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Abstract

Forecasting for wind and solar renewable energy is becoming more important as the
amount of energy generated from these sources increases. Forecast skill is improving, but
so too is the way forecasts are being used. In this paper, we present a brief overview of the
state-of-the-art of forecasting wind and solar energy. We describe approaches in statistical
and physical modelling for time scales from minutes to days ahead, for both deterministic
and probabilistic forecasting. Our focus changes then to consider the future of forecasting
for renewable energy. We discuss recent advances which show potential for great
improvement in forecast skill. Beyond the forecast itself, we consider new products which
will be required to aid decision making subject to risk constraints. Future forecast products
will need to include probabilistic information, but deliver it in a way tailored to the end
user and their specific decision making problems. Businesses operating in this sector may
see a change in business models as more people compete in this space, with different
combinations of skills, data and modelling being required for different products. The
transaction of data itself may change with the adoption of blockchain technology, which
could allow providers and end users to interact in a trusted, yet decentralised way. Finally,
we discuss new industry requirements and challenges for scenarios with high amounts of
renewable energy. New forecasting products have the potential to model the impact of
renewables on the power system, and aid dispatch tools in guaranteeing system security.
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1 INTRODUCTION

Forecasting for renewable energy is under substantial focus as the penetration of renewable

energy from wind and solar increases, with an overwhelming consensus on its importance for

the economic and reliable integration of their energy production into existing power networks.

While other forms of renewable energy sources may also involve some forecasting tasks and

challenges, most emphasis was placed on wind and solar energy over the last decade or two,

owing to their variability and limited predictability, and instantaneous response to weather

phenomena. In contrast, hydropower generation depends on the hydrology of extensive

catchment areas and the operation of storage capacity in addition to local weather. For

a recent coverage of a broad range of topics of interest in renewable energy forecasting,

the reader is referred to Jung and Broadwater (2014) (wind speed and power forecasting),

Gallego-Castillo, Cuerva-Tejero, and Lopez-Garcia (2015) (wind power ramp forecasting),

Antonanzas et al. (2016) (photovoltaic power forecasting) and Bessa et al. (2017) (uncertainty

forecasts in the electric power industry).

Of course, the value of any forecast is only realised when it results in better decision-

making. Broadly speaking, users of renewable energy forecasts fall into two groups: energy

market participants, and power system operators. The former is concerned with the buy-

ing and selling of energy, while the latter’s priority is maintaining a reliable energy supply,

but both require timely and accurate forecast of renewable power generation. Liberalised

energy markets, such as those in Europe and the US, vary considerably in structure but the

timescales involved are common: long-term trading (and hedging) takes place weeks to years

ahead, day-ahead markets establish a preliminary schedule for power plants, and intra-day

markets enable further adjustment, right up until delivery begins in some cases. Accurate

forecasting on all of these horizons is therefore an economic imperative for market partici-

pants, and understanding forecast uncertainty is necessary to manage risk. System operators

similarly depend on renewable energy forecasts to prepare for whatever generation mix the

market (and weather) delivers. This may include holding reserve power to manage ramps in

renewable production, or procuring ‘ancillary services’ to manage technical constraints.

Advances in research and connection of forecasting to decision-making in operations and
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markets are happening in multiple areas. Looking at the forecasting process itself, both

physical and statistical modelling approaches are commonly involved today. On the one

hand, the physical modelling part is concerned with solving the governing equations of the

atmosphere and generating forecasts for those atmospheric variables relevant for renewable

energy, often being very computationally expensive to run. Statistical modelling approaches

bridge the gap between the information from those meteorological forecasts and observations

(being meteorological or power). Further than those physical and statistical approaches, we

are today at a cornerstone in the development and applications of forecasting approaches, as

enabled by the wealth of data being collected, rapid increase in computational capabilities

and the need to rethink business models related to renewable energy forecasting.

Consequently, the main objective of this review is to start with a brief overview of the

state of the art in renewable energy forecasting, and to highlight some of the promising paths

for future development in forecasting research and application in the energy industry.

2 Forecasting Renewable Energy Today

Even though statistical and physical modelling approaches are often blended today in renew-

able energy forecasting, we will consider them separately here, so as to cover the components

of physical and statistical modelling which are used in practice.

2.1 Physical Modelling

2.1.1 Numerical Weather Prediction

Advances in Numerical Weather Prediction (NWP) have been described as a quiet revolu-

tion (Bauer, Thorpe, & Brunet, 2015), in that great advances have been made, but this

has been done by a succession of steady advances, such as improved numerical schemes to

solve the governing equations, parameterizations schemes for sub-grid scales, access to more

observation data including satellites, and increases in computing power, rather than any

fundamental breakthrough.

NWP models, which use computers to solve the governing equations of the atmosphere,
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are being run at higher horizontal and vertical resolutions as available computing power in-

creases. Along with changes in resolution, there have been advances made in how the model

approximates, or parameterizes, the sub-grid scale processes which are not resolved by the

model, such as turbulence and cloud physics. NWP skill continues to improve, albeit at a

slower rate than previously (Hoffman et al., 2018), and current NWP forecasting of mid-

latitude weather can remain skillful out to 10 days when comparing 500-hPa geopotential

height between the forecasts and observations (F. Zhang et al., 2019). An indication of the

improvement of NWP skill is shown in Figure 1, which shows the improvement in 48-hour

wind speed forecast skill between 2007 and 2018 for two widely used NWP models: the de-

terministic Integrated Forecasting System (IFS) model produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF), and the deterministic Global Forecast Sys-

tem (GFS) model produced by the National Centers for Environmental Prediction (NCEP).

All forecast centres attempt to produce the best forecast posssible, but there is no single

best way to do this. Differences in how NWP models assimilate observation data, solve the

governing equations, and the computational power available to run these models mean that

different models may have different skills.

