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Abstract—The rapid growth of distributed energy resources
results in the proliferation of prosumers at the distribution level,
who can both produce and consume energy. In order to harvest
benefits of aggregation to obtain revenues in wholesale market
and encourage direct interactions among prosumers and other
flexible players at the same time, this paper proposes an aggre-
gation framework for prosumers based on transactive energy,
in which prosumers aggregate and trade in an independent,
proactive and privacy-preserved manner without relying on a
real central entity, while other flexible players could be benefited
equally. The aggregation of prosumers as a whole behaves as a
retailer that trades in wholesale market and towards end-users in
retail market. Therefore, the problem is generalized as a bi-level
multi-leader multi-follower game in which prosumers are leaders
and end-users are followers. To realize the transactive energy
based trading framework, an inner-outer iteration approach is
proposed, where the outer iteration involves interactions among
prosumers and end-users, and achieves final results including
the retail price and optimal behaviors of all players. The inner
iteration is conducted during each time of the outer iteration to
solve end-users’ optimal consuming profiles. The whole iteration
process involves the independent decision makings of players,
and only relies on exchange of information of retail price and
prosumers’ offers instead of players’ private information. Case
studies are then carried out demonstrating the proposed trans-
active energy based aggregation framework for prosumers could
decrease the retail price, increase revenues for both prosumers
and end-users, and reduce the peak load.

Index Terms—Electricity market, inner-outer iteration ap-
proach, prosumer, retailer, transactive energy.

NOMENCLATURE
Indices
i Index of prosumers.
j Index of end-users.
k Index of blocks of prosumer’s offers.
t, 1 Index of time.
m;,m; Index of non-interruptible and deferrable tasks of
prosumer/end-user.
ni,n;  Index of interruptible and deferrable tasks of
prosumer/end-user.
U Index of numbers of iteration.
Parameters
APA " Day-ahead market price.
nFV  Efficiency of energy over distance of EV.

EVd

77EVC’77

DEV
Eid

EEV,ini
EEV,ma:c
EEVJmZn
PEVc,m,ar
PEVd,m(m
PPG
Pz’d,max

t?,dl t?,dQ
1idl ynid2
tT (3 t?

tEVl tEVQ
)

Variables

unzd

uEVc’uE‘Vd

EEV
Pnind

Pnid

Pid
PEVC,PEVd
PEVu

PEV

PPC

PPO

PC
PDA,PP
ur,uc
)\PO

)\R

Charging/discharging efficiency of EV.
Driving distance of EV.

Total consumed energy of interruptible and
deferrable task.

Initial energy in battery of EV.

Maximum energy in battery of EV.
Minimum energy in battery of EV.
Maximum charging power of EV.

Maximum discharging power of EV.
Generated power of prosumer.

Maximum power of interruptible and de-
ferrable task.

Starting/ending time of interruptible and de-
ferrable task.

Earliest/latest ~ starting time  of
interruptible and deferrable task.
Departure/arrival time of EV.
Constant revenue for selling per-unit of ener-
gy in retail market.

non-

Binary indicating operation mode of non-
interruptible and deferrable task.

Binaries indicating charging/discharging s-
tate of EV.

Energy in battery of EV.
Power of non-interruptible
deferrable task.

Power of non-interruptible and deferrable
task.

Power of interruptible and deferrable task.
Charging/discharging power of EV.
Consumed power of EV.

Overall power of EV.

Power traded between a specified prosumer
and a specified end-user.

Offered quantity of prosumer.

Total consumed power of end-user.

Power sold in DA market and retail market
of prosumer.

Revenue of prosumer/end-user.

Offered price of prosumer.

Retail price.

and non-

I. INTRODUCTION
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ITH the rapid growth of distributed energy resources
W(DERS), such as solar photovoltaic (PV) panels and
electric vehicles (EVs), a large number of costumers now
become prosumers that both consume and produce energy
[1-2]. The prosumers’ active participation in the electricity
market is one of the key features of smart grid and attracts
much concentration nowadays [3-4]. Transactive energy (TE)
is emerging for coordinated operation of vast numbers of
actively involved DERs in smart grid. In a TE environment,
DER owners behave independently and participate proactively
in energy trading based on the exchange of value-based infor-
mation instead of disclosing their detailed power parameters
and preferences to a third-party [5-6]. In order to efficient-
ly accommodate prosumers and promote their profitabilities,
plenty of works have offered solutions to designing the TE
based trading frameworks for prosumers.

