrast, the short-term uncertainties pertain to uncertain
sources to be realized in short-run operational stage, e.g.,
stochastic generation of renewables and consumption of loads.

In general, there is a lack of information related to the
probability distribution of long-term uncertainties, as discussed
in [13]. Therefore, we model the uncertainty of demand growth
and future capacity of renewables through a finite set of
possible scenarios drawn by expert knowledge.

For each long-term scenario s, representative day r P ϕ
and hour t P t1, 2, ..., 24u, we model the short-term net-
load uncertainty by means of an ambiguity set, i.e., a family
of possible probability distributions of net-load, which is
built based on the information associated with the first- and
second-order moments (i.e., mean and covariance) of available
historical data. We assume that the exact first- and second-
order moments can be estimated by the available historical
data, and leave modeling of the potential inexact moments
to our future works6. We consider Z short-term uncertain
sources. The production of uncertain sources in short run is
modeled by msrt ` γsrt, where msrt P RZ is the mean
of forecasted future production of uncertain sources, while
the forecast error γsrt under a given probability distribution
is a random variable with the mean vector µsrt P RZ and
the covariance matrix Σsrt P RZˆZ . According to these
definitions, the ambiguity set Psrt associated with long-term
scenario s, representative day r, and hour t can be written as

Psrt“tDPΨsrtpRZq :EDpγq“µsrt,E
DpγJγq“Σsrtu, (1)

where D is a probability distribution, belonging to family of
distributions ΨsrtpRZq, all with the same first- and second-
order moments, including the uncertainty information for all
short-term uncertain sources. Note that p.qJ is the transpose
operator and R is the set of real numbers. For notational
convenience, the indices of γsrt are dropped in (1) and in the
rest of the paper. We hereafter assume that the mean vector
of forecast error is zero, i.e., µsrt “ 0, @s, r, t.

C. Additional Assumptions

Following the majority of expansion planning studies in
literature, we use a linearized loss-less DC approximation
to represent the network power flow. It is assumed that the
topology of network is not changed throughout the planning
horizon. We also discard quick-start generating units, mean-
ing that the on/off commitment status of all conventional
generators are determined before the short-term uncertainty
realization, and this status cannot be changed in real time.
However, we consider that this commitment variables are
dependent on long-term scenarios. Finally, we assume that all
renewable sources are scheduled at their mean output power
with a zero production cost.

6Note that inexact (estimated) moments may complicate the model, and
eventually yield a semi-definite program [38]. It might be also of interest
to incorporate more information into the ambiguity set, e.g., extra moments,
a support set, or unimodality and log-concavity properties [39]. This allows
excluding the potentially non-realistic distributions from the ambiguity set,
eventually increasing the quality of the results. However, they may again
complicate the model, and we leave them for our future extensions.
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III. PROPOSED MODEL

In this section, we present the proposed distributionally ro-
bust chance-constrained (DRCC) model for the GEP problem.
We first define all notation, though a list of notation is also
provided in Appendix A.

A. Notation

First, let us define indices and parameters. We use index
i P t1, 2, ..., Gu for all conventional generating units, including
both existing and candidate units. Note that GC out of G
units are the candidate generators to be built. For each unit
i, parameters pi and p

i
indicate its maximum and minimum

production level, respectively. Parameters ri and ri represent
the maximum ramp-up and ramp-down capability of unit i,
respectively. Parameter ri indicates the ramp rate limit of
unit i in the time of start-up or shut-down only. Parameter
vectors c P RG and h P RG refer to the production and start-
up costs of generating units, respectively. Parameter vectors
v P RG and v P RG give the minimum up- and down-
time of generating units. We also consider B demands. For
given demand growth scenario s to be realized in long run,
we assume that the short-term load dsrt P RB is inelastic
to price and exactly known. With this assumption, the net-
load uncertainty in short run boils down to renewable power
production uncertainty. Parameter vector k P RGC

indicates
the annualized capital cost of candidate units. Parameter f l
refers to the capacity of line l. The power network consists of
U nodes and L transmission lines. The power flow throughout
the network is determined using a power transfer distribution
factor matrix H P RLˆU , which defines the power flow as a
linear function of nodal injections. More specifically, we define
three matrices HG P RLˆG, HW P RLˆZ , and HD P RLˆB
that incorporate the mapping of generating units, renewable
sources, and demands on the network, respectively. Note that
we use upper-case bold letters for matrices and lower-case
bold letters for vectors. Besides, 1 and 0 are the vector of
ones and zeros, respectively.

We now define the variables. The generation expansion
decisions are binary variables, meaning that the optimal de-
cisions are selected among the pre-defined expansion options.
The binary variable vector y P t0, 1uG

C

determines which
candidate units should be built. As operational stage variables,
variable vector xsrt “ rx1srt, ..., xisrt, ..., xGsrts P t0, 1u

G

indicates the on/off commitment status of generating units.
Similarly, variable vector usrt “ ru1srt, ..., uisrt, ..., uGsrts P
t0, 1uG gives the start-up status of units. The production
level of units are given by variable vector psrtpγq “

rp1srtpγq, ..., pisrtpγq, ..., pGsrtpγqs P RG. Note that the
commitment and start-up variable vectors xsrt and usrt are
dependent on long-term uncertainty, but are independent of
short-term uncertainty, i.e., the corresponding decisions are
made before the time that the short-term uncertainty realizes.
However, production variable vector psrtpγq is dependent on
both long- and short-term uncertainties. Therefore, the units
can alter their production level in real-time to contribute to
coping with the imbalances caused by power production from
renewables.

B. Formulation

The proposed DRCC model includes (2) to (5). The objec-
tive function seeks to minimize the total system cost, including
expansion cost plus the worst expected operations cost, i.e.,

min
y

kJy`
ÿ

srt

πs max
DPPsrt

κr Qspyq, (2)

where the first term, i.e., kJy, is the annualized expan-
sion cost, while the second term is the annualized expected
operations cost under the worst-case probability distribution
D P Psrt. Note that πs is the probability of long-term
scenario s, whereas κr is the weight of representative day
r. Finally, Qspyq represents the optimal annualized expected
operations cost under probability distribution D for given
investment decision y and long-term scenario s. This cost
includes production and start-up costs of the units, and writes
as