4



2008 2010 2012 2014 2016 2018
year

3.0

3.5

4.0

4.5

5.0

5.5

6.0
RM

SE
 (m

/s
)

Figure 1: 12-month rolling average of the 48-hour ahead root mean square error (RMSE)

forecast skill for wind speed on the 850 hPa pressure level in the Northern Hemisphere. Blue

lines: old/new ECMWF IFS. Black line: NCEP GFS

NWP models are first run with a grid covering all of the Earth (a global model), and the

data from these forecasts are then used to drive higher-resolution NWP models which cover

a more limited area of interest (local models). As an indication of the resolution currently

being used for these models, Table 1 shows the horizontal resolution for a selection of NWP

models operationally used to a forecast horizon of 48 hours or more. Forecast centres listed

are: ECMWF, NCEP, United Kingdom Met Office (UKMO), the German Meteorological

Service Deutscher Wetterdienst (DWD) and Japan Meteorological Agency (JMA).
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Forecast centre Domain Model Name Horizontal resolution

ECMWF Global IFS HRES 9 km

NCEP Global GFS 28 km

NCEP Local NAM 3 km

UKMO Global UM 10 km

UKMO Local UKV 1.5 km

DWD Global ICON 13 km

DWD Local COSMO-DE 2.8 km

JMA Global GSM 20 km

JMA Local MSM 5 km

Table 1: Horizontal resolution of a selection of NWP models

As the atmosphere is chaotic, with sensitive dependence on initial conditions, a single

(deterministic) forecast is widely seen as providing too limited information. Uncertainties

in the initial state of the atmosphere, combined with approximations in the NWP model,

result in forecasts which can diverge widely from each other.

Uncertainty in the initial conditions is generally handled by different data assimilation

approaches. The area of data assimilation is concerned with producing initial conditions in

balance with the NWP model which are as close to reality as possible. As there are many

times more model grid points than observations this is a difficult task, and also one with

a large computational expense. Different data assimilation approaches are used in different

operational NWP centres, such as variational approaches (3D-VAR, 4D-VAR), which iter-

atively solves a cost function to optimise the fit between observational data and the model

initial conditions, and the ensemble Kalman filter (EnKF) (Bannister, 2017), which uses a

Monte Carlo approach to estimate both the mean and the covariance of the error between

the model and observations. Advances in data assimilation, such as improving the way error

covariance is estimated in a hybrid of ensemble Kalman and 4-dimensional variation, can

lead to improved NWP forecasts, and new methods are still being tested and applied to

operational NWP (Lorenc & Jardak, 2018).
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Improving NWP models requires good, relevant observation data, and projects such as the

Wind Forecast Improvement Project (WFIP) (Wilczak et al., 2015) combine field campaigns

which target a range of relevant observations with assessment of NWP models specifically

for wind energy, resulting in larger reductions of RMSE for wind power. Improvements in

NWP have also targeted solar energy, as in the WRF-Solar NWP model (Jimenez et al.,

2016), which showed improved skill by better representing atmospheric aerosols and their

interactions with clouds and radiation.

Uncertainty in the NWP models themselves can be quantified by running a collection, or

ensemble, of NWP forecasts. Ensembles can be generated by using different NWP models,

and different parameterizations within those models. This ensemble of forecasts can be used

to produce probabilistic forecasts, for example counting the percentage of ensemble mem-

bers which forecast a parameter above some threshold. Probabilistic forecasting has been

shown to outperform deterministic forecasts, e.g. (Siuta & Stull, 2018) show improvements

in both forecast accuracy and correlation for wind speeds at wind turbine heights when

using an ensemble instead of a deterministic forecast. Probabilistic forecasts also allow a

quantification of uncertainty in the forecast values. As probabilistic forecasting becomes

more widely used, its ability to quantify this uncertainty is becoming more important, and

there is active research into improving how NWP captures uncertainty (Leutbecher et al.,

2017). Forecasting large changes in wind power, called wind ramp events, is becoming more

important as wind penetration increases. There are a variety of methods used in forecasting

wind ramps (Gallego-Castillo et al., 2015), with probabilistic approaches offering a clear

advantage here. Some examples are: (Bossavy, Girard, & Kariniotakis, 2013) that used a

filtering approach applied to each member of the forecast power ensembles for detecting and

producing probabilistic forecasts of ramps by combining a NadaryaWatson estimator and lo-

gistic regression; (Taylor, 2017) uses autoregressive logit models fitted to the change in wind

power to perform probabilistic forecasts of ramp events for different thresholds and multiple

wind power plants (with multinomial logit structure); in (Chu, Pedro, Li, & F.M.Coimbra,

2015) and for solar energy, information from sky-camera images is used as exogenous input

to neural networks in order to produce minute averaged values of global and direct irradiance

ramp forecasts.
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It should be noted that the improvements in detecting possible ramps from ensemble

forecasting arises from the analysis of the multiple individual forecasts. The simpler ap-

proach of averaging all forecasts and using the mean should not be used here (or, arguably,

anywhere), as this would smooth any individual forecast ramps.

2.1.2 Hydrological Models

The majority of water resources available to hydropower generators come from precipitation

and snow melt that has been channelled into rivers and reservoirs from large catchment areas.

These additional hydrological processes often require explicit modelling, which represents a

significant additional stage of the forecasting process for hydropower that is not required in

wind and solar forecasting. These processed are typically modelled using water budget or

bathtub models that calculate the volumes of water in different elements in the hydrological

system such as soil moisture, ground water, reservoir storage, snow pack, and so on, in

addition to transfers in/out of the system and between elements (Bergstrm & Lindstrm,

2015; Gragne, Sharma, Mehrotra, & Alfredsen, 2015). Hydrological models may be driven

by observations and NWP, for example temperature forecasts can drive predictions of snow

melt and resulting inflow to rivers and reservoirs. Similarly, precipitation forecasts drive soil

moisture and rainfall runoff. Beyond power production, hydropower operators often have

additional responsibilities associated with ecological and floor risk management requiring

specialist hydrological forecasts, which are beyond the scope of this article.