Some of the existing studies focus on trading frameworks
within the local community, due to the small capacities of pro-
sumers. A local energy market is established in [7], where the
price is generated iteratively by the interactions of prosumers
and other flexible players. Local energy markets can be further
linked to the wholesale market by a two-stage stochastic
model to achieve a fully TE based trading scheme [8]. On
the other hand, the peer-to-peer market structure involving
direct multi-bilateral negotiations among flexible players is
also proposed, where products and prices can be differentiated
[9]. To address this problem, decentralized algorithms are
put forward, including the alternating direction method of
multipliers [10] and consensus based approaches [11]. In
the Netherlands, a platform to trade self-generated energy
of customers has already been established and implemented,
where the power transaction occurs in peers under certain
contracts [12]. The above works focus on enabling direct
interactions and proactive transactions for individual players in
a retail-level community, nevertheless, the benefits of sharing
flexibilities within the community could also empower the
prosumers as an aggregation to obtain greater revenues in
wholesale market.

In such studies investigating on behaviors of the aggregation
of prosumers or other flexible players in wholesale market,
a real central entity always exists to decide on the optimal
strategies for the whole aggregation by direct controlling or
exchanging value-based information with prosumers and other
flexible players. A retailer [13] or the distribution system
operator [14] usually serve as the real central entity for the
aggregation. A bi-level model can be adopted that accounts
for a Stackelberg relationship between the real central entity
(leader) and the flexible players (followers) [13-15]. As direct
control of prosumers’ behaviors induces privacy issues [16-
17], approaches only involving the exchange of value-based
information between the real central entity and flexible players
are broadly discussed, especially in the context of TE. A
TE based real-time (RT) EV charging management approach
is put forward in which the EV owners only provide their
RT charging requirements and preferences in response to the
price signal of building energy management, instead of the
privacy information, such as the detailed driving plans [18]. A
day-ahead (DA) transactive platform to accommodate widely

dispersed DERs is designed that allows DERs to transact
with the wholesale market and prosumers [19]. However, in
these works, prosumers and other flexible players can only
interact with the real central entity to form an aggregation,
and thus the benefits of direct interactions and negotiations
among players are neglected. In fact, thanks to the help of
smart-grid technologies, with which players are able to make
in-time decisions and the market can be operated transparently
with results broadcast promptly [20-21], prosumers and other
flexible players do not have to rely on a real central entity
to form an aggregation and pursue profitabilities in wholesale
market.

In order to harvest benefits of aggregation to obtain rev-
enues in wholesale market and encourage direct interactions
among prosumers and other flexible players at the same time,
this paper proposes an aggregation framework for prosumers
based on TE, in which prosumers aggregate and trade in an
independent, proactive and privacy-preserved manner without
relying on a real central entity. The aggregation of prosumers
as a whole acts as a retailer to participate in wholesale
market and sell energy towards end-users in retail market.
The problem is therefore generalized as a bi-level multi-leader
multi-follower game, where prosumers are leaders and end-
users are followers. The proposed TE based trading framework
for prosumers is realized by an inner-outer iteration approach,
in which the outer iteration achieves the retail price and
optimal behaviors of the players, while the inner iteration
is conducted during each time of the outer iteration solving
end-users’ optimal consuming profiles. The whole iteration
process involves independent decision makings of players and
only relies on the exchange of information of retail price and
prosumers’ offers instead of players’ private information on
detailed parameters and preferences for each appliance. To
pay more attention to discussions of the proposed trading
framework, this paper only considers the DA time scale with
incorporating uncertainties of power generation and consump-
tion as scenarios into the optimization problems. However, this
approach can also be applied in the intra-day or RT market
by addressing the optimization problems in a rolling horizon
instead of the fixed 24-h DA horizon.

The organization of the paper is as follows. Section II
describes the problem in detail. Then Section III formu-
lates mathematical models for the bi-level multi-leader multi-
follower game. The inner-outer iteration approach to obtain
the retail price and players’ optimal behaviors is put forward
in Section IV. Test cases and result analysis are conducted in
Section V, and Section VI follows to conclude the paper.