Qspyq “ min
p,x,u

EDrcJpsrtpγq `hJusrts, (3)

where EDr.s is the expectation operator. Note that the objec-
tive function is indeed a three-stage min-max-min problem,
which will be recast as a single-stage problem by using linear
decision rules – it will be explained later in Section IV and
Appendix B. The first set of constraints is

xisrt ď yi, @i P GC , s, r, t (4a)
´ xsrpt´1q ` xsrt ´ xsrτ ď 0,

@τ P tt, ...,v ` t´ 1u,@s, r, t (4b)
xsrpt´1q ´ xsrt ` xsrτ ď 1,

@τ P tt, ...,v ` t´ 1u,@s, r, t (4c)
´ xsrpt´1q ` xsrt ´ usrt ď 0, @s, r, t (4d)

1Jpsrtpγq`1Jpmsrt `γq “ 1Jdsrt, P´a.s. @s, r, t (4e)
y P t0, 1u (4f)
xsrt,usrt P t0, 1u, @s, r, t. (4g)

Constraint (4a) enforces the commitment status of candidate
unit i P GC to be zero if it is not selected to be built.
Constraints (4b) and (4c) impose the minimum up- and down-
time limits of units, whereas (4d) represents the units’ state
transition. Constraint (4e) enforces the power balance almost
surely with probability 1 for any realization of uncertainty
[40]. Although this constraint is dependent on short-term
uncertainty, it is treated as the most important operational
constraint of the problem, meaning that it should be respected
under any potential realization. Finally, (4f) and (4g) declare
the integrality conditions.

In addition to (4), the DRCC problem is constrained by a
set of chance constraints. Unlike operational constraint (4e),
the capacity and ramping limits of generating units as well as
the capacity limits of transmission lines are imposed through
individual chance constraints. This allows adjusting the con-
servativeness of the distributionally robust optimization. For
example, the capacity constraint of unit i is enforced by

min
DPPsrt

Prpisrtpγq ď pixisrts ě 1´ εi, @i, s, r, t, (5a)

where Pr.s is the probability operator. This specific chance
constraint implies that under all distributions in ambiguity set
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Psrt, the probability of meeting the capacity constraint should
be greater than or equal to 1 ´ εi, where, parameter εi lies
within zero and one. Similarly, the rest of individual chance
constraints write as

min
DPPsrt

Prpisrtpγq ě p
i
xisrts ě 1´ εi, @i, s, r, t (5b)

min
DPPsrt

Prpisrtpγq ´ pisrpt´1qpγq ď ri xisrpt´1q

` rip1´ xisrpt´1qqs ě 1´ εi, @i, s, r, t (5c)
min
DPPsrt

Prpisrpt´1qpγq ´ pisrtpγq ď ri xisrt

` rip1´ xisrtqs ě 1´ εi, @i, s, r, t (5d)

min
DPPsrt

PrHG
l psrtpγq `HW

l pmsrt`γq

´HD
l dsrt ď f ls ě 1´ εl, @l, s, r, t (5e)

min
DPPsrt

PrHG
l psrtpγq `HW

l pmsrt ` γq

´HD
l dsrt ě ´f ls ě 1´ εl, @l, s, r, t. (5f)

Chance constraint (5b) imposes the minimum production level
of units, while (5c) and (5d) restrict the ramping of units.
Finally, (5e) and (5f) enforce the capacity of each transmission
line l, where EDr.s is the expectation operator. The next
section explains how to solve the proposed DRCC problem
(2)-(5).

IV. SOLUTION METHODOLOGY

The proposed DRCC model (2)-(5) is computationally hard
to solve (or even intractable) due to the infinite-dimensional
nature of the problem and the existence of binary variables. For
tractability, we solve it in linear decision rules [40], and use a
tight relaxation approach to convexify the UC constraints [41].
We first introduce an approximation approach to convexify the
UC constraints, and then follow an affine policy strategy to
analytically reformulate the chance constraints.

A. Tight Relaxation of Unit Commitment Constraints

The expansion decisions y are the main decision variables
of the proposed model, and therefore, their integrality con-
ditions need to be preserved. On the contrary, it is compu-
tationally appealing to relax the integrality conditions of UC
constraints in operational stage, but as tight as possible. The
binary variables of the UC constraints are on/off commitment
status xsrt and start-up status usrt of generating units. To
enhance the tractability, we use a tight convex relaxation
approach, similar to the ones in [10] and [41], which sub-
stitutes the feasible set of each generating unit by a tractable
approximation of its convex hull7. In this approach, we first
relax each operational-stage binary variable to lie within zero
and one, i.e.,

0 ď xsrt ď 1; 0 ď usrt ď 1, @s, r, t. (6)

Then, additional inequalities are embedded to tighten the relax-
ation [43]. Similar to the ramping and capacity constraints of

7We do not investigate the impacts of this relaxation on pricing, but refer
the interested readers to [42].

generating units in (5), we consider these additional tightening
constraints in form of chance constraints:

min
DPPsrt

Prpisrpt´1qpγq ď ri xisrpt´1q

`ppi ´ riqpxisrt ´ uisrtqqs ě 1´ εi,@i, s, r, t (7a)
min
DPPsrt

Prpisrtpγq ď pixisrt

´ppi ´ riquisrtqs ě 1´ εi, @i, s, r, t (7b)
min
DPPsrt

Prpisrtpγq ´ pisrpt´1qpγq ď ppi ` riqxisrt

´p
i
xisrpt´1q ´ ppi ` ri ´ riquisrts ě 1´ εi,@i, s, r, t

(7c)
min
DPPsrt

Prpisrtpγq ´ pisrpt´1qpγq ě ppi ` ri ´ riquisrt

´rixisrpt´1q ` pri ´ riqxisrts ě 1´ εi,@i, s, r, t. (7d)

As a result, the proposed formulation for GEP can now be
stated as the collection of (2)-(3), (4a)-(4f), (5)-(7).

B. Linear Decision Rules and Resulting Reformulation
To further mitigate the complexity of the proposed problem,

the recourse actions are approximated with linear decision
rules [40]. In this way, the production of each unit i, i.e.,
pisrtpγq is described by pisrt ` αisrt1Jγ, where pisrt is the
tentative day-ahead schedule of unit i, while recourse action
αisrt1

Jγ represents the linear change of power produced by
unit i in response to the uncertain renewable production. In
particular, we refer to variable αisrt as participation factor
of unit i (in per-unit) to cover the power imbalances due to
forecast errors. Using this affine policy, and assuming that
µsrt “ 0, @s, r, t, objective function (2), power balance
constraints (4e) and chance constraints (5) and (7) can be
reformulated to make the original problem tractable. The
details of these reformulations are given in Appendix B.