2.2 Statistical Modelling

Statistical modelling plays a number of roles in renewable energy forecasting and has been

the focus of research since the first attempts to produce wind and solar power forecasts and

characterise predictability in the late 1970s and 1980s. For instance, in (Wendell, Wegley,

& Verholek, 1978) it was mentioned, for the first time, the use of an analog approach to

construct a forecast probability distribution of wind speed; (Brown, Katz, & Murphy, 1984)

proposed a time series model to directly forecast wind power up to several hours ahead;

in (Bossanyi, 1985), Kalman filter was applied to forecast short-term wind speed and outper-
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formed persistence in 10 minutes resolution; statistical post-processing with Model Output

Statistics (MOS) was applied to forecast daily solar radiation for two days ahead (Jensenius

& Cotton, 1981); an ARIMA model was applied to model cloud cover time series to forecast

global solar irradiance (Chowdhury & Rahman, 1987). Since this time there has been a

clear distinction between methods for 1) post-processing NWP in order to produce power

production forecasts, favoured for lead-times of a few hours to days ahead, and 2) predicting

the next values(s) of power production time-series, favoured for lead-times of less than a few

hours. We examine both here and note that there is a third class of statistical modelling

which concerns the ‘blending’ of predictions from both types of models to produce a smooth

transition from one approach to the other across forecast lead-times.

2.2.1 Post-processing Numerical Weather Predictions

Due to finite observations and computational power, all NWP models are limited in their

resolution, and use approximations when solving the governing equations of the atmosphere.

These limitations mean that there may be systematic biases in the model forecast, for ex-

ample where the model topography does not exactly match that of the real world, or other

biases which depend on the state of the atmosphere. The purpose of post-processing weather

forecasts in renewable energy forecasting is threefold: first to model the power conversion

process for the site of interest, second to correct systematic bias in the NWP forecast data,

and third to quantify forecast uncertainty.

The physics of the weather-to-power process for wind turbines and solar technologies

is well understood and modelled, but the input to such models rarely corresponds to those

available for forecasting. For example, the hub height wind speed used to characterise a man-

ufacturer’s wind turbine power curve is not directly comparable with the wind speed forecast

produced by NWP which is produced for a cell which may contain multiple wind turbines

with wake and local terrain effects becoming important. Therefore, statistical methods are

employed to model the relationship between available NWP variables and renewable energy

production. Forecasts based on power curve models are necessary where no data are available

to estimate a statistical model, such as when a wind or solar farm is first commissioned, but

generally produce poorer quality forecasts than statistical post-processing. Similar princi-
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pals may be applied to run-of-river hydro (Camal, Teng, Michiorri, Kariniotakis, & Badesa,

2019), but for dispatchable hydro, water infolw to storage reservoirs would be the forecast

variable (Maier & Dandy, 2000).
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Figure 2: Illustration of different types of errors: (a) Level Error, (b) Phase Error, (c) Spatial

Error.

When comparing NWP to a single measurement location, such as a meteorological station

or renewable power plant, it is typical to observe some systematic bias that results from local

effects, such as terrain, which are not fully captured by the NWP. Statistical models are able

to learn these biases from historic data and then correct for them in subsequent forecasts.

These biases may manifest in different ways, illustrated in Figure 2; as ‘level errors’, simply

over- or under-predicting the value of a variable; ‘phase errors’, predicting events earlier or
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later than they are observed; or ‘spatial errors’, predicting events at the wrong location.

Level errors are automatically dealt with when modelling power production as a function

of NWP variables for the same target time. Phase errors may be addressed by modelling

power production as a function of NWP targeting the same and neighbouring time periods,

as in (Landry, Erlinger, Patschke, & Varrichio, 2016), and similarly location errors may

be addressed by modelling power as a function of a grid of NWP encompassing the target

location (Andrade & Bessa, 2017).

Quantifying uncertainty is critical for risk management and optimal decision-making.

While the statistics of deterministic forecast errors provide some information on uncertainty

the majority of use-cases for renewable energy forecasts benefit from the more detailed in-

formation provided by probabilistic forecasts. As mentioned earlier, an ensemble of NWP

model forecasts can be used to produce a probabilistic forecast. The probabilistic forecast

itself may have systematic errors, which can be removed by statistical post-processing, or by

an approach like the Analog Ensemble approach, which builds an ensemble by using a set

of past observations that correspond to the best analogs of NWP forecasts. This approach

has been used to improve the skill of both deterministic and probabilistic forecasting for

both wind and solar power (Yang, Astitha, Delle Monache, & Alessandrini, 2018). Recent

developments in renewable energy forecasting have focused on probabilistic forecasts and can

be divided into two groups: univariate and multivariate probabilistic forecasting.

A reliable probabilistic forecast is one for which the forecast probability corresponds well

with observations: an event which is forecast with 80% probability should be observed to

occur 80% of the time. A sharp probabilistic forecast is one for which the spread is small.

Ideally, probabilistic forecasts should be as sharp as possible, while still being reliable. Uni-

variate probabilistic forecasts aim to produce a sharp and reliable density forecast for a

particular variable, such as solar power production from a single power plant at a particular

time. This can be achieved by forecasting the parameters of a suitable probability distri-

bution (e.g. mean and standard deviation for a normal distribution), or by constructing a

density forecast from multiple quantile forecasts. The latter has emerged as the leading ap-

proach as the shape of the predictive distribution is not constrained and therefore better able

to model complex densities; however, parametric models are still preferred for modelling the
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tails of predictive distributions where quantile regression suffers from high model variance.

Multivariate probabilistic forecasts aim to forecast the joint density for multiple values,

such as multiple locations, multiple time periods, or even multiple resources (Camal et al.,

2019). This information is important in decision-making problems with temporal or spatial

constraints, such as energy storage management (including hydro reservoirs (Stedinger, Sule,

& Loucks, 1984)) or probabilistic power flow analysis. Such forecasts may take the form of

the full joint distribution function, or a set of scenarios or trajectories. Statistical methods

to produce multivariate forecasts using deterministic NWP typically involve producing uni-

variate forecasts for each variable and a copula to model the dependency structure (Tastu,

Pinson, & Madsen, 2015). Methods have also been proposed to post-process ensemble NWP

in order to produce a calibrated set of power production ensemble members.

2.2.2 Very Short-term Forecasting

The most relevant information to use when predicting weather dependent power production

on timescales of minutes to a few hours ahead is near real-time measurement data. The

requirement for NWP to assimilate large volumes of data and then run computationally

expensive physical models means that by the time a new forecast is issued the most recent

observation it is based on is already out-of-date. When forecasting on timescales of minutes,

models which resolve the necessary physical processes are prohibitively expensive to run

operationally. Instead, statistical models based on recent observations are used in very

short-term forecasting, and it is this distinction that defines very short-term here.