II. PROBLEM DESCRIPTION

As shown in Fig. 1, the aggregation of prosumers as a whole
acts as a retailer that purchases/sells energy at price of AP in
DA market and sells energy to end-users at retail price of A\
. The objective of prosumer ¢ is to maximize its own revenue
by identifying the optimal strategies in DA market (Pi’ft) and
offers towards end-users (/\f ,gt and Pf k?t), while the objective
of end-user j is to maximize its own revenue by identifying
the optimal consuming profiles, which affect the retail price
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Fig. 1. Trading framework of TE based aggregation of prosumers.

and prosumers’ revenues. Therefore, the proposed trading
framework for prosumers is generalized as a bi-level multi-
leader multi-follower game. The leaders represent optimization
problems of prosumers, and the followers are characterized as
optimization problems of end-users.

To realize the TE based trading framework for prosumers,
in which players can trade in an independent, proactive, and
privacy-preserved manner, an inner-outer iteration approach
[22-23] is proposed to address the problem. The outer iter-
ation involves interactions between prosumers (leaders) and
end-users (followers), and converges to obtain final results
including the retail price and optimal behaviors for all players.
In the outer iteration, each prosumer independently decides
on its own strategies and offers by solving their optimization
problems with the retail price updated by the last time of
iteration. Then end-users independently conduct the optimiza-
tion problems to arrange their consuming profiles in an inner
iteration process, and the retail price can be generated and
updated with prosumers’ offers and end-users’ consuming
profiles. With the updated retail price, each prosumer conducts
its optimization problems again and adjusts its strategies and
offers again, until no adjustment on the retail price is observed.
As mentioned, during each time of the outer iteration, the
rearrangement of end-users’ consuming profiles are identified
by an inner iteration process. In the inner iteration, prosumers’
offers are fixed, while each end-user independently conducts
its optimization problems and rearranges its consuming pro-
files with the retail price updated in the last time of inner
iteration. The retail price is then generated again with end-
users’ rearranged consuming profiles and prosumers’ offers,
and end-users rearrange their consuming profiles again, until
no adjustment on the retail price is observed.

Therefore, the inner-outer iteration process only relies on
the exchange of information of the retail price and prosumers’
offers instead of players’ private information on detailed
parameters and preferences for each appliance, and all players
could independently participate in the formation of retail
price. Furthermore, the prosumers proactively aggregate to
behave as a retailer and pursue profitabilities in wholesale
market, while both prosumers and end-users could benefit
from flexibilities and self-generated energy of the aggregation.
These attributes assure the independent, proactive and privacy-
preserved interactions for prosumers and end-users, as well as
the harvest of benefits of aggregation in sharing flexibilities.

It is noted that the generation of retail price respects the
merit order principle, i.e., prosumers’ offers with the lowest

offered price are adopted first and the retail price is set as
the offered price of last unit of energy to satisfy end-users’
consumptions [24]. Also note that uncertainty modeling is of
great importance in electricity market. For instance, Hanif.
et al. [25] incorporate the uncertainties in calculating robust
DA distribution locational marginal prices through an iteration
process. This paper deems that it is the players’ own respon-
sibilities to consider the uncertainties when making decisions,
identical to current wholesale market mechanisms in most
countries. Therefore, uncertainties of prosumers’ generation,
loads, EVs and DA market prices will be taken into account
with a scenario-based approach [15][18] in optimizing players’
behaviors, so the iteration process will not be much affected
by the modeling of uncertainties.

As further discussed in Section III, since prosumers’ offers
are determined based on the cost of acquiring energy, the
offered prices of prosumers would be lower than the DA
market price when prosumers have surplus energy, and thus
end-users could be benefited. When a prosumer has no surplus
energy, it may choose to purchase energy in retail market on an
equal basis with the end-users. Furthermore, as the merit order
principle is adopted for the retail market, the retail price would
be higher than offered prices of some prosumers, thus these
prosumers could obtain extra revenues in retail market. The
above attributes assure that the proposed trading framework is
attractive to both prosumers and end-users.

III. PROBLEM FORMULATION

As described in Section II, the trading framework for
prosumers is generalized as a bi-level multi-leader multi-
follower problem. The upper-level and lower-level problem
solves prosumers’ and end-users’ optimization problems, re-
spectively. The mathematical models of the bi-level problem
are illustrated in this section.

For the sake of clarity, assume the prosumer-aggregated
retailer is a price-taker in DA market, and all players are
rational self-interested with their own objectives. Both pro-
sumers and end-users are households, and their loads include
4 sorts of tasks, namely non-interruptible and non-deferrable
tasks, interruptible and deferrable tasks, non-interruptible and
deferrable tasks, and EVs. Prosumers are equipped with PV
panels, so they have generation capabilities.