It is worth noting that ramping chance constraints (5c)-(5d)
and (7c)-(7d) impose inter-temporal coupling between dispatch
decisions. For these constraints, the uncertainty parameter
vector contains both vectors γsrt and γsrpt´1q such that

pγsrt “

„

γsrt
γsrpt´1q



, (8)

where pγsrt P R2Z . As a result, another covariance matrix
needs to be defined to model the effect of temporal correlation
on ramping constraints that can be written as

pΣsrt “

„

Σsrt Υsrpt,t´1q

Υsrpt,t´1q Σsrpt´1q



, (9)

where pΣsrt P R2Zˆ2Z includes not only the spatial correlation
of wind farms, but also their temporal correlation between
hours t and t ´ 1. Now, the original DRCC problem boils
down to a mixed-integer second-order cone program as given
in detail in Appendix C.

V. NUMERICAL STUDY

We use a case study based on a modified version of the IEEE
118-bus test system [44] including 19 existing conventional
units, 2 existing wind farms, 99 demands, and 186 transmis-
sion lines. By existing, we refer to those conventional or wind
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power units that either exist now and will not be phased out
by the target year, or the units that do not exist now, but it is
certain that they will be built by the target year. In addition
to the existing conventional and wind units, we consider 22
candidate conventional units that can be built.

All simulations are run on an Intel(R) Xeon(R) E5-1650
with 12 processors clocking at 3.50 GHz and 32 GB of RAM.
The source code implemented in Matlab using YALMIP and
solved by Gurobi 7.5.1 is available in the online companion
[45]. Depending on the values assigned for ε in chance
constraints, the CPU time varies from 2 to 3 hours.

A. Input Data

We consider several types of conventional units, including
coal, nuclear, combined cycle gas turbine (CCGT) and gas
turbine (GT). Their technical parameters are given in Table II.
The total capacity of existing conventional units is 6,466 MW.
The full details about the characteristics of generating units,
transmission lines, load profile of demands, and wind power
profile of two farms are given in the online companion [45].

Using a K-means clustering technique, we provide net-load
data for 10 days, each with a different profile, to represent the
target year. The reason for selecting 10 representative days is
that with increasing the number of these days, the investment
solution does not change significantly.

Without loss of generality, two long-term scenarios with
the same probabilities are considered8. It is assumed that the
load level of the target year in the first and second scenarios
is 3.4 and 4 times of the existing load level with the same
pattern, respectively. The capacity of two wind farms in the
target year is assumed to be 2,400 MW and 3,000 MW under
the first long-term scenario, while for the second scenario, it is
assumed to be 5,355 MW and 6,120 MW. Therefore, the wind
penetration level, i.e., the yearly contribution of wind power
to supply demand, under both long-term scenarios is 35%.

For each farm, we generate 10,000 power trajectories from
the historical data, each containing the wind power profile of
that farm over all hours of the 10 representative days. We then
split them into two sets of 5,000 trajectories; the first set to
form the training dataset (in-sample data) and the second set
to be used as test data in an ex-post out-of-sample analysis.

B. Constructing the Ambiguity Sets

Using the 5,000 training trajectories, it is required to calcu-
late the mean production vectors of wind farms msrt and the
covariance matrices of wind power forecast errors Σsrt and
Σ̂srt for each long-term scenario, representative day and hour.
For example, Fig. 1 illustrates the training data in per-unit
used for constructing the covariance matrix Σ̂srt in a sample

8We will explore later in Section V.F the robustness of the proposed model
against the long-term uncertainty. We observe that increasing the number
of long-term scenarios significantly increases the CPU time, such that the
same case study with 4 long-term scenarios is solved in around 6 to 7 hours,
depending on the value of confidence level. To tackle this computational issue,
one may consider using decomposition techniques. One potential solution
is to use Benders’ decomposition by treating the expansion decisions as
complicating (coupling) variables, e.g., in a similar way as in [11]. However,
we leave it for future extensions as it is not the main focus of the current
paper.

TABLE II
DATA FOR CONVENTIONAL GENERATING UNITS

Type Coal Nuclear CCGT GT1 GT2
Oper. cost ($/MWh) 18.72 10.33 19.32 38.47 48.47
Start-up cost ($/MW) 54.11 100 16.23 25.14 28.14
Exp. cost (103$/MW-year) 174.7 224 60.1 48.5 38.5
Min. generation (p.u.): 0.75 0.9 0.4 0.27 0.25
Ramp rate (p.u.): 0.3 0.1 0.5 0.7 1
Min. up time (h) 24 48 6 1 1
Min. down time (h) 12 24 12 1 1
Nr. of existing units 4 2 4 2 7
Nr. of candidate units 4 2 6 4 6
:It is given as a percentage of unit’s capacity.
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Fig. 1. Production forecast errors of wind farms w1 and w2 at hours t and t´
1 in a sample representative day. The diagonal plots (x-axis: in per-unit; y-axis:
frequency of occurrence) display the frequency of forecast error realizations.
The off-diagonal plots (both axes in per-unit) display the realizations of two
different corresponding forecast errors.

representative day under both long-term scenarios. This figure
illustrates a matrix of plots in which the diagonal plots display
the histograms of production forecast errors pertaining to wind
farms w1 and w2 at hours t and t´1. Besides, the scatter plots
of corresponding forecast errors appear in the off-diagonal.
The histogram plots show the frequency distribution of each
forecast error, while the scatter plots show the correlation of
two corresponding forecast errors. The scatter plots in blue
and green, respectively, show temporal and spatial correlations
only. However, the scatter plots in red show the combination
of temporal and spatial correlations between hours t and t´1
and between wind farms w1 and w2. From the histogram plots,
it is evident that the forecast error of wind production does
not necessarily follow a specific probability distribution. Fur-
thermore, it can be seen that the mean production of forecast
errors is zero. Therefore, these observations match with the
assumption that forecast errors have unknown distribution with
a zero mean value.

C. Benchmark Models
To assess the performance of the proposed DRCC model, we

consider a chance-constrained (CC) model as a benchmark. In
this benchmark, the short-term uncertainty follows a Gaussian
probability distribution with the same two moments used in
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Fig. 2. In-sample results: New generation capacities to be built (left vertical
axis) and annualized expected total system cost (right vertical axis) as a
function of confidence level, obtained from the proposed DRCC model (upper
plot) and the chance-constrained benchmark model with Gaussian probability
distribution (lower plot).

the DRCC model. Therefore, there is no ambiguity set in
the benchmark, and it is not necessarily robust against the
short-term uncertainty if it follows any other distribution.
Similar to the proposed DRCC model, the benchmark model
results in a mixed-integer second-order cone problem. In fact,
each chance constraint with a Gaussian distribution can be
analytically reformulated as a second-order cone constraint
[46], as explained in Appendix D. Note that we will consider
an additional benchmark in Section V.G, which is a chance-
constrained optimization with no assumption on probability
distribution. The chance constraints in this benchmark can no
longer be analytically reformulated. Following a randomized
sampling approach in [47], we will solve it as either a robust
optimization or a stochastic program.