On very short time scales persistence (where a forecast is equal to the most recent ob-

servation) is a competitive benchmark. For solar forecasts, it is now standard to apply a

“smart persistence” baseline that accounts for changes in the solar angle. Time series meth-

ods based on classical statistics such as auto-regressive models have been well studied and

perform well, especially when extended to consider multiple spatial locations simultaneously.

However, one must consider how well the characteristic size and time scales of the weather

match the forecast lead-time. In the simplest case forecasts are largely based on power

production observations only. Typical methods include time-series models (auto-regression,

and variants to incorporate spatial dependence) as well as machine learning approaches such
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as SVM and neural networks. Recent research in this area has focused on scaling-up these

methodologies to be able to incorporate many spatial locations (Cavalcante, Bessa, Reis, &

Browell, 2016; Messner & Pinson, 2018), and conditioning statistical model on large scale

weather regimes for wind energy applications (Browell, Drew, & Philippopoulos, 2018) or

cloud regimes for solar (McCandless, Haupt, & Young, 2016). Augmenting power production

data with remote sensing is a well established strategy for improving solar power forecast

performance via incorporation of satellite imagery (Blanc, Remund, & Vallance, 2017) for

hours-ahead forecasting and sky cameras (Chow et al., 2011; Kazantzidis et al., 2017) for

intra-hour forecasting. Similar methods are beginning to emerge in wind power forecasting

with the use of LIDAR and RADAR technology to observe and advect changes in wind speed

as they approach a wind farm (Trombe, Pinson, Vincent, et al., 2014; Valldecabres, Peña,

Courtney, von Bremen, & Kühn, 2018; Valldecabres, Nygaard, Vera-Tudela, von Bremen, &

Kühn, 2018; Würth et al., 2019).

The previous sections have separated forecasts based on physical or statistical approaches,

and considered different time scales. Ideally, all of these approaches would be used together,

as appropriate for the end-user. A good example of this is the system developed by NCAR

and Xcel Energy (Mahoney et al., 2012) which combines real-time four-dimensional data

assimilation, a high-resolution ensemble and adaptive statistical postprocessing technologies.

3 The Future of Forecasting Renewable Energy

Looking towards the future, we place emphasis here on some of the research problems at hand

involving physical and statistical modelling while also considering current game changers

related to data aspects, novel business models and industry requirements.

3.1 Advances in Very Short-term Forecasting

There is significant scope for innovation in very short-term forecasting, largely with regard

to leveraging a greater volume and range of near real-time data from both SCADA systems

and remote sensing. Even though solar and wind power applications are different in their

details, most of the areas with high potential for further developments revolve around the
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same concepts, which include (i) availability of large quantities of data, (ii) availability of

new types of data, e.g. from remote sensing, and (iii) novel approaches proposed in statistical

and machine learning.

Looking at the wind power case, high temporal resolution (O(seconds)) wind speed and

power observations can today be obtained at the level of individual turbines and are available

in principle for use in forecasting to learn more accurate statistical models (though often not

actually utilized in practice) (Gilbert, Browell, & McMillan, 2019). For example, propagating

wind speed or power changes from the upwind row of turbines to those further downstream

could significantly improve minute-scale forecasts, especially at large offshore wind farms.

Similarly, derived features such as ramp rates could further improve forecasts of 5- and 10-

minute resolution power forecasts if combined with appropriate statistical modelling. These

time scales are important, for example, in electricity markets which allow trading close to

real-time, or for operators with co-located storage. The same goes for solar power generation,

for which measurements can be made available at very high sampling rates and then used

to improve forecasts at various spatial and temporal resolutions. In all cases, this calls

for new methodological developments which could take advantage of such high-resolution

information, ideally both in space and in time. An example relates to the use of stochastic

(partial) differential equations for the high-resolution modelling and forecasting and solar

power generation (Iversen et al., 2017). In parallel, considering novel remote sensing inputs

to renewable energy forecasting, such as from sky imagers and radars, these require a wealth

of methodological developments inspired by, for example, image analysis in order to define,

extract and use relevant features from those images. Some may be directly informed by

expert knowledge, but the most likely data-driven approaches are those which will be able

to readily obtain the required features directly from analysis of the input images, as for

the example of weather systems in the vicinity of offshore wind farms (Trombe, Pinson, &

Madsen, 2014).

3.2 Advances in Physical Modelling

The continuing increase in the availability of affordable computing power is making more

of this computing power available to NWP models. This allows NWP models to be run
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at higher resolutions, with some currently being run in the 100 m to 1 km range. However,

running NWP models at higher resolutions requires new parameterization schemes for the

sub-grid scale physics in the model, such as for turbulence. The grey zone of turbulence

refers to resolutions at which turbulent eddies in the atmospheric boundary layer are partially

resolved and partially parameterized, a regime that is now emerging in the highest resolution

mesoscale models. Turbulent eddies are important due to the mixing and dissipation effect

they have between different layers of the atmosphere. Incorrectly representing them in a

model could, for example, result in systematic errors in wind speed or cloud cover, amongst

other things. Careful perturbations of turbulence need to be introduced into the model to

allow proper treatment of turbulence (Kealy, Efstathiou, & Beare, 2019). Radar data can

be used to derive turbulence statistics for evaluating better parameterization of turbulence

in NWP models (Feist et al., 2019).

Different types of models which have traditionally been used for small-scale modelling in

aerodynamics and fluid dynamics, such as the LES model, are now being used alongside NWP

models. This approach allows research to bridge the gap between mesoscale and microscale,

and the two models have been coupled together to model a wind farm (Sanz Rodrigo et al.,

2017; Gilbert, Messner, et al., 2019). LES models can also be used to further understand

cloud processes and evolution (McMichael et al., 2019) and to compare LES output to NWP

output (Angevine et al., 2018).