A. End-user Lower-Level Problem

For end-user j, the objective function is
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The objective of end-user j is to achieve the maximum revenue
in purchasing energy, which is represented as the value of
minus cost, as indicated in (1). The purchased energy equals
the summation of energy consumed by 4 sorts of tasks, namely
non-interruptible and non-deferrable tasks, interruptible and
deferrable tasks, non-interruptible and deferrable tasks, and
EVs, as denoted by (2). Constraints (3)-(5) are for interrupt-
ible and deferrable tasks. The overall energy consumption
is constrained in (3). Constraint (4) denotes the starting and
ending time of task n;, and the maximum power consumption
of task n; is limited in (5). Constraints (6)-(9) are for non-
interruptible and deferrable tasks. Constraints (6)-(8) describe
the binary representing the starting time of task m,. This
binary affects the power profiles of task m;, as captured in
(9), where Pﬂﬁj,l indicates the predefined power profiles of
the task. Constraints (10)-(15) restrict the charging/discharging
of EV. The overall power consumption is calculated by the
difference between charging power and discharging power, as
indicated in (10). Constraints (11) and (12) limit the charging
and discharging power. Constraints (13)-(15) describe the bi-
naries representing the charging and discharging time, assuring
charging and discharging do not occur in the same time or
during driving time. Consumed power in driving is calculated
in (16). State and constraints of battery are illustrated in (17)-
(19). Constraints (17) and (18) represent the energy state in
battery, and constraint (19) limits its initial and final value.

B. Prosumer Upper-Level Problem

For prosumer ¢, the mathematical models are similar to
those of end-users, except that prosumers have generation
capabilities. Therefore, the objective function of prosumer @
is to achieve the maximum revenue in selling energy in DA
market and retail market, represented as
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Fig. 2. Description of prosumers’ offers.
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The constraints for the 4 sorts of tasks of the prosumer
are similar to those of end-users, as illustrated in (3)-(19).
Constraint (21) calculates the surplus energy as the difference
between energy produced, and the summation of energy sold
in DA market and energy consumed by 4 sorts of tasks. Note
that when a prosumer has no surplus energy, it can purchase
energy either in DA market or from other prosumers in retail
market by behaving as an end-user, thus both P54 and P/,
can be negative. /

C. Prosumers’ Offers

As a retailer, prosumers can acquire energy from either
self-generation or DA market. Hence, prosumers’ offers are
generated based on the cost of acquiring energy. Assume
the offered price equals the cost of acquiring energy plus a
constant revenue 9§, which compensates for the operation cost
as a retailer. For prosumer i, the offers are
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The Fig. 2 further describes the offers. When the prosumer has
no surplus energy, the cost of providing energy to end-users
equals the price in DA market, represented as the first function
in (22) and shown as Fig. 2(a). Fig. 2(b) shows the condition
where the prosumer has surplus energy. When the prosumer’s
offered quantity is smaller than the surplus energy, the cost
of providing the offered quantity equals the generation cost of
self-owned generators by the prosumer, which equals zero in
this paper since prosumers are only equipped with PV panels
as generation capabilities. This case is indicated as the second
function in (22). When the offered quantity exceeds the surplus
energy, the part of the offered quantity lower than the surplus
energy is acquired at price of zero, while the other part is
acquired at the price in DA market. This case is denoted by the
third function in (22). Equation (22) is non-linear but can be
transformed to piecewise linearized expressions, as illustrated
in (23)-(25). On one hand, the piecewise linearization makes
the problem more tractable. On the other hand, piecewise
offers are more common in electricity market [26-27].
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where A; ;. ; represents the length of piece k& for prosumer 4
in hour ¢ in the piecewise linearization.

IV. THE INNER-OUTER ITERATION APPROACH

To realize the TE based aggregation framework for pro-
sumers, an inner-outer iteration approach is proposed to ad-
dress the bi-level multi-leader multi-follower problem. This
section describes the approach in detail and discusses the
convergence issue.

A. Details of the Inner-Outer Iteration Approach

The Fig. 3 depicts the inner-outer iteration approach, which
consists of 4 steps, digested as follows.

Step 1. Initialize the retail price as the constant revenue ¢
in the first time of iteration.

Step 2. Each prosumer conducts its optimization problems
illustrated in Subsection III-B and decides on its optimal
trading strategies, then generates the offers according to (22).