D. In-Sample Results
We solve the proposed DRCC model to determine the opti-

mal generation expansion plans. For simplicity, we consider an
identical value for εi and εl for all chance constraints, denoted
as ε, and then refer to 1´ ε as confidence level.

Fig. 2 illustrates the optimal generation capacity expansion
plans (left vertical axis) and the annualized expected total
system cost (right vertical axis) as a function of confidence
level obtained from the proposed DRCC model (upper plot)
and the benchmark CC model with Gaussian distribution
(lower plot). Note that the DRCC model becomes infeasible
for a confidence level higher than a value between 0.95 and
0.96, meaning that all candidate units, even if are being built,
cannot provide enough operational flexibility under the worst
probability distribution – this implies that load curtailment
will be required. In both plots, as expected, the system cost
grows up with increasing confidence level, as more flexible but
more expensive conventional units are required to be built.
For example, the proposed DRCC model suggests investing
in nuclear and coal units if confidence level is equal to 0.6,
but it drastically changes in a case with confidence level of
0.92, where this model determines flexible CCGT and GT
units as optimal generation mix to be built. In addition, a
comparison of upper and lower plots in Fig. 2 points out
that the proposed DRCC model is more conservative than the
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Fig. 3. In-sample results: New conventional generation capacities to be built
under different values of wind power penetrations, obtained from the proposed
DRCC model (upper plot) and the chance-constrained benchmark model with
Gaussian probability distribution (lower plot). The confidence level is fixed
to 0.8.

benchmark, ending up to a higher system cost and a higher
investment in flexible generation capacity. However, we will
demonstrate later that the proposed model has a much better
out-of-sample performance with respect to the benchmark.

In order to demonstrate the effectiveness of the proposed ap-
proach in modeling the variability and uncertainty of stochastic
energy sources, a sensitivity analysis with respect to the level
of wind power penetration is performed. To do so, we increase
the wind penetration level in both long-term scenarios from
30% to 50%. The upper plot of Fig. 3 depicts the results
of the proposed generation expansion model for different
penetration levels. It is observed that with increasing the
penetration level, a lower conventional generation capacity
is required, but as expected, this new capacity is chosen
among flexible technologies. This is due to the fact that a
higher wind penetration implies a lower net-load, but higher
variability and uncertainty in the system. As a result, the wind
power penetration level not only affects the capacity of new
generating units, but also changes the type of units. The lower
plot of Fig. 3 shows the results obtained by the benchmark.
Compared to the solutions of the DRCC model, the benchmark
model fails in capturing the need for new flexible generating
units when the wind penetration grows.

E. Out-of-Sample Analysis

Using the remaining 5,000 wind trajectories described in
Section V.A, we perform an out-of-sample analysis in this
section to evaluate the performance of the proposed DRCC
model with respect to the benchmark. The main point is that
we fix the generation expansion decisions to those obtained in
the in-sample study (illustrated in Fig. 2), and then solve the
tightened relaxed unit commitment problem over representa-
tive days but using the out-of-sample wind data.

For the out-of-sample simulation, the 5,000 test trajectories
are clustered using a k-means technique to achieve the same
number of representative days to the one in the in-sample
study, i.e., 10. However, the weighting factors of the 10
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Fig. 4. Out-of-sample results: The annualized total system cost in terms of
mean, standard deviation, and 5%-CVaR obtained from the proposed DRCC
model and the CC benchmark model with Gaussian probability distribution.

representative days in in-sample and out-of-sample studies
might be different. After that, we randomly pick one trajectory
from each cluster (i.e., representative day), such that the
set of 10 selected trajectories represents the wind profile in
the target year. Then, we solve the tightened relaxed unit
commitment problem for the whole target year, while taking
into account the extreme recourse actions, i.e., load shedding
and wind spillage. We consider a value of lost load equal
to $1,000/MWh, while the wind spillage is cost free. Note
that each unit commitment problem to be solved in the out-
of-sample simulations is indeed a deterministic problem. We
repeat this procedure until there is no trajectory left for at least
one of the clusters.

For both proposed DRCC model and the CC benchmark
model with Gaussian distribution, Fig. 4 shows the out-of-
sample system cost (in terms of mean and standard deviation)
as a function of confidence level. The range of system cost
between mean plus/minus standard deviation is illustrated as
a tube around the mean cost curve. In addition, this figure
depicts the average system cost under the worst 5% out-of-
sample simulations, measured by a conditional value-at-risk
(CVaR) metric. Let us first analyze the DRCC results. With
increasing values for confidence level from 0.6 to around
0.8, the mean cost of the DRCC model (blue dashed line)
decreases, while it increases afterwards. The reason for this
is that there is a relatively significant load curtailment when
the confidence level is low, while it becomes zero with a
higher confidence level, but at the cost of higher investment
and operations costs. The trend of annual amount of load
curtailment in DRCC model as a function of confidence level
is given in the upper plot of Fig. 5. In addition, Fig. 4 shows
that both standard deviation and 5%-CVaR of the system cost
obtained from the proposed DRCC model decrease with in-
creasing the confidence level. Compared to this model, the CC
model (benchmark) shows a poor out-of-sample performance,
such that the mean cost, standard deviation, 5%-CVaR, and the
amount of load curtailment in that model are always higher
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Fig. 5. Out-of-sample results: The annual amount of load curtailment
(upper plot), ex-ante violation probability (middle plot), and ex-post violation
probability (lower plot) obtained from the proposed DRCC model and the CC
benchmark model with Gaussian probability distribution.

than those in the proposed DRCC model. The mean cost of
the two models in the highest confidence level in Fig. 4, i.e.,
0.92, get closer, but note that such a difference will increase
if a higher value for lost load is considered.