Recently, the effect of the wind farms themselves, including the turbulent wake behind

wind turbines, and reduced energy in wind which has passed through a wind farm, is being

included as a wind farm parameterization within NWP (Fitch et al., 2012; Redfern, Olson,

Lundquist, & Clack, 2019). Such parameterizations generally consider two turbine impacts:

elevated drag in the region of the wind turbine rotor disk and increased turbulent kinetic

energy production. Results in terms of skill score improvements are mixed at the moment,

but further advances in this area would make these schemes a valuable addition for wind

energy forecasting, as they would potentially reduce systematic errors in the location of the

wind farm itself.

Alongside increases in computing power, there has been a large increase in the amount

of atmospheric data available over the past decade. Some of this increase is associated with
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higher sampling of data in time and space, and some of the increase is due to the availablility

of new sources of data. It is the job of data assimilation to make these data available to the

NWP models. A survey of data assimilation approaches for high-resolution NWP has shown

improvements in skill of variables such as wind, temperature, cloud cover and precipitation

by assimilating data at a higher resolution, with good potential for further improvements in

convective-scale data assimilation of data from satellites, aircraft and radar (Gustafsson et

al., 2018).

Satellites are the most important source of data for NWP, yet much of the data from

satellites is not being used. Existing satellite products which are not being used by NWP

have the potential to improve forecast skill (Fang et al., 2018), and new schemes are still

being developed to make more satellite data available to NWP data assimilation, such as

for cloud-affected infrared radiances (Aulign, 2014). Newer satellites will provide data with

high spatio-temporal resolution information on the surface boundary which could lead to

improvements in NWP forecasts (Parodi et al., 2018) as well as providing data from new

satellite-mounted instruments (Carminati, Candy, Bell, & Atkinson, 2018). Satellite data

can also be used to improve the climatology fields which are used by NWP models, such as

aerosol climatology (Choi, Park, & Lee, 2019).

Wind data from instruments carried on aircraft are currently used in some operational

NWP models (de Haan, 2011). Although there are uncertainties in data from aircraft during

ascent and descent (Stone, 2018), further advances here would be important for renewable

energy, as it would provide additional data at heights relevant for wind energy. Similarly,

valuable information on hub-height wind speed could be gained by assimilating data available

from wind farms. Assimilating data from nacelle anemometers has been shown to improve

forecast skill (Cheng, Liu, Bourgeois, Wu, & Haupt, 2017; Cutler, Outhred, & MacGill,

2012), and reverse-calculating wind from delivered power using power curves presents another

opportunity. However, data sensitivity concerns from wind plant owners may create barriers

to sharing some wind farm data.

New sources of observation data such as LIDAR and floating LIDAR have the potential

to provide wind data at multiple heights for less cost than traditional met masts (Gottschall,

Gribben, Stein, & Würth, 2017), while data assimilation of radar reflectivities has been shown
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to improve the representation of clouds and precipitation in NWP (Ivanov, Michaelides, &

Ruban, 2018).

Even our phones may help improve forecasting renewable energy in the future. Data

from pressure sensors on modern smartphones can be used as inputs for data assimilation.

If proper quality control and bias correction is applied, this data can improve the skill of

operational NWP models (McNicholas & Mass, 2018).

The field of quantum computing is one of active research and much investment. While

there is no commercially feasible quantum computer available today, NWP is a good appli-

cation for quantum computing (Frolov, 2017), and advances in this area could result in a

large increase in NWP model resolution and ensembles size.

Finally, the lowering price of cloud computing, open access to observation data, and the

availability of operational quality NWP code such as WRF may result in more widespread

generation of weather forecasts by the end-users themselves (Chui et al., 2019). Having more

people active in the area would, one hopes, drive further advances and increase forecast skill.

3.3 Advances in Uncertainty Forecasting Products

Presently, it is widely recognised by both academia and industry that point forecasting is

not enough to aid decision-making when subject to risk constraints. Therefore, uncertainty

estimation in forecasting has been a focus of research and definition of industry requirements

during the last years (Bessa et al., 2017). Nevertheless, a survey conducted in the framework

of International Energy Agency (IEA) Task 36 on Forecasting for Wind Energy1 showed that

there is very little knowledge of the tools and applications available to deal with uncertainty

and awareness of renewable energy inherent uncertainty and variability is not strong enough

to start including uncertainty information in operational practices (Möhrlen, Bessa, Barthod,

Goretti, & Siefert, 2016). Besides this connection between probabilistic forecasts and their

actual adoption by industry, general challenges remain related to appropriate verification

frameworks that are theoretically sound and of pragmatic relevance to practitioners.

During the last years, research work produced the following set of uncertainty forecasting

1IEA Wind Task 36 website: www.ieawindforecasting.dk
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products for renewable energy:

• Non-parametric predictive marginal distributions that can take different representa-

tions, such as conditional quantiles, conditional probability density functions, skewness,

kurtosis, etc. This uncertainty product is only adequate for decision-aid problems with-

out temporal dependency across intervals, e.g. setting balancing reserve requirements

for the next hours/days (operational planning) that are required to handle system im-

balances due to renewable energy and load forecast errors (M. A. Matos & Bessa, 2011),

define optimal (i.e., maximize revenue) renewable energy bids for each interval of the

day-ahead, intraday and ancillary services market sessions (Botterud et al., 2012).

• Power ensembles produced either from NWP ensembles converted into power by us-

ing statistical models and post-processing (Pinson & Madsen, 2009) or generated with

pure statistical approaches such as copula modelling (Pinson, Madsen, Nielsen, Pa-

paefthymiou, & Klöckl, 2009). This product is suitable for multi-period decision-

making problems such as: stochastic unit commitment (J. Wang et al., 2011) that

consists in scheduling the generation units for minimizing the cost of supplying the

forecasted load with a set of constraints related with power system security and opera-

tion; optimization of storage operation to maximize market revenues (Haessig, Multon,

Ahmed, Lascaud, & Bondon, 2015). Moreover, ensembles with spatial dependency

structure are suitable for power flow calculations where the objective can be to predict

the future states (e.g., voltages, power flow) of the electrical grid and/or identify flexi-

bility needs to solve grid technical problems (e.g., voltage, congestion) (Soares, Bessa,

Pinson, & Morais, 2018).