Step 3. With the retail price, each end-user independently
determines its consuming profiles by solving the optimization
problems illustrated in Subsection III-A. The retail price is
then calculated and updated with end-users’ consuming pro-
files and prosumers’ offers based on the merit order principle,
as represented by (26)-(28).

min > ATPPG (26)
1,7,t i,j,t
st. Y PPG =3P~ min(Ph,0) : AP @)
©,J Fi i
Y PhS =P 28)

The objective is to minimize the total costs in purchasing
energy from prosumers, as shown in (26). Equations (27)
and (28) constrain the total traded energy and energy traded
towards end-user j, respectively. The retail price equals the
dual variable of constraint (27). Note that the second item at
the right hand side of (27) represents for energy purchased
by prosumers in retail market. As explained in Subsection III-
B, when a prosumer has no surplus energy, it may need to
purchase energy from the retail market, equally as an end-user.
However, the value of this item is determined by Step 2 and
before conducting the optimization problems for generating
retail price, so problems (26)-(28) are still linear and tractable.

With the updated retail price, end-users conduct their
optimization problems again and rearrange their consuming
profiles, then the retail price will be updated again based on
(26)-(28), until no adjustment on the retail price is observed.
The Step 3 corresponds to the inner iteration.

|
»|

4
| Optimization of prosumer i, (20) |

Step 2

| Identify prosumer i’ offers 470", pRG(") (22) |

v Step 3
| Optimization of end-user j, (1) |

[u=u+1

| Generate retail price ;R("), (26)-(28) |

R,(r,u) — ATR,(I’,U-].) t)

Fig. 3. The inner-outer iteration approach.

Step 4. When the retail price is set by the inner iteration,
it is broadcast to the prosumers. If the retail price in rth time
of outer iteration does not equal that in the r — 1th time of
outer iteration, go back to Step 2, and prosumers adjust their
strategies and offers again based on the updated retail price.
Otherwise, the iteration terminates, and the final results are
obtained. The Steps 2 to 4 correspond to the outer iteration.

Therefore, the inner-outer iteration process only relies on the
information exchange of the retail price and prosumers’ offers
instead of players’ detailed parameters and preferences for
each appliance, thus the players’ privacy is preserved. During
the iteration process, all the players could independently
decide on their own behaviors by solving the optimization
problems, and proactively participate in the formation of retail
price. Furthermore, prosumers aggregate to behave as a retailer
and pursue profitabilities in wholesale market, while both
prosumers and end-users could benefit from flexibilities and
self-generated energy of the aggregation on an equal basis.
These attributes assure the independent, proactive and privacy-
preserved interactions for prosumers and end-users, as well as
the harvest of benefits of aggregation in sharing flexibilities.

B. Issue of Convergence

In the inner iteration, the retail price is formed to balance
supply and demand. In hours when the retail price is relatively
low, end-users would shift load to these hours and the retail
price will increase. On the contrary, in hours when the retail
price is relatively high, end-users would shift load to other



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, JANUARY 201X

hours and the retail price will decrease. Since the end-users’
consuming profiles vary with the retail price, oscillations may
occur during iterations in a dilemma between two situations, 1)
lower retail price and higher consumed energy; 2) higher retail
price and lower consumed energy. Considering the nonlinear
and non-analytical nature of the models, it is difficult to
ensure the optimality and convergence. Borrowing the idea
from [28], the converged result is selected as the situation
in which end-users achieve higher revenues. The oscillations
in the outer iteration can be handled identically, where the
prosumers adjust their strategies and offers with the updated
retail price. In this way, prosumers’ strategies and offers can
be uniquely determined as the revenue is maximized during
the iteration process.

The problem is generalized as a multi-player game where
all players only care for maximizing their own revenues during
the whole iteration process. In the last time of iteration, the
retail price is not altered, which means players no longer
change their trading strategies or consuming profiles. These
attributes justify when the converged solution is achieved, no
player has unilateral incentive to deviate.