For further comparison of the two models, we present in the
ex-post and ex-ante violation probabilities of the solutions ob-
tained by the DRCC model and the CC benchmark model with
Gaussian distribution as given in the middle and lower plots
of Fig. 5, respectively. The ex-post violation probability is
indeed achieved by solving the out-of-sample unit commitment
problems: whenever there is a need for an extreme recourse
action, i.e., load curtailment or wind spillage, we count it as a
sample with an ex-post violation. In contrast, we do not solve
any problem to compute the ex-ante violation probability: for
given optimal in-sample values obtained for the tentative day-
ahead schedule and participation factor of generating units
obtained, the linear decision rule is applied to calculate the
recourse power production of each unit under each test sample.
This way, the satisfaction of chance constraints is investigated
– see Appendix E for further details. According to Fig. 5, the
ex-ante violation probability is higher than the ex-post one
due to the fact that the linear decision rule restricts the power
production of generating units in response to the short-term
uncertainty which increases the violation probability. The key
point is that with both metrices, the proposed DRCC model
shows a better performance with respect to the benchmark
model9.

F. Additional Analyses
In this section, we first investigate the impacts of UC

constraints on planning outcomes. To do so, we compare the
results achieved by the proposed model with those of a similar

9It is worth mentioning that though the proposed DRCC model exhibits
a good out-of-sample performance in this case study in terms of violation
probability, the chance constrains in general do not necessarily restrict the
severity of violations. If it is a concern, one may use the CVaR constraints
rather than the chance constrains, but at the cost of more complicated model
and potentially a more conservative solution [48].
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Fig. 6. Out-of-sample results: The annualized total system cost in terms of
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model including economic dispatch (ED) limits only, where
all UC constraints are neglected. As expected, the ED-based
model invests in more inflexible generation capacity including
nuclear and coal units. As a result, the out-of-sample system
cost in terms of mean and standard deviation obtained from the
ED-based model is comparatively higher than that of the UC-
based model. For example, in a case with a confidence level of
0.8, the mean and standard deviation of the annualized system
cost obtained from the out-of-sample simulation in the ED-
based model are $796 and $241 millions, respectively. Those
values in the UC-based model are $716 and $103 millions,
respectively.

Our next analysis explores the effects of the tight relaxation
of UC constraints on out-of-sample system cost. After fixing
the expansion decisions to those obtained in in-sample analysis
(Fig. 2), we run the deterministic out-of-sample simulations
for two cases, where the operational stage includes either
exact or tightened relaxed UC constraints. For both cases,
Fig. 6 illustrates the out-of-sample cost in terms of mean
and standard deviation for different values of confidence level.
From this figure, we observe that the out-of-sample cost in case
with exact UC constraints is very close to that in case with
tightened relaxed UC constraints. Although this analysis does
not show the impact of UC relaxation on expansion decisions,
it confirms that the convex relaxation will not considerably
affect the optimality of the solution obtained in the operational
stage.

Another key point to highlight is that the proposed model
provides a robustness against the short-term uncertainty, but
not necessarily against the long-term one, as it has been
modeled by a limited set of scenarios only. This is illustrated
in the upper plot of Fig. 7, demonstrating the mean and
standard deviation of out-of-sample system cost obtained from
the proposed DRCC model for two different cases. In Case I,
the two long-term scenarios for demand growth in the out-
of-sample simulations are exactly the same as those in the in-

0.6 0.7 0.8 0.9 0.92
Confidence Level

(a)

0

0.5

1

1.5

2

2.5

3

3.5
109

Case II-mean Case II-variance Case I-mean Case I-variance

3000 4000 5000
Number of Test Trajectories

(b)

0.5

1

1.5

2

2.5

3

O
u

t-
o

f-
sa

m
p

le
 C

o
st

 (
$)

109

DRCC-mean DRCC-variance CC-mean CC-variance

mean=7.56 108

std. dev.= 2.46 108

mean=7.16 108

std. dev.= 1.48 108

Fig. 7. Out-of-sample results: The annualized total system cost in terms of
mean and standard deviation (a): obtained from the proposed DRCC model
for the two cases evaluating the robustness of the proposed model against
the long-term uncertainty, (b): obtained from the proposed DRCC model and
the CC benchmark model with Gaussian probability distribution for different
number of training trajectories showing the robustness of the proposed model
against the size of training dataset.

sample study. This is indeed a biased out-of-sample simulation
in terms of long-term uncertainty. On the contrary, in Case II,
we consider a forecast error in long-term uncertainty, so that
the realized load level under both scenarios are 5% higher
than those in the in-sample long-term scenarios. As observed
in the upper plot of Fig. 7, this long-term forecast error causes
a remarkable increase in cost (both in terms of mean and
standard deviation), especially for cases with comparatively
lower confidence level. This assessment highlights the need
for more advanced tools, which also provides robustness not
only against the short-term uncertainty, but also against the
long-term one. We leave this study for our future work.

In another analysis, the robustness of the proposed model is
explored as a function of the size of training dataset. We run
our simulation with different size of training samples, varying
from 3,000 to 5,000. As shown in the lower plot of Fig. 7,
the proposed DRCC model is more robust against the sample
size compared to the benchmark CC model.

G. Additional Benchmark: A Chance-Constrained Optimiza-
tion With no Assumption on Distribution

As mentioned earlier in Section V.C, we consider here
an extra benchmark, which is again a chance-constrained
optimization with a single distribution, but it does not follow
any specific type of distribution. Note that it is not a DRCC
model, as it considers a single distribution only. The distribu-
tion of this benchmark is identical to that of historical data,
i.e., 5,000 in-sample trajectories allocated in 10 representative
days. Unlike the benchmark in the previous sections with a
Gaussian probability distribution, the chance constraints in this
benchmark cannot be analytically reformulated. To solve this
problem, we use a randomized sampling approach proposed
in [47]. Based on this approach, depending on the inputs
of the chance-constrained model, e.g., the confidence level,
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Fig. 8. The in-sample scenarios (blue dots) corresponding to the production
of two wind farms (w1 and w2) in an arbitrarily selected hour, i.e., hour 1
of representative day 2. Besides, plot (a) shows two box uncertainty sets
corresponding to RO-Case I and RO-Case II, as well as two ellipsoidal
uncertainty sets associated with the DRCC model and the CC model with
Gaussian distributions. Finally, plot (b) illustrates the representative scenarios
in SP-Case I and SP-Case II with reduced number of scenarios (green and
red dots).

we randomly pick a certain number of samples from the
historical data. In particular, the minimum number of samples,
M , required is

M ě
1

1´ ε

e

e´ 1
p1` ln

1

β
q, (10)

where e is Euler number, 1´ε is the confidence level ensuring
that the resulting box uncertainty set encloses 1 ´ β of the
probability mass. It is evident that chance constraints with a
higher confidence level require more samples. Similarly, the
number of random samples required reduces by considering
loose chance constraints. Given the samples picked, one can
treat the problem as either a stochastic program, or a robust
optimization by considering a box (rectangular) uncertainty set
covering all samples. The formulation of resulting stochastic
program and robust optimization is provided in Appendix F.