• Ramp forecasts characterised by magnitude, duration, ramp intensity, timing and di-

rection (Gallego-Castillo et al., 2015). This information has been used primarily for

situational awareness (e.g., probabilistic ramp alarms) of human operators in control

rooms (Orwig et al., 2015).

Many argued that trajectories (also referred to as scenarios) were the most relevant and

advanced forecast product since they include information of all uncertainties (marginals)
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and space-time dependencies (Pinson, 2013). For instance, those may be used as input to

network-constrained stochastic unit commitment and economic dispatch problems (Papavasiliou

& Oren, 2013), with significant reduction of operational costs by appropriately accommodat-

ing both uncertainties and space-time dependencies. When dimension increases and decision

processes become more complex, using such scenarios may not be practical, owing to the

difficulty in solving the resulting optimization problems, and may not be possible at all at

reasonable computational costs. This motivated various developments in stochastic opti-

mization and control that, instead of relying on a large number of trajectories, prefer to

solve problems based on multivariate forecast regions, possibly taking the form of ellipsoids

(Golestaneh, Pinson, Azizipanah-Abarghooee, & Gooi, 2018) or polyhedra (Golestaneh, Pin-

son, & Gooi, 2019). Today, there is a general need to rethink forecasting products that are

of most relevance to various forecast users and their decision problems. Possibly, and more

efficiently, it is the process of streamlining the definition, generation and verification of new

forecast products that should be rethought, as it is likely that with the massive use of renew-

able energy forecasts, most practitioners will come with their own views and requirements

on forecast products, which should then be accommodated in the most efficient manner.

Finally, to facilitate prosumers and flexibility providers with selling their flexibility in

the electricity market, a new forecasting product could be created which consists of a multi-

period flexibility forecast combining renewable energy sources (RES) uncertainty with flex-

ibility from distributed energy resources (e.g., storage, controllable loads) (Pinto, Bessa, &

Matos, 2017). This product is represented by a set of technically feasible net-load trajectories,

which represent alternative paths to the expected (baseline) net-load profile (trajectory). In

other words, these trajectories are samples taken from the multi-dimensional space forming

the feasible flexibility set.

3.4 New Business Models for Forecasting

A range of business models have emerged in the energy forecasting sector since the first com-

mercial offerings appeared in the early 2000s. Today both large (national weather services,

multi-national corporations) and small (SME forecast and software vendors, start-ups) or-

ganisations offer full or partial power forecasting services. However, over the past 5–10 years
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a number of small specialised energy forecasting companies have been acquired by large

organisations. Today, services may range from site-specific weather variables to detailed

power forecasts and a highly functional user interface. Choice of service will depend on the

needs, capabilities and budgets of the forecast user. Examples of different arrangements are

illustrated in Figure 3 characterising four user groups with different supply chains.
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Figure 3: Graphical representation of different business models in renewable energy forecast-

ing.

Some users want to purchase a forecast that will be used directly by decision-makers.

These information consumers perform little post-processing perhaps beyond blending and

visualising renewable production forecasts. Many forecast vendors offer services to these

users based on producing power forecasts from global NWP models and other data, often

including live data from their customers’ wind farms, while some will also run in-house

NWP. A typical information consumer would be an energy trading company (who may

procure forecasts from multiple vendors) or network operator. Expert users on the other

hand will perform post-processing and perform NWP down-scaling in house, and will employ

meteorologists and analysts to maintain an operational forecasting capability. The typical

expert user is an international utility with a large fleet of renewable generation assets or

with special requirements.
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The data pragmatist adopts a lean approach based on extracting maximum value from

free or low-cost NWP via statistical post-processing, perhaps enabled by specialized software.

Such users include utilities and network operators as well as flexibility providers and energy

start-ups. In the future, market places for forecasts may facilitate new forms of forecast

information exchanges as discussed next. One possible business model for a futurist forecast

consumer is illustrated in Figure 3. In addition to cost and skill, users may also consider

customer service, cyber security and uptime guarantees or forecast delivery reliability when

deciding on a forecasting solution. Some of these issues can be key driving factors for

forecasting users, often trumping cost and skill in decision making.

Trends in energy forecasting include a growth in the number of ‘expert users’ procur-

ing large volumes of NWP data as input to advance statistical methods; vendors re-selling

global NWP from (multiple) national weather services/models via convenient APIs or cloud

computing facilities, and increasing sources of open data, including NWP; and new software

solutions for forecast visualisation and integration with other business functions. The num-

ber of expert users running their own local NWP models is however in decline, as global

and regional models from national weather services and large weather forecast providers are

at such a high resolution that, when coupled with advanced statistical methods for post-

processing, there is less value added from downscaling than in the past. A rise in demand

for probabilistic forecasting, however, may reverse this trend, as uncertainties derived from

NWP models are different from those produced by statistical models.

One of the most innovative business models for RES forecasting can be an intersection

of forecasting methods (e.g., statistical learning, machine learning or artificial intelligence

(AI) techniques), blockchain and cryptocurrencies. The basic idea is a company that hosts

a platform that enables different users to submit and buy RES forecasts in a completely

decentralised way. This business model contributes to “democratize” the forecasting business

since it provides the mechanisms for any supplier (data scientist, PhD student, etc.) to

submit forecasts and obtain profit via cryptocurrency tokens indexed to the forecasting skill.

For a forecast end-user, this provides access to a plethora of RES forecasts, with different

accuracy and price, which can be combined to create a single and more accurate forecast.

Some fundamental requirements are necessary to materialise this model:
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• Statistical or machine model fitting without the need to disclose data. This requires

seamless approaches for maintaining a certain level of privacy or confidentiality and

perform numerical computations using this data at the same time. This requirement

can be ensured by cryptography solutions, such as: (i) homomorphic encryption that

encrypts the original values in such a way that the application of arithmetic operations

does not compromise the encryption, ensuring that after the decryption step, the result-

ing values correspond to the ones obtained by operating on the original data (Gentry,

2010); (ii) differential privacy, which is usually achieved by adding properly calibrated

noise to an algorithm or to the data, and requires computations to be insensitive to

changes in any particular record or intermediate computations (Dwork, 2006). How-

ever, in differential privacy there is a trade-off between accuracy and privacy, which can

be critical for forecasting problems. Recent advances in deep learning, like generative

adversarial network (GAN) which is an unsupervised learning technique composed of a

system of two competing neural network models (generator and a discriminator) which

are able to analyze, capture and copy the variations within a dataset (Goodfellow

et al., 2014), can provide a data-driven approach for optimizing privacy-preserving

data (Tripathy, Wang, & Ishwar, 2019).