V. CASE STUDY
A. Data and Approach

In this section, the feasibility and effectiveness of the
proposed TE based aggregation framework for prosumers are
numerically analyzed in a 24-hr. period. The case consists
of 50 prosumers and 50 end-users, which are assumed to be
households equipped with all the appliances and randomly one
type of EV listed in the Appendix, where detailed parameters
of household appliances and EVs are acquired from [7, 29-30],
and the driving patterns for EVs are randomly generated based
on statistical data from the National Travel Survey in the U.K.
[31]. The Gaussian distribution is adopted to consider different
preferences of staring/ending time of load tasks for different
players, with the averaged and standard deviation values listed
in the Appendix. The power output of PV generation can be
calculated as [32]

PLE =nPESPEW, (1 - 0.005(T; — 25)) (29)

where n'¢, SPC W, and T} represent conversion coefficient,
array areas (m?) of PV panel for prosumer i, solar irradiance
(W/m?) in hour ¢ and the ambient temperature (°C) in hour
t. Relevant data are obtained in [33], where the conversion
coefficient n”’C and the ambient temperature are set as 15.7%
and 25°C, respectively. The array areas of the 50 prosumers
are assumed to obey a uniform distribution with the minimum
value of 20m? and maximum value of 50m?. The Gaussian
distribution is adopted to illustrate uncertainties of the solar
irradiance for the community with a standard deviation of
10% of the averaged value, and the averaged value for each
time period is retrieved from [33] with a maximum value of
900W/m? occurring in hour 11.

To consider the uncertainties of players’ power generation
and consumption, the Monte Carlo method is employed to gen-
erate 1000 scenarios for PV power generation and consuming
parameters of load tasks and EVs with the even probability
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Fig. 4. Overall power generation scenarios and averaged DA market price.

(1/1000). The fast-forward reduction algorithm is then adopted
to reduce the original 1000 scenarios to 5 scenarios [34]. The
DA market prices of DK2 district in Nordic market in April
of 2017 are adopted as scenarios for the DA price [35]. Fig.
4 shows the scenarios of overall PV power generation of the
50 prosumers as well as the averaged DA market price. Note
that the PV power generation is zero before hour 3 or after
hour 19. The constant revenue of selling per-unit energy J is
set to 0.015 €/kWh.

In order to illustrate the effectiveness of the proposed
trading framework, three cases are studied for comparison.

Case 1: The proposed TE based aggregation framework for
prosumers. In this case, since direct interactions are allowed
among prosumers and end-users, all the players can be ben-
efited from the flexibilities and self-generated energy of the
aggregation on an equal basis.

Case 2: A real retailer exists and all players can only
trade with the retailer with a fixed retail price, based on
which players solve their optimization problems and decide
on their optimal behaviors. For the sake of comparison, the
same constant revenue 0 is still employed for the real retailer
to compensate for operation cost of being a retailer, thus the
retail price of selling energy to prosumers/end-users is set as
Do as)\fg“ + §, while the retail price of purchasing energy
from prosumers is set as > as)\ff — 4. In this case, only
the real retailer takes advantages of the flexibilities and self-
generated energy of the aggregation as no direct interactions
are allowed among prosumers and end-users.

Case 3: A real central entity exists to optimize the pro-
sumers’ behaviors in a centralized manner with the objective
to achieve the maximum revenue for the whole aggregation
by collecting detailed parameters and preferences for each
appliance of prosumers, while the prosumers as an aggregation
still behave as a retailer to sell energy to end-users. The retail
price is generated by interactions between the aggregation of
prosumers and end-users. In this case, the prosumers mainly
take advantages of the flexibilities and self-generated energy
of the aggregation via the centralized optimization, since end-
users are only allowed to interact with the aggregation instead
of the individual prosumers.
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Fig. 6. Prosumer’s cost.

B. Retail Price

The Fig. 5 shows the overall surplus energy of prosumers
and compares the retail prices in Cases 1, 2 and 3. As
shown by the black and purple lines, the quantity of overall
surplus energy over the 24-hr. period is 1029.13kWh in Case
1 and 990.87kWh in Case 3. The quantity of overall surplus
energy is less in Case 3 due to the centralized optimization of
prosumers, implying that a prosumer enjoys the priority over
end-users to purchase other prosumers’ surplus energy within
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Fig. 7. End-user’s cost.

the aggregation. However, prosumers and end-users purchase
energy in retail market on an equal basis in Case 1.

As the quantity of overall surplus energy is greater, the retail
price is lower in Case 1 than in Case 3. Furthermore, the retail
prices in Cases 1 and 3 are much lower than that in Case 2 in
hours when the quantity of overall surplus energy exceeds 0,
because prosumers’ offered price in retail market is no higher
than the price in DA market, according to (22) in Subsection
II-C. To be specific, in hours 9-12 for Case 1 or hours 10-
11 for Case 3 when prosumers offer more energy than end-
users consume, the retail price decreases to 0.015 €/kWh that
only compensates for the prosumers as a retailer. These results
indicate that the proposed TE based trading framework could
decrease the retail price and assure the fairness in purchasing
energy for both prosumers and end-users.