We take into account two cases, namely RO-Case I and RO-
Case II, for the robust optimization benchmark. In RO-Case I,
we pick all in-sample trajectories, without using (10), aiming
to provide the most robust solution. In RO-Case II, we consider
a chance-constrained program with 1´ε “ 0.8 and β “ 0.001
for all chance constraints, and then randomly pick a number
of samples according to (10). It is obvious that the number
of samples picked in RO-Case II is comparatively lower than
that in RO-Case I, as it corresponds to a problem with looser

chance constraints. For an arbitrarily selected hour and day,
i.e., hour 1 in representative day 2, the samples picked for the
two cases, and their corresponding box uncertainty sets are
depicted in Fig. 8(a). It is also worth mentioning that there
exists a close relation and a complete equivalence between
chance-constrained program and robust optimization with an
ellipsoidal uncertainty set, as discussed in [49] and [50]. Fig.
8(a) shows the two ellipsoidal uncertainty sets for robust
optimizations, which are equivalent to the chance-constrained
program with Gaussian distribution (smaller ellipsoid) and
the distributionally robust chance-constrained program (larger
ellipsoid). One interesting observation is that the robust opti-
mization equivalent to DRCC (i.e., the one with larger ellip-
soid) covers less samples than the robust optimization with a
smaller box uncertainty set (i.e., RO-Case II)10. Therefore, we
would expect that the robust optimization corresponding to the
chance-constrained benchmark model with no assumption on
probability distribution provides a more conservative solution
than the proposed DRCC model.

We compare the out-of-sample performance of the two
robust cases RO-Case I and RO-Case II with the proposed
DRCC model. The upper plot of Fig. 9 illustrates the system
cost and the amount of load shedding in these three cases. It is
observed that both robust cases even the one corresponding to
the benchmark with a lower confidence level (i.e., RO-Case II)
provide more conservative solutions than the proposed DRCC
model – the system cost is higher, while the amount of load
shedding is lower. This is consistent with our earlier obser-
vation in Fig. 8(a) that both box uncertainty sets cover more
samples than the equivalent robust optimization to DRCC.

We now take the other potential approach with the ran-
domly picked samples obtained from (10), and treat them as
scenarios within a two-stage stochastic program, whose first
stage determines the expansion decisions, and whose second
stage makes the operational decisions under each scenario.
Similar to robust optimization approach, we consider two
cases, namely SP-Case I and SP-Case II. By allocating the
samples within 10 representative days and using a K-means
clustering technique, we end up to 10 scenarios in SP-Case
I, and 5 scenarios in SP-Case II. Note that each scenario
embodies the production profile of two wind farms over all
hours of 10 representative days. To make a fair comparison
with other approaches, we apply linear decision rules to the
two-stage stochastic program too, which recasts it as a single-
stage model – see the corresponding formulation in Appendix
F. Fig. 8(b) depicts the production of two wind farms under
selected scenarios at hour 1 of representative day 2. The lower
plot of Fig. 9 illustrates the better out-of-sample performance
of the proposed DRCC model compared to both stochastic
cases in terms of system cost as well as amount of load
shedding.

One important observation for stochastic cases is their com-
putational requirement. The CPU time for the stochastic model
with 50 and 100 scenarios is 10 and 17 hours, respectively.

10Note that this might not be the case if the randomly selected samples
are enveloped by a polyhedron with more than four vertices, taking into
account the potential correlation of random variables. The interested readers
are referred to [51] for constructing uncertainty sets for robust optimization
based on the available samples.
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Fig. 9. Out-of-sample results: The annualized expected total system cost and
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TABLE III
THE COMPARISON OF DIFFERENT MODELS IN TERMS OF

COMPUTATIONAL BURDEN

Model CPU time (h) Nr. of variables Nr. of constraints
DRCC 3 78,744 518,080
CC 3 78,744 518,080
RO-Case I 8 1,737,624 2,471,760
RO-Case II 8 1,737,624 2,471,760
SP-Case I 10 78,744 1,845,680
SP-Case II 17 78,744 3,544,540

This is significantly higher than the solution time in the
proposed DRCC model (between 2 to 3 hours depending
on the value of confidence level). Our numerical analysis
implies that the proposed DRCC model presents a better out-
of-sample solution with comparatively lower computational
burden. It is obvious that by increasing the number of sce-
narios, the stochastic optimization will exhibit a better out-of-
sample performance, but at the cost of increased computational
burden. Table III summarizes the computational complexity
of the proposed model and the benchmarks which depicts the
promising performance of the DRCC model.

VI. CONCLUSION

This paper proposes a distributionally robust chance-
constrained generation expansion model, which considers the
short-term uncertainty using a family of probability distri-
butions, and characterizes the long-term uncertainty by a
set of scenarios. A tight relaxed version of operational unit
commitment constraints is incorporated into the model. The
resulting model is a mixed-integer second-order cone prob-
lem, which is computationally tractable, and demonstrates a
better out-of-sample performance compared to a benchmark
which considers a specific uncertainty distribution only. The
future work needs to robustify the model against the long-
term uncertainty too. An additional uncertainty on moments
can also be considered, resulting in a distributionally robust
model with inexact moments. It is also of interest to explore

other possibilities to build the ambiguity sets, e.g., using a
Wasserstein metric.

APPENDIX A: NOMENCLATURE

A. Indices
i Index for conventional generating units.
l Index for transmission lines.
r Index for representative days.
s Index for long-term scenarios.
t Index for operating hours.
C. Parameters
κr Weight of representative day r [day].
c Production cost of generating units [$/MWh].
dsrt Load level in short run in representative day r, hour

t under long-term scenario s [MW].
h Start-up cost of generating units [$].
k Annualized capital cost of candidate units [$].
msrt Mean vector of production of uncertain sources in

representative day r, hour t under long-term scenario
s [MW].

v,v Minimum up- and down-time of generating units
[hour].

f l Capacity of transmission line l [MW].
pi,pi Maximum and minimum production level of generat-

ing unit i [MW].
ri,ri Maximum ramp-up and ramp-down capability of gen-

erating unit i [MW/h].
πs Probability of long-term scenarios s.
D Worst probability distribution.
ri Ramp rate limit of generating unit i in the time of

start-up and shut-down [MW/h].
B. Variables
αisrt Participation factor of unit i in response to short-term

uncertainty in representative day r, hour t under long-
term scenario s [per-unit].