• Forecast output transparently available to all parties without the need of trusting in a

centralised entity. Blockchain and smart contracts technology can be used to build a

trustworthy distributed peer-to-peer network with automated transactions (Christidis

& Devetsikiotis, 2016). For instance, with a smart contract, which is a computer

transaction protocol, it is possible to create “autonomous agents” with a set of compu-

tational instructions (e.g., partially or fully self-executing, self-enforcing) that manage

agreements between users and forecast providers without third parties and with high

security.

• Adequate economic model where third parties are incentivised to share knowledge/data

and improve forecasting skill, e.g. through cryptocurrencies (altcoins, tokens) protocols

(ElBahrawy, Alessandretti, Kandler, Pastor-Satorras, & Baronchelli, 2017) or data

marketplace mechanisms (Agarwal, Dahleh, & Sarkar, 2019).
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In non-energy domains, this business model is already being explored by several compa-

nies and open-source initiatives. OpenMined2 combines federated machine learning, blockchain,

multi-party computation, and homomorphic encryption. In this model, deep learning algo-

rithms fitted in distributed data blocks are traded through smart contracts. The Ocean

protocol3 uses blockchain and provides a tokenized service layer connecting data providers

and consumers, which was designed so that data owners control each dataset. Numerai4

developed Erasure, a decentralized prediction marketplace for financial forecasting, where

data scientists can upload forecasts based on available data, stake them using crypto tokens

and earn rewards based on the forecasting performance. SingularityNET is a distributed

computing architecture that supports new types of smart contracts templates to facilitate

token-based market interactions with AI and machine learning tools (Goertzel, Giacomelli,

Hanson, Pennachin, & Argentieri, 2017). Finally, Algorithmia DanKu developed a proto-

col for a marketplace where machine learning models are exchanged in an automated and

anonymous manner and cryptocurrency can be used for payment (Kurtulmus & Daniel,

2018).

3.5 New Industry Requirements and Challenges

Future scenarios with near-100% RES integration in electric power systems will define new

use cases for RES uncertainty forecasting and require new forecasting products. Two im-

portant challenges, amongst many, for power system operations are: (i) decline of power-

frequency control reserves and system inertia due to high shares of non-synchronous tech-

nologies; (ii) decentralised small-scale RES that create local technical problems in electrical

grids (mainly in MV and LV levels), such as voltage and congestion problems in specific

areas of the electrical grid.

For the first challenge, renewable power plants can provide frequency containment re-

serve, including fast frequency reserve (Morren, de Haan, Kling, & Ferreira, 2006), such as

frequency containment reserve and synthetic inertia. Regarding system inertia, the state-of-

2https://www.openmined.org/ (accessed on March 2019).
3https://oceanprotocol.com/ (accessed on March 2019).
4https://numer.ai/homepage (accessed on March 2019).
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the-art is developing new modelling approaches for: (i) inertia monitoring and forecasting

from synchronous generation using a network model-driven approach (Du & Matevosyan,

2018); (ii) dispatching synchronous inertia in order to satisfy the minimum required syn-

chronous inertia for frequency-control purposes in face of the loss of the largest online syn-

chronous generator (Gu, Yan, & Saha, 2018). This induces forecasting requirements, which

may consist of high temporal resolution weather and power forecasts that can be used to

estimate how much fast frequency response power renewable power plants can deliver in the

next minutes or hours. These may then be accommodated by dispatch tools with additional

security constraints to guarantee minimum inertia or frequency containment reserves aiming

to securely operate power systems with near-100% RES integration.

An interesting idea in (Zhou et al., 2014) is to explore data assimilation that has been

widely studied and used in weather forecasting (see section 2.1) to construct a real-time

dynamic state estimator of a power grid. The fundamental goal of data assimilation is to

fuse phasor measurement unit (PMU) data with power system dynamic models and esti-

mate the dynamic states of synchronous generators. This establishes a synergy between

research conducted in weather and power systems domain, and can provide new tools for

look-ahead dynamic simulation and contingency analysis in systems with high integration

levels of renewable energy.

The second challenge is being covered at the academic level with stochastic optimal power

flow methods, which in general result in high computational times, require a full modelling

of the network equations and do not include domain knowledge from human operators. As

mentioned in section 3.3, this requires new representations for forecast uncertainty, such

as multivariate (i.e., modelling temporal/spatial or multivariable correlations) ellipsoids or

polyhedra for robust, chance-constrained and interval optimization problems where the re-

quired uncertainty representation takes the form of prediction regions rather than scenarios

(or ensembles) (Golestaneh et al., 2019).

Moreover, this also creates some pressure in improving forecasting skill at the individual

installation level and the development of local (or distributed) control algorithms with RES

forecasts as input and relying on robust optimisation (Ma, Wang, Gupta, & Chen, 2018).

This is particularly challenging for “behind-the-meter” solar power forecasting due to the
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lack of individual solar power data and in some cases there is a mismatch between licensed

and true PV rated power. In order to solve the monitoring problem, in (Kara, Tabone,

Roberts, Kiliccote, & Stewart, 2016) a contextually supervised source separation problem is

proposed to disaggregate PV generation at individual households from historical metering

data; (X. Zhang, , & Grijalva, 2016) uses a change-point detection algorithm to detect

abnormal energy consumption points and unauthorized PV installations (confirmed with

permutation test with Spearmans rank coefficient), and the cloud cover index is combined

with smart meter data to estimate the rated power of the PV system. These methods

provide visibility about PV location in the electrical grid, rated power and generation profile.