C. Player’s Revenue

Both prosumers’ and end-users’ revenues over the 24-hr.
period in these cases are negative values, so their costs are
compared for the sake of convenience. As shown in Figs. 6 and
7, the circle dot indicates the average value and the triangle
dot represents the maximum/minimum value, while the box
includes the values from the first to the third quartile. The
prosumer’s cost on average is 0.62€, 1.16€and 0.55€in Cases
1, 2 and 3, respectively. Compared to Case 2, the averaged
cost reductions for prosumers in Cases 1 and 3 are 0.54€and
0.61€, stemming from two reasons. First, prosumers do not
have to pay the constant revenue § to the real retailer for
purchasing per unit of energy, instead, they could obtain the
constant revenue § for selling per unit of energy in retail
market. This can be calculated with the quantity of energy
traded by prosumers and accounts for 0.33€and 0.31€in the
total cost reductions for Cases 1 and 3, respectively. Second,
prosumers could take advantages of flexibilities and self-
generated energy of other players more efficiently via direct
interactions so as to further reduce the costs in wholesale
market. This accounts for 0.21€and 0.30€in the total cost
reductions for Cases 1 and 3, respectively. As shown in Fig.
6, the distribution range of the prosumer’s cost is smaller in
Case 3, as prosumers’ behaviors are optimized in a centralized
manner. Thanks to the decreased retail price, the end-user’s
costs on average in Cases 1 (2.14€) and 3 (2.18€) are lower
than the cost in Case 2 (2.63€), as demonstrated in Fig. 7.
The end-users obtain the highest cost reduction in Case 1 as
they are able to benefit from the flexibilities of the aggregation
on an equal basis with the prosumers.

These results indicate that both prosumers and end-users
could enjoy cost reductions in Cases 1 and 3 compared to
Case 2. On one hand, prosumers do not have to pay the
constant revenue to a real retailer as they behave as the retailer
themselves. On the other hand, both prosumers and end-users
are able to participate in the formation of retail price, so
they could take advantages of flexibilities and self-generated
energy of the aggregation more efficiently, thus their energy
purchasing costs in wholesale market are further reduced.
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D. Overall Load

The Fig. 8 indicates the consumed power of prosumers
and end-users in 3 cases. The end-users’ consuming profiles
are smoother in Case 1. To be specific, the peak load in
Case 1 occurring in hour 16 is 195.68kW, lower than that
in Cases 2 (258.03kW) and 3 (213.72kW). The Fig. 9 further
demonstrates the overall load of all players, and the peak load
in Case 1 occurring in hour 16 is 370.07kW, lower than that in
Cases 2 (390.03kW) and 3 (395.91kW). These results indicate
that the overall peak load of the whole community can be
reduced with the proposed TE based trading framework for
prosumers.

E. Influence of the task composition

The interruptible and deferrable tasks, the non-interruptible
and deferrable tasks, and the EVs are collectively named as
the flexible tasks here, while the non-interruptible and non-
deferrable tasks are referred to as inflexible tasks. For the sake
of comparison, set the ratio of energy consumed by inflexible
tasks to energy consumed by flexible tasks in the above Case
1 as the Base Case, namely 1.00 in Figs. 10 and 11. With the
overall energy consumed by the 4 sorts of tasks unchanged,
the ratio is adjusted to study the influences of players’ task
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Fig. 10. Players’” averaged cost vs. ratio of inflexible tasks to flexible
tasks compared to the Base Case.
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Fig. 11. Averaged retail price vs. ratio of inflexible tasks to flexible

tasks compared to the Base Case.

composition on the market results, as demonstrated in Figs.
10 and 11. As indicated by the red and blue lines in Fig.
10 and the red line in Fig. 11, when prosumers’ ratio of
inflexible tasks to flexible tasks increases and thus prosumers’
flexibilities decrease, both prosumers’ and end-users’ averaged
costs are elevated. This occurs because less flexibility in
prosumers’ tasks brings about less utilization of their self-
generated energy, which is cheaper than energy acquired in
wholesale market. As a result, the retail price rises and end-
users’ averaged cost increases correspondingly. On the other
hand, as indicated by the orange and green lines in Fig.
10 and the blue line in Fig. 11, when end-users’ ratio of
inflexible tasks to flexible tasks increases and thus end-users’
flexibilities decrease, end-users’ averaged cost rises up since
less prosumers’ self-generated energy can be utilized by end-
users. Hence, more self-generated energy will be adopted by
prosumers themselves, leading to a reduction on prosumers’
averaged cost and an increase in the retail price. These results
indicate the proposed TE based trading framework could
encourage the players to improve their flexibilities to obtain
greater revenues.
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F. Computational issues