Hr.s Power transfer distribution factor mapping generating
units (G), uncertain sources (W), and demand (D) on
network.

y Investment decision [0,1] of candidate generating
units.

pisrt Tentative schedule of unit i in representative day r,
hour t under long-term scenario s [MW].

uisrt Start-up status [0,1] of unit i in representative day r,
hour t under long-term scenario s.

xisrt On/off commitment status [0,1] of generating unit i in
representative day r, hour t under long-term scenario
s.

D. Uncertainty modeling
Psrt Ambiguity set associated with long-term scenario s,

representative day r, and hour t.
γsrt Random variable of forecast error at hour t of repre-

sentative day r under long-term scenario s.
µsrt Mean vector of forecast error at hour t of representa-

tive day r under long-term scenario s.
Σsrt Covariance matrix of forecast error at hour t of

representative day r under long-term scenario s.
Ψsrt Family of potential distributions associated with long-

term scenario s, representative day r, and hour t.
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APPENDIX B: REFORMULATION

In the following three sections of this appendix, we elab-
orate on the reformulations of objective function (2), power
balance constraints (4e), and chance constraints (5) and (7),
respectively. Recall that we use linear decision rules in this
paper, and thereby, we substitute power production of each
unit i, i.e., pisrtpγq with pisrt ` αisrt1Jγ, @i, s, r, t.

A. Objective Function
By implementing linear decisions rules, three-stage objec-

tive function (2) is written as

min
y

kJy `
ÿ

srt

πs max
DPPsrt

κr min
p,α,x,u

EDrcJppsrt ` αsrt1
Jγq ` hJusrts. (11a)

Recall that the mean of the forecast error uncertainty vector
γ is assumed to be zero, i.e., EDpγq “ µ “ 0. Therefore, the
second row of (11a) reduces to cJpsrt ` hJusrt. Now, the
forecast error γ does no longer exist in the objective function.
Similarly, constraints (4e), (5) and (7) will be reformulated in
the next two sections of this appendix in a way that they will
not include γ. As a result, maximization operator max

DPPsrt

in

min-max-min objective function (11a) can be removed [26],
yielding a min-min objective function, which can be combined
to a single minimization function as

min
y,p,α,x,u

kJy `
ÿ

s,r,t

πsκrpc
Jpsrt ` hJusrtq. (11b)

B. Power Balance Constraints
The linear decisions rules reformulate the power balance

constraints (4e) to

1Jpp`αsrt1
Jγq ` 1Jpmsrt ` γq

“ 1Jdsrt, @s, r, t. (12a)

In order to satisfy (12a) for all realizations of the forecast
error γ, we set the first-order coefficient of γ equal to zero
[40]. Thus, by matching the zero- and first-order coefficients
of γ on both sides of (12a), we obtain

1Jαsrt “ ´1, @s, r, t (12b)

1Jpsrt ` 1Jmsrt “ 1Jdsrt, @s, r, t. (12c)

C. Chance Constraints
By applying Chebyshev inequality to a distributionally

robust individual chance constraint as explained in [52] and
[38], we can analytically reformulate chance constraints (5)
and (7). However, one may use this reformulation with caution,
as the accuracy of Chebyshev approximation might be reduced
when the value of confidence level 1´ε is very close to one. It
may end up to a unnecessarily conservative or even infeasible
solution11 [26], [53].

11To tackle this issue, a more complicated but exact reformulation is
proposed in [26], which is not implemented in this paper. Reference [53]
provides a comparison of these two approximate and exact reformulations by
applying them to a market-clearing problem.

For example, we provide here the reformulation of chance
constraint (5a). Other chance constraints can be analytically
reformulated in the same manner. By implementing the linear
decision rules, (5a) is written as

min
DPPsrt

P
`

pisrt ` αisrt1
Jγ ď pixisrt

˘

ě 1´ εi, @i, s, r, t.

(13a)
Assuming that µsrt “ 0, @s, r, t, and following the ap-

proach in [52] and [38] to implement Chebyshev inequality,
the above chance constraint is analytically reformulated as

pisrt ď pixisrt ´

c

1´ εi
εi

a

αisrt1JΣsrt1αisrt, @i, s, r, t,

(13b)

which can be eventually rewritten as

pisrt ď pixisrt ´

c

1´ εi
εi

}αisrt1
JΣ

1{2
srt}2, @i, s, r, t.

(13c)
Note that the resulting reformulation (13c) is a second-

order cone constraint. It can be reduced to a linear constraint
by assuming αisrt ě 0. However, it is a strong assumption,
especially in problems with network and unit commitment
constraints, and we avoid taking such an assumption. There-
fore, each chance constraint (5) and (7) is reformulated to a
second-order cone constraint.

APPENDIX C: RESULTING MODEL

According to all reformulations explained in Appendix B,
the resulting mixed-integer second-order cone problem for the
proposed DRCC model (2)-(5) is

min
y,p,α,x,u

kJy `
ÿ

s,r,t

πsκrpc
Jpsrt ` hJusrtq (14a)

subject to:
(4a)-(4d),(4f),(6),(12b)-(12c),(13c)

pisrt ě p
i
xisrt `

c

1´ εi
εi

}αisrt1
JΣ

1{2
srt}2, @i, s, r, t

(14b)
pisrt ´ pisrpt´1q ď rixisrpt´1q ` rip1´ xisrpt´1qq

´

c

1´ εi
εi

}vJisrt
pΣ
1{2
srt}2, @i, s, r, t (14c)

pisrt ´ pisrpt´1q ě ´rixisrt ´ rip1´ xisrtq

`

c

1´ εi
εi

}vJisrt
pΣ
1{2
srt}2, @i, s, r, t (14d)

HG
l psrt `HW

l msrt ´HD
l dsrt ď f l

´

c

1´ εl
εl

}pHG
l αsrt1

J `HW
l qΣ

1{2
srt}2, @l, s, r, t (14e)

HG
l psrt `HW

l msrt ´HD
l dsrt ě ´f l

`

c

1´ εl
εl

}pHG
l αsrt1

J `HW
l qΣ

1{2
srtq}2, @l, s, r, t (14f)

pisrpt´1q ď rixisrpt´1q ` ppi ´ riqpxisrt ´ uisrtq

´

c

1´ εi
εi

}αisrpt´1q1
JΣ

1{2
srpt´1q}2, @i, s, r, t (14g)

pisrt ď pixisrt ´ ppi ´ riquisrt



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Confidence Level

C
oe

ff
ic

ie
nt

 in
 T

ig
ht

en
in

g 
of

 
C

ha
nc

e 
C

on
st

ra
in

ts

 

 

DRCC CC

Fig. 10. The value of tightening coefficient of chance constraints as a function
of confidence level 1 ´ ε. This value in the DRCC model is

b

1´ε
ε

, while
it is equal to Φ´1p1´ εq in the CC model assuming a Gaussian probability
distribution.