Recently, data-driven algorithms for forecasting net-load in cases with “behind-the-meter”

PV were proposed. The authors in (Y. Wang et al., 2018) propose a probabilistic net-

load forecasting method that: (i) applies grid search to estimate equivalent PV parameters

(rated power, tilt angle, azimuth) that are used to decompose the net-load time series into

PV output, actual load profile and residual; (ii) forecasts the three components separately

with gradient boosting regression trees; (iii) analyze their distributions and the dependencies

of the forecasting errors and generate with copula modeling a joint probability distribution.

Gaussian process with different combinations of covariance functions are used in (van der

Meer, Shepero, Svensson, J.Widén, & Munkhammar, 2018) to compare two different net-

load forecasting strategies: (i) direct forecasting of net-load; (ii) separated forecasting of

electricity consumption and PV generation and subtracting both afterwards. The direct

strategy resulted in sharper forecast intervals, but lower performance in terms of calibration

(or reliability).

In the planning domain (e.g., from months to years ahead), both market players and

transmission/distribution system operators face economic and technical (e.g., reliability)

risks and the increasing integration of RES maximises the uncertainty associated with the

decision-making process. Traditionally, chronological Monte Carlo simulation from historical

time series was used for assessing power system reliability (e.g., loss of load expectation) with

renewable energy and for future power system scenarios (M. Matos et al., 2009). However, an

emerging requirement is seasonal forecasts of energy-related weather variables. For instance,

the Added Value of Seasonal Climate Forecasting for Integrated Risk Assessment (SECLI-
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FIRM) Horizon 2020 project (2018–2021)5 is covering nine use cases to improve seasonal

climate forecasts. One use case is titled “winter weather and energy system balancing”

and the main objective is to study the benefits of using seasonal forecast information (i.e.,

wind speed, temperature, mean sea level pressure) to better predict the UK winter mean

electricity demand and wind power, and seek a reduction of balancing costs over the winter

period. For electricity markets, the use case titled “high/low winds in Spain and energy

generation” is driven to demonstrate the use of wind speed seasonal forecast information for

long-term management of a portfolio with conventional and renewable power plants. The

sub-seasonal to seasonal time frame is also being investigated in projects such as the Horizon

2020 S2S4E (Sub-seasonal to Seasonal climate forecasting for Energy)6, which is developing

new renewable energy forecasting products for time horizons of weeks and months and a

decision-aid tool that integrates sub-seasonal to seasonal weather forecasts with renewable

energy generation and electricity demand.

4 CONCLUSIONS

Forecasting for wind and solar energy is already well-established and an important part

of efficiently integrating renewable energy into existing power networks. Forecast skill is

continuing to improve, driven by advances in both physical modelling (NWP), statistical

modelling and and AI. Recent focus has shifted to probabilistic forecasting, which tends to

outperform deterministic forecasts whilst also providing a quantification of uncertainty. We

have reviewed current activities in both of these areas, and noted recent advances.

In physical modelling, the continuing increase in computing power available for forecast-

ing is allowing NWP models to be run at higher resolutions, and for more models to be

run to create ensembles for probabilistic forecasting. There has also been an increase in the

amount and types of atmospheric data available. It is the job of data assimilation to make

these data available to the NWP models, and higher-resolution data assimilation, as well as

including new sources of data, continues to help improve the skill of NWP forecasts.

5www.secli-firm.eu
6S2S4E website: www.s2s4e.eu
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Statistical modelling and AI is widely used for wind and solar energy forecasting. Very

short-term forecasting, from minutes to hours ahead, uses data from the renewable energy

plant itself to forecast future values. Skill here can be improved by including other sources

of data, such as cloud imagery, radar, or weather typing. Longer-term forecasting, from

hours to days ahead, includes NWP forecast data as inputs. Statistical methods are used

to remove systematic biases, convert to power, and quantify uncertainty. Phase errors and

spatial errors, which become more noticeable as model resolution increases, can be addressed

by considering neighbouring time and grid points.

Our discussion then shifted to the future of forecasting for renewable energy. With the

availability of large data sets, and new sources of data being included, there is great potential

to broaden the types and amount of data used in both statistical and physical modelling.

Larger datasets can be used to drive novel approaches in statistical and machine learning,

while making new sources of data available to NWP through new data assimilation processes

will improve forecast skill.

NWP models are now being run at resolutions where sub-grid scale processes like turbu-

lence and cloud processes are partially resolved, but still partially parameterized. When the

scale of the energy- and flux-containing turbulence approaches the scales resolved by NWP

models the model is said to be operating in ”terra incognita” (Wyngaard, 2004) and care

needs to be taken in how turbulence is parameterized by the model. Work coupling NWP

with higher-resolution physical LES models, informed by new sources of data, will allow

forecast skill to be further improved at these high resolutions.

With the shift towards high-resolution probabilistic forecasting comes a need for new

forecasting products. End-user requirements vary across different industries, and there is a

need for forecasting products to translate the large amount of forecast data available into a

format which can be readily understood by industry, and inform their decision-making pro-

cesses. This may involve delivering forecast data in different formats, or integrating forecast

variables into end-user models to optimise their overall operation. This integration of forecast

data into different modelling processes may change business models in the area of renewable

forecasting. Some businesses may shift towards increasing their in-house modelling skills to

include forecasting, while other businesses may act as expert users for a range of clients.
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The way forecast and energy data are exchanged may in itself change with the adoption of

blockchain technologies. Coupled with encryption methods which preserve confidentiality,

these could allow people to exchange forecast and energy data in a decentralized yet trusted

manner.

As electric power systems move towards integration of ever higher amounts of renewable

energy, renewable energy forecasting will have an important role to play in preserving system

stability. The decline of power frequency control and system inertia from synchronous gener-

ation technologies should be managed with predictive dispatch tools with additional security

constraints to guarantee minimum fast frequency response (including the participation from

RES power plants), which will require forecasts with higher temporal resolution. Managing

power systems with large amounts of decentralised renewable energy generation will also

require advanced forecasting skills for these energy sources, considering “behind-the-meter”

forecasting, and new representations for forecast uncertainty.

Finally, on planning timescales from months to years ahead, advanced forecasting tech-

niques from seasonal to climate modelling scales will allow better predictions of future power

system scenarios and the critical underlying weather-driven uncertainties for systems with

high levels of renewable energy generation.
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