With regard to computational issues, the problem is imple-
mented on C++ and the related MILP problems are solved by
CPLEX, on a laptop with an Intel Core i7 3.60GHz CPU and
8GB of RAM. APPENDIX
The convergence plot is shown in Fig. 12. The player’s
averaged cost is illustrated to show the convergence plot. As
can be seen, an oscillation occurs in the outer iteration. As
stated in Section IV-B, the converged result is then selected The data regarding the four sorts of tasks of players are
as the situation where prosumers achieve higher revenues. illustrated in Tables I to V.
The running time of the problem is 3.7s with the current
size of players. When the population of players grows by 5
to 10 times, the time that the algorithm takes to converge to TABLE I: Data on non-interruptible and non-deferrable tasks

a solution would be 26.6s to 100.3s.

Task Power (kW) Total usage period (h)
Refregerator 1.667 24
VI. CONCLUSION Telephone 0.005 24
As prosumers proliferate with the rapid growth of distribut- _ Others 0.050 24

ed energy resources, efficient trading frameworks to accommo-
date prosumers and promote their profitabilities are highly an-
ticipated. In order to harvest benefits of aggregation to obtain
revenues in wholesale market and encourage direct interactions
among prosumers and other flexible players at the same time,

this paper proposes an TE based aggregation framework for TABLE II: Data on interruptible and deferrable tasks

prosumers, in which prosumers aggregate and trade in an

. . . . Task Power Total  Averaged Averaged Standard
independent, proactive and privacy-preserved manner without . .

. : : . (kW) usage start- ending deviation
relying on a real central entity, while other flexible players period ing time of start-
could also be benefited on an equal basis. The aggregation of . ) L

. (h) time ing/finishing
prosumers as a whole behaves as a retailer, who trades both time (h)
1q wholesale mal’rket gnd towards.end—users in retail rparket. Dishwasher| 132 0350 20-00 2245 30
Since prosumers’ optimal strategies are dependent with the . .

L . , . AC 120  7.25 12:00  08:30 3.0
retail price which would be affected by end-users’ consuming ) )

. . . . Oven 1.20  0.50 19:00  20:45 1.0
profiles, the problem is generalized as a bi-level multi-leader ) )

lti-foll h lead d end Iron 1.20  0.50 19:00 19:45 1.0
T et e o ot o e Ketle 100 050 0645 0745 25
usec:lrs are fo owers.d .ot rea;ze e independent, pro;c 1\(’16 Hairdryer | 0.90  0.25 2030 2130 2.5
an prlvacfy-presertve . tm etl.rac tons am(l)lng prosume;s an ;n I; Microwave | 0.20  0.25 18:45 20:00 1.5
users, an imner-outer ieration approach is proposed: in Which e | 030 025 0715 0830 20

e outer iteration achieves the final results including the Others 012 050 00:00  24:00 3.0

retail price and optimal behaviors of players, while the inner
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TABLE III: Data on non-interruptible and deferrable tasks

Task Power Total Averaged Averaged Standard
(kW) usage  ear- latest deviation
period  liest start- of earliest
(h) start- ing starting
ing time time (h)
time (h)
(h)
Washing | 1.40  1.00 09:00  21:30 1.5
machine
Computer] 0.15  2.25 09:00 23:00 2.0
TV 0.09 6.75 10:00  23:30 3.0
Others 0.09  3.00 00:00  24:00 3.0
TABLE IV: Data on EVs
EV Capacity Maximum Maximum Efficiency Charging
types | (kWh) charg- dis- of /Dis-
ing charg- energy  charg-
power ing over ing
kW) power dis- effi-
(kW) tance ciency
(k-
Wh/km)

1 30 4.8 4.1 0.21 0.95/0.9
2 40 6.4 55 0.24 0.95/0.9
TABLE V: Data on driving patterns

Driving Departure  Arrival
distance (km) time (h) time (h)
Averaged 28.9 08:30 17:30
value
Standard 12.7 2.0 2.0
deviation
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