´

c

1´ εi
εi

}αisrt1
JΣ

1{2
srt}2, @i, s, r, t (14h)

pisrt ´ pisrpt´1q ď ppi ` riqxisrt ´ ppi ` ri ´ riquisrt

´ p
i
xisrpt´1q ´

c

1´ εi
εi

}vJisrt
pΣ
1{2
srt}2, @i, s, r, t (14i)

pisrt ´ pisrpt´1q ě ´rixisrpt´1q ´ ppi ` ri ´ riquisrt

´ pri ´ riqxisrt `

c

1´ εi
εi

}vJisrt
pΣ
1{2
srt}2, @i, s, r, t, (14j)

where vector visrt is defined as

visrt “

„

αisrt
´αisrpt´1q



, @i, s, r, t. (14k)

APPENDIX D: CHANCE CONSTRAINTS WITH GAUSSIAN
DISTRIBUTION

Assuming a Gaussian probability distribution while still
assuming µsrt “ 0, @s, r, t, the arbitrarily selected chance
constraint (5a) is reformulated in an exact way to a second-
order cone constraint [46] as

pisrt ď pixisrt ´ Φ´1p1´ εiq
a

αisrt1JΣsrt1αisrt, @i, s, r, t,
(15)

where Φ´1p1 ´ εq is the inverse cumulative distribution
function. The key difference between (15) and (13b) is the
coefficient in their last term. Fig. 10 illustrates the values of
coefficients

b

1´ε
ε and Φ´1p1´εq as a function of confidence

level, and thereby, their effects on tightening the chance
constraints. For the same value of confidence level, it can
be concluded that the DRCC model provides comparatively
tighter chance constraints, which results in a more robust
solution. This tightening effect is more remarkable for higher
values of confidence level.

APPENDIX E: VIOLATION PROBABILITIES

To assess the ex-post and ex-ante violation probabilities, we
use the test dataset containing 5,000 trajectories. The ex-post
violation probability is calculated through the out-of-sample
analysis based on the simulation of the unit commitment prob-
lem with considering the recourse actions of load shedding and

wind spillage. To do so, for each sample trajectory j, the tight
relaxed unit commitment problem is carried out to calculate
the violation indicator as follows:

pIj “

"

1 if lsj ą 0 or wsj ą 0,
0 otherwise, (16)

where lsj and wsj indicate the value of load shedding and
wind spillage for sample trajectory j. We use (16) to assess the
number of violations, and subsequently, the ex-post violation
probability is calculated by

pV “
1

N

N
ÿ

j“1

pIj , (17)

where N is the number of sample trajectories. In contrast,
for calculating the ex-ante violation probability, we do not
run the tight relaxed unit commitment problem. According to
the optimal in-sample values, we calculate the recourse power
production of generating units for each sample trajectory by
using linear decision rules. For a set of distributionally robust
individual chance constraints in form of min

DPP
P
`

vJγ ď b
˘

ě

1 ´ ε, we obtain the violation indicator for each trajectory j
by

Ij “

"

1 if vJk γj ą bk,
0 otherwise, (18)

where k indicates each chance constraint from (5) and (7).
We investigate the satisfaction of all chance constraints by Ij .
Then, we assess the ex-ante violation probability with

V “
1

N

N
ÿ

j“1

Ij . (19)

APPENDIX F: RESULTING ROBUST OPTIMIZATION AND
STOCHASTIC PROGRAM

A. Robust Optimization

In order to recast the benchmark model in Section V.G as
a robust optimization, we first calculate the mean value of
selected samples, i.e., msrt, for each long-term scenario s,
representative day r, and hour t. We then construct the uncer-
tainty set of forecast errors as γsrt P Usrt “ rγmin

srt ,γ
max
srt s.

For simplicity, we neglect the potential correlation between
random variables. Note that the mean of forecast error is
zero. To formulate the robust optimization problem, the chance
constraints in the proposed DRCC model should be replaced
by regular constraints, meaning that for any realization within
the uncertainty set Usrt, the constraints are always satisfied.
For example, we provide below the formulation for the robust
counterpart of (5a), imposing the capacity limit of conventional
generator i. By implementing the linear decision rules, the
corresponding robust constraint can be written as

pisrt ` αisrt1
Jγsrt ď pixisrt, @i, s, r, t, (20)

where γsrt P Usrt. By using duality theory, the robust
counterpart of (20) can be formulated as

pisrt ` ηupJ

isrtγ
max
srt ´ ηdnJ

isrtγ
min
srt ď pixisrt,@i, s, r, t (21a)

ηupzisrt ´ η
dn
zisrt “ αisrt, @z, i, s, r, t (21b)
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ηupzisrt ě 0, ηdnzisrt ě 0, @z, i, s, r, t. (21c)

where ηup
isrt P RZ and ηdn

isrt P RZ are dual variables, and
z is an index for wind farms. A further elaboration on the
derivation of linear robust counterpart is given in [54]–[56].
Given that fact that the mean of forecast error is zero, the
objective function of the resulting robust optimization falls
into the one of the proposed DRCC model, i.e., (11b).

B. Stochastic Programming

By clustering the selected samples in Section V.G, we
obtain a set of short-term scenarios ω P Ωsrt associated
with long-term scenario s, representative day r, and hour
t. According to the number of samples in each cluster, a
probability υsrtω is assigned to each short-term scenario ω
such that

ř

ω υsrtω “ 1, @s, r, t. To have a fair comparison
among models, we implement linear decisions rules in this
stochastic benchmark. Under each short-term scenario, all
operational constraints need to be satisfied. For example, the
capacity constraint of generator i imposed by (5a) in the
proposed DRCC model can be now rewritten as

pisrt ` αisrt1
Jγsrtω ď pixisrt, @i, s, r, t,@ω P Ωsrt (22)

where γsrtω is the vector of forecast errors under short-term
scenario ω. Finally, the objective function of the resulting
stochastic program is

min
y,p,α,x,u

kJy`
ÿ

srtω

πsκrrc
Jppsrt `αsrtυsrtw1Jγsrtwq ` hJusrts. (23)
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